
P
os
te
d
on

15
F
eb

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
20
65
62
0.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Systematizing Attacks and Defenses in Software-Defined

Networking: A Survey

Jinwoo Kim 1, Minjae Seo 2, Seungsoo Lee 2, Jaehyun Nam 2, Vinod Yegneswaran 2,
Phillip Porras 2, Guofei Gu 2, and Seungwon Shin 2

1Kwangwoon University
2Affiliation not available

October 30, 2023

Abstract

Software-Defined Networking (SDN) has manifested both its bright and dark sides so far. On the one hand, it has been

advocated by research communities and industry for its open nature and programmability. Every stakeholder, such as researcher,

practitioner, and developer, can design an innovative networking service with a rich set of APIs and a global network view

by escaping from the vendor-dependent control plane. On the other hand, its new architecture has introduced many security

challenges that did not exist in the legacy environment. However, while new attacks and vulnerabilities within SDN have been

steadily discovered, fewer efforts have been made to systematize the vulnerabilities from security aspects. In this paper, we

aim to scrutinize prior literature that disclosed attack cases in SDN from an architectural perspective through identifying their

root causes, penetration routes, and outcomes. Then, we conduct an in-depth yet comprehensive discussion of their underlying

problems and introduce countermeasures proposed by researchers to mitigate those attacks. We believe that this study can

contribute to revisiting various security problems around the current SDN architecture and envisioning a guideline for security

research for SDN in the future.

1

1

Systematizing Attacks and Defenses in
Software-Defined Networking: A Survey

Jinwoo Kim, Minjae Seo, Seungsoo Lee, Jaehyun Nam,
Vinod Yegneswaran, Phillip Porras, Guofei Gu, and Seungwon Shin

Abstract—Software-Defined Networking (SDN) has manifested
both its bright and dark sides so far. On the one hand, it has
been advocated by research communities and industry for its
open nature and programmability. Every stakeholder, such as
researcher, practitioner, and developer, can design an innovative
networking service with a rich set of APIs and a global network
view by escaping from the vendor-dependent control plane. On
the other hand, its new architecture has introduced many security
challenges that did not exist in the legacy environment. However,
while new attacks and vulnerabilities within SDN have been
steadily discovered, fewer efforts have been made to systematize
the vulnerabilities from security aspects. In this paper, we aim to
scrutinize prior literature that disclosed attack cases in SDN from
an architectural perspective through identifying their root causes,
penetration routes, and outcomes. Then, we conduct an in-depth
yet comprehensive discussion of their underlying problems and
introduce countermeasures proposed by researchers to mitigate
those attacks. We believe that this study can contribute to
revisiting various security problems around the current SDN
architecture and envisioning a guideline for security research
for SDN in the future.

Index Terms—Software-Defined Networking (SDN), OpenFlow,
Security, Survey, Systematization of Knowledge

I. INTRODUCTION

Software-Defined Networking (SDN), no doubt, has gov-
erned the trend of the networking paradigm over the last
decade. The concept of separating the control and data planes,
first conceptualized by the 4D project [1], has proven to
appealing to researchers seeking to overcome the limitations
of traditional networks that were resistant to innovation. The
centralized control plane—also commonly referred to as an
SDN controller—has facilitated numerous innovations that
were previously impossible with proprietary devices. The ad-
vent of programmable interfaces such as OpenFlow [2], killer
applications such as FlowVisor [3], and Open vSwitch [4] have
further fueled the widespread adoption of SDN in the industry.

Jinwoo Kim is with the School of Software, Kwangwoon University, Seoul,
01897, South Korea (e-mail: jinwookim@kw.ac.kr).

Minjae Seo is with the Graduate School of Information Security, KAIST,
Daejeon, 34141, South Korea (e-mail: ms4060@kaist.ac.kr).

Seungsoo Lee is with the Department of Computer Science & Engineering,
Incheon National University, Incheon, 22012, South Korea (e-mail: seung-
soo@inu.ac.kr).

Jaehyun Nam is with the Department of Computer Engineering,
Dankook University, Yongin, Gyeonggi-do, 16890, South Korea (e-mail:
jaehyun.nam@dankook.ac.kr).

Vinod Yegneswaran and Phillip Porras are with SRI International, Menlo
Park, CA, 94025, USA (e-mail: {vinod, porras}@csl.sri.com).

Guofei Gu is with Texas A&M University, College Station, TX, 77843,
USA (e-mail: guofei@cse.tamu.edu).

Seungwon Shin is with the School of Electrical Engineering, KAIST,
Daejeon, 34141, South Korea (e-mail: claude@kaist.ac.kr).

Proprietary Device
(Black-box)

Software-Defined Networking
Architecture

Data Plane
Control Plane Decoupled

Application Layer

Control Layer

Infrastructure Layer

Northbound Interface

Southbound Interface

Open Source
Software Switch

Open
App Market

Open Controller
APIs

Open
Specification

Open Source
Controller

Fig. 1. Illustration of decoupling control-plane and data-plane from propri-
etary network devices.

The deployment of SDN has been extensively studied, with
early deployments on campus networks [5] and more recent
deployments on large-scale networks such as WAN [6] and
data-centers [7], [8].

Indeed, SDN has been a topic of growing interest in the field
of networking in recent years, and it has brought numerous
benefits to network operators, including improvements in ’se-
curity’; With the centralization of control provided by an SDN
controller, operators have the ability to build native security
systems that are more effective than traditional systems that
rely on middle-boxes. The implementation of security systems
with the capability for early detection and proactive mitiga-
tion [9] has been demonstrated through various proposals, such
as botnet detection [10], DDoS mitigation [11], and network
forensics [12]. Additionally, SDN has the ability to coordinate
with middle-boxes by incorporating a service chain context,
thereby addressing concerns about backward compatibility
with legacy markets [13], [14].

However, it is worth noting that the new SDN architecture
opens the door for layers that can be exploited by attackers (see
Figure 1). This has led to an increase in the number of attack
surfaces, as more stakeholders can now access previously
inaccessible layers. For example, the deployment of malicious
applications in app markets is made possible due to a lack
of an ecosystem for establishing trusted relationships between
app developers and operators [15]–[17]. The centralized archi-
tecture of the SDN controller is also found to be susceptible
to simple application-level attacks due to its implementation
as a general network operating system (NOS) [18]–[20]. In
addition, the centralized control plane is at risk of saturation
attacks [21]–[23] despite its ability to manage all connected
switches. Despite over a decade of the existence of SDN,
there are still no formal standards that provide detailed se-
curity guidelines, except for a simple description of SSL/TLS
encryption in the OpenFlow specification [24].

2

TABLE I
PREVIOUS SURVEYS AND THEIR SHORTCOMINGS

Previous Studies Main Focus Focused Layers and
Interfaces Shortcomings

Unveiling
Root

Cause

Analysis of
Penetration

Route

Kreutz et al. [25] (2013) Overall security issues in
SDN

Application and control
layer

The study is limited in scope as it only
addresses the security issues related to

trust between SDN applications and
controllers.

7 7

Scott et al. [26] (2015) Overall security issues in
SDN

Application and control
layer

The study is deficient in the coverage of
attack types, providing a limited
perspective on the SDN security.

7 7

Alsmadi et al. [27] (2015) Overall security issues in
SDN

Application and control
layer

The study’s classification of attack types
(e.g., STRIDE) is well-defined, but the
defense criteria is inadequately defined,

thereby limiting the scope of the research
in terms of its practical applications.

7 7

Yan et al. [28] (2015)

Distributed Denial of
Service (DDoS) attacks in
SDN and cloud computing

environments

Application and control
layer

The study is narrowly focused on the
analysis of a single attack, a DDoS
attack, and its mitigation in a cloud

computing environment.

7 7

Khan et al. [29] (2016)
Analysis of SDN topology
discovery method and its

threat

Application layer, control
layer, and SDN interfaces

The study’s primary focus is on the
analysis of a specific SDN topology
discovery method, neglecting other

importance aspects of the security issues.

7 7

Shaghaghi et al. [30] (2020) Security issues in SDN
data plane Infrastructure layer

The study is limited in its examination of
attack and mitigation scenarios, only

considering those on the SDN data plane.
7 7

Chica et al. [31] (2020) Overall security issues in
SDN

Application layer, control
layer, infrastructure layer,

and SDN interfaces

The study’s proposed classification of
attack criteria and taxonomy lacks

novelty and detail.
7 7

Rauf et al. [32] (2021) Northbound interface
security issues in SDN SDN northbound interface

The study is limited in its examination of
the Northbound interface vulnerabilities,
providing a limited perspective on the

SDN security.

7 7

In this paper, we aim to address the question of the
security implications within the SDN architecture; what se-
curity aspects are fundamentally lacking in the current SDN
architecture? To answer this question, we carry out a com-
prehensive survey of the security issues in SDN by examining
relevant research published in top-tier journals and conferences
within the domains of networks, security, and systems. We
then propose a taxonomy for classifying SDN attacks into
categories, considering their root causes, affected components,
and common attack types. Subsequently, we examine existing
countermeasures proposed by researchers to defend against
these attacks. Through an in-depth analysis of the existing
attacks and defenses, we highlight what aspects of SDN
are architecturally vulnerable and identify areas that require
further attention from security researchers in future studies.

Contributions. Our contributions and the overall paper
road-map are summarized as follows:

• We present brief background knowledge for understand-
ing the SDN architecture and its operations (§II).

• We introduce a taxonomy of features that define distinct
aspects of SDN attacks and defenses in terms of (i)
root causes, (ii) compromised components, (iii) attack
surfaces, (iv) outcomes, and (v) defense types (§III).

• We review prior attack papers that aim to break security
properties using vulnerabilities within SDN across four
layers; (i) application, (ii) control, (iii) control channel,
and (iv) infrastructure (§IV).

• We review existing countermeasure papers that mitigate
the vulnerabilities addressed in §IV and introduce what
techniques they adopt (§V).

• We conclude with a prediction of possible attack surfaces

that may expose vulnerabilities and future research direc-
tion that can contribute to building a more secure SDN
architecture (§VI).

A. Comparison with Previous Studies

As shown in Table I, previous studies in the field of SDN
security have several limitations, including a narrow scope,
insufficient attack and defense definition, lack of analysis and
classification. Our study has been conducted with the aim of
addressing the limitations of previous SDN security research
by taking a comprehensive viewpoint. We focus on the major
root cause of both SDN attacks and defenses and carry out
an in-depth analysis of attack penetration. This gives security
researchers a deeper understanding of the problem and enables
them to proactively defend against attacks. Our study provides
a much-needed holistic view of overall security issues in SDN,
including a thorough examination of the major root cause and
attack penetration route.

It is noteworthy that while SDN has been applied to improve
network security in various domains such as IoT [33] and
moving target defense [34], our focus is solely on analyzing
attacks targeting the SDN architecture.

II. BACKGROUND

A. What is Software-Defined Networking (SDN)?

In traditional networks, it is inherently challenging to insert
new functions into the device without specialized knowledge
or vendor cooperation since the control plane and data plane
are often embedded within a proprietary network device [2].
To overcome this fundamental problem, Software-Defined
Networking (SDN) presents a new paradigm that emphasizes

3

SDN controller
SDN controller

SDN controller

SDN Switch SDN Switch SDN Switch

Application Layer

Control Layer

Infrastructure Layer

Application Application ApplicationCLI/GUI
/Rest API Applications Applications

Northbound Interface

Southbound InterfaceEast/Westbound Interface

Control Channel

Host Host Host

Data Channel

Switch Interface

Fig. 2. SDN layers, components, channels, and interfaces.

decoupling the control plane from the data plane with a
logically centralized controller operated on high-performance
commodity hardware.

Figure 2 shows the overall architecture of SDN. Various
SDN applications (or apps) are running on the application
layer (also known as a management layer), which are designed
to operate network management. In the middle, the control
layer consists of one or multiple SDN controllers that control
the underlying forwarding devices and manage the central-
ized network view. At the bottom, the infrastructure layer
is composed of distributed forwarding devices that directly
handle incoming packets. In particular, the control layer and
the infrastructure layer communicate with each other through
the control channel, and the hosts send and receive packets
to the switches through the data channel. In addition to
these channels, the controller has three different types of
interfaces: (i) the northbound interface to communicate with
the applications, (ii) the east/westbound interface to sync states
with the neighboring controllers, and (iii) the southbound
interface to manage switches.

B. SDN Controller and Application

SDN controllers on the control layer are often referred to
as network operating systems (NOS) because most cutting-
edge controllers consist of basic control software required to
operate and manage an overall network, analogous to a legacy
operating system (e.g., Linux). Also, it provides a global
view of the entire network for the SDN apps by simplifying
the complex control logic details. Most controllers typically
involve the basic core modules and interfaces necessary for
topology detection and traffic management as shown in Fig-
ure 3.

While the detailed implementations of controllers might
be different, they commonly include the following modules:
a topology manager along with a link discovery service, a
host tracking service, and switch managers, which maintain
the latest topology information that involves the discovery
of each network element. The two other core modules are
a storage service and a flow manager. The storage service

stores all the necessary network information and provides it
to the SDN apps whereas the SDN apps can define and modify
flow rules in switches through the flow manager leveraging the
southbound interface.

Moreover, one noticeable reason why SDN has been popu-
larly used is programmability. For example most SDN con-
trollers (e.g., NOX [35], Maestro [36], Onix [37], Flood-
light [38], Beacon [39], ONOS [40], OpenDaylight [41])
provide operators with APIs. Thus, operators can develop
diverse network applications with less expensive cost and
optimize them according to their policies.

C. SDN Switch and OpenFlow

The most widely used southbound interface between the
control layer and the infrastructure layer is OpenFlow [24], and
it defines commands and behaviors that enable the controller
to perform fine-grained and dynamic policy enforcement in the
OpenFlow-enabled switches. The switch maintains a number
of flow tables, which manage a set of flow rules. Basically,
when an incoming packet arrives on the switch and has no
matching flow rule entry, the switch sends a PACKET IN
message, including the partial information of the packet to the
controller. Then, the controller and its SDN apps decide how
to handle the packet and send a flow rule to the switch through
a FLOW MOD message. In addition to handling packets, the
switch counts up the total number of packets and bytes per
each flow rule. The values can be leveraged by the controller
or SDN apps later to provide better network quality of service.

III. SYSTEMIZATION TAXONOMY

Here, we introduce our taxonomy to classify existing attack
cases and countermeasures. For each criterion, we elaborate
on key reasons behind choosing them with discussion of
security challenges. We refer the readers to Figure 3 for better
understanding of the threat model of taxonomy in the SDN
architecture.

4

A. Root Cause

The root cause aims to analyze why the proposed attack
scenarios are feasible within the SDN components. From our
survey of prior literature, we classify 9 major root causes that
have been regarded as key problems that security researchers
have put great attention.

1) Lack of NBI Authorization: This criterion indicates the
absence of an authorization measure in SDN northbound
interfaces. Despite their critical impact on the entire network
operations in case of misuse by malicious apps, they are not
properly protected from malicious intents [18]–[20] or human
errors [42].

2) Lack of SBI Authorization: The southbound interface is
the most critical boundary that immediately affects network
forwarding behavior on the data plane or visibility on the
control plane. Given that, it should be secured from malicious
actions. However, there is no proper authorization to prevent
abuse by a malicious component, creating more security
concerns [17], [43].

3) Lack of Control Event Integrity: Most SDN controllers
maintain a service chain that dictates how an internal control
event is processed by which order of applications or core
modules [40], [41]. When processed, their integrity should be
guaranteed to preserve the original messages or finish whose
chain sequence without unintended modifications.

4) Lack of Control Message Integrity: An SDN controller
and network devices are connected via a control channel
through which some critical messages will be sent/received.
Thus, a secure channel (e.g., TLS/SSL) is recommended [24]
to avoid such a situation. However, in the real world, it is rarely
employed due to its performance issue, giving an attacker a
chance to monitor and manipulate control messages [44].

5) Lack of Application Authentication: It is clear that veri-
fying the reliability of an application developer is an indispens-
able option in maintaining a safe and secure SDN ecosystem.
However, in our analysis, we recognize that most popular SDN
controllers do not support application authentication, implying
that a malicious application, which is disguised as a benign
application, could be installed without any restrictions.

6) Lack of Switch and Host Authentication: A southbound
interface, such as OpenFlow, does not specify any authentica-
tion measure when establishing control channels from switches
to a controller [24], and contemporary SDN controllers also do
not support data-plane authentication for switches and hosts.

7) Lack of Controller Resource Control: The design phi-
losophy of an SDN controller is alike the traditional oper-
ating system in that both need to manage a variety of user-
level applications concurrently executed with shared resources.
However, the lack of this necessary element in several ancestor
controllers led to harmful attack scenarios [18], [45].

8) Side Channel: The core design philosophy of SDN,
decoupling the control plane (i.e., controller) from the data
plane, requires a communication channel between these two
planes, exposing a new attack surface. For example, an attacker
can fingerprint a channel between controller and switches to
leak confidential information [46], [47].

9) Implementation Flaw: While there is a clear standard
reference for SDN (e.g., OpenFlow [24]), it does not mean

that the implementations of such references are always clean,
no bug or no critical errors. In this context, researchers have
investigated if SDN implementations (e.g., open-source SDN
controllers) include any critical program bugs or holes, and
they have revealed critical implementation problems that can
cause serious security issues [42].

B. Penetration Route

We observe that typical attacks in SDN require penetrating
SDN architecture internals. We model this concept by defining
a penetration route where an attacker’s message or event is
propagated. A typical penetration route needs at least one
source in order to affect a target through a sequence of the
following components and interfaces:

1) Application: Malicious SDN apps have been a popular
stepping stone to penetrate SDN controllers and switches [15],
[18]–[20], [48], [49], similar to the way an Android malware
infiltrates a user’s mobile device [50].

2) Northbound Interface (NBI): We scope the NBIs into all
accessible interfaces of a controller from SDN apps, such as
system APIs (e.g., Java native methods, Linux system calls),
controller core services [51], [52], peer app services [48], [52],
and REST APIs [42].

3) Controller: An SDN controller is the most important
target for attackers and defenders. It can be targeted by any
other components.

4) Southbound Interface: A southbound interface is a
boundary where a controller and switches communicate each
other. So, it can be abused to affect controller and switch
operation.

5) Switch: Switches can act as either a reflector that sends
control packets invoked by hosts or an attack source if they
are controlled by an attacker. For example, it is widely known
that commodity switches can be compromised due to switch
firmware vulnerabilities [53], [54].

6) Switch Interface: It refers to the communication point
between hosts and SDN switches. This is the only way to
inject malicious packets from compromised hosts.

7) Host: Hosts can be a variety of entities, such as physical
machines, VMs (Virtual Machines) and even containers that
participate in the target SDN network. Attackers can compro-
mise one of those hosts to use them as an attack source.

Note that SDN apps and switches can be either source and
target.

C. Attack Outcome

We now define six goals attackers want to achieve:
1) Information Leakage – Architecture: The architectural

information of SDN networks should be kept confidential as
it is primarily related to the control path between switches
and a controller. However, prior studies demonstrated that
such information can be leaked by observing various physical
factors (e.g., latency) [21], [55], [56].

2) Information Leakage – Configuration: It represents the
situation when network configurations are leaked. The config-
uration information may include running applications upon a
controller [57] or network policies [46], [47].

5

Southbound Interface

Host Tracking
Service

Switch
Manager

Storage
Service

Link Discovery
Service

Flow
Manager

Co
re

 M
od

ul
es

SDN Switch

SDN Controller
(NOS)

OpenFlow Packet

Control Message

Northbound Interface

Malicious
App

Firewall
App

Routing
App

Event
Manager

Malicious
Host

Malicious
Switch

Switch
Interface

Packet

Attack Surface
Compromised
Component

App Event

App Event App Event

Fig. 3. The internal architecture of an SDN controller and our threat model.

3) Denial of Service – Controller: It refers to all circum-
stances when a controller is malfunctioning as due to penetra-
tion performed by attackers (e.g., harmful API invocation [18]
or control channel saturation packets [21], [58], [59]).

4) Denial of Service – Switch: This criterion indicates the
result when a switch is unavailable or its performance is
downgraded due to external entity [54] or data plane saturation
attacks [21], [60].

5) Inconsistent Network State: In SDN, it is necessary
to strictly maintain a consistent network view between a
controller and switches. While this is important given that
SDN applications rely on the current network states of the
data plane, some inconsistent cases have been discovered due
to erroneous inputs [42], [61].

6) Network Policy Evasion: It refers to the failure states
of security policies for application-level access control [48] or
traffic blocking [17], [49] when they violate network invariant.

D. Defense Type

To defend SDN components from attacks and remove their
vulnerabilities, diverse countermeasures have been proposed
so far. With a thorough survey and analysis, we classify them
into the following 6 defense types:

1) Control Plane Extension: It indicates the work that
extends prior architecture, implementations, and functionality
of the control plane with security features. For example, it can
be adding security modules to existing controllers [15], [17]
or rebuilding new and architecturally secured controllers [18],
[62].

2) Data Plane Extension: This implies the case when the
functionality of an existing SDN data plane is extended to
improve them with security add-on features. It can be either
patching switch modules [63], [64] or expanding OpenFlow
protocol capability [23].

3) Pen Testing: As the foundation of SDN operations is
the software-defined logic, reliability heavily depends on if
the implementations of SDN components (e.g., controllers and
switches) have no flaws. Security researchers have devised
tools that automatically generate test cases using black-box

fuzz-testing for controllers [65]–[67] or protocol conformance
testing for switches [68].

4) Program Analysis: This method examines program be-
havior to find flaws that abuse security-sensitive APIs or
violate network policies (invariant). Prior studies have utilized
diverse program analysis techniques, such as static analysis
looking into control flows [69], [70] or dynamic instrumenta-
tion investigating execution traces [48], [71].

5) API Monitoring: To facilitate application development,
a variety of APIs have been developed in contemporary SDN
controllers. However, there is no built-in security measure that
audits application behavior when accessing APIs pertaining to
critical resources. Thus, one way to repair such security holes
would be to monitor APIs invoked by applications [15]–[17].

6) Message Monitoring: SDN components typically inter-
act each other with a series of messages which are either
controller messages (events) or OpenFlow messages (control
packets). Given the importance of such information, operators
should guarantee that those messages are not manipulated by
a malicious app or compromised switch. For this, it is possible
to build a shim layer between SDN components and check the
message validity [60], [72], [73].

E. Classification Method

In our study, we group the SDN attacks and defenses into
four layers: the application layer, the control layer, the control
channel, and the infrastructure layer. This categorization is
based on the observation that the majority of SDN attacks
and defenses are targeted towards these layers. However, it is
important to note that correspondence between the penetration
routes and these layers may not always be exact. This means
that the target of a penetration route could differ from the
corresponding layer.

IV. SDN ATTACK CLASSIFICATION

In this section, we present major categories of attacks and
vulnerabilities that have been discussed in academia. Table II
shows the summary of systematization for disclosed SDN

6

TABLE II
SYSTEMATIZATION OF SDN ATTACKS.

SOURCE PENETRATION DIRECTION ROOT CAUSE/TARGET/ATTACK OUTCOME SOURCE AND TARGET

Layer Sec. Attack

Root Cause Penetration Route Attack Outcome

L
ac

k
of

N
B

I
A

ut
ho

ri
za

tio
n

L
ac

k
of

SB
I

A
ut

ho
ri

za
tio

n

L
ac

k
of

C
on

tr
ol

E
ve

nt
In

te
gr

ity

L
ac

k
of

C
on

tr
ol

M
es

sa
ge

In
te

gr
ity

L
ac

k
of

A
pp

lic
at

io
n

A
ut

he
nt

ic
at

io
n

L
ac

k
of

Sw
itc

h/
H

os
t

A
ut

he
nt

ic
at

io
n

L
ac

k
of

C
on

tr
ol

le
r

R
es

ou
rc

e
C

on
tr

ol

Si
de

C
ha

nn
el

Im
pl

em
en

ta
tio

n
Fl

aw

A
pp

lic
at

io
n

N
or

th
bo

un
d

In
te

rf
ac

e

C
on

tr
ol

le
r

So
ut

hb
ou

nd
In

te
rf

ac
e

Sw
itc

h

Sw
itc

h
In

te
rf

ac
e

H
os

t

In
fo

rm
at

io
n

L
ea

ka
ge

-
A

rc
hi

te
ct

ur
e

In
fo

rm
at

io
n

L
ea

ka
ge

-
C

on
fig

ur
at

io
n

D
en

ia
l

of
Se

rv
ic

e
-

C
on

tr
ol

le
r

D
en

ia
l

of
Se

rv
ic

e
-

Sw
itc

h

In
co

ns
is

te
nt

N
et

w
or

k
St

at
e

N
et

w
or

k
Po

lic
y

E
va

si
on

A
pp

lic
at

io
n

§IV-A1

System API Abusing
[18], [51]

Controller Resource Exhaustion
[18], [61]

Event Hijacking
[19], [51], [66]

Event Unsubscription
[19], [51], [66]

Rootkit Injection and Hiding
[20]

§IV-A2

Unhandled Event Injection
[70]

App Race Condition
[45]

App Remote Code Execution
[74]

Cross-app Poisoning
[48]

C
on

tr
ol

§IV-B1
PACKET IN Message Flooding

[21], [58], [59], [64]
READ STATE Message Flooding

[63]

§IV-B2

Topology Information Removal
[18]

Link Fabrication Attack
[43], [60], [75]

Host Identifier Spoofing
[43], [60], [75], [76]

§IV-B3

Corrupted REST API Rule Injection
[42]

Malformed Configuration Injection
[61]

App Configuration Manipulation
[19], [66]

§IV-B4

Malformed OpenFlow Packet Injection
[66], [67], [77]

Malformed LLDP Packet Injection
[78]

Abnormal Protocol Behavior Injection
[65], [67]

C
on

tr
ol

C
ha

nn
el

§IV-C1

Slow Path Fingerprinting
[21], [55]

Policy Fingerprinting
[46], [47], [79], [80]

§IV-C2

Control Channel MitM
[51], [67]

In-band Channel Fingerprinting
[56]

In-band Channel Flooding
[56]

App Fingerprinting
[57]

Topology/Protocol Fingerprinting
[81]

In
fr

as
tr

uc
tu

re

§IV-D1
Flow Table Overloading I

[51]
Flow Table Overloading II
[21], [58], [60], [63], [82]

§IV-D2

Switch Firmware Abuse Attack
[51]

Malformed Control Message Injection
[51]

Dynamic Tunneling Attack
[17], [83]

Buffered Packet Hijacking Attack
[49]

Switch Race Condition
[84]–[86]

§IV-D3

Switch Remote Code Execution
[54]

Middlebox Tag Manipulation
[87]

7

Southbound Interface

SDN Switch

SDN Controller

Northbound Interface

App 1 App 2

Malicious
Host

SDN Switch

Storage

C
or

e
M

od
ul

es

Northbound Interface Abusing Indirect Chaining Attack

Malicious
App

Fig. 4. Penetration routes of application-layer attacks: Northbound Interface
Abusing (§IV-A1) and Indirect Chaining Attack (§IV-A2).

attacks by the taxonomy defined in §III, enumerated with
the four SDN layers. Finally, we summarize our findings and
insights for each layer.

A. Application Layer

1) Northbound Interface Abusing: SDN apps are typically
able to access all northbound APIs of a controller by default.
While this design choice comes from the fact that SDN apps
will not have malicious intents or critical bugs, it cannot be
fully guaranteed in practice.

For example, a malicious app can easily abuse system
APIs directly related to controller run-time operation. Rose-
mary [18] shows that it is possible to illegally terminate
Java-based SDN controllers (e.g., Floodlight, ONOS, Open-
dayLight) by calling System.exit(). Yoon et al. [51]
introduce the system time manipulation attack that modifies
time variables, causing switches to be disconnected from
a controller. In addition, some APIs can be exploited to
exhaust system resources. Rosemary [18] demonstrates that
a malicious app can allocate large-sized data structures to
exhaust controller memory. AIM-SDN [61] shows that it is
possible to produce many configuration entries to flood a
controller storage.

A more sophisticated attack abusing northbound interfaces
is to disrupt the service chain of a controller. For example,
a malicious app can hijack an event between SDN apps to
manipulate its payload [66] or drop it [19], [51] (i.e., a control
message hijacking attack). Further, a malicious app can disable
event subscriptions of benign apps so that they cannot receive
subscribed events (i.e., control message unsubscription attack
attack) [19], [51], [66].

It is demonstrated that a malicious app can hide due to the
absence of an access control mechanism in SDN controllers.
Ropke et al. [20] show that an SDN rootkit app can remove
its app ID from a controller storage. The rootkit then can
make a covert channel to steal sensitive information (e.g.,
configurations) from a target controller.

2) Indirect Chaining Attack: Contemporary SDN con-
trollers are built based on an event-driven platform where apps
and core modules interact using events, making a complicated
event chain between components. Under the shadow of the

TABLE III
POPULAR OPEN SOURCE SDN CONTROLLER REPOSITORIES.

(STRONG MODERATE WEAK)

Controller Repository Code Review
ONOS https://github.com/opennetworkinglab/onos

OpenDaylight https://github.com/opendaylight
POX https://github.com/noxrepo/pox
Ryu https://github.com/faucetsdn/ryu

Faucet https://github.com/faucetsdn/faucet
Floodlight https://github.com/floodlight/floodlight

NOX https://github.com/noxrepo/nox

chain, an attacker can design a indirect chaining attack, which
cannot be detected easily.

For example, an attacker can abuse a host-to-application
event chain, denoting a case when events generated from hosts
affect an application’s behavior. EventScope [70] presents
a cross-plane attack that focuses on “unparsed” events by
applications. They show that an attacker can trigger a mal-
formed HOST ADDED event containing an invalid IP address
(e.g., 10.0.0.256). Subsequently, it makes a controller fail
to install a flow rule as it can not parse the event. Thus,
the attacker can bypass a security policy. ConGuard [45]
demonstrates that an attacker can deliberately raise a harmful
race condition on shared variables using TOCTOU (Time-Of-
Check to Time-Of-Use) attacks. For instance, SWITCH JOIN
and SWITCH LEAVE represent events when a switch is
connected and disconnected, respectively. A dpid variable is
created when the former event is detected, while the variable
is removed for the latter event. Suppose those events are
produced from the data plane intermittently. In that case, it
is possible to try accessing the shared variable after being
removed, causing a null point exception.

On the other hand, a switch-to-application event chain can
be used to penetrate a controller. Xiao et al. [74] reveal that
a compromised switch can inject a malicious payload into an
OpenFlow message to execute arbitrary commands on SDN
apps or core modules. It exploits the fact that the payload
of an OpenFlow message is often used in controller internal
components, enabling an attacker to extract the configuration
information or remotely terminate a target controller.

An attacker can abuse an application-to-application event
chain. Specifically, ProvSDN [48] introduces a cross-app poi-
soning attack where a malicious app poisons storage to affect
the decision of other apps. For example, suppose that a ma-
licious app injects a PACKET READ event into a controller
by spoofing a victim’s MAC address with the attacker’s. The
controller then updates a host-to-location pair maintained by a
host tracking service from the packet. As a result, a forwarding
application installs a rule that forwards the victim’s traffic to
the attacker, violating a security policy.

Figure 4 illustrates example penetration routes for
application-layer attacks.

Summary. Overall, there are numerous attack scenarios
in which SDN apps are either sources or targets of
penetration. The root cause contributing to these attacks
is the inadequate security measures employed in the
northbound interfaces of the controllers, resulting in a

8

high frequency of denial of service (DoS) attacks on the
controllers.
Why is the application layer vulnerable? As stated,
most known SDN controllers do not have the necessary
security mechanisms or sanitization approaches in place,
which leaves them vulnerable to attacks from malicious
or buggy SDN apps. This is due to the fact that during the
early stages of SDN development (around 2009), develop-
ers primarily focused on implementing new features and
improving performance, rather than considering security.
Additionally, the implementation of diverse northbound
interfaces in SDN controllers to support app functionality
resulted in inadequate protection, making these interfaces
susceptible to attacks from malicious or malfunctioning
SDN apps.
Can an attacker poison SDN app stores? At the begin-
ning of the SDN era, it was anticipated that public SDN
app stores [51] would be popular, akin to the Docker Hub.
This would have made it easy for an attacker to deploy
malicious SDN apps. However, as recent programmable
networking trends have moved towards the data plane,
SDN app stores have failed to gain widespread adoption.
For instance, HP Enterprise (HPE) had established an
SDN app store for their controller (HPE VAN SDN con-
troller), but it has since been discontinued. Consequently,
the potential for attackers to utilize SDN app stores as a
means of distributing malicious apps has been diminished.
Can an attacker poison open-source repositories?
One potential avenue for deployment of malicious SDN
apps is through code repositories (e.g., GitHub). At first
glance, poisoning them may be difficult because most
code repositories only allow trusted contributors to upload
code. However, an attacker can spoof the identity of
a trusted contributor or alter commit timestamps [88].
Therefore, the security of open-source controllers heavily
relies on the developer’s code reviews. We analyzed
the threat model by surveying controller repositories. As
shown in Table III, popular controllers such as ONOS
and OpenDaylight conduct strict code reviews through
discussion with several developers before merging into
the main branch. However, other controllers may lack
a comprehensive review process, relying on a single
developer’s evaluation or having no review process at all,
which leaves them more susceptible to the deployment of
malicious code.
Is there a trend for application-layer attacks? Initially,
attackers focused on exploiting vulnerabilities in the
northbound interfaces of SDN controllers due to their
relative ease of accessibility (i.e., northbound interface
abusing). However, as SDN controllers have evolved and
become more sophisticated, offering a wider range of
features, their internal code-base has become more com-
plex, making it increasingly challenging for developers
to anticipate the outcomes of internal execution. This has
resulted in the exposure of another potential attack surface
(i.e., indirect event chaining).

B. Control Layer

1) Reflective DDoS Attack: Whereas the separation of con-
trol and data planes enables the management of all switches,
it has been suggested that the centralized control plane is
architecturally weak. Specifically, a single controller can be
overloaded when switches request lots of control messages.
Exploiting this fact, an attacker can mount reflective DDoS
attacks that use SDN switches as reflectors to saturate con-
trol channels. This attack can degrade network performance
significantly and even take down the control plane.

Shin and Gu [21] propose a concept of the reflective
DDoS attacks, abusing OpenFlow PACKET IN messages.
They suggest that attackers can send a series of packets with
different headers to trigger table-mismatch, making a target
switch generate many PACKET IN messages to a controller.
FloodDefender [59] shows that the PACKET IN flooding
attacks overload the CPU utilization of a target controller.
SWGuard [58] further employs a probing method that observes
round-trip-times (RTTs) to learn which match fields trigger
PACKET IN messages. Besides, many other works [22], [23],
[60], [64] are motivated by the DDoS attacks due to its serious
impact.

In addition, an attacker can exploit READ STATE messages
that are used for collecting switch statistics to exhaust con-
troller resources. If a malicious host conducts the PACKET IN
flooding attack, it subsequently makes a target switch install
many rules. The more rules are installed, the more resources
are needed to collect READ STATE messages from the target
controller. DevoFlow [63] analyzs this problem from a perfor-
mance point of view by evaluating it on hardware OpenFlow
switches.

2) Topology View Poisoning: It is crucial to keep a con-
sistent view between a controller and switches because the
control plane is separated and physically distant from the
data plane. For this purpose, most SDN controllers typically
maintain the storage that contains the current topology view
of the data plane, such as link status and host information.
As applications running on a controller refer to the view
before making a decision, the integrity of the storage should be
kept strictly. However, researchers show that it is possible to
compromise the topology view by exploiting the link discovery
service and host tracking service of a controller (§II-B).

The link discovery service is used to learn links on the
data plane. First, it instructs a switch to broadcast LLDP
(Link Layer Discovery Protocol) packets into neighbors with
PACKET OUT messages. When a neighbor switch receives
the LLDP packet, it sends a PACKET IN message to a
controller, and then the link discovery service recognizes a
link between those switches.

The problem is that most controllers neither restrict usage
of APIs that affect the service nor investigate whether those
LLDP packets come from a real switch. This vulnerability
allows attackers to manipulate link information from various
layers. On the application layer, Rosemary [18] demonstrates
that a malicious app can illegally remove link information
of the storage. On the infrastructure layer, TopoGuard [43]
and SPHNIX [60] show that an attacker can inject fake link

9

Southbound Interface

SDN Switch

SDN Controller

Northbound Interface

Malicious
AppApp 1 App 2

Malicious
Host

SDN Switch

StorageC
or

e
M

od
ul

es

Reflective DDoS Attack Topology View Poisoning

Malicious
Host

Flow
Manager

Link Discovery
Service

Fig. 5. Penetration routes for control-layer attacks: Reflective DDoS Attack
(§IV-B1) and Topology View Poisoning (§IV-B2).

information by relaying LLDP packets between two mali-
cious hosts. While TopoGuard [75] proposes a defense that
distinguishes actual link events based on precondition (e.g.,
PORT DOWN or PORT UP), TopoGuard+ proposes a port
amnesia attack that bypasses the defense through artificially
generating fake PORT DOWN events (§V-B3).

The host tracking service is in charge of binding host
identifiers (i.e., MAC and IP addresses) with current locations
(i.e., the ports connected to switches). It updates the host
location based on the most recently detected PACKET IN
message. However, since this does not verify if binding is
valid, it gives an attacker a chance to disguise herself with the
existing host information.

TopoGuard [43] and SPHNIX [60] introduce a host location
hijacking attack, which poisons the service with spoofed host
identifiers. For instance, when an attacker’s host sends a packet
that spoofs the victim’s IP address, the service updates the
victim’s location to the attacker’s. A controller believes that
the victim migrates to the new location; thus, it redirects the
victim’s traffic to the attacker. In addition, TopoGuard+ [75]
presents a port probing attack that periodically probes victim
status and attempts to take the victim’s binding when it goes
offline. SecureBinder [76] introduces a similar attack, called
a persona hijacking attack against DHCP.

Figure 5 shows examples of penetration routes for the two
categories mentioned above.

3) Compromising Invariants: Other important assets that
controllers should keep integrity are invariants of the control
and data plane. The invariants refer to the intents of network
operators, such as network policies and controller configura-
tions, that network operators want to enforce in managing SDN
networks.

It is shown that data-plane invariants can be compromised
by poisoning a controller storage. AudiSDN [42] demonstrates
that malformed input messages delivered to REST APIs can
be translated into incorrect flow rules. For example, suppose
an operator mistakenly writes the tcp_dst field without
specifying the ip_proto field, which is a prerequisite for
using TCP fields when making an OpenFlow FLOW MOD
message. The Floodlight SDN controller [38] updates its

SDN Switch

Southbound Interface SDN Controller

Northbound Interface

Malicious
AppApp 1 App 2

Malicious
Host

Malicious
Switch

StorageC
or

e
M

od
ul

es

Compromising Invariants Southbound Interface Abusing

Host

Policy

Configuration

Error Exception

Flow
Manager

Fig. 6. Penetration routes for control-layer attacks: Compromising Invariants
(§IV-B3) and Southbound Interface Abusing (§IV-B4).

storage with this rule and attempts to synchronize with a
target switch. However, the switch rejects the rule because
it lacks the prerequisite field. The storage in the Floodlight
controller keeps the rule unless an operator removes it; thus,
this sequence repeats infinitely, thereby consuming controller
resources significantly. AIM-SDN [61] introduces a similar
attack where a malicious app directly corrupts a storage entry
using northbound APIs, causing the infinite loop.

On the other hand, control-plane invariants can be corrupted
to affect network performance. For example, there is a con-
troller configuration that dictates how an SDN app handles
control events. The fwd app [89] of the ONOS controller
allows an operator to configure a packet_out_only op-
tion, which instructs a switch to forward packets without rule
installation. However, the option can be abused to make all
packets be sent to a controller as demonstrated by Lee et
al. [19], [66]. This reduces the performance of SDN networks
significantly.

4) Southbound Interface Abusing: Since the control layer
needs to handle a variety of southbound interfaces, unexpected
implementation bugs may exist. Here, an attacker can abuse
implementation holes of southbound interfaces to put a target
controller into an unpredictable state.

For example, many SDN testing tools reveal that attackers
can create malformed control messages that do not follow
OpenFlow protocol specification [24]. Shalimov et al. [77]
propose a method that tests if controllers process malformed
OpenFlow messages. For example, when an incorrect length
value is injected into an OpenFlow header, a target controller
crashes. DELTA [66] shows that manipulating OpenFlow
headers with a randomized value causes a target controller
to disconnect the connection from a switch. BEADS [67]
presents many similar attack cases in several controllers by
fully randomizing all possible OpenFlow headers and message
fields using fuzz-testing.

Also, it is shown that LLDP packets are good targets to
trigger exceptional cases on southbound interfaces. Marin
et al. [78] propose reverse loop and topology freezing at-
tacks. The former exploits the fact that a controller typi-
cally probes an opposite link when receiving a LLDP packet

10

whose LINK TYPE field is 0x01. By transmitting such LLDP
packets, a target controller falls into generating probe packets
indefinitely, which causes resource exhaustion. The latter is
the case when an attacker injects fake links originated from
the same port. As the link discovery service in Floodlight
considers it as a broadcast port, it is removed from the
topology view. However, a forwarding app tries to read the
unavailable link without recognition, which triggers a null
pointer exception.

On the other hand, one may inject abnormal protocol
behavior. Specifically, ATTAIN [65] discovers that dropping
OpenFlow messages can cause denial-of-service on a tar-
get network, as a controller cannot install any flow rule.
BEADS [67] reveals that dropping, replaying, and delaying
OpenFlow messages can make a controller lose connection
from switches.

Figure 6 displays examples of penetration routes for the two
categories mentioned above.

Summary. The control layer of SDN is highly vulnerable
to injection attacks, which involve the utilization of fake
or invalid information or protocol messages. These attacks
frequently stem from the lack of integrity checks on
messages or events, leading to controller DoS and policy
failure.
Why is the control layer vulnerable? In SDN, a
controller has a global view of the entire network, with
the help of its logically centralized architecture, and
this design philosophy provides many benefits in manag-
ing underlying network devices flexibly and efficiently.
However, this design philosophy also presents several
challenges, including the issue of a single point of failure
(DDoS attacks against a controller) and consistency issues
(poisoning topology information and network policies).
As such, this centralized design of SDN is a double-edged
sword; thus, it is important to design SDN controllers with
fault tolerance and the ability to verify updated states in
order to mitigate these risks and fully realize the benefits
of a centralized architecture.
Is a controller itself secure? Looking into the con-
troller internal, the architecture of vanilla SDN controllers
was poorly designed from the view point of traditional
operating systems. As highlighted by Shin et al. [18],
the tight coupling of core module processes with SDN
apps results in the termination of all core modules in the
event of a malicious app’s termination. Additionally, the
bundling of several sub-modules in existing core modules
presents an unnecessary attack surface to attackers, even
if they are not utilized. Consequently, a redesign of the
internal architecture of controllers is necessary to ensure
robustness and enhance security.
Is there a trend for control-layer attacks? The initial
threat landscape for SDN controllers was characterized
by reflective DDoS attacks, and later, topology poisoning
attacks were proposed. Due to the centralized control
plane, these attack vectors are relatively simple to execute.
As SDN controllers became more complex in size and
functionality, protocol implementation bugs and policy

Year

N
um

be
r o

f C
V

E
s

ONOS OpenDaylight Floodlight

Fig. 7. Number of CVEs reported per year for popular controllers (Note that
the lines denote trend lines.). We omit the year where no CVEs are reported.
A full list of the surveyed CVEs is available at [90].

consistency issues were also identified. Our analysis cor-
responds to the real-world vulnerability report trend as
well. As illustrated in Figure 7, the number of Common
Vulnerabilities and Exposures (CVEs) for popular con-
trollers has increased over the years. It is clear that more
vulnerabilities have been observed in ONOS, compared to
the others (i.e., OpenDaylight, Floodlight) in recent years
due to the addition of various features, making it more
complex and hence more susceptible to vulnerabilities.

C. Control Channel

1) Control Path Delay Measurement: Researchers have
paid attention to the fact that a unique forwarding behavior
of SDN switches can leak useful information to attackers. For
example, Shin and Gu [21] and Bifulco et al. [55] propose
that attackers can infer whether a target switch is SDN-
enabled or not by measuring latency differences created by
table mismatch. A switch on the data plane needs to remotely
contact to the SDN controller when there is no matched table
entry for incoming packets; the switch sends a PACKET IN
message to the controller and it subsequently receives a
FLOW MOD message that instructs flow installation. The
incoming packets are blocked in queue while waiting for the
OpenFlow procedure, and they are subsequently forwarded as
soon as the switch installs a flow rule. This is the moment that
makes end-users experience high-latency for a first packet, as
the packet takes a control path, aka slow path.

By analyzing the timing difference in depth, attackers can
fingerprint more detailed information for a target network.
Sonchack et al. [46] demonstrate it is possible to measure
RTTs from certain destinations with packet streams. If RTTs
are high, it means that the control plane was involved in
forwarding the packets and that there was no installed rule
that matches the probe. With this insight, attackers can infer
various network policies such as host communication patterns,
ACL, and monitoring rules. Liu et al. [80] propose a more
formalized method that models switch flow tables as a Markov
model, which infers fine-grained rules among complex flow

11

Southbound Interface
SDN Controller

Northbound Interface

App 2 App 3

Malicious
Host

C
or

e
M

od
ul

es

Malicious
Host

App 1

Control Path Delay Measurement In-band Control Channel Attack

SDN Switch SDN Switch

Storage

Flow Rule

Flow Rule

Flow
Manager

In-band Channel

Fig. 8. Penetration routes for control-channel attacks: Control Path Delay
Measurement (§IV-C1) and In-band Control Channel Attack (§IV-C2).

rules. Yu et al. [79] take a similar idea, but they focus on
switch parameters, such as flow table size, cache replacement
policy, and load. Achleitner et al. [47] propose flow rule
reconstruction techniques with the carefully crafted probing
packets that spoof a specific header field (e.g., MAC and IP
addresses) to know if it is used as a match field in flow rules.
If a destination host replies with the probe even though its
header is spoofed, we can deduce that the field is not used. By
eliminating answered headers, attackers can find a unanswered
one, which is the target rule’s match field.

2) In-band Control Channel Attack: As a network size in-
creases, it becomes hard to construct dedicated and physically
isolated control channels (i.e., out-of-band) from a central
controller to data-plane switches due to physical distances and
expensive costs. Instead, operators can choose in-band control-
channels that make control traffic and production traffic share
the same links. This design choice, however, makes attackers
mount diverse malicious actions.

Basically, unencrypted in-band control channels are weak
to man-in-the-middle attacks. OpenFlow specification formally
recommends the SSL/TLS encryption of control channels [24]
and many controller and switch vendors also support it as an
option [91]. However, we observe that it is barely used in
practice because of significantly degraded performance [92].
This indicates that if attackers compromise a switch or conduct
ARP spoofing attacks to hijack control traffic, he can wiretap
all OpenFlow messages. As demonstrated by Yoon et al. [51]
and BEADS [67], such man-in-the-middle attackers can ma-
nipulate an action field of FLOW MOD messages to DROP
so that benign traffic is blocked.

Furthermore, since in-band control channels share the same
medium with data channels, attackers can indirectly interfere
with transmission of control traffic. The Crosspath attack [56]
aims to flood an in-band control path by generating low-rate
DDoS traffic. Although it is challenging to locate an in-band
control-path, attackers can use the fingerprinting technique that
measures timing differences on the control-path (§IV-C1).

Even under the SSL/TLS encryption of control channels,
it cannot be fully guaranteed that there is no leakage. Cao
et al. [57] demonstrate that attackers can analyze patterns of

encrypted control traffic with deep learning (DL) and infer
what kinds of SDN apps are currently running on a target SDN
controller. The idea is that control traffic shows directional
patterns according to SDN applications. Seo et al. [81] expand
the scope of analysis to the context of a distributed SDN
controller environment. They specifically examine the traffic
exchanged between distributed SDN controllers that are widely
used in SD-WAN (Software-Defined WAN) and demonstrate
that attackers can gain access to confidential information such
as the topology and protocols being employed in the SD-WAN
through the use of deep learning-based techniques.

Summary. One of the major causes of vulnerabilities in
the control channel of SDN is the lack of proper con-
sideration of side channels by SDN developers, leading
to information leakage and exposure of confidential infor-
mation such as apps, topology, and policies. Additionally,
there is a slight difference between penetration routes
depending on whether a switch communicates with a
controller.
Why is the control channel vulnerable? The separa-
tion of the control plane from the data plane in SDN
introduces an additional attack surface through the net-
work channel connecting the two planes. To mitigate
this vulnerability, an out-of-band control channel [56],
which uses a dedicated network line, has been proposed.
However, due to feasibility constraints in the real world,
in-band control channels are more commonly used in
practical implementations. This constraint is exacerbated
in distributed SDN controller instances, making the secu-
rity of the control channel a crucial aspect to consider in
SDN design.
Is there a trend for control-channel attacks? Initially,
simple man-in-the-middle attacks were prevalent due to
the reluctance of operators to use secure channels, such
as SSL/TLS for their potential impact of performance.
However, as the necessity for secure communication
became evident, the adoption of SSL/TLS for securing
control channels increased. Nevertheless, encrypted traffic
analysis attacks, which aim to uncover hidden infor-
mation, remain a threat. These attacks have advanced
from simple timing measurements to sophisticated deep-
learning techniques.

D. Infrastructure Layer

1) Flow Table Overloading: Switch TCAM (Ternary Con-
tent Addressable Memory) is a critical resource that should be
carefully managed. As they are normally scarce in proprietary
devices, a controller should carefully install flow rules in
switch flow tables. However, as there is no proper restriction
for southbound interfaces, it is possible to saturate flow tables
by flooding unnecessary flow rules. For example, Yoon et
al. [51] demonstrate that a malicious app can invoke a massive
number of FLOW MOD messages with distinct match fields,
causing a switch to install many different flow rules. Further,
a malicious host can send randomly spoofed packets to a
switch. This makes the target switch forward PACKET INs

12

to a controller, thereby receiving many flow rules [21], [58],
[60], [63].

2) Protocol Feature Abusing: OpenFlow is a de-facto stan-
dard protocol that specifies controller-switch control channels,
enabling any switches to communicate with a controller.
However, its protocol specification delegates many detailed
requirements to vendors, making security holes in switch
protocol implementations.

One aspect of the holes is that of abusing protocol im-
plementation. Yoon et al. [51] propose a switch firmware
abuse attack that a malicious application deliberately replaces
match fields of flow entries with the ones unsupported by
hardware (e.g., MAC addresses), making packet matching to
be processed by software stack. This abuses the fact that
some OpenFlow switches do not support all OpenFlow match
fields. It significantly degrades packet processing performance
in the end. Further, a malicious app can inject a malformed
OpenFlow packet with an invalid length into a switch, causing
the switch disconnected from the controller [51].

In addition, an attacker can exploit OpenFlow dynamic
actions to bypass security policies. Porras et al. [17], [83]
demonstrate that a malicious app can abuse the OpenFlow
Set action to violate network invariant, aka dynamic tunneling
attack. OpenFlow protocols support a variety of manipulation
operations for packet headers, and they facilitate diverse
built-in network services within a switch forwarding pipeline
without a need for middle-boxes. For example, an SDN switch
can implement NAT operations using OpenFlow Set actions
that modify packet header values to desired ones. Here, a
malicious application can install a flow rule whose Set action
is to modify blocked IP addresses to unblocked ones. While
these rules conflict with an original security policy, none of
the controller core services orchestrates this contention.

A vulnerability within packet forwarding logic can lead to a
critical security breach. When a switch invokes a PACKET IN
message, it temporarily stores the incoming packet in a switch
buffer and assigns a buffer ID, waiting for the controller’s deci-
sion. The ID is used for retrieving the packet when a controller
instructs the switch to forward the packet. Cao et al. [49]
introduce a buffered-packet hijacking attack which exploits
the fact that OpenFlow switches do not examine match fields
except for a buffer ID when forwarding a buffered packet.
So, they show that a malicious app can hijack those buffered
packets if it uses the same buffer ID. If a switch receives
FLOW MOD or PACKET OUT having the same buffer ID,
the switch considers that they are a valid control message.
Then, the malicious app can forward a packet illegitimately so
that the packet can bypass security policies. This stems from
that OpenFlow switch specification does not explicitly state
that match fields should be strictly checked when buffered
packets are handled [24].

On the other hand, SDNRacer [84], [85] and BigBug [86]
discover race conditions on control messages between a con-
troller and switches. Suppose that the controller needs to install
bidirectional flow rules with two FLOW MOD messages
before forwarding a requested packet using PACKET OUT.
However, if BARRIER REQUEST is not used, Open-
Flow messages sent to a target switch are processed non-

Southbound Interface
SDN Controller

Northbound Interface

App 1 App 2

Malicious
Host

C
or

e
M

od
ul

es

Malicious
Host

Flow Table Overloading
Protocol Feature Abusing

SDN Switch SDN Switch

Switch Vulnerability Abusing

Flow Table

Malicious
App

Flow Rule

Storage

Flow
Manager

Fig. 9. Penetration routes for infrastructure-layer attacks: Flow Table Over-
loading (§IV-D1), Protocol Feature Abusing (§IV-D2), and Switch Vulnera-
bility Abusing (§IV-D3).

deterministically. For example, consider a PACKET OUT is
sent to the switch first. In that case, a pending packet is
forwarded before installing a flow rule for an opposite path.

3) Switch Vulnerability Abusing: SDN is often employed
with NFV (Network Function Virtualization) to amplify its
flexibility in modern cloud environments. For example, oper-
ators can use NFV to deploy virtualized network functions on
general-purpose machines and SDN to orchestrate traffic be-
tween the NFV instances [11], [13], [14], [93]. Open vSwitch
(OVS) [4] is the most popular NFV that enables to deploy
high-performance virtual switches. As it is fully compatible
with OpenFlow, it is widely used in cloud environments that
employ SDN.

While the virtualized data-plane contributes to broadening
OpenFlow deployment, it also expands attack surfaces of an
attacker who looks for a chance to infiltrate inside cloud.
Thimmaraju et al. [54] propose a remote-code execution attack
that exploits a stack buffer overflow vulnerability of MPLS
(Multiprotocol Label Switching) parsing logic in OVS. They
discover that OVS parses all MPLS labels even if they exceed
a predefined threshold. So, if an attacker injects ROP (Return
Oriented Programming) gadgets into MPLS packets, they
can execute a remote shell on the switch. Consequently, the
attacker can compromise the virtual switch and laterally access
other virtual switch instances.

Compromised switches can also be abused for bypassing
middle-box service chains. Bu et al. [87] tackle that a com-
promised switch manipulates a packet tag which is used for
marking service chain context of middle-boxes. As there is a
lack of packet integrity check in the current SDN, this attack
cannot be mitigated.

Figure 9 displays examples of penetration routes for
infrastructure-layer attacks.

Summary. As presented, the most dominant factor that
provokes infrastructure-layer attacks is the implementa-
tion flaw of switches. Switches are often targets for most
penetration routes and the outcome can be either a denial

13

of service for the switch or a violation of security policies.
Why is the infrastructure layer vulnerable? Due to
a focus on applications and controllers as central com-
ponents in SDN, the security of SDN switches is often
neglected. Although vendors are required to support the
OpenFlow protocol, there are inconsistencies between
vendors regarding supported specifications and protocol
versions. This leads to implementation bugs and unpre-
dicted abuses of the protocol by SDN developers. As
such, it is imperative for security researchers to direct
greater attention towards the security of SDN switches,
as these inconsistencies can lead to vulnerabilities that
can be exploited by attackers.
Is compromising SDN switches a serious attack?
Compromising SDN switches can cause more serious
damage compared to legacy network environments. The
transmission of corrupted information or messages from
compromised devices to an SDN controller can lead
to confusion and incorrect decision regarding network
policies. Furthermore, attackers often target these devices
as their starting point for attacks because they can be
remotely accessed and may not have strong security
measures in place.

V. SDN DEFENSE CLASSIFICATION

In this section, we classify countermeasures to defend
the aforementioned SDN attacks. Table IV summarizes all
surveyed countermeasures and their covered attack root causes,
components, and defense types according to the taxonomy
presented in §III. Again, we discuss our insights and findings
in the end.

A. Application Layer

1) Application Authentication and Authorization Models:
The root cause of enabling a malicious app to do harmful
API invocation is that most controllers have no authentication
and authorization measures for SDN apps. For this reason,
security researchers have proposed several feasible access
control methods in SDN context.

First, a digital certificate signed by trusted entities would
help operators trust SDN apps. FortNOX [83] and SE-
Floodlight [17] use the digital signature when tracking flow
rules driven from specific apps. Rosemary [18] employs public
key infrastructure (PKI) to verify if SDN apps are correctly
signed by a developer. Those cases show that application
authentication can fundamentally prevent malicious apps from
being installed. We believe that a set of digital certification
methods established between SDN developers and operators
will incredibly enhance a trusted SDN app ecosystem.

Second, a role-based access control (RBAC) has been intro-
duced by FortNOX [17], SE-Floodlight [83], SM-ONOS [15],
and Barista [62]. The main purpose is to restrict application
behavior through granting predefined priorities to running
SDN apps. For example, SDN apps can be assigned by a
role, which represents a security-level to access certain APIs.

Therefore, the lowest priority app cannot invoke a security-
sensitive northbound API, such as flowruleWrite() that
is used for modifying flow rules.

Third, an API-level permission model would be a proper
security measure to be employed in modern SDN controllers.
Since most controllers have become complex, and more apps
have been developed, the RBAC model would be too coarse-
grained to handle all corner cases; e.g., operators may want
to block a flowruleWrite() API while allowing others.
For this, security-mode ONOS (SM-ONOS) [15] proposes
an API-level permission model tailored for the ONOS SDN
controller. With the combination of the RBAC model, it
introduced a hierarchical model that consists of application,
bundle, and API-level permissions. SDNShield [16] presents
more advanced models that use fine-grained permission filters
similar to Berkeley Packet Filter (BPF). Based on a manifest
file that includes used permissions in SDN apps, operators can
choose desired ones with the filters. This requires developers to
correctly write a manifest file that describes used permissions
for the apps, yet attackers can specify a false permission
to deploy malicious apps. AEGIS [52] proposes an natural-
language-processing (NLP) based analysis system to compare
used permissions of an SDN app with its manifest file. SE-
Floodlight [17] proposes a permission model for southbound
interfaces. It dictates which roles should be assigned to an app
so as to use an OpenFlow message.

2) Dynamic Instrumentation and Provenance Graph Anal-
ysis: Application-level race conditions are mainly related
to unexpected implementation bugs typically triggered in a
dynamic environment, so it is hard to find them from a
simple unit testing during a development phase. Thus, finding
hidden bugs requires a more advanced approach that can
consider complicated interactions occurred between apps and
core services, but it requires manual auditing, which is time-
consuming and error-prone.

One line of research is to troubleshoot possible bug points
by analyzing controller traces (e.g., logs) with the help of
dynamic instrumentation. It aims to pinpoint event sequences
that may trigger bugs so as to facilitate operator’s debug-
ging process. OFRewind [94] is a traffic-replay tool that
dynamically records control and data traffic, and reproduces
them to find bugs when controller operations fail. STS [71]
leverages the delta debugging concept that localizes minimum
code snippets which are likely to raise exceptional cases.
SDNRacer [84], [85], BigBug [86], and ConGuard [45] inves-
tigate happens-before causality relations from recorded event
sequences to detect harmful race conditions between multi-
threaded applications.

A provenance graph is useful for knowing causal relations
of a complex attack chain. Here, dynamic instrumentation is
also used to hook controller APIs and build the provenance
graph. ForenGuard [12] proposes a provenance-based root
cause analysis framework which dynamically records how
an event is propagated from the data plane to the control
plane. ProvSDN [48] aims to locate a root cause of cross-app
poisoning attacks by backtracking poisoned data that guides
a victim app to make a harmful decision. GitFlow [96] takes
inspiration from version control systems, such as Git, to create

14

TABLE IV
SYSTEMATIZATION OF SDN DEFENSES.

ROOT CAUSE/TARGET/DEFENSE

Layer Sec. Defense

Root Cause Target Component/Interface Defense Type

L
ac

k
of

N
B

I
A

ut
ho

ri
za

tio
n

L
ac

k
of

SB
I

A
ut

ho
ri

za
tio

n

L
ac

k
of

C
on

tr
ol

E
ve

nt
In

te
gr

ity

L
ac

k
of

C
on

tr
ol

M
es

sa
ge

In
te

gr
ity

L
ac

k
of

A
pp

lic
at

io
n

A
ut

he
nt

ic
at

io
n

L
ac

k
of

Sw
itc

h/
H

os
t

A
ut

he
nt

ic
at

io
n

L
ac

k
of

C
on

tr
ol

le
r

R
es

ou
rc

e
C

on
tr

ol

Si
de

C
ha

nn
el

Im
pl

em
en

ta
tio

n
Fl

aw

A
pp

lic
at

io
n

N
or

th
bo

un
d

In
te

rf
ac

e

C
on

tr
ol

le
r

So
ut

hb
ou

nd
In

te
rf

ac
e

Sw
itc

h

Sw
itc

h
In

te
rf

ac
e

H
os

t

C
on

tr
ol

-P
la

ne
E

xt
en

si
on

D
at

a-
Pl

an
e

E
xt

en
si

on

Pe
n-

Te
st

in
g

Pr
og

ra
m

A
na

ly
si

s

A
PI

M
on

ito
ri

ng

E
ve

nt
/M

es
sa

ge
M

on
ito

ri
ng

A
pp

lic
at

io
n

§V-A1

Application Authentication
[17], [18], [83]

Role-based Authorization
[15], [17], [62], [83]

Northbound API Permission Model
[15], [16], [52]

Southbound API Permission Model
[17]

§V-A2
Dynamic Instrumentation
[45], [71], [84]–[86], [94]

Provenance Graph Analysis
[12], [48], [95], [96]

§V-A3 Control/Data Flow Analysis
[12], [48], [69], [70]

§V-A4 Control-Plane Invariant Verification
[17], [97]–[99]

C
on

tr
ol

§V-B1

Proactive Rule Installation
[63], [64]

Switch Module Extension
[22], [23], [63], [64], [75]

OpenFlow Protocol Extension
[23], [63]

§V-B2

Multi Controller
[37], [100], [101]

Controller Failure Recovery
[102], [103]

Controller Sand-boxing
[18], [62], [103]

§V-B3 Topology Event Verification
[43], [60], [75]

§V-B4 Switch/Host Authentication
[43], [76], [104]

§V-B5

Control Event Blackbox Fuzzing
[66]

Control Message Blackbox Fuzzing
[65]–[67]

C
on

tr
ol

C
ha

nn
el §V-C1 SSL/TLS Encryption

[24]

§V-C2

Delay Normalization
[46]

Delay Randomization
[55], [56], [80]

In
fr

as
tr

uc
tu

re §V-D1 Data-Plane Invariant Verification
[60], [72], [73]

§V-D2 Protocol Conformance Testing
[66], [68]

§V-D3 Malicious Switch Detection
[105]–[107]

a versioned provenance graph that tracks the evolution of flow
states. In contrast, PicoSDN [95] offers a more comprehensive
provenance graph to tackle the limitations of previous ap-
proaches. These limitations include difficulties with managing
dependencies and a lack of complete provenance information
that hinders the ability to detect cross-plane attacks.

3) Control and Data Flow Analysis: Typical execution
flows in an application layer can be represented as a series

of API call sequences triggered by an event (§IV-A2). The
hidden attack chains normally stem from these intractable
processing sequences. From the complex call sequence, it is
hard to pinpoint a suspect API that contributes to violating a
security policy.

To address this, operators can employ the static analysis
that examines the control flow graph (CFG) extracted from an
application source code. INDAGO [69] leverages a machine

15

learning (ML) approach to find suspicious patterns of API call
chains from malicious apps. It investigates diverse features
pertaining to security-sensitive APIs that manipulate states
of SDN controllers. By conducting clustering analysis, it is
shown that malicious API chains can be detected with high
accuracy. EventScope [70] extends the CFG into an event flow
graph to catch how events are propagated over code blocks
within an application. Its purpose is to detect “unhandled”
data-plane events by the application, which makes a hole that
an attacker can bypass security logic. Besides, the provenance-
based defenses also utilize static analysis for pre-processing
API call chains before instrumentation [12], [48].

4) Control-Plane Invariant Verification: Formal methods
would be useful when checking correctness of network poli-
cies enforced by SDN apps prior to deploying rules into
switches. The key benefit behind this approach is that it
could guarantee that apps will not violate network invariant.
SE-Floodlight [17] proposes the rule-based conflict analysis
(RCA) algorithm that investigates conflicts between a newly
created OpenFlow rule and existing ones. For example, a
malicious app can abuse the OpenFlow Set action that
modifies packet headers to create a rule chain, bypassing a
security policy. The goal of RCA is to simulate the possible
chain and compares it with existing rules to detect conflicts.
FLOVER [99] and VeriCon [97] model SDN apps as first-order
logic to check invariant with Satisfiability Modulo Theories
(SMT) solvers. While this may take long time if that there
are many invariants required to investigate, it can correctly
verify possible corner cases. NICE [98] uses model checking
to examine if invariants hold under a certain controller state.
However, exploring all possible states is intractable given the
number of possible state transitions determined by diverse
inputs (e.g., packets, events); thus, they also use symbolic
execution to reduce input space.

Summary. The focus of defense strategies primarily cen-
ters around controller extension and its program analysis,
as the controller is a crucial component for application
support.
Is there a trend for application-layer defenses? There
have been various proposed attack scenarios in the ap-
plication layer, leading to active research in this area to
prevent them. From our analysis, we notice that most
studies have borrowed ideas from existing malware anal-
ysis techniques. For example, dynamic instrumentation
techniques for SDN applications are based on existing bi-
nary instrumentation techniques, commonly used in mal-
ware analysis [108] and control flow analysis approaches
also adopt their main ideas from popular malware static
analysis platforms [109].
Are proposed defenses deployed in practice? We ob-
serve that simple security measures, such as permission
models, have already been implemented in real-world
SDN controllers (e.g., SM-ONOS [110]). However, it is
difficult to find real-world cases of using SDN malware
detection methods in controllers, indicating a need for
more feasible and practical solutions for the SDN envi-
ronment.

B. Control Layer

1) Migrating Control-Plane Function to Data-Plane: Al-
though the separation of control and data planes is the key
to operating SDN, the needs for partial migration of control-
plane functions into the data plane were raised. As early
SDN researchers pursued the design philosophy of 4D [1],
SDN switches become simple forwarding devices whose local-
decision capability is limited. The main problem is that SDN
switches are too verbose; switches always need to ask a
controller when unknown packets are detected (i.e., table-
miss). Several security measures have been introduced to
reduce the controller burden by letting switches make some
decisions by themselves when necessary.

Proactive installation of “wildcard” rules is one option
to reduce the controller burden. DIFANE [64] introduces a
concept of authority switches that are in charge of determin-
ing forwarding actions of network partitions (like a default
gateway). Those switches have wildcard rules that match with
partial flow space of policies. Ingress switches can ask the
authority switches when table-miss occurs without querying
an instruction to a controller. DevoFlow [63] also proposes the
aggressive use of wildcard rules for uninteresting rules such
as micro-flows, devolving most decisions to the data-plane.
These approaches have a benefit in that they are required to
minimally modify existing OpenFlow switches.

Switch modules can be extended to support more intelli-
gence to be robust against the saturation attacks. AVANT-
GUARD [23] proposes the connection migration technique
that relays traffic only if TCP sessions are established cor-
rectly. As switches defer a report of a new TCP connection
request to control-plane when it is confirmed as a reliable
connection through syn cookie, the excessive control-plane
dependency is reduced. FloodGuard [22] builds a switch add-
on module, called data-cache that temporarily stores table-
miss packets to avoid control-plane saturated when flooding
is detected. It utilizes multi-queues that buffer packets of
different protocols from the rationale that an attacker tends to
use a single protocol when performing flooding attacks (e.g.,
TCP, ICMP flooding). SWGuard [75] employs the similar
approach that maintains queues inside of a switch according
to OpenFlow message types. All those queue-based extensions
are used for scheduling packets to alleviate data-to-control-
plane messages.

Several work attempted to extend protocol capabilities to
incorporate more functions than native OpenFlow actions. De-
voFlow [63] proposes rule cloning and local routing actions.
The former action reduces excessive usage of switch TCAM
by making an exact-matching rule from a given wildcard rule,
and the latter enables switches to determine multi-paths similar
to ECMP or automatically reroute a path when a failed output
port is detected. AVANT-GUARD [23] introduced actuating
triggers which extends the switch function to report network
status asynchronously without a control-plane operation.

2) Building Scalable and Fault-Tolerant Control-Plane:
To address the control plane saturation attacks and the single
point of a failure problem, various traditional concepts, such
as distributed systems, OSes, and database systems have been

16

applied in SDN controllers.
Physical extension of a single SDN controller has been

adopted to obtain resilience against DDoS attacks, and even
high-performance by partitioning a network into several seg-
ments. Onix [37] is the first trial to design a multi-controller
platform running on a large-scale production network. It main-
tains NIB (Network Information Base), which is a logically
centralized graph abstraction for data-plane elements (e.g.,
forwarding tables, topology). Multiple controller instances
divide NIB into several chunks, and aggregate the part of it to
a single node when necessary so as to avoid excessive memory
usage per controller instance.

ONOS [100] is a widely-used open-source multi-controller
that features a master-slave relationship between switches
and controllers. The master controller can perform both read
and write operations on a switch, while the slave can only
read the switch’s state. OpenDaylight [101] is a model-driven
multi-controller that divides all data into units called shards,
which are minimum data units like topology and flows. These
shards are communicated between controller instances for
synchronization. Both ONOS and OpenDaylight use Raft, a
consensus algorithm for strong consistency, and distinguish
between a leader and followers, where the leader accepts
read/write operations and replicates them to followers.

As controller instances augmented, state replication is em-
ployed so that slave controller instances can maintain a
consistent view with the master through the east/westbound
interface (§II-A). Ravana [102] models the process of state
replication as a database transaction, and proposed a two-phase
replication protocol that guarantees atomicity of a replication
process. In addition, failure recovery protocols (or algorithms)
would help in restoring states of control and data-planes in
case of failure. LegoSDN [103] introduces a cross-layer roll-
back mechanism through managing snapshots. When an app
fails, it enables the controller to restore previous states from
a saved checkpoint.

To address the monolithic architecture of SDN con-
trollers, researchers have attempted to compartment execution
space of applications and core modules. Rosemary [18] and
LegoSDN [103] propose a sandbox architecture that separates
applications from core modules. By doing so, application pro-
cesses are detached from the space of core modules, and API
invocation is delivered using RPC. Further, Rosemary [18] and
Barista [62] present a micro-kernel architecture that divides
core modules into separated ones so that they are isolated
from each other.

3) Topology Event Verification: The root cause behind the
topology poisoning attack is that existing SDN controllers do
not check validity of topology events when updating storage
even if those events are inconsistent with data-plane context.
TopoGuard [43] proposes a validation subsystem to filter
unacceptable topology events considering current port states.
For example, it uses PORT UP and PORT DOWN events
as host-specific events that indicate if a host-connected link
is up or down, respectively. If a switch receives an LLDP
packet from the port where a host was connected with the
PORT UP event before (i.e., link fabrication), it regards this
link-event invalid. To defend the host identifier spoofing attack,

TopoGuard sends a probe packet to an original host location
when a PORT DOWN event is detected. This prevents a
victim identifier from being hijacked by an attacker during
host migration. TopoGuard+ [75] complements the weaknesses
of TopoGuard by adding a link latency measurement module.
It focuses on the fact that a fake link will show abnormally
high latency since malicious hosts relay LLDP packets in
the middle. SPHINX [60] proposes a general framework that
intercepts all OpenFlow messages and builds a flow graph
which reflects a current topology view. It captures the anomaly
such as fake link injection or identifier spoofing by verifying
host-switch-port binding on the graph.

4) Data-Plane Entity Authentication: Current SDN con-
trollers lack authentication measure for data-plane entities
(e.g., switches, hosts), which is in contrast to the design
philosophy of Ethane [5]. TopoGuard [43] proposes a link-
event authentication that embeds a switch signature into an
LLDP packet. By checking the signature, it can ensure that
the LLDP packet is sent by a trustworthy switch. Secure-
Binder [76] extends IEEE 802.1x protocol that validates
host MAC addresses with certificates signed by CA. This
effectively prevents attackers from spoofing other identifiers.
DFI [104] proposes a more fine-grained access control system
that authenticates an end-host with high-level identifiers such
as user- and host-names. With the help of centralized view in
SDN, it enforces stateful ACL rules according to the status of
a target host.

5) Control Event and Message Blackbox Fuzzing: Fuzzing
techniques have been proven to be useful for pinpointing
hidden bugs pertaining to implementation flaws of handling
a control channel protocol, OpenFlow. As these bugs can be
abused by hidden attack chains, it is helpful to find and fix
them before deployment. Protocol implementation normally
involves large input space due to a variety of protocol mes-
sages, thus it is hard to find exceptional cases with manual
labor. Fuzz-testing can address this challenge by exploring
all possible input combinations to find unexpected behavior.
DELTA [66], BEADS [67] and ATTAIN [65] are represen-
tative fuzzing tools. Their fuzzing techniques aim to either
conduct anomaly actions (e.g., packet drop, manipulation, and
delay) in the middle of protocol sessions or inject malformed
messages that do not correspond to protocol specification.
These kind of black box fuzzing techniques, which can be
utilized as security assessment tools at the same time, can
classify inherent weakness of the target SDN controllers while
incredibly reducing manual effort; thus, it would be efficient
for operators to measure their own controller’s security.

Furthermore, DELTA incorporates a control event fuzzing
module that discovers potential vulnerabilities of northbound
interfaces. They are mainly raised from mis-implementation of
event processing logic in controller internals. By randomizing
inputs or control flow sequences in an application service
chain, it was able to find possible bugs pertaining to control
events, which can be abused by a malicious app.

Summary. Most defense mechanisms focus on address-
ing the shortage of resource control in current SDN
controllers. Many works have proposed extending the

17

control-plane or data-plane to enhance security.
Why is the control-layer security important? An SDN
controller is often referred to as the “brain” of the net-
work [45]. As the name implies, a failure in the controller
can result in a malfunction of the entire network. There-
fore, SDN controllers must have fundamental security
properties to ensure fault-tolerance.
Is there a trend for control-layer defenses? Some
proposals such as application isolation and resource man-
agement were proposed in academia. However, in indus-
try, instead of adopting these ideas, popular controllers
like ONOS and OpenDaylight have implemented a multi-
controller architecture, which has proven to be robust in
carrier-grade networking environments [111].
Are multi-controllers secure enough? The use of multi-
controller or distributed controllers in SDN has not com-
pletely resolved the issue of a malicious app affecting
control-layer operations. This is because the current de-
sign of distributed controllers adopts a physically dis-
tributed but logically centralized architecture, wherein
decisions made by a single controller are replicated across
all controllers. This architecture creates a risk of the entire
system being compromised if a malicious controller is
able to manipulate decisions.

C. Control Channel

1) SSL/TLS Encryption: The recent OpenFlow specification
(v 1.5.0) [24] recommends the use of SSL/TLS for encrypt-
ing the control channel in SDN networks. However, proper
configuration of a public/private key pair for each site results
in increased cost and also decreased performance compared to
TCP [92]. Thus, the use of plain TCP is still prevalent, despite
not being recommended by the OpenFlow specification.

2) Timing Obfuscation: The root cause of timing-based
side-channel attacks in SDN is the need for switches to ask
the controller for instructions when encountering an unknown
packet. This creates a timing difference that can be exploited.
To defend against these attacks, obfuscating timing delays
is one potential solution. For instance, Sonchack et al. [46]
propose a timeout proxy on a switch to normalize control
path latency. If a packet does not match a flow table, it
follows a default forwarding rule installed on the switch. Other
researchers have suggested similar approaches, such as adding
random delays to control channels [55], [56], [80], [81].

Summary: Despite the potential for the exposure of
diverse confidential information through the control chan-
nel, few practical defense solutions have been proposed to
mitigate the risk of fingerprinting attacks. Except for [46],
researchers have only discussed general suggestions or
guidelines without presenting concrete designs for sys-
tems to counteract such attacks.
Why is control-channel defense important? The con-
trol channel of SDN plays a crucial role in facilitat-
ing communication between the controller and switches.
However, the security of this channel is compromised by
inherent design weaknesses, which make it challenging to

fully protect against side-channel attacks. The deployment
of obfuscation-based solutions to address these security
issues is also problematic due to their adverse effect on
performance.
Is there a feasible defense for control-channel? A
feasible solution to defend against control-channel secu-
rity issues is to avoid table-mismatch by using proactive
rules with wildcard match fields. This approach reduces
control-plane interactions and can hide timing differences.
This has been proposed in literature [63], [64].

D. Infrastructure Layer

1) Data-Plane Invariant Verification: Flow rule verification
aims to check if data-plane states correspond to network poli-
cies. It can thwart the rule manipulation attack or violated rules
from an application bug. Many of prior studies use control-
message hooking techniques that capture control messages
to check if they correspond to intended network policies.
VeriFlow [72] designs a real-time invariant verification sys-
tem that sits between the control and infrastructure layer to
intercept all OpenFlow messages. By modeling traffic classes
as equivalence classes, it enables fast analysis through looking
into the required parts of an address space, and pinpoints the
violated one. The flow graph proposed by SPHINX [60] can
be used to verify network invariants (§V-B3). For example,
operators can specify the “waypoint” invariant that enforces a
flow to pass through a certain point with a policy language,
and then SPHINX verifies the flow on the flow graph. Ropke
et al. [73] propose a system that compares control events
generated from apps and control messages applied to the
data-plane. This prevents a malicious app (e.g., rootkit) from
installing a false flow rule that violates operator’s network
policies.

2) Switch Protocol Implementation Testing: As the dif-
ference in the OpenFlow implementations of switches leads
to unexpected bugs, it can expose critical vulnerabilities to
attackers who aim to compromise switches or abuse protocol
specification. The root cause of this security hole is that differ-
ent switch vendors interpret specification in a different manner.
With this fact, there have been several studies to find those
implementation holes using protocol implementation testing.
SOFT [68] attempts to find implementation inconsistencies
among different switch vendors. It utilizes symbolic execution
to explore control flows of switch agents, and compares their
different outcomes. DELTA [66] uses its value-fuzzer module
to inject randomized OpenFlow packets into switches, for the
purpose of finding abnormal cases in switches.

3) Malicious Switch Detection: As discussed, SDN
switches can be vulnerable to compromise, which could allow
attackers to intercept and drop packets. To prevent this from
happening, various techniques for detecting malicious switches
that exhibit anomalous behavior have been proposed. Kamisin-
ski et al. [105] suggest that there are two types of malicious
switches: packet droppers and packet swappers, which forward
packets to different ports. They detect these threats by using
anomaly detection. Chi et al. [106] propose an online detection
algorithm that creates an artificial packet from a controller

18

to see if it follows the intended forwarding path. Mohan et
al. [107] use node-disjoint control paths based on the fact that
two control messages will be inconsistent if the source switch
is compromised. A more comprehensive survey related this
topic is presented in [112].

Summary. Various studies have been conducted on the
topic of infrastructure-layer security. However, a majority
of these proposals concentrate on the verification of
enforced rules or the evaluation of protocol correctness.
There remains a significant gap in the literature with
respect to the security of network devices from malicious
attacks.
Why is the infrastructure-layer defense important?
With the increasing reliance on network infrastructure, it
is crucial to ensure its security. Attackers often target net-
work devices as a starting point for their attacks, thereby
making it imperative to secure these components. The
use of software switches in modern cloud environments
adds an additional layer of complexity, as it increases the
number of potential attack surfaces. In light of this, it
is imperative that strong authentication and authorization
mechanisms are in place for network switches to enhance
the overall security of the infrastructure layer.

VI. FUTURE RESEARCH DIRECTIONS

Before concluding the remark, we highlight two future
research directions: (i) distributed SDN controllers and (ii)
programmable data plane.

A. Vulnerabilities in Distributed SDN Controllers

As modern networking environments significantly grow,
a single SDN controller will not be enough to orchestrate
enormous underlying traffic. Distributed SDN architectures
enable to reduce the burdensome overload of a single cen-
tralized controller and guarantee its resiliency by virtue of
a fault-tolerant system. However, while vulnerabilities within
a single controller environment have been widely studied,
the environments of distributed controllers have not been
thoroughly investigated yet. Therefore, we need to delve into
security issues that may be arisen from the distributed SDN
architecture.

In addition, modern distributed SDN architectures have
constantly evolved. For example, ONOS [40] has recently
separated its underlying distributed storage into an independent
project, called Atomix [113]. Now, operators can flexibly
design a cluster that consists of controllers and storage with
their preferred configurations. While this can facilitate the de-
velopment of various use cases that need distributed systems,
we expect that the newly emerged structure will expose new
attack surfaces to attackers.

B. Vulnerabilities in Programmable Data Plane

Recently, the programmable data plane is considered to be
the next killer paradigm for innovative networking research
beyond SDN. For instance, P4 [114] is advocated by both

academia and industry due to its ability to customize packet
processing logic while enjoying the benefits of line-rate perfor-
mance. Similar to SDN, its primary advantage originates from
the programmablility, which implies that vulnerabilities can
exist in software-defined logic or implementations. However,
to our knowledge, security within the programmable data plane
has yet to receive significant attention. Thus, it may give
attackers another chance to mount harmful attacks again.

VII. CONCLUSION

In this paper, we have surveyed disclosed attacks and de-
fenses in each layer of the SDN architecture and systematically
investigated their motivations, approaches, and fundamental
security issues across the layers.

With our careful analysis, we have observed that most
SDN attacks have been discovered while introducing new
functionalities or interfaces. The tenet of SDN is to support
programmability with a rich set of APIs, but these APIs simul-
taneously increase the attack surfaces that attackers can abuse.
We have also found that most SDN controllers have been
developed without properly incorporating security features.
The control channel in SDN is often regarded as a weak point
that can expose confidential information (e.g., global view
of a network and identity of SDN resources). However, we
have only observed a small number of works that focus on
the control channel. The security of the infrastructure layer
has been paid less attention than those of the application and
control layers.

While many researchers have analyzed potential vulnerabil-
ities and developed feasible defenses in SDN, we conclude
that the security of SDN controllers should be considered
more seriously. Considering the importance of the secure
communication between the control and data planes, we also
conclude that its security issues should be more investigated.
As the ”softwarization” trend is moving to the data plane
(e.g., P4), we conclude that security researchers need to start
exploring security issues in this layer. We hope this paper helps
revisit existing SDN security works and sheds light on future
research directions.

REFERENCES

[1] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A Clean Slate 4D Approach
to Network Control and Management,” ACM SIGCOMM Computer
Communication Review, 2005.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communication
Review, 2008.

[3] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “FlowVisor: A Network Virtualization
Layer,” OpenFlow Switch Consortium, Tech. Rep, 2009.

[4] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The Design and Imple-
mentation of Open vSwitch,” in Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation. USENIX, 2015.

[5] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” ACM SIG-
COMM computer communication review, 2007.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience
With a Globally-Deployed Software Defined WAN,” ACM SIGCOMM
Computer Communication Review, 2013.

19

[7] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving Energy in Data
Center Networks,” in Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation. USENIX, 2010.

[8] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-Driven
WAN,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2013.

[9] S. Shin, L. Xu, S. Hong, and G. Gu, “Enhancing Network Security
through Software Defined Networking (SDN),” in Proceedings of the
International Conference on Computer Communication and Networks.
IEEE, 2016.

[10] S. W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, M. Tyson
et al., “FRESCO: Modular Composable Security Services for Software-
Defined Networks,” in Proceedings of the Network & Distributed
System Security Symposium. Internet Society, 2013.

[11] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and Elastic DDoS Defense,” in Proceedings of the USENIX Security
Symposium. USENIX, 2015.

[12] H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y. Zhang, and G. Gu,
“Towards Fine-Grained Network Security Forensics and Diagnosis in
the SDN Era,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018.

[13] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement using SDN,” in Pro-
ceedings of the ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2013.

[14] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “En-
forcing Network-Wide Policies in the Presence of Dynamic Middlebox
Actions using FlowTags,” in Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation. USENIX, 2014.

[15] C. Yoon, S. Shin, P. Porras, V. Yegneswaran, H. Kang, M. Fong,
B. O’Connor, and T. Vachuska, “A Security-Mode for Carrier-Grade
SDN Controllers,” in Proceedings of the Annual Computer Security
Applications Conference, 2017.

[16] X. Wen, B. Yang, Y. Chen, C. Hu, Y. Wang, B. Liu, and X. Chen,
“SDNShield: Reconciliating Configurable Application Permissions for
SDN App Markets,” in Proceedings of the Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks. IEEE,
2016.

[17] P. A. Porras, S. Cheung, M. W. Fong, K. Skinner, and V. Yegneswaran,
“Securing the Software Defined Network Control Layer,” in Pro-
ceedings of the Network and Distributed System Security Symposium.
Internet Society, 2015.

[18] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A Robust, Secure, and High-
performance Network Operating System,” in Proceedings of the ACM
SIGSAC conference on computer and communications security, 2014.

[19] S. Lee, C. Yoon, and S. Shin, “The Smaller, the Shrewder: A Simple
Malicious Application Can Kill an Entire SDN Environment,” in Pro-
ceedings of the ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization. ACM, 2016.

[20] C. Röpke and T. Holz, “SDN Rootkits: Subverting Network Operat-
ing Systems of Software-Defined Networks,” in Proceedings of the
International Symposium on Recent Advances in Intrusion Detection.
Springer, 2015.

[21] S. Shin and G. Gu, “Attacking Software-Defined Networks: A First
Feasibility Study,” in Proceedings of the ACM SIGCOMM workshop
on Hot topics in software defined networking. ACM, 2013.

[22] H. Wang, L. Xu, and G. Gu, “FloodGuard: A DoS Attack Preven-
tion Extension in Software-Defined Networks,” in Proceedings of the
Conference on Dependable Systems and Networks. IEEE, 2015.

[23] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and Vigilant Switch Flow Management in Software-Defined
Networks,” in Proceedings of the ACM SIGSAC Conference on Com-
puter & Communications Security, 2013.

[24] “OpenFlow Switch Specification v1.5.1,” https://opennetworking.org/
wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf, 2022.

[25] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards Secure and
Dependable Software-Defined Networks,” in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined network-
ing, 2013.

[26] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security
in software defined networks,” IEEE Communications Surveys &
Tutorials, 2015.

[27] I. Alsmadi and D. Xu, “Security of software defined networks: A
survey,” Computers & security, vol. 53, pp. 79–108, 2015.

[28] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(sdn) and distributed denial of service (ddos) attacks in cloud com-
puting environments: A survey, some research issues, and challenges,”
IEEE communications surveys & tutorials, vol. 18, no. 1, pp. 602–622,
2015.

[29] S. Khan, A. Gani, A. W. A. Wahab, M. Guizani, and M. K. Khan,
“Topology discovery in software defined networks: Threats, taxon-
omy, and state-of-the-art,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 1, pp. 303–324, 2016.

[30] A. Shaghaghi, M. A. Kaafar, R. Buyya, and S. Jha, “Software-
defined network (sdn) data plane security: Issues, solutions, and future
directions,” Handbook of Computer Networks and Cyber Security:
Principles and Paradigms, pp. 341–387, 2020.

[31] J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega, “Security in
sdn: A comprehensive survey,” Journal of Network and Computer
Applications, vol. 159, p. 102595, 2020.

[32] B. Rauf, H. Abbas, M. Usman, T. A. Zia, W. Iqbal, Y. Abbas,
and H. Afzal, “Application threats to exploit northbound interface
vulnerabilities in software defined networks,” ACM Computing Surveys
(CSUR), vol. 54, no. 6, pp. 1–36, 2021.

[33] I. Farris, T. Taleb, Y. Khettab, and J. Song, “A survey on emerging sdn
and nfv security mechanisms for iot systems,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 1, pp. 812–837, 2018.

[34] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the first workshop on Hot topics in
software defined networks, 2012, pp. 127–132.

[35] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an Operating System for Networks,”
ACM SIGCOMM Computer Communication Review, 2008.

[36] Z. Cai, A. L. Cox, and T. Ng, “Maestro: A System for Scalable
OpenFlow Control,” Tech. Rep., 2010.

[37] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A Dis-
tributed Control Platform for Large-Scale Production Networks,” in
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation. USENIX, 2010.

[38] “Floodlight Controller,” https://github.com/floodlight/floodlight, 2023.
[39] D. Erickson, “The Beacon OpenFlow Controller,” in Proceedings of

the ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, 2013.

[40] “ONOS Github Repository,” https://github.com/opennetworkinglab/
onos, 2022.

[41] “OpenDaylight Github Repository,” https://github.com/opendaylight/,
2023.

[42] S. Lee, S. Woo, J. Kim, V. Yegneswaran, P. Porras, and S. Shin,
“AudiSDN: Automated Detection of Network Policy Inconsistencies in
Software-Defined Networks,” in Proceedings of the IEEE Conference
on Computer Communications. IEEE, 2020.

[43] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning Network Visibility
in Software-Defined Networks: New Attacks and Countermeasures,” in
Proceedings of the Network and Distributed System Security Sympo-
sium. Internet Society, 2015.

[44] B. Agborubere and E. Sanchez-Velazquez, “Openflow Communications
and TLS Security in Software-Defined Networks,” in 2017 IEEE
International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). IEEE, 2017.

[45] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the Brain:
Races in the SDN Control Plane,” in Proceedings of the USENIX
Security Symposium. USENIX, 2017.

[46] J. Sonchack, A. Dubey, A. J. Aviv, J. M. Smith, and E. Keller, “Timing-
based Reconnaissance and Defense in Software-Defined Networks,” in
Proceedings of the Annual Conference on Computer Security Applica-
tions, 2016.

[47] S. Achleitner, T. La Porta, T. Jaeger, and P. McDaniel, “Adversarial
Network Forensics in Software Defined Networking,” in Proceedings
of the Symposium on SDN Research. ACM, 2017.

[48] B. E. Ujcich, S. Jero, A. Edmundson, Q. Wang, R. Skowyra, J. Landry,
A. Bates, W. H. Sanders, C. Nita-Rotaru, and H. Okhravi, “Cross-
app Poisoning in Software-Defined Networking,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2018.

[49] J. Cao, R. Xie, K. Sun, Q. Li, G. Gu, and M. Xu, “When Match Fields
do not Need to Match: Buffered Packet Hijacking in SDN,” in Pro-

https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://github.com/floodlight/floodlight
https://github.com/opennetworkinglab/onos
https://github.com/opennetworkinglab/onos
https://github.com/opendaylight/

20

ceedings of the Network and Distributed System Security Symposium.
Internet Society, 2020.

[50] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization
and Evolution,” in Proceedings of the IEEE Symposium on Security
and Privacy. IEEE, 2012.

[51] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,
and G. Gu, “Flow Wars: Systemizing the Attack Surface and Defenses
in Software-Defined Networks,” IEEE/ACM Transactions on Network-
ing, 2017.

[52] H. Kang, S. Shin, V. Yegneswaran, S. Ghosh, and P. Porras, “AEGIS:
An Automated Permission Generation and Verification System for
SDNs,” in Proceedings of the Workshop on Security in Softwarized
Networks: Prospects and Challenges, 2018.

[53] F. F. Lindner, “Router Exploitation,” in Black Hat Briefings USA, 2009.
[54] K. Thimmaraju, B. Shastry, T. Fiebig, F. Hetzelt, J.-P. Seifert, A. Feld-

mann, and S. Schmid, “Taking Control of SDN-based Cloud Systems
via the Data Plane,” in Proceedings of the Symposium on SDN
Research, 2018.

[55] R. Bifulco, H. Cui, G. O. Karame, and F. Klaedtke, “Fingerprinting
Software-Defined Networks,” in Proceedings of the International Con-
ference on Network Protocols. IEEE, 2015.

[56] J. Cao, Q. Li, R. Xie, K. Sun, G. Gu, M. Xu, and Y. Yang, “The
CrossPath Attack: Disrupting the SDN Control Channel via Shared
Links,” in Proceedgins of the Security Symposium. USENIX, 2019.

[57] J. Cao, Z. Yang, K. Sun, Q. Li, M. Xu, and P. Han, “Fingerprinting
SDN Applications via Encrypted Control Traffic,” in Proceedings of
the International Symposium on Research in Attacks, Intrusions and
Defenses, 2019.

[58] M. Zhang, G. Li, L. Xu, J. Bi, G. Gu, and J. Bai, “Control Plane
Reflection Attacks in SDNs: New Attacks and Countermeasures,” in
Proceedings of the International Symposium on Research in Attacks,
Intrusions, and Defenses. Springer, 2018.

[59] G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “FloodDefender:
Protecting Data and Control Plane Resources under SDN-Aimed DoS
Attacks,” in Proceedings of the IEEE Conference on Computer Com-
munications. IEEE, 2017.

[60] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detect-
ing Security Attacks in Software-Defined Networks,” in Proceedings
of the Network and Distributed System Security Symposium. Internet
Society, 2015.

[61] V. H. Dixit, A. Doupé, Y. Shoshitaishvili, Z. Zhao, and G.-J.
Ahn, “AIM-SDN: Attacking Information Mismanagement in SDN-
datastores,” in Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, 2018.

[62] J. Nam, H. Jo, Y. Kim, P. Porras, V. Yegneswaran, and S. Shin, “Barista:
An Event-centric NOS Composition Framework for Software-Defined
Networks,” in Proceedings of the IEEE Conference on Computer
Communications. IEEE, 2018.

[63] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling Flow Management for High-
Performance Networks,” in Proceedings of Conference of the ACM
Special Interest Group on Data Communication, 2011.

[64] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable Flow-
based Networking with DIFANE,” in Proceedings of the ACM Special
Interest Group on Data Communication. ACM, 2010.

[65] B. E. Ujcich, U. Thakore, and W. H. Sanders, “Attain: An Attack
Injection Framework for Software-Defined Networking,” in Proceed-
ings of the Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2017.

[66] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. A. Porras,
“DELTA: A Security Assessment Framework for Software-Defined
Networks,” in Proceedings of the Network and Distributed System
Security Symposium. Internet Society, 2017.

[67] S. Jero, X. Bu, C. Nita-Rotaru, H. Okhravi, R. Skowyra, and S. Fahmy,
“BEADS: Automated Attack Discovery in OpenFlow-based SDN Sys-
tems,” in Proceedings of the International Symposium on Research in
Attacks, Intrusions, and Defenses. Springer, 2017.

[68] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kostic,
“A SOFT Way for Openflow Switch Interoperability Testing,” in
Proceedings of the International Conference on Emerging Networking
Experiments and Technologies. ACM, 2012.

[69] C. Lee, C. Yoon, S. Shin, and S. K. Cha, “INDAGO: A New Framework
for Detecting Malicious SDN Applications,” in Proceedings of the
IEEE International Conference on Network Protocols. IEEE, 2018.

[70] B. E. Ujcich, S. Jero, R. Skowyra, S. R. Gomez, A. Bates, W. H.
Sanders, and H. Okhravi, “Automated Discovery of Cross-Plane Event-
Based Vulnerabilities in Software-Defined Networking,” in Proceedings

of the Network and Distributed System Security Symposium. Internet
Society, 2020.

[71] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang,
Z. Liu, A. El-Hassany, S. Whitlock et al., “Troubleshooting Blackbox
SDN Control Software with Minimal Causal Sequences,” in Proceed-
ings of the ACM Special Interest Group on Data Communication.
ACM, 2014.

[72] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“VeriFlow: Verifying Network-Wide Invariants in Real Time,” in Pro-
ceedings of the USENIX Symposium on Networked Systems Design and
Implementation. USENIX, 2013.

[73] C. Röpke and T. Holz, “Preventing Malicious SDN Applications
from Hiding Adverse Network Manipulations,” in Proceedings of the
2018 Workshop on Security in Softwarized Networks: Prospects and
Challenges, 2018.

[74] F. Xiao, J. Zhang, J. Huang, G. Gu, D. Wu, and P. Liu, “Unexpected
Data Dependency Creation and Chaining: A New Attack to SDN,” in
Proceedings of the IEEE Symposium on Security and Privacy. IEEE,
2020.

[75] R. Skowyra, L. Xu, G. Gu, V. Dedhia, T. Hobson, H. Okhravi, and
J. Landry, “Effective Topology Tampering Attacks and Defenses in
Software-Defined Networks,” in Proceedings of the Annual IEEE/IFIP
International Conference on Dependable Systems and Networks.
IEEE, 2018.

[76] S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and
D. Bigelow, “Identifier Binding Attacks and Defenses in Software-
Defined Networks,” in Proceedings of the USENIX Security Sympo-
sium. USENIX, 2017.

[77] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced Study of SDN/OpenFlow Controllers,” in Proceedings of
the 9th Central & Eastern European Software Engineering Conference
in Russia, 2013.

[78] E. Marin, N. Bucciol, and M. Conti, “An In-depth Look into SDN
Topology Discovery Mechanisms: Novel Attacks and Practical Coun-
termeasures,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2019.

[79] M. Yu, T. He, P. McDaniel, and Q. K. Burke, “Flow table security
in sdn: Adversarial reconnaissance and intelligent attacks,” in IEEE
INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 1519–1528.

[80] S. Liu, M. K. Reiter, and V. Sekar, “Flow Reconnaissance via Tim-
ing Attacks on SDN Switches,” in Proceedings of the International
Conference on Distributed Computing Systems. IEEE, 2017.

[81] M. Seo, J. Kim, E. Marin, M. You, T. Park, S. Lee, S. Shin, and J. Kim,
“Heimdallr: Fingerprinting SD-WAN Control-Plane Architecture via
Encrypted Control Traffic,” in Annual Computer Security Applications
Conference, 2022, pp. 949–963.

[82] T. A. Pascoal, I. E. Fonseca, and V. Nigam, “Slow denial-of-service
attacks on software defined networks,” Computer Networks, vol. 173,
p. 107223, 2020.

[83] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
Security Enforcement Kernel for OpenFlow Networks,” in Proceedings
of the First Workshop on Hot Topics in Software Fefined Networks.
ACM, 2012.

[84] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev,
“SDNRacer: Detecting Concurrency Violations in Software-Defined
Networks,” in Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research. ACM, 2015.

[85] A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, and M. Vechev,
“SDNRacer: Concurrency Analysis for Software-Defined Networks,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2016.

[86] R. May, A. El-Hassany, L. Vanbever, and M. Vechev, “BigBug: Practi-
cal Concurrency Analysis for SDN,” in Proceedings of the Symposium
on SDN Research. ACM, 2017.

[87] K. Bu, Y. Yang, Z. Guo, Y. Yang, X. Li, and S. Zhang, “Flowcloak:
Defeating middlebox-bypass attacks in software-defined networking,”
in Proceedings of the IEEE Conference on Computer Communications.
IEEE, 2018.

[88] “Unverified Commits: Are You Unknowingly Trusting Attack-
ers’ Code?” https://checkmarx.com/blog/unverified-commits-are-you-
unknowingly-trusting-attackers-code/, 2023.

[89] “ONOS Reactive Forwarding Application,” https://github.com/
opennetworkinglab/onos/blob/master/apps/fwd/src/main/java/org/
onosproject/fwd/ReactiveForwarding.java, 2023.

[90] “CVE List for SDN Controllers,” https://docs.google.com/spreadsheets/
d/e/2PACX-1vRITg3P4lKXia-b66M6gHEFfBNnXl0sHYp DxXgZh

https://checkmarx.com/blog/unverified-commits-are-you-unknowingly-trusting-attackers-code/
https://checkmarx.com/blog/unverified-commits-are-you-unknowingly-trusting-attackers-code/
https://github.com/opennetworkinglab/onos/blob/master/apps/fwd/src/main/java/org/onosproject/fwd/ReactiveForwarding.java
https://github.com/opennetworkinglab/onos/blob/master/apps/fwd/src/main/java/org/onosproject/fwd/ReactiveForwarding.java
https://github.com/opennetworkinglab/onos/blob/master/apps/fwd/src/main/java/org/onosproject/fwd/ReactiveForwarding.java
https://docs.google.com/spreadsheets/d/e/2PACX-1vRITg3P4lKXia-b66M6gHEFfBNnXl0sHYp_DxXgZh_i0h2hFRQWQGmNBCmI7eI9qLBUgqBBbHttFJpD/pubhtml?gid=1659430278&single=true
https://docs.google.com/spreadsheets/d/e/2PACX-1vRITg3P4lKXia-b66M6gHEFfBNnXl0sHYp_DxXgZh_i0h2hFRQWQGmNBCmI7eI9qLBUgqBBbHttFJpD/pubhtml?gid=1659430278&single=true

21

i0h2hFRQWQGmNBCmI7eI9qLBUgqBBbHttFJpD/pubhtml?gid=
1659430278&single=true, 2023.

[91] “Configure OVS Connection Using SSL with Self-signed Certifi-
cates,” https://docs.pica8.com/display/PicOS21116cg/Configure+OVS+
Connection+Using+SSL+with+Self-signed+Certificates, 2023.

[92] R. Durner and W. Kellerer, “The Cost of Security in the SDN Control
Plane,” in Proceedings of the ACM CoNEXT 2015-Student Workshop.
ACM, 2015.

[93] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using
openflow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?),” in Proceedings of the IEEE
International Conference on Network Protocols. IEEE, 2012.

[94] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann,
“OFRewind: Enabling Record and Replay Troubleshooting for Net-
works,” in Proceedings of the USENIX Annual Technical Conference.
USENIX, 2011.

[95] B. E. Ujcich, S. Jero, R. Skowyra, A. Bates, W. H. Sanders, and
H. Okhravi, “Causal Analysis for Software-Defined Networking At-
tacks,” in USENIX Security Symposium, 2021, pp. 3183–3200.

[96] A. Dwaraki, S. Seetharaman, S. Natarajan, and T. Wolf, “GitFlow: Flow
revision management for software-defined networks,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, 2015, pp. 1–6.

[97] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky, “VeriCon: Towards Verifying Con-
troller Programs in Software-Defined Networks,” in Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2014, pp. 282–293.

[98] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A
NICE Way to Test Openflow Applications,” in Proceedings of the
USENIX Symposium on Networked Systems Design and Implementa-
tion. USENIX, 2012.

[99] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model
Checking Invariant Security Properties in OpenFlow,” in Proceedings
of the IEEE international conference on communications. IEEE, 2013.

[100] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS:
Towards an Open, Distributed SDN OS,” in Proceedings of the third
workshop on Hot topics in software defined networking. ACM, 2014.

[101] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a Model-Driven SDN Controller Architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multi-
media Networks 2014. IEEE, 2014, pp. 1–6.

[102] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller
Fault-Tolerance in Software-Defined Networking,” in Proceedings of
the ACM SIGCOMM Symposium on Software Defined Networking
Research. ACM, 2015.

[103] B. Chandrasekaran, B. Tschaen, and T. Benson, “Isolating and Toler-
ating SDN Application Failures with LegoSDN,” in Proceedings of the
Symposium on SDN Research. ACM, 2016.

[104] S. R. Gomez, S. Jero, R. Skowyra, J. Martin, P. Sullivan, D. Bigelow,
Z. Ellenbogen, B. C. Ward, H. Okhravi, and J. W. Landry, “Controller-
Oblivious Dynamic Access Control in Software-Defined Networks,”
in Proceedings of the Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2019.

[105] A. Kamisiński and C. Fung, “Flowmon: Detecting malicious switches
in software-defined networks,” in Proceedings of the 2015 Workshop
on Automated Decision Making for Active Cyber Defense, 2015, pp.
39–45.

[106] P.-W. Chi, C.-T. Kuo, J.-W. Guo, and C.-L. Lei, “How to Detect a
Compromised SDN Switch,” in Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2015, pp.
1–6.

[107] P. M. Mohan, T. Truong-Huu, and M. Gurusamy, “Towards resilient
in-band control path routing with malicious switch detection in SDN,”
in 2018 10th International Conference on Communication Systems &
Networks (COMSNETS). IEEE, 2018, pp. 9–16.

[108] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems, 2014.

[109] V. B. Livshits and M. S. Lam, “Finding Security Vulnerabilities in
Java Applications with Static Analysis,” in Proceedings of the USENIX
Security Symposium. USENIX, 2005.

[110] “Security-Mode ONOS,” https://wiki.onosproject.org/display/ONOS/
Security-Mode+ONOS, 2023.

[111] “CORD: Central Office Re-architected as a Datacenter,” https://
opennetworking.org/cord/, 2023.

[112] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A
survey on the security of stateful SDN data planes,” IEEE Communi-
cations Surveys & Tutorials, vol. 19, no. 3, pp. 1701–1725, 2017.

[113] “Atomix:A reactive Java framework for building fault-tolerant dis-
tributed systems,” https://atomix.io, 2023.

[114] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming Protocol-Independent Packet Processors,” ACM SIGCOMM
Computer Communication Review, 2014.

https://docs.google.com/spreadsheets/d/e/2PACX-1vRITg3P4lKXia-b66M6gHEFfBNnXl0sHYp_DxXgZh_i0h2hFRQWQGmNBCmI7eI9qLBUgqBBbHttFJpD/pubhtml?gid=1659430278&single=true
https://docs.google.com/spreadsheets/d/e/2PACX-1vRITg3P4lKXia-b66M6gHEFfBNnXl0sHYp_DxXgZh_i0h2hFRQWQGmNBCmI7eI9qLBUgqBBbHttFJpD/pubhtml?gid=1659430278&single=true
https://docs.pica8.com/display/PicOS21116cg/Configure+OVS+Connection+Using+SSL+with+Self-signed+Certificates
https://docs.pica8.com/display/PicOS21116cg/Configure+OVS+Connection+Using+SSL+with+Self-signed+Certificates
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
https://opennetworking.org/cord/
https://opennetworking.org/cord/
https://atomix.io

22

Jinwoo Kim is an assistant professor in the School
of Software at Kwangwoon University, Seoul, South
Korea. He received his Ph.D. degree in School of
Electrical Engineering and his M.S degree in Gradu-
ate School of Information Security from KAIST, and
his B.S degree from Chungnam National University
in Computer Science and Engineering. His research
topic] focuses on investigating security issues with
software defined networks and cloud systems.

Minjae Seo is a researcher at KAIST, Daejeon,
South Korea. He received his M.S. degree from the
Graduate School of Information Security at KAIST
and his B.S. degree in Computer Engineering from
Mississippi State University. His current research
interests include Software-defined networking secu-
rity, network fingerprinting, and deep learning-based
network system.

Seungsoo Lee is an assistant professor in the De-
partment of Computer Science and Engineering at
Incheon National University, Incheon, South Korea.
He received his B.S. degree in Computer Science
from Soongsil University in Korea. He received his
Ph.D. degree and M.S. degree both in Information
Security from KAIST. His research interests focus
on cloud computing and network systems security.
He is especially focusing his attention on software-
defined networking (SDN), network function virtu-
alization (NFV), containers, and its security issues.

Jaehyun Nam is an assistant professor in the
Deaprtment of Computer Engineering at Dankook
University, Youngin, Gyunggi-do, South Korea. He
received his Ph.D. degree and M.S. degree both in
School of Computing from KAIST. He received his
B.S. degree in Computer Science and Engineering
from Sogang University in Korea. His research inter-
ests focus on networked and distributed computing
systems. He is especially interested in performance
and security issues in cloud computing environ-
ments.

Vinod Yegneswaran received his A.B. degree from
the University of California, Berkeley, CA, USA,
in 2000, and his Ph.D. degree from the University
of Wisconsin, Madison, WI, USA, in 2006, both in
Computer Science. He is a Senior Computer Scien-
tist with SRI International, Menlo Park, CA, USA,
pursuing advanced research in network and systems
security. His current research interests include SDN
security, malware analysis and anti-censorship tech-
nologies. Dr. Yegneswaran has served on several
NSF panels and program committees of security and

networking conferences, including the IEEE Security and Privacy Symposium.

Phillip Porras received his M.S. degree in Computer
Science from the University of California, Santa
Barbara, CA, USA, in 1992. He is an SRI Fellow and
a Program Director of the Internet Security Group
in SRI’s Computer Science Laboratory, Menlo Park,
CA, USA. He has participated on numerous program
committees and editorial boards, and participates
on multiple commercial company technical advisory
boards. He continues to publish and conduct tech-
nology development on numerous topics including
intrusion detection and alarm correlation, privacy,

malware analytics, active and software defined networks, and wireless security.

Guofei Gu received the Ph.D. degree in computer
science from the College of Computing, Georgia
Tech, in 2008. He is an currently an Associate Pro-
fessor with the Department of Computer Science and
Engineering, Texas A&M University (TAMU). He
is currently Directing the SUCCESS (Secure Com-
munication and Computer Systems) Lab, TAMU.
He was a recipient of the 2010 NSF CAREER
Award, the 2013 AFOSR Young Investigator Award,
the Best Student Paper Award from 2010 IEEE
Symposium on Security and Privacy (Oakland ’10),

the Best Paper Award from 2015 International Conference on Distributed
Computing Systems (ICDCS ’15), and the Google Faculty Research Award.

Seungwon Shin is an associate professor in the
School of Electrical Engineering at KAIST. He
received his Ph.D. degree in Computer Engineer-
ing from the Electrical and Computer Engineering
Department, Texas A&M University, and his M.S.
degree and B.S. degree from KAIST, both in Elec-
trical and Computer Engineering. He is currently a
vice president at Samsung Electronics, leading the
security team in the IT & Mobile Communications
Division. His research interests span the areas of
Software-defined networking security, IoT security,

Botnet analysis/detection, DarkWeb analysis and cyber threat intelligence.

	Introduction
	Comparison with Previous Studies

	Background
	What is Software-Defined Networking (SDN)?
	SDN Controller and Application
	SDN Switch and OpenFlow

	Systemization Taxonomy
	Root Cause
	Lack of NBI Authorization
	Lack of SBI Authorization
	Lack of Control Event Integrity
	Lack of Control Message Integrity
	Lack of Application Authentication
	Lack of Switch and Host Authentication
	Lack of Controller Resource Control
	Side Channel
	Implementation Flaw

	Penetration Route
	Application
	Northbound Interface (NBI)
	Controller
	Southbound Interface
	Switch
	Switch Interface
	Host

	Attack Outcome
	Information Leakage – Architecture
	Information Leakage – Configuration
	Denial of Service – Controller
	Denial of Service – Switch
	Inconsistent Network State
	Network Policy Evasion

	Defense Type
	Control Plane Extension
	Data Plane Extension
	Pen Testing
	Program Analysis
	API Monitoring
	Message Monitoring

	Classification Method

	SDN Attack Classification
	Application Layer
	Northbound Interface Abusing
	Indirect Chaining Attack

	Control Layer
	Reflective DDoS Attack
	Topology View Poisoning
	Compromising Invariants
	Southbound Interface Abusing

	Control Channel
	Control Path Delay Measurement
	In-band Control Channel Attack

	Infrastructure Layer
	Flow Table Overloading
	Protocol Feature Abusing
	Switch Vulnerability Abusing

	SDN Defense Classification
	Application Layer
	Application Authentication and Authorization Models
	Dynamic Instrumentation and Provenance Graph Analysis
	Control and Data Flow Analysis
	Control-Plane Invariant Verification

	Control Layer
	Migrating Control-Plane Function to Data-Plane
	Building Scalable and Fault-Tolerant Control-Plane
	Topology Event Verification
	Data-Plane Entity Authentication
	Control Event and Message Blackbox Fuzzing

	Control Channel
	SSL/TLS Encryption
	Timing Obfuscation

	Infrastructure Layer
	Data-Plane Invariant Verification
	Switch Protocol Implementation Testing
	Malicious Switch Detection

	Future Research Directions
	Vulnerabilities in Distributed SDN Controllers
	Vulnerabilities in Programmable Data Plane

	Conclusion
	References
	Biographies
	Jinwoo Kim
	Minjae Seo
	Seungsoo Lee
	Jaehyun Nam
	Vinod Yegneswaran
	Phillip Porras
	Guofei Gu
	Seungwon Shin

