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Abstract

This publication proposes a parametric data model and a gradient-based maximum likelihood estimator suitable for the de-
scription of delay-dispersive responses of multiple dynamic UWB-radar targets. The target responses are estimated jointly with
the global target parameters range and velocity.

The large relative bandwidth of UWB has consequences for model-based parameter estimation. On the one hand, the Doppler
effect leads to a dispersive response in the Doppler spectrum and to a coupling of the target parameters which both need to be
considered during modeling and estimation. On the other hand, the shape of an extended target results in a dispersive response
in range which can be resolved by the radar resolution. We consider this extended response as a parameter of interest, e.g.,
for the purpose of target recognition. Hence, we propose an efficient description and estimation of it by an FIR structure only
imposing a restriction on the target’s dispersiveness in range.

We evaluate the approach on simulations, compare it to state of the art solutions and provide a validation on measurement

data.
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Dynamic delay-dispersive UWB-Radar Targets:
Modeling and Estimation

Jonas Gedschold∗, Sebastian Semper∗, Reiner S. Thomä∗, Michael Döbereiner†, Giovanni Del Galdo∗,†

Abstract—This publication proposes a parametric data model
and a gradient-based maximum likelihood estimator suitable for
the description of delay-dispersive responses of multiple dynamic
UWB-radar targets. The target responses are estimated jointly
with the global target parameters range and velocity. The large
relative bandwidth of UWB has consequences for model-based
parameter estimation. On the one hand, the Doppler effect leads
to a dispersive response in the Doppler spectrum and to a coupling
of the target parameters which both need to be considered during
modeling and estimation. On the other hand, the shape of an
extended target results in a dispersive response in range which can
be resolved by the radar resolution. We consider this extended
response as a parameter of interest, e.g., for the purpose of target
recognition. Hence, we propose an efficient description and
estimation of it by an FIR structure only imposing a restriction
on the target’s dispersiveness in range. We evaluate the approach
on simulations, compare it to state of the art solutions and provide
a validation on measurement data.

Index Terms—Ultra-Wideband Radar, Extended Target Model,
Velocity Model, Doppler effect, High-resolution Parameter Esti-
mation

I. INTRODUCTION

THE range resolution of a radar system essentially depends
on the bandwidth. A wide bandwidth is readily avail-

able at millimeter and sub-THz frequencies. Given a large
bandwidth, the shape of an extended target shows up as a
characteristic signature that is resolved in fast time (or range).
However, some radar applications additionally require lower
frequencies for manifold reasons. One advantage is the ability
to penetrate materials, which improves with lower frequencies.
Well-known applications include ground penetrating radar
or through-wall radar [1]–[4]. Other reasons that require
specific (and often lower) frequencies relate to the detection
of characteristic molecular or structural resonances [5].

The frequency band of interest can range from a few hundred
MHz to several GHz where the latter is often termed Ultra-
Wideband (UWB). In this paper, we assume a large relative
bandwidth [2], [6] resulting from a large absolute bandwidth
of several GHz at low frequencies. For example, a relative
bandwidth of more than 20% of the carrier frequency can be
considered decisive for UWB.

Large relative bandwidths may cause issues with circuit de-
sign and algorithms. Considering signal parameter estimation,
several algorithms are built on narrowband assumptions, i.e.,
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model simplifications which are only valid for small relative
bandwidths. A prominent example is the derivation of the ve-
locity from the Doppler shift. Even with a wide bandwidth one
can still apply this principle of velocity estimation. However,
this approach needs to be revised when the fractional bandwidth
increases, as it is the case with UWB [7], [8]. Another example
of invalid narrowband assumptions is, that the target parameters
range and velocity cannot be estimated separately anymore.
Both effects are detailed in the sequel. In general, parameter
estimation using wrong model assumptions becomes inherently
biased since there is a mismatch between the model and the
measured data [9], [10].

In traditional radar signal processing the range-Doppler map,
also known as scattering function [11]–[13], is estimated by
a 2D Fast Fourier Transform (FFT) assuming periodically
repeated transmit signals. Typical examples are multicarrier
sequences (OFDM) or maximum length binary sequences
(MLBS). A matched filter response in the frequency domain
transforms to fast time where the short correlation function
indicates the target range. The respective Fourier transform
along slow time yields the Doppler domain and the relative
target speed is attributed to a Doppler shift resolved in delay and
Doppler. However, from a physical point of view, the Doppler
effect is a temporal scaling that can only be approximated as
a frequency shift if the relative bandwidth of the waveform is
small. Strictly speaking, the Doppler effect only results in a
frequency shift for a sine wave.

Given UWB waveforms, a constant relative speed does not
appear as a peak in the Doppler spectrum limited to a single
range-Doppler resolution bin. It rather results in a dispersive
response such that a Doppler shift-based model is not suitable
for speed estimation. Hence, a modified formulation of the
data model is required that includes the relative velocity as
an explicit parameter. A further issue arises from the range
migration of the impulse when the target is moving relative
to the sensor. If the coherent integration time is chosen long
enough (to increase the Doppler resolution) the pulse position
migrates to the next range-Doppler resolution bin. Thus, the
Doppler and range dimensions are no longer independent [14].
Finally, the Doppler effect additionally affects the observed
characteristic signature of an extended target due to a time-
scaling of its response. If we want to model and evaluate
this response we need to know, on the one hand, the scaled
waveform at the moment it hits the target. On the other hand,
the target response to the scaled waveform is affected again by
the Doppler effect on the way to the receiver. At the receiver,
only the combined Doppler influence on the transmitting and
receiving path is observable which needs to be considered
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during target response estimation.
When it comes to modeling the characteristics of extended

targets, current algorithms only allow this to a limited extent.
Common multipath estimators (such as RIMAX [15]) assume
a point-like interaction. Since an extended target spans a range
of multiple resolution cells it could be described by several
reflection points. However, describing extended targets in this
way would require an estimation of multiple and independent
global range-velocity parameter pairs. Afterwards, reflection
points belonging to a single target have to be combined to
a cluster of such pairs [16]. However, this approach has a
drawback for the estimator. If the reflection points are closely
spaced in the parameter domains, the estimated parameters are
strongly correlated resulting in high parameter variances for
the individual reflection points. Alternatively, the model has
to be adapted to directly incorporate extended target responses.
Hence, we assume that a number of adjacent range samples
(with the same velocity) belong to the same target. Furthermore,
we assume that the response behaves linear and time-invariant
(LTI) within the observation time. Consequently, we can select
an Finite Impulse Response (FIR) or Infinite Impulse Response
(IIR) approach as a structural (parametric) model of the target.
If the extended target response is predominantly generated
by independent scattering from the target’s structure without
internal multipath interaction, it can be modeled as an FIR
structure. If the target’s response is more strongly characterized
by mutual interactions of scattering centers and resonances in
cavities, IIR models may be more suitable.

Modeling the delay dispersion by such a compact, target-
related model relaxes the overall estimation effort, since one
target is described by one global range-velocity parameter
pair. Nevertheless, small variances in the target’s trajectory
and orientation will lead to a scintillation of the observed
response resulting from reflections at structures larger than one
wavelength. For point-like targets, this results in a fluctuation
of amplitude and phase, requiring stochastic target descriptions
such as Swerling models. Integration over time reduces the
fluctuation and increases the probability of detection [17].
The response of an extended target will also be subject to
a stochastic fluctuation due to the scintillation of individual
scattering centers. Also in this case, the fluctuations can be
reduced by observing the target response over the coherent
integration time. Furthermore, large-scale changes in distances
and orientation of the target can result in entirely different
target responses. Hence, a physical interpretation of the model,
e.g., for target recognition requires the identification of pose-
invariant features or matching to known angular-resolved target
responses [18], [19].

In this paper, we address two important topics: (1) relative
target velocity estimation and (2) target response identification
and modeling.

A. State of the Art

Many UWB radar applications have in common that either
the sensing system or the radar targets are moving. An
example for dynamic sensing systems is given in [20] where
mobile and deployable sensing nodes cooperate in emergency

situations, e.g., for environmental mapping and localization.
Authors in [21], [22] focus on dynamic targets, specifically
on the detection and tracking of humans. Besides a variety
of dynamic scenarios, some UWB applications do not only
require a detection but also a target recognition [4], [20].
The contributions in [18], [19] show, that the extended target
response in a high-resolution range profile is valuable for target
classification. However, extended target responses require new
concepts for global target parameters as investigated in [23],
e.g., for the global range of a human. To compensate Doppler
spread and range migration in target velocity estimation, [8]
and [14] use matched filter and Keystone transformations for
range-velocity map estimation. Nevertheless, a joint estimation
of the global target parameters range and velocity as well as
extended target responses is not yet analyzed.

Model-based target parameter estimation is investigated
in a variety of contributions aiming at radio environments.
Corresponding algorithms are RIMAX [15], [24] or the ap-
proaches presented in [25]–[28]. Although these algorithms
provide a comprehensive description of the wave propagation
by considering, e.g., angles of departure or arrival or bistatic
antenna configurations, their applicability to UWB is limited by
their narrowband assumptions. Relaxing these assumptions has
as consequence that the target parameters cannot be estimated
separately anymore since they are coupled, e.g., by the Doppler
effect. Hence, authors in [7] introduce coupling terms between
range, velocity, and direction of arrival for their UWB target
parameter estimator.

The aforementioned parameter estimators assume point-like
targets. Hence, the underlying models do not account for any
target-related spreads in the parameter domains like range.
Extended targets are therefore resolved into contributions
of individual scattering centers. Building on these results,
clustering algorithms are used to combine the contributions
into clusters [29]–[32]. Hence, a spread or dispersiveness
in range is represented by a group of individual estimated
scattering centers. However, prior estimation of individual
scattering points can be a challenge for the estimator if the
reflection points are closely spaced and, hence, differ very
little in their parameters. Besides from model-based parameter
estimation, authors in [33] investigate clustering algorithms on
the radar detector’s output to group extended target responses
in the range-Doppler map.

Various mechanisms lead to a delay-dispersion of a target’s
response. Some physical scattering events depend on frequency
such as edge or corner diffraction. These mechanisms can be
physically modeled by the Geometrical Theory of Diffraction
(GTD) [34]–[37]. However, considering target parameter
estimation in dynamic scenarios, this would require a com-
prehensive electromagnetic and angular resolved model which
does not generalize to different types of targets. Therefore,
this approach is more suited for simulation studies.

If the target response is characterized by multipath reflections
between scattering centers or strong resonant structures it
can be modeled as a superposition of damped exponential
functions as in [38]–[41]. Here, the resonant structures are
characterized by a resonance frequency and a damping factor
describing the decay over time. Similar, authors in [42] use
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an exponentially decaying pulse in time domain to account for
resonant structures. Assuming that both, individual scattering
centers and resonant structures, contribute to the target response,
the authors in [19], [43] use autoregressive and moving average
(ARMA) models known from time series analysis to model
extended targets. This concept is similar to composing a
target response of FIR (moving average) or IIR (autoregressive)
structures. However, these approaches do not consider multi-
target scenarios or global target parameters.

Delay-dispersive phenomena are also known to wideband
radio channel modeling and estimation. A prevalent approach
is to assign each propagation path an individual frequency
Transfer Function (TF) which accounts for the dispersive
properties of the path. Authors in [6] propose to decompose the
full TF into a number of subbands such that narrowband model
simplifications are valid for each individual subband. This
reduces the amount of necessary model parameters. The authors
in [44] use a Space-Alternating Generalized Expectation-
Maximization (SAGE) algorithm to estimate individual param-
eters for each subband from channel measurements. In [45] a
variant of the RIMAX algorithm is applied to a subband model,
although parameters like time and direction of arrival are kept
constant over all bands. The advantage of these models is that
they can capture a wide range of physical processes due to the
generalized description of the TF. However, the approximations
may hold for a narrow subband but still introduce discontinuities
in the transition from one band to another which are physically
hard to justify.

B. Contributions

Building on the state of the art, we propose a multi-target
signal model (Section II) and a corresponding maximum
likelihood (ML) parameter estimator (Section III) allowing
a joint estimation of global target parameters (range and
velocity) as well as the characteristic signature of a target.
We model the delay-dispersive target responses as an FIR
structure. This parametric representation also allows a straight-
forward postprocessing of the target’s response. Furthermore,
we perform a comprehensive analysis of the approach by
simulations (Section IV), comparisons to state of the art
solutions (Section IV-B2, Section IV-B3, Section IV-C1) and
a measurement example (Section V).

The proposed ML estimator is based on the RIMAX al-
gorithm [15] and allows a grid-free estimation of the global
target parameters. We discuss two major extensions to the
RIMAX algorithm. First, a relaxation of the Kronecker-model
assumptions is required since frequency and time are coupled
by the Doppler effect. Second, the delay-dispersive model for
each detected target needs to be estimated by a least-squares
approach. Furthermore, the estimator includes heuristics based
on statistical tests for an estimation of the number of present
targets.

C. Notation

Let Jxf denote the Jacobian matrix of a function f : Rn →
Rm, which can also be a partial derivative, if f has more
parameters than x. Let J2f denote the Hessian, i,e, the second

order derivatives, of the function f . We denote the Frobenius
norm of a matrix A via ‖A‖F . Let 1 ∈ Rn denote a vector
of all ones, AH the Hermitian transpose of the matrix A, O
the standard big-O notation and z ∈ C the complex conjugate
of z ∈ C. Let E denote the expectation operator.

II. DISPERSIVE MULTI-TARGET SIGNAL MODEL

We start with an observation Y of the time-variant transfer
function S modeled by

Y (f, t) = S(f, t) +N(f, t) , (II.1)
where N accounts for a yet to be specified additive measure-
ment noise process. The transfer function itself is modeled as
a superposition of P target responses Sp

S(f, t) =

P∑
p=1

Sp(f, t) . (II.2)

We formulate the model for a single target response in complex
baseband and time as

Sp(f, t) = γp(f) · exp(− · 2π · f · τp)
· exp ( · 2π · α̂(f,∆vp) · t) , (II.3)

where γp : R→ C describes the target’s signature in frequency
domain delayed by τp, ∆vp the target’s velocity relative to the
radar, and α̂ : R×R→ R the velocity model accounting for the
coupling between frequency and time, i.e., the Doppler effect.
It is worth noting that this model separates the description of the
target’s Transfer Function (TF) via γ and τ from the velocity
model parameterized by ∆v. This involves, that the target’s TF
is captured by the model as present in Y without considering
the Doppler effect in the first place. After estimating ∆v, a
possible Doppler-related scaling of γ can be compensated as
discussed in Section IV-C2.

Next, we define suitable models for γ and α̂.

A. Target Frequency Transfer Function

We model the characteristic delay-dispersive signature of a
target by an FIR structure. We represent this structure by a
smooth estimate of the target’s TF. The only prerequisite is
that the signature has a limited width in time domain, allowing
to describe the smooth frequency TF by a small number of
sinc functions. The sinc functions are centered at equidistantly
spaced frequencies such that the model for a single target
response γp is formulated as

γp(f) =

Ns+Ne∑
s=1−Ne

γps · sinc

(
f

∆S
− s+ 0.5

)
, (II.4)

where sinc(x) = sin(πx)/πx with sinc(0) = 1 and Ns ∈ N.
Additionally, we introduce a model-based bandwidth extension
denoted by Ne ∈ N0 to mitigate boundary effects at the edges
of the spectrum. This in analyzed in Section IV-B. Each sinc
function is scaled by a constant complex weight γps.

Considering the model for γ one identifies two implications.
Firstly, we perform a compression in frequency domain by only
estimating Ns + 2Ne amplitudes of the sinc functions instead
of a dense frequency sampling. Secondly, the model provides
a continuous and smooth representation of the transfer function.
This process requires that γ is limited in time domain to an
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interval of size Ts. This limit is directly related by Ts = 1/∆S
to the sinc function spacing ∆S which represents the frequency
resolution of the model. This relationship is due to the fact
that each sinc function is equivalent to a rectangular model
window in time domain with a width of Ts. Due to this fact,
a prior assumption about the maximum time extension of γ is
required.

B. Velocity and Doppler Model

The velocity and Doppler model can be derived from physics
as in [8]. The model for α̂ reads as

α̂(f,∆v) =
∆v

c
· (f + fc) . (II.5)

This reveals that α̂ is affine linear in f with proportionality
constant ∆v. The speed of light is denoted by c and fc is
the mixing frequency employed for down mixing to baseband1.
The physical meaning of ∆v is to model a time-variant delay
τ(t) = τ−t·∆v/c. It is not equal to the absolute target velocity
but the sum of its radial components relative to transmitter and
receiver. In case of a monostatic radar the radial target velocity
towards the radar is given by v = ∆v/2. For the relation (II.5)
to hold, we need to assume ∆v � c. Additionally, we slightly
modify (II.5) by the following substitution [8]

α =
∆v

c
· fc (II.6)

to

α̂(f, α) = (f · f−1
c + 1)α . (II.7)

This allows a significant interpretation. Whenever it holds that
max(f) � fc, i.e., the signal covers a small bandwidth
compared to the carrier frequency, the frequency-dependence
and, hence, Doppler scaling is negligible and the model
is dominated by the Doppler shift. If the bandwidth is
not sufficiently small, α̂(f, α) accounts for a time-frequency
coupling by introducing a time-dependent linear phase in the
exponential in (II.3) besides the Doppler shift. This reveals
that the model is most important for systems with high relative
bandwidths, i.e., UWB systems. In the following, we consider
α from (II.6) as a parameter implicitly estimating ∆v by (II.7).

C. Discretized Model

To formulate a discrete observation model, we define a
uniformly sampled version of S over frequency and time. We
define these samples as Sij = S(fi, ti) with

fi = f0 + ∆f · i
tj = t0 + ∆t · j

for i = 1, . . . , Nf and j = 1, . . . , Nt , (II.8)

where ∆f > 0 and ∆t > 0 are the sampling intervals in
frequency and time, respectively, and Nf , Nt ∈ N are the
numbers of acquired samples.

1The Doppler shift depends on the frequency of the actual propagated and
modulated signal. Therefore, (II.5) contains f + fc.

Summarizing, using (II.3), (II.7) and (II.4) our discrete
model results in S ∈ CNf×Nt whose elements Sij are defined
as

Sij(γ, τ ,α) =

P∑
p=1

exp (− · 2π · fi · τp)

· exp ( · 2π · (fi/Nf · fr + 1) · tj · αp)

·
Ns+Ne∑
s=1−Ne

γps · sinc

(
fi

∆S
− s+ 0.5

)
, (II.9)

where γ = (γps) ∈ CP×Ns+2·Ne , τ ∈ RP , and α ∈ RP . In
the following section, we describe how we can estimate the
model parameters γ, τ ,α from measured data by means of a
ML estimator. For the ease of implementation we consider the
normalization fi ∈ [−Nf/2, Nf/2− 1] and ti ∈ [0, Nt − 1]
such that τp ∈ [0, 1] and αp ∈ [−0.5, 0.5]. Consequently,
fr = Nf∆f/fc represents the relative bandwidth.

III. MAXIMUM LIKELIHOOD ESTIMATOR

In order to make use of the proposed data model, we
have to develop an estimator which is able to extract the
parameters from noisy data. This problem can be split up
in three intertwined estimation sub-problems. The first is to
gain a reasonable estimate of the number of targets present in
the observed time-variant transfer function. Additionally, one
has to find their parameters as demanded by our data model.
Finally, we also have to account for possible measurement
noise and stochastic components of the observation and we
have to estimate the corresponding distributions.

In this publication, we focus on modeling and estimation
of the target’s parameters, for which, as a baseline, we draw
inspiration from the RIMAX algorithm in [46] and aim to
provide an approach for delay-dispersive target responses and
velocities that can be viewed as an extension of it. For the sake
of clarity, we denote the original RIMAX algorithm and it’s
applications as the narrowband case where, e.g., the velocity
can be estimated from the Doppler shift. In contrast, the
contributions of this publication target at the (ultra-)wideband
case.

The main computational obstacle of the wideband data model
is the coupling of frequency and time by the Doppler model,
which is made indispensable by large relative bandwidths.
These changes of the data model with respect to [46] have to
be accounted for in the estimation procedure.

A. Statistical Model for the Observations

To formulate a suitable statistical model for our proposed
approach, we assume that an observation consists of the
superposition of P ∈ N distinct target responses for which
we can make use of the data model in (II.9) and its discretized
version (II.1). Hence, an observation Y ∈ CNf×Nt follows

Y = S(γ, τ ,α) + N , (III.1)

where N ∈ CNf×Nt is a random vector representing measure-
ment noise at the sampled frequencies and time instances. In
our case, we assume that the entries of N are independent and
identically distributed (iid) according to a zero-mean circulary
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symmetric complex Gaussian distribution with noise variance
σ2. Accordingly, each observation Y is a complex Gaussian
random variable with mean S(γ, τ ,α) and identity covariance
scaled by σ2.

Based on these assumptions, the objective is to estimate
P ∈ N, (γ, τ ,α) ∈ CNs+2Ne×P × RP × RP and also σ > 0
from an observation Y.

B. Maximum Likelihood Estimation

One popular approach for determining parameters from noisy
observations is the principle of maximum likelihood estimation.
Given the assumed statistical model in (III.1) following a
Gaussian distribution, we can formulate the negative log-
likelihood function λ, given a certain observation Y, as
λ(γ, τ ,α) = Nf ·Nt ·σ2 +σ−2 ·‖Y − S(γ, τ ,α)‖2F . (III.2)

In order to extract the ML estimate (γ̂, τ̂ , α̂) one has to
determine the global minimum of λ. A necessary condition
for minimality is that the score-function Jλ vanishes at
(γ̂, τ̂ , α̂) [47, Ch. 9.2]. The score-function is the first-order
derivative of λ defined as Jλ : CP×Ns+2Ne × RP × RP →
CP×Ns+2Ne × RP × RP and given by

Jλ(γ, τ ,α) = (Jγλ,Jτλ,Jαλ)(γ, τ ,α) . (III.3)
Also, at the optimum, the so-called Fisher Information Matrix
(FIM) F , which is a positive semi-definite matrix, represents
the expectation of the curvature of λ and is defined by

F (γ, τ ,α) = E
[
J2λ(γ, τ ,α)

]
. (III.4)

Given the assumption that Y is following a Gaussian distri-
bution, we can analytically calculate F via the Slepian-Bangs
formula [48] given by

F (γ, τ ,α) = −2<
{
JS(γ, τ ,α) · JS(γ, τ ,α)

}
. (III.5)

Both quantities turn out to be vital components during the
development of an algorithm that finds minimizers of the
negative log-likelihood as outlined in Section III-C2.

The optimization problem posed by ML is inherently hard to
solve, since the objective function is non-convex, so a global
minimizer exploiting the smoothness of λ will only converge
to a local minimum, which not necessarily is a global optimum.
Hence, we have to find a practically and computationally
feasible approximation of an ML estimator. The following
sections will first explain the approach taken to formulate such
an estimator in the narrowband case. Then, we use this as a
baseline to extend it to the considered wideband case.

C. Narrowband Iterative ML

For the arguably simpler case of a narrow bandwidth, the ML
estimator presented in [15] can make use of several algorithmic
simplifications that result from the corresponding narrowband
assumptions. These include specular reflections at point-
like targets enabling propagation paths between transmitter
and receiver as well as a narrowband Doppler model only
considering a Doppler shift. Due to this assumptions the model
for an observation may be simplified to

S̃(γ̃, τ̃ , α̃) =

P∑
p

γ̃p · exp(− ·2π · τ̃p ·fi) · exp( ·2π · α̃p · tj) ,

(III.6)

with weight γ̃ ∈ CP . One of the properties of S̃ is that
the parameters τ̃ and α̃ are decoupled in the sense that they
appear in distinct sampled and complex exponentials and hence
influence distinct data dimensions, namely frequency and time.
This decoupling is realized algebraically by the use of the
Kronecker or outer product to form the model for a single
propagation path in (III.6). In the following, we will use a ·̃
to mark quantities related to the narrowband case.

Similarly as before, we can define the negative log-likelihood
function based on S̃ via
λ̃(γ̃, τ̃ , α̃) = Nf ·Nt ·σ2+σ−2 ·

∥∥∥Y − S̃(γ̃, τ̃ , α̃)
∥∥∥2

F
. (III.7)

Also, we can define the score function λ̃ and the FIM F̃
similarly as before. The RIMAX algorithm works with the
model S̃ and the respective likelihood λ̃ and consists of four
main building blocks. A global search step [46, Ch. 5.1.5],
where a single path is added to the model, a local search
procedure [46, Ch. 5.2], where currently found parameters
are refined iteratively by a second-order smooth optimizer, an
estimator for the noise distribution [46, Ch. 6] and finally a
method for removing unreliable paths from the model [46,
Ch. 5.2.7.], based on their estimation variance.

As we will see below, the only step that needs substantial
changes is the global search for a new path—in our case more
precisely for a new target—and how to refine it after inclusion
into the model. To motivate these changes, we briefly describe
the approach of the algorithm in [46] that works with the
narrowband models in (III.6) and (III.7).

On the highest level of abstraction, the RIMAX algorithm
iteratively increases the model complexity, i.e., increases P
until no more reliable paths can be added. Hence, the first
problem one encounters is to find a suitable initial guess for the
parameters of a newly added path. A good initial guess in step
k is found, if the resulting parameter tuple (γ̃k, τ̃ k, α̃k) ∈
Ck × Rk × Rk is close enough to the optimum such that
the objective λ̃ is locally convex and the region of convexity
contains the global minimum. In this case, a local optimizer
initialized with (γ̃k, τ̃ k, α̃k) can recover the optimum given
this initial guess.

1) Narrowband Path Search: The approach presented in [46]
essentially implements a grid-based and sequentially executed
matched filter, which makes use of the Kronecker structure in
(III.6). To describe this method, we define af : R→ CNf and
at : R→ CNt as

af (τ) = exp(− · 2π · τ · f) (III.8)
at(α) = exp( · 2π · α · t) .

Next, we define two sets of grid points Gf = {i/Nf | i =
0, . . . , Nf − 1} and Gt = {i/Nt − 1/2 | i = 0, . . . , Nt − 1}
to define the matrices Af ∈ CNf×Nf and At ∈ CNt×Nt as

Af = [af (τ)]τ∈Gf
and At = [at(α)]α∈Gt

. (III.9)
Now assume in step k we already have a previous estimate
(γ̃k−1, τ̃ k−1, α̃k−1) at our disposal. Then, the so-called
residual in step k − 1 can be defined via

R̃
k−1

= Y − S̃(γ̃k−1, τ̃ k−1, α̃k−1) . (III.10)
To find a new tuple (τ̃ , α̃) we first find the index if , which
picks out the maximum element if in the non-negative vector

cf =
∣∣∣AH

f · R̃
k−1
∣∣∣2 · 1Nf

∈ CNf . (III.11)
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Algorithm 1 Processing flow to find a set of parameters after
k − 1 steps.

Calculate R̃
k−1

acc. to (III.10).
Use (III.11), (III.12) and (III.13) to find τ̃ k and α̃k.
Calculate γ̃k by means of least-squares using (A.1).

Based on if we calculate the so-called beamformed residual

rkf = af (if/Nf )H · R̃k−1 ∈ CNt . (III.12)
Then, we find the index it, which picks out the maximum entry
in

ct =
∣∣AH

t · rkf
∣∣2 ∈ CNt , (III.13)

in order to finally derive the grid-based matched filter estimate
via

(τ̃k, α̃k) = (if/Nf , it/Nt − 1/2) .

As a last step, we append τ̃k and α̃k to τ̃ k−1 and α̃k−1

respectively to form τ̃ k and α̃k and find the path weights γ̃k

by means of least-squares as given in (A.1). The methodology
is summarized in Algorithm 1.

The main observation to make is that the steps (III.11),
(III.12) and (III.13) are only valid, since the parameters τ̃ and
α̃ influence distinct data dimensions due to the narrowband
assumption. Hence, the matched filter output can be computed
efficiently with O(N2

f ·Nt +N2
t ) floating point operations. In

contrast, O(N2
f ·N2

t ) operations would have been necessary, if
we evaluated the grid for the two parameters jointly. Note that
in [46, Ch. 5.1.2.] the algorithm is explained in much more
generality such that it also applies to a multiple input multiple
output (MIMO)-channel observation.

2) Narrowband Parameter Refinement: In order to mitigate
the resolution limit imposed upon the global search procedure
using Gf and Gt the RIMAX algorithm executes SAGE [49]
for all paths currently existing in the model each time a new
path is added. Since SAGE only optimizes the parameters
(γ̃, τ̃ , α̃) for a single propagation path while keeping the others
fixed, its computational cost is similar to that of Algorithm 1.
Additionally, [49] presents some convergence criteria, which
makes SAGE a valid approach from an estimation perspective.

Once all required new paths are added by means of Algo-
rithm 1 and SAGE, a second-order and joint optimization of
the whole set of path parameters is carried out by

(γ̃k,`+1,τ̃ k,`+1, α̃k,`+1) = (γ̃k,`, τ̃ k,`, α̃k,`) (III.14)

− ε · F̃−1 · J λ̃(γ̃k,`, τ̃ k,`, α̃k,`) ,

which constitutes the so-called Fisher-scored gradient
method [50] with step size ε, where the steepest descent-
direction is corrected according to the knowledge of the
curvature at the current point of iteration. The iteration is
denoted by `. This algorithm has good convergence properties
and comes at moderate computational cost, since no second
order derivatives are necessary. At this point we are in the
place to formulate the algorithmic scheme adapted to our
proposed data model.

The important thing to notice is that for our purposes it makes
no difference if the iteration in (III.14) is executed based on
S̃ and λ̃ or on S and λ using the respective score functions

Algorithm 2 Processing flow to find a net set of parameters
after k − 1 steps.

Calculate Rk−1 acc. to (III.15).
Use (III.11), (III.12) and (III.13) to find τ̃ k and α̃k.
Calculate γk by means of least-squares given by (A.2).

and FIMs. Further, the computational complexity of S may
be increased compared to S̃, but not as substantially as the
complexity of the search for a new path—or more specifically
a new target target—over the joint grid for τ and α. To retain
the algorithmic advantages, the main idea of the wideband
estimator is to use the initialization presented in Algorithm 1
with a slight modification.

To this end, we define the residual similarly to (III.10) via
Rk−1 = Y − S(γk−1, τ̃k−1, α̃k−1) . (III.15)

Once we have established an initial estimate based on S̃,
we replace the model by S while keeping the parameters
(τ̃ k−1, α̃k−1) fixed and determine γk−1 by means of least-
squares now based on S. Then we carry out the steps in
(III.11), (III.12), and (III.13) based on this wideband residual
instead of the narrowband instance R̃ to obtain estimates for
(τ̃k, α̃k). This is outlined in Algorithm 2. In this way we
have avoided using the wideband data model, where delay
and Doppler are inherently coupled and have circumvented the
joint 2D path search. The parameter refinement with SAGE,
however, is performed on the joint 2D grid.

Once this initial estimate for (γk, τ k,αk) is established, we
update it according to

(γk,`+1,τ k,`+1,αk,`+1) = (γk,`, τ k,`,αk,`) (III.16)

− ε · F−1 · Jλ(γk,`, τ k,`,αk,`) ,

which is the wideband and hence more complex version of
(III.14). However, we only need to evaluate the model S
for the currently found k-paths, which results only in a mild
increase in computational complexity for S compared to S̃.
Both procedures are summarized in Figure 1 to visualize the
differences.

D. Computational Aspects

The iteration in (III.16) is usually paired with a stopping
criterion that evaluates the relative changes of the likelihood
function λ. Hence, in total, the necessary quantities that need
to be computed efficiently are the likelihood λ and hence also
its main building block S.

For the gradient iteration we directly need access to Jλ,
which also makes JS a quantity necessary to compute. Finally,
to employ the correction by means of the inverse FIM we see
that by computing JS we have already overcome the largest
computational obstacle for F .

E. Model Order Selection and Noise Estimation

Although the data model of the proposed estimator is
inherently different than the one presented in [46, Ch. 5.2.7],
we have made straightforward modifications to the algorithm
such that the methods for both presented therein are directly
applicable to our case.
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Add k-th path based on R̃
k−1

using Algorithm 1

SAGE using S̃

Smooth Joint Optimizer
using S̃ and (III.14)

iterate for k steps

Add k-th path based on
Rk−1 using Algorithm 2

SAGE using S

Smooth Joint Optimizer
using S and (III.16)

iterate for k steps

Fig. 1: Processing diagram of RIMAX [46] (top) in comparison
to the proposed wideband ML estimator (bottom). The color
gradient highlights that the wideband path search is partially
based on the narrowband model.

The following section will study various effects and ramifi-
cations of the proposed data model and estimator.

IV. NUMERICAL EVALUATIONS

In this section, we analyze the proposed model and estimator
from a numerical point of view and provide examples and vi-
sualizations. After introducing the simulation of the dispersive
target responses, we discuss the implications of the wideband
model. Additionally, we compare our approach to state of
the art algorithms, i.e., RIMAX [46] in original form and a
piece-wise frequency-flat subband approach as proposed in [6]
or [45]. Furthermore, we analyze a limitation of the approach
and conclude the section by a discussion about two different
aspects of the Doppler effect.

Whenever we visualize the time or Doppler domain we
compute a FFT utilizing a Hanning window over frequency or
(slow) time. Additionally, we average over the not-visualized
data dimension.

A. Description of the Simulation

We simulate a multi-target response. Each individual target
is modeled as extended in a way that it is represented by
a cluster of specular reflections of closely spaced scattering
centers. Each cluster is based on the narrowband model from
(III.6) such that the full simulation model results in

Yij =

P∑
p

Q∑
q

γpq · exp(− · 2π · τpq · fi) + nij . (IV.1)

At this point, we consider a static scenario such that Y is
constant over time t. P indicates the number of targets and
Q the cluster size, i.e., the number of closely spaced specular
components composing a target. The complex amplitude is
modeled as

γpq = apq · exp( · 2π · ϕpq) , (IV.2)

where apq, ϕpq ∼ U(0, 1) are drawn independently from a
uniform distribution. The delays τpq ∼ N (τp, %

2
p) are drawn

independently from a Gaussian distribution whose statistics
depend on the target p. The variable τp is the global target
delay and %p sets the width of the response. White Gaussian
noise with noise power level σ2 is added by nij .

To add a dynamic component to the simulation we extent
(IV.1) by a velocity model in accordance with (II.9)

Yij =

P∑
p

Q∑
q

γpq · exp(− · 2π · τpq · fi)

· exp ( · 2π · (fi/Nf · fr + 1) · tj · αp)
+ nij . (IV.3)

The velocity parameter α varies between targets but is
constant for all components composing a target. The static and
dynamic simulation parameters are summarized in Table I.

TABLE I: Static (top) and dynamic (bottom) simulation settings
for (IV.1) and (IV.3).

Parameter System Target 1 Target 2

Frequency samples Nf 1000 - -
Time samples Nt 10 - -

Noise power level σ2 -40dB - -
Target delay τ - 0.1 0.15

Response width % - 0.0005 0.0020
Cluster size Q 20 - -

Time samples Nt 40 - -
Relative bandwidth fr 0.5 - -

Target velocity α - -0.01 0.2

B. Time-invariant Analyses

Figure 2a displays a section of the simulated and modeled
Impulse Response (IR) of the static simulation with (IV.1) and
Table I in time domain. One can see that the model fits the
simulated data after estimating the optimal parameters. The
residual approaches the noise power level σ2. The model
window depicts the time limitation Ts resulting from the finite
number of sinc functions composing the individual target TFs.
The windows are shifted to the corresponding position by the
delay parameters τp. The complete TF in Figure 2b does
not allow conclusions about the frequency characteristics of
the individual targets. Though, the multi-target nature of the
wideband model and estimator captures the TF of each target
separately as visualized in Figure 2c and Figure 2d. These
plots reveal the different target characteristics which can now
be analyzed individually. Each TF is approximated by 10 sinc
functions spread over the spectrum. To enhance the model fit,
we further exploit the fact that the sinc functions are not limited
in frequency domain but spread over the whole spectrum. For
this, we define overlapping sinc functions specified by Ne > 0
in (II.9). This allows to further enhance the model fit especially
at the edges of the spectrum. In this way, the model is not
purely limited to the observed bandwidth up to a certain degree.
The influence of Ne on the estimation of the given TFs is
exemplified in Figure 3 where (a) displays the model fit given
Ne = 0 and (b) the model fit given Ne = 2 which is also
the setting for Figure 2. A lack of overlapping sinc functions
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Fig. 2: Comparison of the simulated and modeled signal after
parameter estimation. (a) and (b) show the time and frequency
domain representation of the complete signal whereas (c) and
(d) visualize the simulated and modeled TF of target 1 and 2.

clearly influences the fit within the frequency band resulting
in a ripple of the estimated TF. Hence, for wideband target
responses, the use of overlapping sinc functions is of great
benefit.
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Fig. 3: Section of the TF of target 1 estimated (a) without
(Ne = 0) and (b) with (Ne = 2) overlapping sinc functions.

1) Target Superposition: The nature of the model requires
a clear separation of the Impulse Responses (IRs) of multiple
targets in the parameter domains, either in delay or velocity.
If such a separation is not given, the model can only capture
the superposition of the individual target responses and the
estimator wrongly estimates a single target.

To analyze the transition from two targets wrongly estimated
as a single one to a clear separation, we perform numerical
experiments with the simulations from (IV.1) and Table I. The
second target is varied in its τ parameter starting from an
overlap with target 1 (τ2 = 0.1) up to a clear separation
(τ2 = 0.15). For each τ2, we perform 10 experiments
with independent noise realizations and average the residuals
accordingly.

Figure 4 displays the residual of the data model fit. The x-
axis represents the varying τ2 parameter and hence the distance
∆τ between the targets. It is normalized to the model window
Ts. For the ease of interpretation, % = (%1 +%2)/2 is added to
∆τ , since the target IRs have a certain width and hence, the
actual distance is accordingly smaller. The y-axis displays the
global mean squared residual as well as the residuals between
each target estimate and the corresponding simulated TF.

For small distances within the model window Ts, both signals
can be captured by a single target model. Therefore, the global
residual is at the noise level, though, the residual of target 1 is
quite large since it captures the superposition of both targets.
When the distance gets close to the model window, the width
of the superimposed IR exceeds Ts and cannot be captured by a
single model component anymore. However, adding a second
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Fig. 4: Estimation residuals for a two target scenario evaluated
over a varying distance in delay between the targets.

target to the model leads to unreliable parameter estimates
and is hence omitted by the estimator. This is due to the
fact, that the model for the first target is not placed exactly at
parameter τ1 but at a different position where it fits best to
the superimposed IR and maximizes the likelihood the most.
Adding a second target will then lead to an overlap of the two
model windows. After increasing the distance further, both
target models can be placed in a way that each model describes
an individual simulated target. Then, all three residuals drop
to the noise level resulting in a good concordance between
model and data.

The experiments reveal that the proposed model cannot distin-
guish between an individual target response or a superposition
of several responses if they are not separated in the considered
parameter domains. A decomposition into individual model
components will fail, e.g., if several targets in a static scenario
are distributed over the angular domains but share the same
distance to the radar system. For a separation, model and
estimator would need to consider the angular domains.

2) Comparison to RIMAX: In Section III we already
discussed the similarities and differences between the RIMAX
algorithm and the proposed wideband extensions. In this
section, we want to investigate the claim of the introduction that
such a point-like target model is indeed able to capture delay-
dispersive response at the expense of resulting in a number
of individual and unrelated model components. Therefore, we
apply RIMAX to target 2 from the previous simulation (see
Table I and (IV.1)). The results are visualized in Figure 5a and
Figure 5b and visually resemble the results from the wideband
model in Figure 2a and Figure 2d. As model order, 10 paths are
estimated whose delay parameters are highlighted in Figure 5a
by vertical lines. The total number of free model parameters
for the RIMAX solution sums up to 20 (10-dimensional τ
and 10-dimensional γ) and is, hence, sightly higher as for the
wideband model with 13 free parameters (1-dimensional τ and
(8+4)-dimensional γ).

Nevertheless, the predefinition of the pulse width for the
wideband model directly results in the estimation of a single
target response. The RIMAX solution does not require
such a predefinition. Thereby, the estimated paths do not
reveal if they belong to a single or multiple targets. A
separation into individual and extended target responses would
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Fig. 5: Comparison of the simulated and different estimated
signals using state of the art algorithms. (a) and (b) visualize
results of the RIMAX algorithm (Section IV-B2) with 10
individual paths. (c) and (d) display the results of the constant
subband model (Section IV-B3) with 20 subbands.

require a grouping or clustering of the estimated paths as a
postprocessing step.

3) Comparison to a Constant Subband Model: Instead of
modeling the dispersive target response by a superposition of
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specular components (Section IV-B2), one could approximate
the target’s frequency TF by decomposing the wideband
spectrum into Ns narrow bands, i.e., piece-wise frequency-
flat subbands. This is comparable to the approaches in [6],
[44], [45]. In our experiment, each of these subbands has
its own complex amplitude γps as model parameter, whereas
τ is constant over all subbands. This is closely related to
the proposed wideband model in (II.4), by replacing the sinc
functions with rectangular functions as

γp(fi) =

Ns∑
s=1

γps · rect
(
fi

∆S
− s+ 0.5

)
, (IV.4)

with

rect(x) =

{
0 |x|> 0.5
1 |x|≤ 0.5

. (IV.5)

The TF is parameterized by γ = (γps) ∈ CP×Ns and the width
of each subband is given by ∆S > 0.

Figure 5c and Figure 5d show exemplary results for Ns = 20
for target 2 of the simulation (see Table I and (IV.1)). The
frequency plot reveals the step-like approximation of the
spectrum which leads to a noticeable structure in the residual
rising at each transition between two consecutive subbands.

This deterministic structure of the residual also has side-
effects on the time domain, namely the generation of sidelobes
in the model as exemplified in Figure 5c. The position of the
sidelobes can be directly inferred from (IV.4). The rectangular
subbands in frequency domain correspond to a superposition
of sinc functions in time domain, each centered at the common
delay τp. The sinc functions have the same zeros located at τp±
k/∆S with k ∈ N as marked in the figure. At those locations,
the superposition of the sinc functions results in a deterministic
model error rendering the time domain representation of this
model unusable. Although using a comparable amount of
free model parameters which sum up to 21 (1-dimensional τ
and 20-dimensional γ), the subband model performs poorly
in a qualitative comparison to the proposed wideband model
(Section IV-B) and the RIMAX algorithm (Section IV-B2).

C. Time-variant Analyses

When it comes to time-variant scenarios, two aspects of the
Doppler effect have to be considered. On the one hand, Doppler
influences the signal modulation over (slow) time as already
discussed in Section II-B. Given a high relative bandwidth,
the modulation is caused by a scaling of the signal’s spectrum.
This effect is already incorporated into the proposed dispersive
model in (II.9). On the other hand, the observed target TF γ
over frequency (or fast time) will also be subject to the Doppler
effect. The latter will be discussed in Section IV-C2.

The modulation over slow time is exemplary visualized in
Figure 6a as Doppler spectrum using simulations from (IV.3)
and Table I. The different spreads of the two target responses
result from the velocity dependent Doppler scaling. Since this
scaling is incorporated into the model, both targets can be
described by the scalar parameter α which is directly related
to a velocity by (II.6).
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Fig. 6: Comparison of the simulated and different estimated
signals in Doppler domain using (a) the proposed wideband
model and (b) a model based on a pure Doppler shift.

1) Comparison to RIMAX: In contrast to the wideband
model, the RIMAX algorithm in original form is build on
narrowband assumptions and does only consider a Doppler
shift assuming small relative bandwidths. In Section IV-B2
we discussed that a delay-dispersive target response can be
captured by the RIMAX algorithm as a superposition of several
individual model components. However, the mismatch of
the Doppler model for larger relative bandwidths cannot be
compensated by a superposition of multiple components as
visualized in Figure 6b. As in the example from Figure 5a the
algorithm spreads several components (in this case 20) over
the Doppler domain. Nevertheless, the residual reveals that the
model is not able to fit the simulated data sufficiently. Further-
more, while the decomposition into several delay components
is physically justifiable by extended target geometries and
individual scattering centers, the decomposition into distributed
Doppler components is purely caused by model mismatch and
prevents a derivation of the actual target velocity.

Furthermore, the impact of the model mismatch does not only
depend on the target’s velocity ∆v but also on the velocity’s
relation to the sampling interval in time ∆t. Since α is
normalized to the sampling frequency 1/∆t, small velocities
can already lead to a significant spread in the Doppler spectrum.

2) Doppler Effect on the Target’s TF: The observed target
TF γ over frequency (or fast time) will also be subject to the
Doppler effect which is not yet considered in the models used
for the simulations and estimations. Those models are only
considering the modulation over (slow) time. To evaluate the
influence on fast time, the Doppler effect can be modeled as
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a frequency mapping defined by

fi = f ′i + η · α̂(f ′i , α) , (IV.6)

where α̂ is the normalized and frequency-depended Doppler
shift as in (II.7). Hence, (IV.6) describes where a frequency
f ′i will be shifted due to the target’s velocity represented by
α. Since fi and f ′i are normalized differently than α̂ and α, η
converts between the two normalizations.

The variable α ∈ [−0.5, 0.5] is normalized to the sampling
interval in time ∆t such that α = ±0.5 corresponds to
the maximum unambiguous velocity ±∆vm. The Doppler
shift in Hz corresponding to α is given by (II.6). Divid-
ing it by ∆f converts it to the normalization of fi since
fi ∈ [−Nf/2, Nf/2 − 1]. Hence, η results in

η =
∆vm
c
· 2 · fc

∆f
. (IV.7)

The factor 2 assures that α = ±0.5 corresponds to the Doppler
shift generated by ∆vm. Using the definition of the relative
bandwidth from Section II-C, fc can be expressed as

fc =
Nf∆f

fr
. (IV.8)

Hence, the normalization conversion η reads as

η =
∆vm
c
· 2 ·Nf

fr
. (IV.9)

Simulation: Given (IV.6) we can simulate Doppler scaled
target responses by evaluating the delay exponentials of a
target’s TF in (IV.3) on a non-uniform frequency grid f ′i such
that

Y ′ij =

P∑
p

Q∑
q

γpq · exp(− · 2π · τ ′pq · f ′i)

· exp ( · 2π · (fi/Nf · fr + 1) · tj · αp)
+ nij . (IV.10)

Variable f ′i maps the frequency axis fi ∈ [−Nf/2, Nf/2− 1]
to the frequency values of the unmodulated target TF, i.e., to the
frequencies from where the values at fi originate. Converting
(IV.6) to f ′i yields

f ′i =
fi − η · α

1 + η · α · fr/Nf

. (IV.11)

Furthermore, the evaluation on the nonlinear frequency grid
f ′i leads to an offset of the delay parameter. To keep the delay
values from Table I this offset is compensated by adjusting τpq
as

τ ′pq = τpq + τp ·
2 · α ·∆vm

c
, (IV.12)

with mean cluster delay τp.
Finally, to compare the results in this section for a wide

range of simulated velocities, we assume that ∆vm is adapted
to each experiment such that ∆v = 0.4·∆vm. Hence, α equals
0.2 for all experiments.

Compensation: The model in (II.9) does not consider
a Doppler scaling of the target’s TF. Therefore, the TF is
observed and estimated in the scaled state and needs to be
compensated afterwards. Similar to the simulation we can
compensate the Doppler scaling by evaluating the TF-related

parts of the model on a nonlinear frequency grid after the actual
parameter estimation as

S′ij(γ, τ ,α) =

P∑
p=1

exp (− · 2π · f ′′i · τp)

·
Ns+Ne∑
s=1−Ne

γps · sinc

(
f ′′i
∆S
− s+ 0.5

)
· exp

(
 · 2π · fi · τp ·

2 · α ·∆vm
c

)
· exp ( · 2π · (fi/Nf · fr + 1) · tj · αp) .

(IV.13)
To acquire the actual target response, f ′′i maps the frequency

axis fi ∈ [−Nf/2, Nf/2− 1] to the frequency values of the
scaled target TF, i.e., to which frequency fi has been shifted
due to the Doppler effect

f ′′i = fi + η · α̂(fi, α) . (IV.14)

Similar to the simulation we need to compensate a delay offset,
this time after evaluating the model on f ′′i . Hence, we multiply
an additional delay exponential to the model in (IV.13).

Evaluation: With the following experiments we evaluate
the necessity of a Doppler compensation of the estimated TF.
Therefore, we performed two dynamic simulations, one as
described in Section IV-A and another one with the modifica-
tions from above considering a Doppler scaling over fast time.
We use the simulation parameters from Table I for target 2
and identical values drawn from the cluster statistics such that
both TFs are identical if no Doppler scaling would be applied
over fast time. We consider the previous simulation from
Section IV-A as ground truth and the Doppler scaled simulation
from this section as input to the parameter estimator. Hence,
the estimator estimates the model parameters according to the
scaled target TF. Afterwards, we calculate the compensated
TF as described above.

For the evaluation, we define two mean-squared errors.

Eu =
1

NfNt

∥∥Y − S(γ, τ ,α | Y′)
∥∥2

F
(IV.15)

captures the error between the ground truth data and the esti-
mated and uncompensated model given the Doppler simulation
from (IV.10) as input.

Ec =
1

NfNt

∥∥Y − S′(γ, τ ,α | Y′)
∥∥2

F
(IV.16)

captures the error between the ground truth data and the
compensated model from (IV.13).

The difference between the two errors Eu−Ec is visualized
in Figure 7 over two varying parameters: (1) the target velocity
via ∆vm by keeping α = 0.2 fixed and (2) the sampling interval
∆f , i.e., the frequency resolution of the system. The latter is
normalized to fc such that

∆f

fc
=

fr
Nf

. (IV.17)

The varying resolution requires that the number of sinc
functions Ns is adapted accordingly to keep the size of the
model window in time domain fixed. Ns is adapted by

Ns =

⌈
10

1000
·Nf

⌉
. (IV.18)
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Fig. 7: Deviation between the uncompensated and the compen-
sated model relative to the target’s velocity and the system’s
frequency resolution. The red dashed line highlights the first
contour line at 0.1 dB.

The difference Eu − Ec is drawn as colored areas on a
dB scale. As expected, the accuracy of the uncompensated
model drops for rising target velocities and a rising frequency
resolution. In other words, the uncompensated model performs
worse if the Doppler shift is significant relative to the frequency
resolution of the system. However, for most of the figure the
difference stays below 0.1 dB as highlighted by the red dashed
line. Below this line, the gain of a Doppler compensation can
be considered negligible. Two exemplary data points provide
combinations of Nf and ∆v which still don’t require a Doppler
compensation.

We conclude that the necessity of a Doppler compensation
over fast time depends on the application and radar system.
Hence, we do not incorporate Doppler related terms into the
model for the target’s TF. This would apparently increase the
complexity of the model and estimation routine. If necessary,
the Doppler modulation can be compensated as postprocessing
step as described in the current section.

V. MEASUREMENTS

To conclude our investigations we want to validate the model
and the estimator on exemplary short-range measurement data
acquired with a m:explore M-sequence radar from Ilmsens
GmbH operating in baseband from 0.1 − 6 GHz. The trans-
mitter and receiver ports are connected to two DRH20E ridged
horn antennas from RF SPIN which are mounted on a stand
in horizontal polarization resulting in a quasi-monostatic and
single-polarized radar configuration. The Signal-to-Noise Ratio
(SNR) of this system effectively limits the usable frequency
band to 1.5− 5.5 GHz. The radar and signal parameters are
summarized in Table II.

The test object—a wooden plate with four metal corners
as feet—is placed on Styrofoam in 0.8 cm distance to the
antennas. Direct sources of reflections like walls are covered
with absorbers, though, measurements have not been performed
in an anechoic chamber. Furthermore, we acquire and subtract

TABLE II: Parameters of the measurement setup.
Parameter System Target

Frequency samples Nf 1230 -
Frequency resolution ∆f 3.3 MHz -

Time samples Nt 10 -
Time resolution ∆t 25 ns -

Maximum range 46 m -
Range resolution 3.8 cm -
Frequency band 1.5− 5.5 GHz -

Relative bandwidth fr 1.14 -
Target range - 0.8 cm

Target dimensions - 27× 20 cm

background measurements without the test object to reduce
antenna crosstalk and clutter.

Figure 8 presents pictures and IR measurements of the target
with different orientations. The blue lines show the acquired
measurement data after background subtraction. On the left,
in (a) and (c), the IR is dominated by a strong reflection
originating from the surface of the plate. On the right, in (b)
and (d), however, an extended echo is apparent dominated by
the reflections of the two metal feet on the front.

To define the number of sinc functions for the model we
assume that the pulse width is directly related to the physical
dimensions of the target. Therefore, we select a model window
covering a range of 27 cm corresponding to 1.8 ns of free space
propagation. Given this, the number of sinc functions equals

Ns =

⌈
Nf ·∆f

∆S

⌉
= dNf ·∆f · Tse = 8. (V.1)

Furthermore, we select Ne = 2. Figures 8 (c) and (d) show
the resulting model window and the estimated model. Since
the model window covers the extended target echo and the
estimated model shows a good agreement with the measurement
data we conclude that Ns = 8 is a reasonable choice for this
target. Hence, selecting Ns by the physical target dimensions
is appropriate if no resonance effects occur at the target.
Additionally, the pulse width indeed not only depends on the
maximum physical dimension of the target but also on the
orientation relative to the radar.

VI. CONCLUSION

In this paper we propose a multi-target signal model and a
corresponding ML parameter estimator targeting UWB-radar
applications. Our approach allows a joint estimation of global
target parameters (range and velocity) as well as the character-
istic dispersive signature of a target. We formulate the model
and estimator as extensions to the RIMAX algorithm relaxing
its model simplifications designed for narrower bandwidths.

The main impact of the high relative bandwidth is that typical
model simplifications concerning the Doppler effect are not
valid anymore. This has three major consequences. First, the
Doppler effect results in a dispersive response in the Doppler
spectrum requiring an explicit model for the relative target
velocity instead of a Doppler shift-based approach. Second,
the global target parameters range and velocity require coupling
terms and cannot be estimated independent of each other, as
performed by RIMAX. Third, the Doppler effect results in
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Fig. 8: Short range UWB radar measurements of an exemplary target with (a) and (b) showing pictures of the setup, and (c)
and (d) showing corresponding IRs and estimated models.

a time-scaling of the extended target signature which needs
to be considered during target response modeling. However,
the aforementioned points are not equally important for all
applications. While the velocity model and the parameter
coupling is already necessary for small relative velocities, the
Doppler scaling of the target response is only significant for
high velocities. Therefore, we propose to compensate this
scaling after the parameter estimation if required.

Regarding target response modeling we assume that the
response is composed of contributions from individual closely
spaced scattering centers. Instead of estimating these scattering
points individually, we propose to use an FIR structure. This,
however, requires a prior knowledge about the extent of the
target response in fast time, i.e., the model order of the
FIR structure. With this model, we can efficiently estimated
extended target responses from noisy data. Nevertheless, this
representation requires a clear separation of target responses
in the considered parameter domains. Otherwise, the superpo-
sition of individual target responses is treated as belonging to
a single target.

There are further extensions to the model worth analyzing.
A model order selection based on statistical tests could render
an assumption about the time extent of the target responses
unnecessary. Furthermore, this would allow to use individual
model orders for each target response. When it comes to
resonant target structures, an extension by a recursive model
is required. The estimator could be based on the Yule-
Walker equations from autoregressive time series modeling.
Additionally, an increase of the parameter space, e.g., by
direction of arrival estimation, could improve the separation
of individual target responses and would add further valuable
global target parameters.

In this publication, we only considered a dispersive response

in range. However, one could also imagine that a target is
extended in other domains such as in velocity, e.g., caused by
moving rotor blades of a drone. It is conceivable to expand the
FIR approach also to this domain. Nevertheless, we expect a
drawback in performance between the FIR approach applied to
multiple domains and an estimation of point scatterers in the
range-velocity domain and a subsequent clustering approach.
This needs to be investigated.

Finally, the parametric representation of the target response
allows a straightforward postprocessing of it. Hence, applica-
tions such as target recognition or imaging could be developed
which directly incorporate the proposed model.

APPENDIX

1) Generalized Least-Squares: Considering (III.2) and
(III.7) together with (III.6) and (II.9), we realize that the
parameters γ play a different role than τ and α.

Assume we are given estimates τ 0 and α0 for delay and
Doppler, respectively. The minimizers of

min
γ̃

∥∥∥Y − S̃(γ̃, τ 0,α0)
∥∥∥2

F
(A.1)

and respectively

min
γ

∥∥Y − S(γ, τ 0,α0)
∥∥2

F
(A.2)

are linear functions g̃ : CNf×Nt → CP and g : CNf×Nt →
CP×Ns+2·Ne with Y 7→ g̃(Y) and Y 7→ g(Y). Interestingly,
in both cases they can be designed to constitute the Best
Linear Unbiased Estimator (BLUE). If both the data Y and the
parameter γ were vectors, the mapping g would be realized
by the so called Moore-Penrose inverse. To avoid index-heavy
notation, we skip the derivation of analytic expressions for g̃
and g with the note that they can be derived analogously as
the expressions of the Moore-Penrose matrices.
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[25] S. Häfner, “Parameter estimation for broadband mm-wave FMCW
MIMO radars - a model-based system identification perspectiv,” Ph.D.
dissertation, Technische Universität Ilmenau, 2021.

[26] M. Ershadh and M. Meenakshi, “A new modeling methodology for
multipath parameter estimation in ultrawideband channels,” IEEE Trans.
Antennas Propag., no. 4, 2021.

[27] K. Hausmair, K. Witrisal, P. Meissner, C. Steiner, and G. Kail, “SAGE
algorithm for UWB channel parameter estimation,” deutsch, in COST
2100 Management Committee Meeting, null ; Conference date: 03-02-
2010 Through 05-02-2010, ., 2010.

[28] J. Salmi and A. F. Molisch, “Propagation parameter estimation,
modeling and measurements for ultrawideband MIMO radar,” IEEE
Trans. Antennas Propag., no. 11, 2011.

[29] G. Sun, C. Huang, Z. Cheng, R. He, B. Ai, and A. F. Molisch, “A
study of clustering algorithms for time-varying multipath components
in wireless channels,” in MILCOM 2021 - 2021 IEEE Military
Communications Conference (MILCOM), IEEE, 2021.

[30] Z. Huang, R. Zhang, J. Pan, Y. Jiang, and D. Zhai, “A framework of
multipath clustering based on space-transformed fuzzy c-means and
data fusion for radio channel modeling,” IEEE Trans. Veh. Technol.,
no. 1, 2020.

[31] J. Gedschold, C. Schneider, M. Kaske, R. S. Thoma, G. Del Galdo,
M. Boban, and J. Luo, “Tracking based multipath clustering in vehicle-
to-infrastructure channels,” in 2018 IEEE 29th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), IEEE, 2018.

[32] C. Schneider, M. Ibraheam, S. Hafner, M. Kaske, M. Hein, and R. S.
Thoma, “On the reliability of multipath cluster estimation in realistic
channel data sets,” in The 8th European Conference on Antennas and
Propagation (EuCAP 2014), IEEE, 2014.

[33] C. Kuang, C. Wang, B. Wen, and W. Huang, “An applied method for
clustering extended targets with UHF radar,” #IEEE O ACC#, 2020.

[34] C. Gentile, S. M. Lopez, and A. Kik, “A comprehensive spatial-
temporal channel propagation model for the ultrawideband spectrum
2–8 GHz,” IEEE Trans. Antennas Propag., no. 6, 2010.

[35] R. Qiu, “A study of the ultra-wideband wireless propagation channel
and optimum UWB receiver design,” IEEE J. Sel. Areas Commun.,
no. 9, 2002.

[36] L. Potter, D.-M. Chiang, R. Carriere, and M. Gerry, “A GTD-based
parametric model for radar scattering,” IEEE Trans. Antennas Propag.,
no. 10, 1995.

[37] A. Moghaddar, Y. Ogawa, and E. Walton, “Estimating the time-delay
and frequency decay parameter of scattering components using a
modified MUSIC algorithm,” IEEE Trans. Antennas Propag., no. 10,
1994.

[38] A. Roussafi, N. Fortino, and J.-Y. Dauvignac, “UWB antenna 3D
characterization using matrix pencil method,” in 2014 IEEE Conference
on Antenna Measurements &amp; Applications (CAMA), IEEE, 2014.

[39] M. Khodjet-Kesba, K. E. K. Drissi, S. Lee, K. Kerroum, C. Faure, and
C. Pasquier, “Comparison of matrix pencil extracted features in time
domain and in frequency domain for radar target classification,” Int. J.
Antenn. Propag., 2014.

[40] N. Shuley, “A review of uncooperative target identification using UWB
resonance based radar techniques,” ECTI Transactions on Electrical
Eng., Electronics, and Communications, 2006.

[41] T. Sarkar and O. Pereira, “Using the matrix pencil method to estimate
the parameters of a sum of complex exponentials,” IEEE Antennas
Propag. Mag., no. 1, 1995.

[42] R. Saadane, A. M. Hayar, H. Hofstetter, and D. Aboutajdine, “Statistical
UWB channel model parameters estimation based on SAGE algorithm,”
in 2007 Second International Conference on Communications and
Networking in China, IEEE, 2007.

[43] R. Carriere and R. Moses, “Autoregressive moving average modeling
of radar target signatures,” in Proceedings of the 1988 IEEE National
Radar Conference, 1988.

[44] K. Haneda and J. Takada, “An application of SAGE algorithm for
UWB propagation channel estimation,” in IEEE Conference on Ultra
Wideband Systems and Technologies, 2003, IEEE, 2003.

[45] B. Hanssens, E. Tanghe, D. P. Gaillot, M. Liénard, C. Oestges, D. Plets,
L. Martens, and W. Joseph, “An extension of the RiMAX multipath
estimation algorithm for ultra-wideband channel modeling,” EURASIP
Journal on Wireless Communications and Networking, no. 1, 2018.

[46] A. Richter Dr. - Ing., “Estimation of radio channel parameters,” de,
Ph.D. dissertation, Technische Universität Ilmenau, 2005.

[47] D. Cox and D. Hinkley, Theoretical Statistics, English, 1. ed., repr.
Chapman and Hall/CRC, 1979, D. R. Cox; D. V. Hinkley,
Literaturverz. S. 478 - 495.



15

[48] Y. Wang, J. Li, and P. Stoica, Spectral Analysis of Signals, The Missing
Data Case. Springer International Publishing, 2005.

[49] J. Fessler and A. Hero, “Space-alternating generalized expectation-
maximization algorithm,” IEEE Trans. Signal Process., no. 10, 1994.

[50] J. Martens, “New insights and perspectives on the natural gradient
method,” J. Mach. Learn. Res., no. 146, 2020.

Jonas Gedschold received his M.Sc. degree in
electrical engineering and information technology
from Technische Universität Ilmenau, Germany, in
2018.

After working as Signal Processing Engineer at
Emerson Automation Solutions from 2018 to 2020
in the area of gas analytics he joined the Electronic
Measurement and Signal Processing Group at Tech-
nische Universität Ilmenau as research assistant and
doctoral student. His research interests include signal
processing and ultra-wideband radar applications with

focus on nondestructive testing.

Sebastian Semper studied mathematics at Technis-
che Universität Ilmenau, (TU Ilmenau), Ilmenau, Ger-
many. He received the Master of Science degree in
2015. Since 2015, he has been a Research Assistant
with the Electronic Measurements and Signal Process-
ing Group, which is a joint research activity between
the Fraunhofer Institute for Integrated Circuits IIS
and TU Ilmenau, Ilmenau, In 2022 he finished his
doctoral studies and received the doctoral degree
with honors in electrical engineering. Since then,
he has been a post doctoral student in the Electronic

Measurements and Signal Processing Group. His research interest consist of
compressive sensing, parameter estimation, optimization, numerical methods
and algorithm design.

Michael Döbereiner received the B.Sc. and M.Sc.
degrees in electrical engineering and information
technology from the Technische Universität Ilmenau
in 2017 and 2018.

He is currently working at the Fraunhofer Institute
for Integrated Circuits IIS and a Dr.-Ing. candidate
with research focus on high resolution parameter
estimation in dynamic scenarios.
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