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Abstract

The Covid-19 Pandemic has renewed interest in contactless vital signs monitoring using state-of-the-art computer vision, which

can efficiently screen for symptoms while reducing the risk of disease transmission. Despite the promising perfor- mance, the

use of static camera setups requires subjects to remain static inside a field of view (FoV) for a pre-specified duration. Due to

inconsistent ambient environmental conditions, the transit of individuals through the FoV, and the time it may take to triage

individuals, the widespread adoption of static camera systems to continuously monitor vital signs has had suboptimal uptake.

Robotic systems enable autonomous and continuous monitoring, but these require expensive cameras, computers, and robotic

platforms, limiting widespread deployment. In response, we propose a cost-effective and scalable robotic solution consisting

of a suite of commercial, off-the-shelf wireless cameras for capturing photoplethysmography (PPG) on ambulatory subjects

linked to a single computer that supervises the cameras to compute the vital signs of subjects. Throughout a set of careful

investigations of each individual step of the wireless machine vision camera and computer, bottlenecks constraining wireless

live-streaming of high-quality PPG information are identified and those are addressed by a hybrid centralized/decentralized

wireless machine vision protocol. Our results demonstrate that the proposed cost-effective wireless camera achieves equivalent

remote-PPG accuracy to its costly, USB3 counterparts (mean error: 5.0 BMP vs. 4.7 BPM) by means of the hybrid camera

protocol which boosts the overall frame rate to 17 FPS. In contrast, using the standard method that captures the PPG with

the same spatial resolution can only achieve 1 FPS. In addition, this work also elucidates how varying the distance, image pixel

density, frame rate, image compression, image downsampling, and color depth affect the rPPG performance. For each of the

effects, we also discuss potential solutions for the cost-effective setup.
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Cost-effective Mobile Solution for Autonomous and
Continuous Vital Signs Monitoring

Hen-Wei Huang1,2,3∗, Jack Chen1,3∗, Philipp Rupp1∗, Claas Ehmke2,4∗, Peter R Chai2,5, Riya Dhar2, Ian
Ballinger1,3 Giovanni Traverso1,2,3

Abstract—The Covid-19 Pandemic has renewed interest in
contactless vital signs monitoring using state-of-the-art computer
vision, which can efficiently screen for symptoms while reducing
the risk of disease transmission. Despite the promising perfor-
mance, the use of static camera setups requires subjects to remain
static inside a field of view (FoV) for a pre-specified duration. Due
to inconsistent ambient environmental conditions, the transit of
individuals through the FoV, and the time it may take to triage
individuals, the widespread adoption of static camera systems
to continuously monitor vital signs has had suboptimal uptake.
Robotic systems enable autonomous and continuous monitoring,
but these require expensive cameras, computers, and robotic
platforms, limiting widespread deployment. In response, we
propose a cost-effective and scalable robotic solution consisting of
a suite of commercial, off-the-shelf wireless cameras for capturing
photoplethysmography (PPG) on ambulatory subjects linked to
a single computer that supervises the cameras to compute the
vital signs of subjects. Throughout a set of careful investigations
of each individual step of the wireless machine vision camera
and computer, bottlenecks constraining wireless live-streaming
of high-quality PPG information are identified and those are
addressed by a hybrid centralized/decentralized wireless machine
vision protocol. Our results demonstrate that the proposed
cost-effective wireless camera achieves equivalent remote-PPG
accuracy to its costly, USB3 counterparts (mean error: 5.0 BMP
vs. 4.7 BPM) by means of the hybrid camera protocol which
boosts the overall frame rate to 17 FPS. In contrast, using the
standard method that captures the PPG with the same spatial
resolution can only achieve 1 FPS. In addition, this work also
elucidates how varying the distance, image pixel density, frame
rate, image compression, image downsampling, and color depth
affect the rPPG performance. For each of the effects, we also
discuss potential solutions for the cost-effective setup.

I. INTRODUCTION

Recent advances in computer vision and artificial intelli-
gence have enabled contactless measurement of respiratory
rate, heart rate, heart rate variability, oxygen saturation, and
blood pressure via remote photoplethysmography (rPPG) [1].
These methods have shown great potential during the COVID-
19 pandemic by enabling remote assessment of individuals
for possible COVID-19 thereby reducing potential disease
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Vital Signs Monitoring Multi-Blimps to 1 PC

Blimp Body Blimp Gondola

Fig. 1. Robotic blimps for vital signs monitoring. Multiple blimps connect
to one external PC. The blimp consists of a 32” mylar helium balloon and a
gondola.

transmission and conserving personal protective equipment
[2]. Despite the promise of contactless vital sign acquisition,
a major drawback of camera-based setups is the restrictions
on human subjects: they must be found and remain in the
FoV during measurement. While this is not an insurrmountable
barrier in certain situations, the majority of settings where
these systems may be deployed may require screening of
multiple individuals at once, or rapid assessment of individuals
who may be physically unable to remain in a static FoV during
the entire assessment.

To remove this restriction, we previously proposed a mobile
robotic system consisting of specialized cameras mounted on
a commercial quadruped robot (Boston Dynamics, Waltham
MA). This system was used to facilitate vital signs moni-
toring for emergency department triage [3]. Throughout the
deployment of the robot in the hospital during the COVID-19
pandemic, we learned several lessons that limited its applica-
bility, such as the need for sophisticated path-planning/obstacle
avoidance and the limited battery capacity, the latter of which
led to frequent charging and interrupted vital signs monitoring.
Furthermore, this robotic setup consisting of an all-terrain
robot, high-spec cameras, and powerful computers may be
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cost-prohibitive for widescale deployment in large health-
care systems, which in tandem with its bulkiness limited its
scalability for continuous monitoring of multiple patients in
hospitals.

Here, we demonstrate a cost-effective, aerial-robotic solu-
tion for autonomous and continuous vital signs monitoring of
multiple subjects simultaneously, aiming to address the afore-
mentioned issues. The cost-effective solution is implemented
by a swarm of aerial robotic cameras wirelessly communi-
cating with one central computer. As shown in Figure 1, the
wireless robotic camera consists of a 36” helium foil balloon
with a mounted gondola. An OpenMV H7 Plus (OpenMV)
machine vision microcontroller serves as the robot’s compu-
tation unit for capturing rPPG.

One major drawback of the cost-effective machine vision
camera, such as OpenMV, is the limited computation ca-
pabilities as compared to typical computer vision systems.
Thus, ROI detection and tracking as well as real-time rPPG
estimation must be offloaded to an external computer, placing
an unaffordable burden on wireless data transmission for real-
time streaming high-quality video. To address this, we develop
a hybrid centralized/decentralized camera control protocol by
offloading partial computation of rPPG and region of interest
tracking from the computer to the camera, thus relieving the
burden on wireless data transmission.

The main contributions of this paper are two-fold. First, we
describe the development of a cost-effective, easily scalable
robotic platform. Second, we propose a novel machine vision
protocol to enable state-of-the-art rPPG performance via wire-
less cameras, enabling simultaneous multi-subject monitoring.

II. RELATED WORKS

A. Remote Photoplethysmography

Photoplethysmograhy (PPG) is an optical technique that
measures changes in light absorption in the capillaries beneath
the skin, which corresponds to changes in blood volume. This
technique is most commonly used to measure heart rate and
blood oxygen saturation, but it can also be used to measure
respiration and blood pressure [4].

Remote photoplethysmography (rPPG) refers to contactless
methods for PPG. The most common methods use computer
vision, but methods have been developed that use radar
and wireless technologies [5]. In vision-based methods, a
camera records a subject and detects or segments a region
of interest covering skin pixels. An rPPG algorithm then
calculates the pulse signal from the variations in the region
of interest. The plane-orthogonal-to-skin (POS) method is one
such rPPG algorithm that is motion robust and has previously
been demonstrated to correlate with ground truth heart rate
estimation [1].

Despite the pragmatic benefits of leveraging CV-based
methods for rPPG measurement, they importantly restrict
movement of the subject. Individuals must enter and remain
in the camera’s field of view for the entire duration of
measurement. In order to improve potential implementation
of rPPG and remove restrictions from subject movement,
previous work has focused on deploying rPPG on robotic

platforms that may track and follow individuals. These works
use a differential-wheel robot mounted with devices such as a
3D camera, laptop, and webcam [6], [7]. We previously used
the quadruped Spot robot by Boston dynamics mounted with
RGB and IR cameras [3].

B. Region of Interest

The region of interest (ROI) in an image is the part of an
image with interesting information. For instance, the region of
interest for object detection is the part of an image containing
the object. A common trade-off for cameras is between image
resolution and frame rate; increasing one necessarily decreases
the other. Our previous work has developed a closed-loop ROI
algorithm that allows a high-resolution camera to only capture
and transmit what is interesting while ignoring redundant
information to boost the overall frame rate; furthermore, this
works enables a wide FoV to be maintained for tracking fast-
moving objects [8], [9]

For rPPG, common ROIs include the forehead, cheeks, and
face, which contain large regions of unobstructed skin. Previ-
ous work has investigated ROI detection and skin segmentation
methods for rPPG [10], [11]. Others have assessed different
ROIs and their suitability for rPPG algorithms [12], [13].
We selected the forehead as our ROI because with increasing
mask use globally due to the COVID-19 pandemic, other ROI
regions conductive to measuring rPPG are frequently obscured.
Fortunately, the forehead has been confirmed as an excellent
ROI for rPPG, with a high signal-to-noise ratio [14], [15].

C. Miniature Robotic Blimps

Miniature robotic blimps are a well-researched robotic plat-
form consisting of a helium balloon with an attached gondola.
Small motors and propellers control the blimp’s motion, while
micro-controllers and sensors enable robotic functionalities.

Miniature robotic blimps offer a range of benefits over other
aerial robots, including lower cost, lower noise, and increased
collision tolerance [16], [17]. Moreover, the robotic blimp does
not consume energy to hover, thus resulting in extended battery
life. However, blimps are limited by their lower speed, lower
durability, and smaller payload [16]. The latter is a particular
challenge, as robotic blimps can only carry a very limited set
of sensors, batteries, motors, etc. As a result, some work have
focused on the optimization of parameters such as number of
actuators, [18], gondola placement [19], and communication
interface [20].

Previous works have studied and simulated the dynamics
of miniature robotic blimps to inform the design of control
algorithms [17]. Controlling these blimps is made difficult due
to perturbations caused by airflow and buoyancy changes due
to leakage and variations in ambient conditions. Some works
have designed adaptive motion control algorithms [21], while
others have used reinforcement learning to achieve robust
control policies capable of withstanding wind disturbance [22],
[23].

Functionalities such as localization, navigation, path plan-
ning, person following, and teleoperation have all been ex-
plored on the robotic blimp platform [24], [25]. Commonly
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Fig. 2. CAD model of robotic blimp gondola showing the assembled and
exploded views.

proposed applications for this platform include search and
rescue, surveillance, and video broadcasting [26]–[28].

III. METHODS

For vital signs monitoring in a hospital filled with moving
persons and machinery, an overhead aerial robot may be more
suitable as it can more easily navigate chaotic environments
compared to grounded robots. Although drones are the more
common aerial robot, they are loud and pose safety hazards es-
pecially when operated indoors. In contrast, miniature robotic
blimps make very little noise and are collision-tolerant, and
have zero energy consumption-hovering. The main benefits
of the blimp are its safety, long battery life, and low noise,
but it has low speed and limited payload mass. We use
a swarm of low-cost robotic cameras that on each blimp
coordinates with one central PC; this enables the cost-effective
and easily-scalable solution capable of simultaneous multi-
subject monitoring.

A. Autonomous robotic blimps

The robotic blimp comprises a gondola (shown in Figure 2)
attached to a mylar foil helium balloon that is 36” in diameter.
The gondola is composed of the OpenMV H7 Plus (OpenMV)
machine vision microcontroller, the ATWINC1500 WiFi mod-
ule, a MellBell Pico microcontroller (0.6” x 0.6” package),
a Polulu DRV8835 dual DC motor driver, one rechargeable
LiPo battery (700 mAh), two mini DC motors with propellers,
and two micro servo motors. The two DC motors controlled
by the DRV8835 can adjust the speed and direction of the
propellers. The two micro servo motors are used to control
pitch angle of the propellers and the yaw angle of the
OpenMV camera, respectively. The OpenMV is the robot’s
onboard controller which is in charge of the decentralized
computation for capturing high-quality rPPG information; the
Pico microcontroller is in charge of blimp locomotion control.
The OpenMV and Pico communicate via I2C. The OpenMV
communicates via WiFi (ATWINC1500 WiFi module [29])
with an external NVIDIA Jetson AGX Xavier embedded PC
(PC). The PC is the centralized computing device that provides
high-level control of the robot. To acquire high-quality rPPG
while keeping social distancing, the distance between the robot
and a measuring subject is set at 2 meters, and the pixels
covering the forehead are set to 500 x 200.

Figure 3 shows the block diagram of robotic camera oper-
ations. Each blimp begins by rotating in place, transmitting
captured images over WiFi to the PC. The PC then detects

Blimp 
rotates & 

scans
Detect 
person

Travel to 
person

Stabilize 
to front 
of face

Detect 
face / 
pose

External Computer OperationsBlimp/Camera Operations

rPPG with 
Hybrid / 

Decentralized 
Camera

Capture region 
of interest

rPPG 
processing

Camera 1

…

Send rPPG 
information

Camera n

Find region
Of interest

Capture region 
of interest

rPPG 
processing

Send rPPG 
information

Find region
Of interest

…

Fig. 3. Block diagram of robotic blimp platform for rPPG. The robot
communicates with an external PC to perform operations.

bodies using the YoloV4 object detection model [30]. Each
blimp travels to a person using the person-detection bounding
box as the PID feedback. The PC then detects faces using
the MTCNN object detection model [31] and Dlib face pose
estimation model. Each blimp stabilizes to the person’s fore-
head using the face-detection bounding box and face pose as
the PID feedback. Finally, each blimp uses the hybrid camera
method–present in the latter subsection–to stream rPPG video
for vital signs estimation.

B. rPPG recording and analyses

To test the proposed camera methods, we applied them
to eleven subjects 2 meters away from the camera. FLIR
Blackfly USB3 RGB camera was employed as a reference for
benchmarking the performance of the cost-effective wireless
camera. To test parameters that were not camera-specific,
we use the UBFC datset, a public rPPG dataset with 43
subject [32].

The POS algorithm is used to analyze the rPPG information
to estimate vital signs [1]. Typical rPPG algorithms measures
characteristic changes in skin color caused by constriction and
dilation and capillaries. The POS algorithm constructs two
orthogonal signals from variations in the skin’s averaged RGB
signal, from which the pulse signal is extracted.

To test the scalability of our solution, we connected five
static OpenMV cameras to one external PC wirelessly using
the transmission control protocol. All five OpenMV cameras
run our proposed rPPG method while simultaneously coordi-
nating with the PC. We measure the frame rate of each camera
do determine the effects of multithreading.

C. Wireless machine vision protocols

Figure 4 presents the three protocols that control the wire-
less machine vision camera for capturing rPPG. The Standard
Camera is the typical method for rPPG, which we use as a
benchmark for our proposed methods. The Standard Camera
captures and transmits the full-resolution image to an external
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Method Diagram View

Standard

Centralized

Decentralized

Transmit 
Full 
Image

Capture 
Full 
Image

2592x1944
pixels

1280x720
pixels

500x200
pixels

50x50
pixels

Detect 
tracker

Capture 
sub-image

Determine 
forehead

PC sets sub-image 
location 

Transmit 
RGB value

Transmit 
sub-image

Capture 
sub-image

PC sets sub-image 
location 

Field of View Forehead (ROI)

Sub-image Color Tracker

If person 
is outside 
sub-image

Fig. 4. Overview of the standard and our proposed camera methods for rPPG.

PC. The PC detects the forehead and computes the RGB
average of the pixels covering the forehead. The averaged RGB
value will then be used to analyze the rPPG information via
the POS algorithm.

The Centralized Camera is an improved method, in which
the PC directly supervises the camera to only capture and
transmit the ROI. The PC first takes the full-resolution image
to find the location of the subject’s face, it then guides the
camera to capture the sub-image containing the face. The sub-
image, which is the blue bounding box (1280 x 720) in the
Figure 4, allows reasonable head movement. We also identify
that 1280 x 720 is the minimum ROI size with the highest
pixel density for capturing rPPG without losing color fidelity.
Once the face moves beyond the blue bounding box, the PC
will supervise the camera to reconfigure the sub-image. In this
way, the camera captures and transmits a much smaller image.

The Hybrid Centralized/Decentralized Camera is a further
improved method, in which the PC offloads computation of
localizing forehead as well as rPPG pre-processing to the
OpenMV. Algorithm 1 shows the pseudocode for the hybrid
camera. In this method, a small color tracker is placed on
the subject’s forehead to enable the OpenMV camera to track
the forehead. Though this is a rudimentary form of forehead
detection, microcontrollers such as the OpenMV do not have
the capacity to run more complex models at a reasonable frame
rate. For instance, we tested a TensorFlow Lite model for
the OpenMV using the COCO Common Objects dataset [33];
unfortunately, this model ran at below 1 FPS on the OpenMV.
Color tracking is much simpler and enables real-time, frame-
by-frame detection on the OpenMV.

For the Hybrid Camera, the same blue bounding box
(denoting the region of interest) as the centralized method
will be captured by the camera. In every frame, the OpenMV
detects the color tracker and uses its location to estimate the
forehead’s location. Detection is performed by filtering for
color blobs in the narrow range of the color tracker. Different
from the Standard and Centralized Cameras that transmit the
entire RGB pixels covering the ROI to the PC, the OpenMV
first calculates the average RGB value of the forehead and only
transmits the averaged value to the PC. The PC then directly
analyzes the rPPG information.

Algorithm 1 Operations of hybrid camera for rPPG
camera.capture window = (0, 0, 2592, 1944)
img = camera.capture image()
tracker = camera.color detection(img)
ROIx loc = (tracker.x - 1280) / 2
ROIy loc = (tracker.y - 720 ) / 2
camera.capture window = (ROIx loc, ROIy loc, 1280, 720)
timer.start()

while True do
img = camera.capture image()
tracker = camera.color detection(img)
forehead = (tracker.x - 250, tracker.y - 100)
average = camera.compute RGB avg(forehead)
camera.Wifi transmit to PC(average)

if timer.time() == 60 seconds then
camera.capture window = (0, 0, 2592, 1944)
img = camera.capture image()
tracker = camera.color detection(img)
ROIx loc = (tracker.x - 1280) / 2
ROIy loc = (tracker.y - 720 ) / 2
camera.capture window = (ROIx, ROIy , 1280, 720)
timer.restart()

end if
end while

The Hybrid Camera takes advantage of two factors: color
detection is a simple algorithm that can run in real time
even on embedded processors; rPPG does not actually require
images of the skin, and only requires the average RGB values
of the skin. Thus, these basic decentralized operations on the
OpenMV are sufficient to enable rPPG.

IV. RESULTS AND DISCUSSION

Leveraging rPPG could reduce the risk of spreading airborne
pathogens in hospitals and other enclosed settings as it allows
healthcare workers to acquire patients’ vital signs remotely or
with improved barrier protection. However, simply increasing
the distance between the camera and a measuring subject
will lead to decreased number of pixels covering the ROI,
which results in increased rPPG estimation error as shown
in Figure 5. One simple solution is to change the lens focal
length, which then sacrifices the FoV for tracking head or body
movement. The other option is to increase the camera’s image
resolution which then compromises the frame rate in capturing
images, which again results in increased rPPG estimation error
as shown in Figure 6. To obtain high-quality rPPG, it is
important to have not only enough pixels covering the ROI
but also a high frame rate. However, the limited wireless
transmission speed impedes the OpenMV camera to capture
ROI with its highest spatial resolution, by which the overall
frame rate would be only 1 FPS.

To address the bottleneck in wireless data transmission of
high-quality rPPG, two machine vision camera protocols, the
centralized and hybrid protocols, are developed by means of
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Fig. 5. Frame rate and number of region of interest pixels versus heart rate
estimation of rPPG methods.

the closed-loop ROI algorithm. The centralized protocol allows
the camera to only capture and transmit ROI with the high-
est spatial and temporal resolution. Although the centralized
protocol can significantly reduce the time for capturing ROI
with its highest spatial resolution, the temporal resolution
is still sub-optimal. In the centralized camera protocol, the
ROI should contain not only the forehead for rPPG analyses
but also the entire face for ambulatory subject detection and
tracking. To further boost the temporal resolution, we propose
the hybrid protocol that is a combination of centralized and
decentralized control of the wireless machine vision camera
to allow the camera only transmit the pre-processed rPPG
information that is averaged forehead RGB information with
the data size of only a single pixel. As the PC does not receive
images covering an entire face, the ROI tracking needs to
be offloaded to the camera, thus relieving the burden on the
wireless data transmission. In the hybrid protocol, the camera
is partially supervised by the PC only for localizing faces.
When the camera loses forehead detection, the PC takes over
full control of ROI detection and rPPG processing by quickly
switching to the centralized protocol. Once the face is localized
again, the camera will swtich back to the hybrid protocol.
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Fig. 6. Frame rate versus heart rate estimation of rPPG methods.
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for remote rPPG. Data is collected using the OpenMV machine vision
microcontroller at maximum resolution (2592x1944)

In the following sections, we systematically characterize the
performance of the two protocols together with the standard
approach in terms of their frame rate under the circumstance
that the pixels covering the forehead are identical which is 500
x 200 pixels with the highest pixel density.

A. Spatial and temporal resolution characterization

Figure 7 shows the overall comparison of the camera
methods using the OpenMV machine vision microcontroller
operating at maximum resolution (2592x1944). The Standard
Camera operates at 1.0±0.1 FPS, the Centralized Camera
operates at 9.7±1.5 FPS, and the Hybrid Camera operates at
17.1±0.7 FPS. Although the Centralized Camera significantly
improves every step of the camera operation, it can be seen
that ROI detection and data transmission are the two major
factors limiting its overall frame rate. As expected, the Hybrid
Camerea shows that offloading the ROI detection to the
OpenMV and transmitting the information only containing
rPPG can greatly boost the speed in all steps.

Here, we will elucidate how each step of the camera and
PC operation contributes to the operation speed in the three
protocols with varying the processed image resolution which
is the size of the blue bounding box shown in Figure 4. The
first step for all of the camera protocols is image capturing.
To ensure the forehead is covered by 500 x 200 pixels,
the Standard Camera must capture the full field of view at
maximum resolution (2592x1944), while the Centralized and
Hybrid Cameras only need to capture a smaller region of
interest containing the face (1280x720). As shown in Figure 7,
this leads to a significant increase in the image capturing speed
from 4 FPS to 38 FPS.

The second and third steps of the camera methods are image
processing and ROI detection. Raw RGB images are too large
to be wirelessly transmitted in real-time. JPEG compression
significantly reduces image size, but may affect rPPG. This
is shown in Figure 8. Indeed, greater image compression
increases the MAE, but this effect is limited above a com-
pression factor of 70%. Thus, when using JPEG compression
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Fig. 8. Effect of JPEG image compression on rPPG accuracy. Raw refers to
uncompressed RGB images. Image compression and analysis was performed
using the UBFC dataset.

in our camera methods, we use a compression quality factor
of 70% for the Standard and Centralized Cameras. It is worth
noting that the Hybrid Camera does not require the image
compression.

For the Standard and Centralized protocols, data processing
occurs first under which the image is processed and then wire-
lessly transmitted to the PC for ROI detection. For the Hybrid
protocol, ROI detection occurs first under which the color
marker is detected, and then the image is processed directly
on the machine vision microcontroller. Figure 9 characterizes
the data processing step. For the Standard and Centralized
cameras, we compress the raw image in JPEG format.

The time for JPEG compression largely depends on the
image size. Reducing the image resolution could greatly
increase the frame rate. Unlike the Standard and Centralized
Cameras, the Hybrid Camera does not require JPEG compres-
sion. Instead, it needs to compute the raw RGB average of
the detected forehead with an image resolution of 500 x 200,
which explains why the Centralized Camera is faster than the
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Fig. 9. Characterization of camera processing using the OpenMV machine
vision microcontroller. The green and blue dashed lines indicating the exact
processed image resolution in the Hybrid and Centrazlied Cameras for image
formatting, respectively.

Hybrid Camera under the same processed image resolution
(Figure 9). As a quick note, the Hybrid Camera takes 15 ms
in the data processing of images with resolution of 500 x 200.
While, the Centralized Camera requires 18 ms to compress
images with a resolution of 1280 x 720. As the image data
that the Hybrid Camera needs to process is smaller than that
centralized camera does which are marked by blue and green
dash lines in Figure 9, it explains the discrepancy in the camera
processing speed between Figure 7 and Figure 9.

ROI detection is another step that is heavily affected by the
image resolution as shown in Figure 10. For the Standard and
Centralized Cameras, the PC detects the forehead ROI from
the received image using the MTCNN object detection neural
network. The Centralized Camera detects the ROI from a much
smaller image that only contains the face; since MTCNN is
faster for smaller images, the Centralized Camera achieves
better performance than the standard Camera [31]. The Hybrid
Camera is even faster than the Centralized one because it
runs a much simpler color tracker that filters for the specified
color range. This strategy allows us to increase the frame
rate resolution for ROI while focusing on only the key data
necessary to calculate rPPG. Under this circumstance, the
Hybrid Camera achieves 38 FPS for ROI detection, which is
faster than the 29 FPS for the Centralized Camera and 18 FPS
for the Standard Camera.

It is worth noting that the characterization of the ROI
detection step may be unfair. Indeed, the Hybrid Camera is
significantly better, but it only performs color detection while
the other camera methods perform face detection. However, if
the Standard Camera method used color detection rather than
face detection, its frame rate remains at 1.0 FPS. Similarly,
if the Centralized Camera used color detection, its frame rate
would be 12.0 FPS instead of 9.7 FPS. Since ROI detection is
not the bottleneck, these are insignificant improvements that
do not lead to higher rPPG accuracy.

The last step that would make difference in frame rate
is the wireless data transmission. This is the bottleneck of
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Fig. 10. Characterization of the region of interest detection using the OpenMV
machine vision microcontroller (Hybrid Camera) and the PC (Standard &
Centralized Cameras). The gray dashed line indicateding the exact processed
image resolution in both the Hybrid and Centralized Cameras for ROI
detection.
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Fig. 11. Characterization of data transmission using the OpenMV machine
vision microcontroller. The gray dashed line indicating the processed image
resolution of both the Hybrid Camera and Centralized Camera for wireless
data transmission.

the Standard Camera as it needs to transmit full resolution
images. Figure 11 characterizes the data transmission step. For
the Standard Camera, a full-size JPEG image (0.1 MB) must
be transmitted. Since the Centralized Camera only captures
a small sub-image (1280 x 720, 0.55 MB), the frame rate
in data transmission would be significantly faster (41 FPS)
than the Standard one (2 FPS). For the Hybrid Camera, only
the RGB average value (1e-5 MB) needs to be transmitted,
which can be done instantaneously by the microcontroller’s
WiFi module. Thus, the Hybrid Camera achieves 956 FPS for
data transmission.

Since we are able to partially offload some computation
from the PC to the machine vision camera using the Hybrid
protocol, a swarm of robotic blimps can be employed to simul-
taneously monitor multiple subjects using only one central PC,
thus significantly reducing the overall cost for scaling up. To
test the scalability, we established TCP connections between
five OpenMV machine vision cameras on the robotic blimps
to one central PC via multithreading. During testing, running
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Fig. 12. Analysis of color depth bit resolution on heart rate estimation
accuracy. Analysis is performed usin the UBFC dataset. The original data
is downsized to different RGB resolutions and data types.

five OpenMVs in parallel did not cause drops in frame rate
for any camera operations.

B. rPPG Estimation Accuracy of Proposed Protocols: Con-
straints and Evaluation

Besides the limited computation performance of the
OpenMV camera, the lower CMOS color depth is another rea-
son making it a cost-effective camera. The OpenMV camera’s
CMOS provides a color depth of 16-bit with RGB565 color
encoding. To test the effects of color depth, we downsized
24-bit RGB888 video recordings to lower color depth and
then analyzed the rPPG accuracy. As shown in Figure 12,
the heart rate estimate error increases with decreased color
depth. Specifically, downsizing from RGB888 to RGB565 only
increases error by 10 %. While the error of RGB454 is more
than 20 % than the RGB888. We then compare the accuracy
of the proposed centralized and hybrid protocols for heart rate
estimation with rPPG. These results support that RGB565 is
still capable of capturing rPPG without losing color fidelity.
Furthermore, storing RGB data as floats rather than integers
greatly improves rPPG accruacy, as using integers leads to
rounding errors.

To further understand constraints on rPPG, we investigated
image downsampling effects on heart rate estimation accuracy.
As we previously characterized, using high-resolution images
places many bottlenecks on machine vision microcontrollers,
from image processing to data transmission. Two common
methods for image downsampling are binning (in which the
values of several pixels and averaged into one larger pixel)
and decimation (in which the values of periodic pixels are dis-
carded). Figure 13 shows that image binning greatly decreases
rPPG accuracy, while decimation has negligible effects. This is
because the OpenMV, like other conventional machine vision
microcontrollers, stores pixel values as integers; averaging
pixel values then rounding to one integer causes loss in preci-
sion in the RGB value. This is directly related to the constraints
shown in Figure 12, in which RGB bit depth is critical for
capturing pulsatile flow. Unfortunately, the OpenMV is only
capable of binning and not decimation; thus, we are currently
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Fig. 13. Effect of downsampling image resolution on rPPG heart rate
estimation accuracy.
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Fig. 14. Accuracy of proposed rPPG methods against standard benchmark
for nine subjects. The FLIR Blackfly state-of-the-art camera is used as a
benchmark. The proposed methods are deploymed on the OpenMV machine
vision microcontroller.

unable to take advantage of possible savings from image
downsampling via decimation.

To validate the accuracy of the proposed centralized and
hybrid protocols, we employ the USB3 high resolution FLIR
camera that is capable of capturing rPPG with the same
spatial resolution and a significantly high frame rate (40 FPS)
as the reference. Figure 14 shows the rPPG accuracy re-
sults for nine subjects using the different camera methods.
The expensive Standard USB3 Camera (FLIR Blackfly with
RGB888) achieves accurate performance with a mean average
error of 4.7 BPM with which the overall frame rate of the
FLIR Blackfly camera is about 40 FPS. The cost-effective
Camera (OpenMV H7 Plus) with the Centralized protocol
is unable to achieve accurate heart rate estimation due to
its low frame rate. The Hybrid Camera, which addresses the
bottlenecks in ROI detection and wireless data transmission,
achieves comparable performance with a mean average error
of 5.0 BPM due to its higher frame rate (17 FPS) while
operating at maximum resolution (2592x1944). It is shown
that the noticeable difference in the frame rate between the
FLIR camera and the OpenMV hybrid protocol does not make
big difference in the rPPG estimation error which corresponds
to Figure 6.

V. CONCLUSION

In this paper, we propose a cost-effective robotic solution
with a wireless machine vision microcontroller capable of
autonomous, continuous vital sign monitoring. We develop
the Hybrid Camera protocol to equip the cost-effective system
with comparable performance to its expensive counterparts.
Future work may focus on the deployment of the robot for
clinical applications and on the development of truly motion-
robust rPPG algorithms.
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