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Abstract

Recent studies have shown that subtle changes in human face color due to heartbeats can be captured by regular RGB digital

video cameras. It is possible, though challenging, to track one’s pulse rate when a video contains significant subject’s body

motions in a fitness setting. The robustness gain in the recently proposed systems is often achieved by adding or changing certain

modules in the system’s pipeline. Most existing works, however, only evaluate the performance of the pulse rate estimation at

the system level of particular pipeline configurations, whereas the contribution from each module remains unclear. To gain a

better understanding of the performance at the module level and facilitate future research in explainable learning and artificial

intelligence (AI) in physiological monitoring, this paper conducts an in-depth comparative study at the module level for video-

based pulse rate tracking algorithms; a special focus is placed on challenging fitness scenarios involving significant movement.

The representative efforts over the past decade in the field are reviewed, upon which a reconfigurable rPPG framework/pipeline

is constructed comprising of major processing modules. For performance attribution, different candidates for each module are

evaluated while having the rest of modules fixed. The performance evaluation is based on a signal quality metric and four pulse-

rate estimation metrics and uses the simultaneously recorded ECG-based heart rate measurement as a reference. Experimental

results using a challenging fitness dataset reveals the synergy between pulse color mapping and adaptive motion filtering in

obtaining accurate pulse rate estimates. The results also suggest the importance of robust frequency tracking for accurate PR

estimation in low signal-to-noise ratio fitness scenarios.
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SUPPLEMENTAL MATERIAL: DATA COLLECTION SETUPS

a) Environment: In order to test the robustness of the
system in a fitness-in-the-wild setup, we conducted the exper-
iments in two regular apartment fitting rooms. The illumination
sources only involved the existing lighting equipment in each
room including several over-the-top florescent lights and possi-
ble diffused sunlight passing into the room through glass walls
or windows. No backdrop was placed during the recording.
The presence of other subjects exercising or entering the scene
is possible, as no regulation is placed to restrict people from
entering the room.

b) Devices and Reference Signal: The first 5 stationary
bike videos were captured by the rear camera of a Huawei
P9 mobile phone. The other 20 videos involving the elliptical
machine and treadmill motions were captured by the rear
camera of an iPhone 6s mobile phone. The shutter speed of
both sensors was set as constant to minimize the possibility
of introducing artifacts by the built-in automatic features, e.g.,
automatic exposure. The aperture size was kept at a relatively
low value to ensure the focus of the face at all times. We
obtained the subject’s reference heart rate by simultaneously
measuring the subject’s electrocardiogram (ECG) with a chest
strap monitor (Model: Polar H7).

c) Placement of the Sensors: The mobile camera was
placed on the holder of the stationary bike, affixed on a tripod,
or held by the hands of a person other than the test subject.
The camera is placed in front of the subject face at a distance
of about 1 meter away at approximately the same height as
the subject’s face during the recording. The ECG chest strap
was worn underneath the subject’s cloth and in direct contact
with the subject’s skin to maximize the SNR of the reference
ECG signal.

d) Participants: Two male Asian subjects are involved in
the experiment. The skin tone of both subjects is classified as
Type III according to the Fitzpatrick skin scale [1]. Among all
the videos in the dataset, 5 treadmill videos and 5 elliptical ma-
chine videos belong to one subject. The remaining 15 belong
to the other. Based on the most recent medical examination
results, none of the subjects were diagnosed with any known
CVDs or pulmonary diseases.

REFERENCES

[1] T. B. Fitzpatrick, “The validity and practicality of sun-reactive skin types
I through VI,” Archives of Dermatology, vol. 124, no. 6, pp. 869–871,
Jun. 1988.
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Abstract—Recent studies have shown that subtle changes in hu-
man face color due to heartbeats can be captured by regular RGB
digital video cameras. It is possible, though challenging, to track
one’s pulse rate when a video contains significant subject’s body
motions in a fitness setting. The robustness gain in the recently
proposed systems is often achieved by adding or changing certain
modules in the system’s pipeline. Most existing works, however,
only evaluate the performance of the pulse rate estimation at
the system level of particular pipeline configurations, whereas
the contribution from each module remains unclear. To gain a
better understanding of the performance at the module level and
facilitate future research in explainable learning and artificial
intelligence (AI) in physiological monitoring, this paper conducts
an in-depth comparative study at the module level for video-
based pulse rate tracking algorithms; a special focus is placed
on challenging fitness scenarios involving significant movement.
The representative efforts over the past decade in the field are
reviewed, upon which a reconfigurable rPPG framework/pipeline
is constructed comprising of major processing modules. For
performance attribution, different candidates for each module
are evaluated while having the rest of modules fixed. The
performance evaluation is based on a signal quality metric and
four pulse-rate estimation metrics and uses the simultaneously
recorded ECG-based heart rate measurement as a reference.
Experimental results using a challenging fitness dataset reveals
the synergy between pulse color mapping and adaptive motion
filtering in obtaining accurate pulse rate estimates. The results
also suggest the importance of robust frequency tracking for ac-
curate PR estimation in low signal-to-noise ratio fitness scenarios.

Index Terms—Heart/pulse rate, remote-photoplethysmography
(rPPG), fitness exercise, pulse color mapping, motion compensa-
tion, frequency tracking, explainable AI

I. INTRODUCTION

Pulse rate (PR) is an important noninvasive, time-efficient
measure to monitor the training load and quantify the athletes’
response to support the optimization of the effectiveness and
safety of training [1]–[5]. PR monitoring during the training
can help coaches and trainees to achieve individual and/or
team training objectives.

The conventional cardiac monitoring, such as chest-strap
heart rate monitor based on electrocardiography (ECG) [6]

This work was conducted when Qiang Zhu and Mingliang Chen were with
the University of Maryland, College Park.

Chau-Wai Wong was with the University of Maryland, College Park when
the work was started, and is now with North Carolina State University (e-mail:
chauwai.wong@ncsu.edu).

Chang-Hong Fu is with the Nanjing University of Science and Technology,
China (e-mail: enchfu@njust.edu.cn).

Min Wu and Zachary Lazri are with the University of Maryland, College
Park (e-mail: minwu@umd.edu, zlazri@umd.edu).

is not comfortable and may cause skin irritation during
prolonged use; photoplethysmography (PPG) [7], [8] in the
form of wristband or watch is prone to motion artifacts and
has limited accuracy compared to chest strap. Contact-free
monitoring of the PR using videos of human faces, known
as remote-photoplethysmography (rPPG), is a user-friendly
approach compared to conventional contact-based ones such
as electrodes, chest straps, and finger clips. Such monitoring
system extracts from a facial video a 1-D oscillating face color
signal that has the same frequency as the heartbeat. The ability
to measure PR without direct contact is attractive and gives
it potentials in such applications as smart health and sports
medicine, and cardiac rehabilitation.

In this paper, we ask and seek to answer the following ques-
tions: (i) How can one’s pulse rate be accurately tracked from
facial videos captured in a typical fitness setup? (ii) How much
impact does each major block of a pulse rate tracking pipeline
have on the overall performance? Addressing these questions
requires us to understand and tackle multiple challenges in
fitness rPPG sensing coming from every component of the
rPPG sensing system, namely, the camera, the illumination
conditions, and the subject [9]. In a fitness setup, motion-
induced changes of illumination intensity may dominate the
reflected light from the facial skin because pulse-induced color
variations are usually much subtler. The measurement is also
associated with such nuisance sources as the sensor and quan-
tization noise. To extract the pulse signal that may have a much
smaller magnitude than the dominating video components and
may be affected by nuisance signals, dedicated algorithms
need to be designed to tackle the challenges synergistically.

The last decade and a half has witnessed a rapidly increasing
number of articles addressing the pulse rate estimation for
still/rest cases or with relatively small motions [10]–[24].
Among the prior publications [25]–[29], the pulse rate estima-
tion in the fitness scenario with significant subject motion is
either not considered and reported [26], [27], the performance
is not quantitatively examined [28], or the performance highly
deviates from the reference [29]. Meanwhile, the evaluation
process reported in most papers stays at the system level,
whereas the contribution of the specific choice of each system
module over other alternatives remains unclear. Such coarse
evaluation may hinder the understandings of the design options
of each system component, and limit the progress of research
and development efforts.

In this paper, we investigate what techniques can provide
the best possible performance for fitness exercise videos. We
construct a framework as shown in Fig. 1 that contains typical
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Fig. 1. The proposed modularized system for the heart rate monitoring for
fitness exercise videos with the optimal module configurations in parentheses.

building blocks agreed within the literature as a platform to
evaluate various configurations. Some key building blocks
include face registration, motion artifacts removal, and
frequency tracking [30]. A candidate algorithm for each
module is listed in parentheses. For example, to accommodate
fitness activities, motion artifacts within the intermediate face
color signal can be removed by an adaptive filtering algorithm
such as the normalized least mean squares (NLMS) [31]. An
in-depth comparative study is conducted in the second half of
the paper to examine the detailed contribution of each system
module and determine the combination of modules that is
likely to provide the best performance of the overall system.

The rest of the paper is organized as follows. In Sec-
tion II, we review the last decade’s research efforts in rPPG
and the face skin reflection model adopted in this paper.
In Section III, we describe a modular framework of rPPG-
based PR estimation method specially designed for fitness
exercises. In Section IV, we present the experimental setups.
In Section V, we conduct a comparative study of the PR
estimation using different module combinations and provide
discussion. In Section VI, we conclude the paper.

II. RELATED WORK ON REMOTE PULSE RATE
MEASUREMENT

In this section, we review the recent progress made in the
rPPG research for PR estimation. The works listed and dis-
cussed in this paper can in no way be exhaustive. Nevertheless,
the contributions these works have brought to handling the
various challenges associated with PR extraction from videos
have enabled the design of the modular system proposed in
this work. We extend our discussion on the prior art below
from the perspectives of region of interest (ROI) selection and
motion-resilient pulse extraction.

A. ROI Selection

ROI selection, aiming to locate the ROI consistently in
each video frame in accordance with the subject’s motion,
is instrumental to obtain reliable rPPG signals. The selection
of the face skin region as the ROI for pulse measurement is
mainly due to the following two facts. First, compared with
other parts of the human body, the face is less likely to be

covered by other materials such as clothes. Second, owing to
the development of the recent computer vision techniques, a
subject’s face can be accurately located and tracked from a
video sequence, even when the background is complex and
the video is noisy. We summarize three main approaches for
ROI selection found in prior art as follows.
Manual Selection: When a subject is static in a video, it will
be accurate to manually select a single ROI from the first frame
of the video and extract face color signal using the same ROI in
the subsequent video frames [13], [32], [33]. This may not be
a viable solution even when the subject is instructed to remain
still, because such involuntary motion as ballistocardiographic
(BCG) and respiratory-induced motions are possible and may
contaminate the desired rPPG signal.
Automatic Face Detection: Face detection process is nec-
essary for automatically selecting the ROI when the video
contains the subject’s motion. This can be achieved by either
frame-wise face detection [10] or face tracking via some “good
features for tracking” [15], [20]. These methods have potential
to accurately localize and track the face, but in the presence
of large motion displacement a fine-grain local alignment
method may need to be introduced to ensure the stability
of the detected ROI region, which is critical for accurate PR
extraction.
Skin Detection: The non-skin facial pixels (e.g., lips and eyes)
have little-to-no contributions to the pulse extraction and might
bring additional motion artifacts when the subject is talking or
blinking. It is thus reasonable to exclude those non-skin pixels
in each frame. Wang et al. [34] proposed an online learning
approach to train a skin pixel detector using the first several
frames. This subject- and scene-specific learning approach is
robust to the change of illumination source and the subject’s
skin tone. However, the system might generate false detection
results when the illumination condition changes temporally.

B. Motion-Resilient Pulse Signal Extraction

Green channel generates the highest pulse-signal strength
among the three color channels, as the oxyhemoglobin and
deoxyhemoglobin have greater absorptivity in green light
compared with red or blue. This fact motivated a series of
works [12], [15], [18], [32], [35] to use the green channel for
extracting the pulse information.

Blind source separation (BSS) methods improve the
system robustness by incorporating additional information
from other color channels. BSS is applied to demix the pulse
signal from the R, G, and B measurements by assuming the
sources are uncorrelated (PCA-based [36]) or independent
(ICA-based [37]). A newer work [38] based on BSS uses en-
semble empirical mode decomposition to extract the intrinsic
mode functions from multiple ROIs defined on the face, which
are then passed to a BSS algorithm for demixing. The most
periodic component is selected as the pulse signal after the
source separation is performed. Each BSS algorithm produces
the optimal source separation results when the pulse signal,
noise, and interfering components exhibit the aforementioned
statistical behaviors. However, in a fitness scenario when
strong periodic motion artifacts enter the RGB-signal sourced



3

from the face, such statistical assumptions might be violated,
and the channel selection algorithm may mistakenly treat a
motion component as the estimated pulse signal.

Skin model-based methods [25]–[27], [29], [34], [39]
are proposed to avoid the difficulties in selecting the correct
component in BSS methods by providing a best-guessed color
projection direction for extracting the pulse source. With prior
knowledge about the skin-tone color vector obtained from a
large scale dataset, CHROM algorithm [29] maps the tem-
porally normalized RGB signals to a color plane orthogonal
to the specular component, and the pulse signal is obtained
via an alpha-tuning operation. POS algorithm [26] adopts the
same skin reflection model but instead maps the normalized
RGB signals to the color plane orthogonal to the intensity
variation direction aiming to eliminate the motion artifacts in
that direction. The pulse color direction is then searched within
a 90-degree sector bounded by two predefined color directions.
The hue change on the skin is another useful feature for pulse
extraction [40]. 2SR [41] exploits a pulse-induced hue change
in a subject-dependent manner by tracking the principal di-
rection of the hue channels. All these color mapping schemes
except 2SR use linear combinations of RGB color channels to
extract the pulse. The algorithmic differences concerning the
assumptions of the relations of the source signals is reflected
by the demixing weights applied to color channels. For a more
detailed discussion about the strengths and weaknesses of the
algorithms mentioned above, we referred the readers to [26].
Recognizing that the pulse signal is quasi-periodic due to sub-
tle variability between consecutive heart beats, Pai et al. [39]
use an amplitude-modulated-frequency-modulated (AM-FM)
framework to model the pulse signal. By applying the CHROM
algorithm and filtering strategies to the spatially averaged RGB
skin pixels, they aim to isolate the fundamental frequency of
the pulse signal.

Adapted skin model-based methods adapt one of the
skin model-based methods to make it more robust. Tulyakov
et al. [42] warp the face images to a grid and applied the
CHROM algorithm to the spatially averaged RGB signals
in each grid region. A matrix completion algorithm is then
applied to extract the common pulse signal present in all
grid regions. Demirezen et al. [43] apply nonlinear mode
decomposition following the CHROM step to obtain more
sinusoidal intermediate signal before applying Fourier analysis
to extract the pulse rate. Song et al. [23] replace alpha tuning of
CHROM with a semi-BSS algorithm to separate the pulse and
chrominance information after observing that the alpha-tuning
module breaks down when intensity and pulsatile information
in the signal are of similar magnitude.

Neural-network-based methods [21], [22], [44]–[46]
leverage the training data to perform PR estimation. Hsu et
al. [44] treat the time-frequency representation of the extracted
signal as an image and estimates the PR with a convo-
lutional neural network (CNN). End-to-end rPPG learning
systems [21], [22] which utilize the temporal and spatial
attention modules for automatic channel weighting and signal
selection, are appealing and outperform other non-learning-
based methods in terms of the PR estimation accuracy. Yu et
al. [45] test both ConvLSTM and 3D-CNN model structures
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Diffu
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Fig. 2. Illustration of the composition of light reflected from human skin
tissue and captured by an RGB camera sensor used for pulse signal modeling
(modified based on [26]).

and find that the 3D-CNN produces higher accuracy because
of the structure’s ability to better handle spatial and tempo-
ral information jointly. Rather than inputting video frames
directly into the neural network, Niu et al. [47] input so-
called MSTmaps constructed from spatially averaged RGB and
YCbCr signals from various regions of the face into the net-
work, which is designed to disentangle the pulse information
from the noise sources contributing to these signals. However,
for these trained models to generalize, the training and testing
datasets need to be identically distributed. This makes it hard
to analyze the PRs in the videos of people captured in different
scenes and who may have highly variable PR levels, such as
in resting versus exercise situations.

C. Modeling the Skin Reflection and Motion

Consider the situation when a piece of human skin con-
taining pulsatile blood is illuminated by a light source as
shown in Fig. 2. The reflected light from the skin surface can
be characterized as the specular and diffuse reflections.1 The
specular reflection takes up approximately 4–7% of visible
light reflected from the stratum corneum in the epidermis
layer [49], [50]. The reflectance geometry among skin surface,
light source, and the camera sensor determines the strength
of the specular reflection [48]. The spectral distribution of
the measured specular reflection component in a camera is
a function of the spectral distribution of the light source and
the spectral response of the camera. Thus for a single light
source with fixed spectral distribution, the spectral distribu-
tion of the specular reflection will be constant regardless of
the subject’s motion. The diffuse reflection can be further
decomposed into the epidermal reflection and dermal reflec-
tion [49]. The spectral distribution of the epidermal reflection
is mostly determined by the concentration of the melanin
in the epidermis layer. The dermal reflection, on the other
hand, carries the blood pulse information. The variations of
the blood volume, especially the amount of oxygenated and
deoxygenated hemoglobin in the dermis layer, influence the
color and intensity of the dermal reflection. The following two
assumptions about the skin reflection are made to facilitate the
modeling process: (i) Diffuse reflection from the skin surface

1Some literature [48] adopts the terms interface and body reflections rather
than the specular and diffuse reflections. To avoid confusion and maintain
the consistency of the terminology used in the rPPG community, we use the
terms specular and diffuse reflections in this paper.
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is isotropic with respect to rotation about the surface normal;
and (ii) no interreflection is present among surface, as we
approximately treat head as a convex shape.

Based on the analysis and assumptions made above, one can
arrive at the reflection formulation2 based on the skin char-
acteristics and the dichromatic reflection model (DRM) [26],
[27], [48]:

Cℓ(t) = I(t) [vs(t) + vd(t)] + vℓ
n(t), (1)

where Cℓ(t) ∈ R3 denotes the vector of the intensity values of
the R, G, and B channels of the ℓth skin-pixel at time t; I(t)
denotes the intensity of the light source arrived at the corre-
sponding skin surface; vs(t) and vd(t) denote the specular and
diffuse reflection, respectively; vℓ

n(t) denotes camera’s sensor
noise and the video or image compression noise. Specifically,
vs(t) and vd(t) can be decomposed as:

vs(t) = us · [s0 + s(t)] , (2a)
vd(t) = ud · d0 + up · p(t), (2b)

where us, ud, and up ∈ R3 denote the unit color vectors of
the light spectrum, the skin tissue, and the pulse, respectively;
s0 and d0 denote the strengths of the DC component of
the specular and diffuse refection, respectively; s(t) and p(t)
denote the strengths of the AC component of the specular
reflection and pulse signal, respectively. Note that the temporal
variations of both I(t) and s(t) come from the subject’s
motion; the variation of I(t) is affected by the distance of
the light source to the skin surface, whereas s(t) is influenced
by the variation of the surface normal direction.

We use C(t) =
∑L

ℓ=1 C
ℓ(t)
/
L to denote the spatially

averaged RGB vector, where L is the number of skin pixels in-
volved. We substitute (1) into C(t) and let I(t) ≜ [1 + i(t)] I0
and uc c0 ≜ us s0+ud d0, where i(t) indicates the illuminance
change. We further assume zero phase difference of the pulse
signal at any point of the face, and {vℓ

n(t)}ℓ for any fixed t is
a zero-mean white Gaussian process. We therefore obtain:

C(t) ≈ I0 [1 + i(t)] [uc · c0 + us · s(t) + up · p(t)] (3a)
≈ I0 [uc ·c0 + uc ·c0 i(t) + us ·s(t) + up ·p(t)], (3b)

where the absence of the noise term vℓ
n(t) from (3a) is due

to spatial averaging when a large number of skin pixels are
used, and the approximation of (3b) is because the second-
order cross AC-terms are much smaller than the remaining
DC terms and first-order AC terms.

As pointed out in [27], the limitations of model (3) in-
clude the assumption of the single light source and the
assumption that the subject’s motion only creates a single
specular variation direction, i.e., us, in the RGB space. This
is unfortunately unrealistic because the skin surface might
receive reflected light from other objects with nonuniform light
spectrum absorbance in the scene, and the spectrum of such a
reflected light differs from that of the light source. To capture
this complication in our model, we assume a total of J light

2For the completeness of this paper, we briefly review the modeling process
that has been presented in detail in [26], [27]. The terminology used in the
two papers are incorporated in this paper for consistency.

sources present in the scene, including the reflected light from
other objects in the scene. Equation (3) therefore becomes:

C(t) ≈
J∑

j=1

uc,j · I0,j · c0,j︸ ︷︷ ︸
DC

+

J∑
j=1

uc,j · I0,j · c0,j · ij(t)︸ ︷︷ ︸
Intensity

+

J∑
j=1

us,j · I0,j · sj(t)︸ ︷︷ ︸
Specular

+

 J∑
j=1

up,j · I0,j

 · p(t)

︸ ︷︷ ︸
Pulse

,

(4)

where j denotes the jth light source; ij(t) and sj(t) denote
the intensity variation signal and specular variation signal of
the jth light source [27], respectively. The DC component∑J

j=1 uc,j · I0,j c0,j can be estimated and subtracted from
(4) by using the short-term smoothing approach introduced
in [25], [26] or detrending methods introduced [51], [52].
Since both ij(t) and sj(t) come from the subject’s motion,
they can be approximated as different linear combinations
of the motion components, i.e., ij(t) =

∑K
k=1 aj,k mk(t)

and sj(t) =
∑K

k=1 bj,k mk(t), where mk(t) denotes the kth
motion component. If we denote C̃(t) as the detrended signal
after removing the DC component, we finally arrive at

C̃(t) =

K∑
k=1

um,k ·mk(t)︸ ︷︷ ︸
Motion

+u′
p · p(t)︸ ︷︷ ︸
Pulse

,
(5)

where um,k ≜
∑J

j=1 (uc,j · aj,k c0,j I0,j + us,j · bj,k I0,j) is
the color vector of the kth motion component, and u′

p ≜∑J
j=1 up,j · I0,j is the color vector of the pulse component.

Equation (5) reveals that it is possible to completely separate
the pulse term from the motion term via linear projection
only if u′

p is simultaneously orthogonal to um,1, . . . ,um,K .
This is almost never the case when a subject is performing
physical exercises in an uncontrolled environment. In this
scenario, the motion subspace spanned by {um,k}Kk=1 is highly
likely to have a nonnegligible component along the pulse color
direction, making the pulse component u′

p·p(t) not completely
linearly separable from the motion.

To alleviate the drawback of not being able to completely re-
move motion components through such linear projection based
algorithms as POS, in Section III-B, we use an adaptive motion
filtering module to further remove motion artifacts. Additional
efforts to combat fitness motion include (i) reducing the source
of motion in the RGB intensity signal Cℓ(t) through a precise
alignment of the face ROI, and (ii) using a robust frequency-
trace tracking algorithm that leverages temporal correlation
between consecutive human PR values. All these efforts jointly
contribute to a robust and accurate extraction of PR signals.

III. A MODULAR FRAMEWORK FOR FITNESS RPPG

In this section, we first present the general modularized
fitness rPPG framework for PR extraction, followed by a
detailed discussion of the module setup that leads to the
highest accuracy of the overall system.
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A. General rPPG Framework

The general rPPG framework for PR extraction as shown in
Fig. 1 consists of seven modules, five of which are considered
to be customizable with different candidate algorithms. The
pipeline starts with face detection since only the skin pixels
on the face are useful for extracting the pulse signal. The next
two modules include motion estimation and ROI selection.
The ROI is used to define exact regions on the face from
which we will aim to extract the pulse signal. Since there
may be displacement in a region from frame to frame due to
the movement of the subject, a motion estimation module is
used to align the face in each frame before defining the ROI
to ensure that the face is stabilized throughout the video. A
spatial averaging module is applied to the pixels inside the
stabilized ROI of each frame to obtain temporal R, G, and B
signals C(t) with boosted signal-to-noise ratio (SNR) levels.
The pulse extraction module uses a channel combination
algorithm, as described in Section II-B, to obtain a 1-D channel
combined signal cpos(t) with most lighting and motion artifacts
removed. This signal can be further processed to obtain a
cleaner pulse signal c̃pos(t) through additional motion filtering.
In the final module of the system, the estimated PR signal can
be obtained by applying a frequency-tracking algorithm.

In the next subsection, we provide detailed descriptions of
the algorithms used in this framework that achieve the best
experimental results presented in Section V. The algorithms
that optimize each module of the framework are shown in
parentheses in Fig. 1. Specifically, (i) an optical flow-based
motion estimation and compensation algorithm is used to
minimize face registration error, (ii) the POS algorithm [26] is
used to remove the remaining motion artifacts from the chan-
nel combined signal by “subtracting” the motion information
available from the visual track using a normalized least mean
square (NLMS) filter [31], and (iii) the PR signal is extracted
using a robust frequency tracker named the adaptive multi-
trace carving (AMTC) algorithm [30], [53], [54].

B. Optimized Framework

1) Precise Face Registration via Optical Flow [52]:
We use the Viola–Jones face detector [55] to obtain rough
estimates of the location and scale of the face, effectively
generating a pre-aligned video for the facial region. Optical
flow is applied next to fine-tune the facial alignment.

In our problem, two facial images likely have a global color
difference due to the heartbeat, making it imprecise to use the
illumination consistency assumption that widely adopted in
designing standard optical flow algorithms. Instead, to ensure
that an optical flow algorithm can precisely align two facial
images with a subtle color difference, one has to assume more
generally that the intensity I of a point in two frames is related
by an affine model, namely,

I(x+∆xt, y +∆yt, t+ 1) = (1− ϵt) I(x, y, t) + bt, (6)

where (∆xt,∆yt) is the motion vector tracking the point
(x, y) from frame index t to t + 1, and ϵt and bt control
the scaling and bias of the intensities between two frames,
respectively. When ϵt = bt = 0 for all t, the model degenerates

reference 
frame

Original faces Aligned faces
Optical flow

Fig. 3. Face images from a video segment before and after optical-flow-based
motion compensation, illustrating the use of the motion estimation module.

to fulfill the illumination consistency assumption. Applying
a standard optical flow algorithm will result in a mismatch
between the modeling assumption and the characteristics of
the rPPG facial images. The bias of the estimated motion
vectors is reported to be at the same order of magnitude
compared to the intrinsic error of the optical flow system [52].
To alleviate potential bias, different strategies can be applied.
For example, using a global flow regularization strategy [56]
or a coarse-to-fine hierarchical searching strategy [56], [57]
instead of doing one-shot Taylor-based local approximation.
In this study, we use Liu’s optical flow implementation [58] of
Brox et al.’s method [56]. Modern deep learning based optical
flow algorithms [59], [60] may also be used.

To avoid potential occlusion issues when applying optical
flow-based motion compensation, we divide each video into
small temporal segments with one frame overlapping for
successive segments and use the frame in the middle of the
segment as the reference. Fig. 3 shows a few facial images
from the same segment before and after the application of
optical flow. The faces are precisely aligned. Using facial
landmarks identified by the method proposed by Yu et al. [61],
we construct a polygon on each cheek to represent an ROI and
perform spatial averaging for each of the R, G, and B channels
to obtain three 1-D time-series signals for each segment.
We then temporally concatenate these signals, removing the
discontinuities between consecutive segments by taking the
difference between the first and last point of each segment.
We apply a detrending algorithm [52] to remove the DC and
slowly varying components for each color channel. Finally, we
temporally normalize each of the resulting 1-D time series to
obtain the standardized vector-valued RGB time-series signal,
C̃(t), to be further processed in the next module.

2) Motion Artifacts Removal via Adaptive Filtering: This
module begins by linearly mapping C̃(t) to a specific color
direction in the RGB space to generate a 1-D pulse signal.
The pulse color mapping schemes have been extensively
investigated in [26] and [27]. We note that the design of
the pulse color mapping algorithms discussed in this paper
is not within the contributions of this work, although different
pulse color mapping approaches [26], [27], [29], [37] are
implemented and evaluated in the Section V.

Without loss of generality, we assume C̃(t) will be mapped
to the POS direction [26], which is one of the most robust
color feature representations, containing highest relative pulse
strength. We denote the projected 1-D channel combined
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signal as cpos(t). According to (5), we have

cpos(t) = p⊺C̃(t) = p⊺u′
p · p(t)︸ ︷︷ ︸

Pulse

+

K∑
k=1

p⊺um,k ·mk(t),︸ ︷︷ ︸
Motion Residue

(7)

where p ∈ R3 denotes the projection vector of the POS
algorithm. The motion residue term in (7) is negligible when
the illumination source is single, as the POS direction is or-
thogonal to the color direction of the motion-induced intensity
change, and the specular change is suppressed via alpha tun-
ing [29]. However, if the video is captured in an uncontrolled
environment, the motion residue is often nonnegligible, and
may even have a higher strength than the pulse term.

To adaptively track and decouple the possibly time-varying
signal correlation between the motion residue and pulse signal
in (7), we apply the normalized least mean square (NLMS)
filter [31]. We denote the estimated face motion sequence in
horizontal and vertical directions as mx(t) and my(t). The
structure of the filtering framework is shown in Fig. 4(a). We
treat cpos(t) as the filter’s observed response at time instant t.
We treat the motion tap vector m(t) ≜ [mx(t−M+1),mx(t−
M+2), ...,mx(t),my(t−M+1),my(t−M+2), ...,my(t)]

⊺

as the input and c̃pos(t) as the output of the system and also the
error signal. The estimated tap-weight vector of the transversal
filter is denoted as ŵ(t), and the weight control mechanism
follows the NLMS algorithm [31] as follows:

c̃pos(t) = cpos(t)− ŵ⊺(t)m(t), (8a)

ŵ(t+ 1) = ŵ(t) +
µ

∥m(t)∥2
m(t) · c̃pos(t), (8b)

where µ denote the adaptation constant.Fig. 4(b)–(d) give an
example of the adaptive filtering result using this approach.
Note that the NLMS filter has successfully removed almost
all the motion residue components from the channel combined
signal cpos(t) while protecting the pulse information p(t).

3) PR Signal Estimation via Frequency Tracking: Noting
that two temporally consecutive heart/pulse rate measurements
may not deviate too much from each other, we propose to
exploit this PR continuity property to improve the estima-
tion quality of PR signals by searching for the dominating
frequency trace appearing in the signal’s spectrogram image
using the adaptive multi-trace carving (AMTC) algorithm [30],
[53], [54]. Its details are briefly described. Letting Z ∈ RM×N

+

be the magnitude of a signal’s spectrogram image, with N
discrete bins along the time axis and M bins along the
frequency axis, we aim to find the dominant frequency trace,
f ≜ {(f(n), n)}Nn=1, inside the image. Defining the energy
of a trace to be E(f) ≜

∑N
n=1 Z(f(n), n) and modeling the

transition probability of the pulse rate, Pm = P[f(1) = m]
and Pm′m = P[f(n) = m|f(n− 1) = m′], by a discrete-time
Markov chain, the tracking problem is formulated as follows

f∗ = argmax
f

E(f) + λP (f), (9)

where P (f) ≜ logP (f(1)) +
∑N

n=2 logP (f(n)|f(n − 1))
controls the trace smoothness. This regularized tracking prob-
lem (9) can be solved by using dynamic programming to

POS Signal Motion Filtered POS
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Fig. 4. (a) Adaptive motion compensation filter framework and spectrograms
of (b) the POS signal cpos(t), (c) the combined normalized subject motion in
horizontal and vertical directions, and (d) the filtered POS signal c̃pos(t). The
NLMS filter removes the motion trace in the spectrogram of the POS signal,
allowing for easier pulse tracking.

Fig. 5. Sample frames in fitness video dataset with three types of fitness
motion: (a) stationary bike, (b) elliptical machine, (c) treadmill. The challenges
in the dataset include head rotation in (d) yaw and (e) pitch, (f) motion blurred
frames, and (g) significant illumination change on the face.

recursively track the path that leads to the highest point in
accumulated regularized maximum energy map at the most
recent time instant n [53], [54].

IV. EXPERIMENTAL CONDITIONS

We evaluate the reconfigurable pipeline on a self-collected
fitness exercise dataset to understand the factors in the PR
estimation with fitness motions. The dataset has 25 videos in
which 10 contain human motions on an elliptical machine,
10 contain motions on a treadmill, 5 contain motions on a
stationary bike. The parameter settings and compared methods
are described in the ensuing subsections.

A. Parameter Settings
The following parameters are used in our investigation

unless otherwise stated:
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1) The length of each video is about 3 minutes.
2) The frame rate is 30 frame per second. The resolution

is 1280 × 720. The average bit rate is about 6 MB per
second. The video codec is H.264/AVC.

3) The tap number for joint-channel NLMS is 8, and the
NLMS learning rate/adaptation constant µ is 0.1.

4) Each video was empirically divided into segments of
1.5 secs with one frame overlap to ensure two frames
being aligned by the optical flow method do not have
significant occlusion due to long separation in time.

5) The spectrum analysis window length was set to 10
secs with 98% overlap to balance the trade-off between
the resolution in the frequency and time domains. A
Hamming window was applied in each analysis window,
and the number of frequency bins in the normal PR
range (50 to 240 bpm) was set as 1024 via padding
zeros at the end of the analysis signal sequence. The
transitional probability model used in the frequency
tracking algorithm [53], [54] was a uniform random
walk model with the width parameter k = 1 bpm.

B. Metrics of Performance Evaluation

a) Pulse Signal Quality: As in other papers, we use SNR
as the pulse signal quality metric [26], [27], [29], [34]. The
SNR in each spectral frame is defined as the ratio between the
spectral energy around the first two harmonics of the reference
PR and the remaining energy of the power spectrum. We
express the SNR measure using the logarithmic decibel scale:

SNR = 10 log10

( ∑
f∈F Sn(f)P (f)∑

f∈F [1− St(f)]P (f)

)
, (10)

where Sn(f) is a defined binary window to select the
frequency bins belong to the two-harmonics region; P (f)
is the power spectrum of the pulse signal; set F ≜
{f | 50 bpm ≤ f ≤ 240 bpm}

b) PR Estimation Accuracy: Three well-adopted metrics
for pulse rate estimation accuracy are used in this study:

1) Root mean squared error (RMSE):

ERMSE =

(
1

N

N∑
n=1

[
f̂(n)− f(n)

]2) 1
2

,

2) Error rate:

Erate =
1

N

N∑
n=1

∣∣∣f̂(n)− f(n)
∣∣∣/f(n),

3) Error count ratio:

Ecount =
1

N

∣∣∣{n : |f̂(n)− f(n)|
/
f(n) > τ}

∣∣∣ ,
4) Pearson’s correlation coefficient:

PCC =

∑N
n=1

[
f̂(n)− ¯̂

f
][
f(n)− f̄

](∑N
n=1[f̂(n)−

¯̂
f ]2

∑N
n=1[f(n)− f̄ ]2

) 1
2

,

where |{·}| denotes the cardinality of a countable set; N
denotes the total number of the PR estimates; f̂(n), f(n),

¯̂
f , and f̄ denote the PR estimate at time instant n, ground-
truth PR at time instant n, average PR estimate, and average
reference PR, respectively. τ was empirically chosen to be 3%,
determined from the spread of the frequency components.

V. RESULTS AND DISCUSSIONS

As our proposed system consists of multiple modules with
each focusing on a specific task, a holistic end-to-end system-
level test would be insufficient to evaluate the contribution of
each system component. In this section, we discuss the bench-
mark experimental results based on fine-level comparisons
in terms of the motion estimation schemes, the pulse color
mapping algorithms, the motion adaptive filtering operations,
and the frequency estimation methods. As it is infeasible
to exploit all possible combinations of alternative modules,
we show a subset of comparisons at each module level.
For example, when different motion estimation schemes are
evaluated, we fix all other modules according to the top-
performing algorithms introduced in Section III, namely, OF-B
for motion estimation, POS algorithm for pulse color mapping,
NLMS filtering for motion filtering, and AMTC for pulse
frequency tracking.

A. Modules for Comparison

a) Compared Registration Methods: In order to test the
efficacy of the optical flow-based motion estimation method,
we compared it with other possible alternatives listed below
for a thorough evaluation.

1) Face detection and landmark localization (FD): in each
frame, the facial rectangle region is first estimated, and
the two cheek regions are localized according to the
facial landmarks estimated by [61].

2) Face and skin detection (FSD): in each frame, the ROI is
estimated by a color-based skin detection algorithm [62]
operated in the face detected rectangle region.

3) Geometric transform correction (GTC): we first detect
the face ROI in the first frame the same way as in FD.
We then estimate the ROI in the next frame by projecting
each point in the ROI of the previous frame to the next
frame using the estimated 2D geometric transform. The
geometric transform is estimated in the same way as
in [15] by tracking a set of good-features-to-track [63].

4) Proposed optical flow framework as described
in Section III-B1, respectively, using Lucas and
Kanade (OF-LK) [64], Horn and Schunk (OF-HS) [65],
Farneback (OF-F) [57], and Brox et al. (OF-B)
methods [56].

b) Compared Pulse Color Mapping Methods: As an-
other comparison study, we evaluated the state-of-the-art pulse
color mapping algorithms including the blind source separa-
tion (BSS) based approaches (ICA [10] and PCA [36]) and
skin model-based approaches (CHROM [29], POS [26], and
SB [27]). Each method maps the RGB face color signal to a
specific direction aiming to provide the highest relative pulse
strength based on its model/source-observation assumptions.

A detailed discussion of these approaches based on the
human skin reflection model can be found in [26] and [27].
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However, the evaluations and the conclusions in both papers
are only based on the SNR metric, which may be insufficient
in the fitness scenario that this paper focuses on. This is
because two signals with the same SNR level might result
in completely different PR estimation accuracy. For example,
a pulse signal with high interference originated from the
subject’s motion [see Fig. 4(b)] and low noise might confuse
a frequency estimator/tracker much more significantly than a
signal with only white noise at the same SNR level. In this
paper, we reevaluate these color mapping approaches using
our proposed estimation framework and present the result in
terms of both the signal quality metric and three PR estimation
accuracy metrics.

c) Compared Frequency Tracking/Estimation Methods:
In order to single out the contribution and demonstrate the
effectiveness of our proposed frequency estimation method
used in this paper, we compared it with three other trending
frequency estimation methods listed below.

1) Maximum energy (ME): the pulse rate in each spectral
frame is estimated as the frequency component with
the highest spectral energy. This highest peak selection
scheme yields the maximum likelihood frequency esti-
mation result [66] when the noise component is inde-
pendent with the source and is temporally independent.

2) Particle filter (PF) [67]: PF first approximates the poste-
rior distribution of the frequency state via the sequential
Monte Carlo method. The pulse rate is then estimated
by the maximum a posteriori estimator.

3) Yet Another Algorithm for Pitch Tracking
(YAAPT) [68]: YAAPT estimates the frequency
component from a set of local spectral peaks in the
spectrogram using a similar dynamic programming
approach that has been detailed in Section III-B3.

B. Comparison Study for Motion Estimation Schemes

In Fig. 6, we show comparison examples for four facial
videos, each containing spectrograms resulted from seven mo-
tion estimation schemes. We listed the averaged SNR estimates
of the processed pulse signals and the PR estimation accuracy
in terms of PCC, Ecount, Erate, and ERMSE in TABLE I. As
observed from Fig. 6, the pulse signal obtained using the OF-
B motion estimation scheme has the highest signal quality
when compared with the other schemes especially for the
videos of the subject 1 (first two rows). This observation
is consistent with the quantitative results listed in TABLE I.
Specifically, when compared with the second best results, OF-
B improves the SNR by about 0.4 dB, Erate by about 3.4%, and
ERMSE by about 4 bpm. These results suggest the importance
of a precise face alignment for the video-based heart-rate
monitoring method for fitness scenarios.

Nonetheless, not all optical flow-based motion estimation
schemes generate as good results as OF-B. OF-LK estimates
the pixel displacement between two images by assuming a
local parameterized flow structure with the linearized gray
value constancy assumption. However, such assumption can be
easily violated by the pulse-induced color change on the face,
and the resulting biased flow estimates in return cancels the

TABLE I
PERFORMANCE OF MOTION COMPENSATION SCHEMES WHEN OTHER

MODULES ARE FIXED.

SNR PCC Ecount Erate ERMSE

(dB) (%) (%) (bpm)

FD −5.0 (4.0) 0.73 (0.38) 23 (25) 6.4 (8.9) 9.0 (16.8)

FSD −1.6 (4.3) 0.86 (0.21) 14 (28) 5.3 (12.3) 7.3 (15.8)

GTC −3.1 (2.9) 0.78 (0.33) 28 (34) 7.5 (3.0) 12.5 (15.8)

OF-LK −7.6 (3.2) 0.67 (0.42) 36 (40) 11.9 (14.9) 12.6 (20.6)

OF-HS −6.6 (3.6) 0.78 (0.34) 40 (47) 7.6 (13.0) 18.6 (20.9)

OF-F −1.2 (5.0) 0.82 (0.28) 15 (26) 5.1 (12.5) 8.9 (12.4)

OF-B −0.8 (4.8) 0.86 (0.21) 9 (10) 1.7 (2.2) 3.3 (6.4)

Note: Values in parentheses are sample standard deviations; the top
performing entry for each metric is highlighted in bold.

pulse information. The classic global optical flow estimation
methods, such as OF-HS, also generates highly biased flow
estimates due to the large head motion in the fitness scenarios.
By incorporating the coarse-to-fine flow searching strategy to
tackle the large motion problem, both OF-F and OF-B have
significantly performance gains in almost all measures.

C. Comparison Study for Pulse Color Mapping Algorithms
We evaluate the pulse color mapping modules by exhaust-

ing all the alternatives and by turning on and off the adaptive
motion filtering method introduced in Section III-B2. By this
means, we could gain a better understanding of the possible
synergistic strength of each pair of algorithms. We depicted
the system performance in terms of averaged SNR and Erate
using different pulse color mapping schemes in Fig. 7(a)–(b).
Note that the blind source separation methods, i.e., ICA and
PCA, in general output less accurate PR estimates compared
with the model-based methods such as POS and SB. This
is mainly due to the occasional failure of the pulse source
selection out of the three demixed source components when
face color measurement contains stronger motion components
with the dominating frequency in the normal human PR range,
for example, 50–240 bpm. Unfortunately, the violation of the
assumption that pulse is the dominating component in the
measurement is commonly seen in fitness scenarios.

By turning on the NLMS motion filtering module, an SNR
improvement by about 2 dB with almost every color mapping
scheme can be achieved. This is mainly due to the successful
further motion-component removal after the color mapping
operation. Out of the three model-based methods, namely,
CHROM, POS, and SB, SB generated the best performance
when the NLMS was turned off, whereas the POS performed
slightly better than SB when NLMS was turned on. The
improvement in the quality of the processed signal has natu-
rally led to the improvement in the pulse estimation accuracy.
Specifically, NLMS successfully improved about 8% in Erate
for almost all the pulse color mapping schemes.

D. Comparison Study for Frequency Estimation Methods
To study the contribution of the proposed frequency

tracking algorithm for robust PR estimation, we evaluate the
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Fig. 6. Comparison of seven motion estimation schemes for four test videos. (Column 1) The reference HR measured by the ECG based chest strap.
(Columns 2–8) Spectrograms of the extracted pulse signal using the proposed system with the motion estimation schemes FD, FSD, GTC, OF-LK, OF-HS,
OF-F, and OF-B, respectively. Using OF-B produces spectrograms with the cleanest PR traces.

(a)

ICA
PCA
CHROM
POS
SB

(b)

(c) (d)

Fig. 7. System performance using different pulse color mappings in terms of
(a) SNR and (b) Erate when motion filtering is and is not applied. Optimal
system performance in terms of (c) SNR and (d) Erate under different forms of
exercise. Motion filtering improves the system performance regardless of the
selected pulse color mapping, while exercises involving less nonrigid motion
lead to the highest system performance.

frequency estimation accuracy of AMTC with three other
algorithmic alternatives. The pulse signals for analyzing the
frequency estimation/tracking algorithms are generated using
the optimal configuration in TABLE I. The performance results
of four different frequency estimation/tracking methods are
listed in TABLE II. The proposed AMTC tracking method
significantly outperforms the other three methods in the PCC,
Ecount, Erate, and ERMSE performance metrics with respective
performance gains of 0.26, 24.1%, 9.3%, and 15.7 bpm over
the second best performing algorithm in each of these metrics.
The superior performance of AMTC highlights the challenge
of frequency tracking under extremely noisy conditions. Even
though motion estimation, pulse color mapping, and adaptive
motion filtering are designed to mitigate motion artifacts, they
cannot completely remove such artifacts. This leads the final
extracted PR signal to remain relatively noisy around the PR
frequency, indicated by the average SNR of −0.8 dB for the
videos processed with the optimized pipeline. This is clearly
evidenced in the top right spectrogram image in Fig. 6, in
which the PR trace signal is visible, but surrounded by noise.
The influence of outliers in PR extraction methods that rely
on local peak finding may thus result in biased estimates
under such conditions. Since AMTC directly accounts for
temporal continuity via regularizing in the cost function, it
is less susceptible to noise influence, generating a smoother
frequency trace. Hence, optimizing this module is critical for
accurate PR estimation under motion intensive conditions.

E. Impact of the Fitness Motion Type

To study the effect of the subject’s exercise motion to the
pulse signal and the PR estimation accuracy, we show the
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TABLE II
PERFORMANCE OF PULSE COLOR MAPPING SCHEMES WHEN OTHER

MODULES ARE FIXED.

PCC Ecount Erate ERMSE

(%) (%) (bpm)

ME 0.17 (0.38) 39 (28) 14 (12) 34 (17)

PF 0.37 (0.33) 34 (25) 13 (9) 23 (16)

YAAPT 0.60 (0.21) 33 (34) 11 (3) 19 (16)

AMTC 0.86 (0.21) 8.9 (10) 1.7 (2) 3.3 (6)

Note: Values in parentheses are sample standard deviations. The top
performing entry for each metric is highlighted in bold. The average SNR of

the associated spectrograms is −0.8 (4.8) dB.

averaged SNR and Erate using bar plots in Fig. 7(c) and (d)
respectively. Notice that the highest pulse signal quality and
the PR estimation accuracy are achieved in the stationary bike
scenario while the PR estimation in the treadmill scenario is
overall the least accurate. As seen in the sample video frames
shown in Fig. 5(a)–(c), there is only minor face rigid motion
when a subject is exercising on a stationary bike, especially
in a sitting position. On the other hand, the subject motion
is much more significant in the elliptical machine and the
treadmill scenarios. The experimental results are therefore
consistent with the intuition that the more significant the
subject exercising motion is, the more difficult it becomes to
extract precise PRs from the facial videos.

F. Discussion

Much of the latest effort has been devoted to the develop-
ment of neural-network-based approaches, typically designed
to be as close to end-to-end as possible to avoid the tuning of
many hyperparameters in intermediate modules. Such methods
have been able to show highly accurate results on benchmark
datasets. In this subsection, we illustrate the benefit that a
modularized system can have on the performance of two
such networks—PhysNet [45] and CVD [47]. Specifically, we
incorporate them in place of the motion estimation, cheek
regions selection, spatial averaging, and pulse color mapping
modules of our system. For PhysNet, this means that we feed
in motion align face clips into the network before outputting
rPPG signals, while for CVD this means extracting MSTmaps
from the aligned face clips before feeding them into the
network for rPPG extraction. Since our fitness exercise dataset
only provides ground truth heart rate data instead of pulse
data, we train these models on the PURE dataset [69], which
contains six videos, each under different types of face motions
(still, talking, slow rotation, fast rotation, slow translation, fast
translation), for ten subjects. We trained the models using the
publicly available source code provided by the authors on eight
of the subjects’ data and use the remaining two subjects’ data
for testing. The results from using the optimized system on
the leave-two-out participants from the PURE dataset show
respective Erate and ERMSE values of 0.07 and 4.81 for CVD
and 0.04 and 2.59 for PhysNet. These values verify that the
networks’ high performance on the PURE dataset.

Fig. 8. Example of the spectrograms of the rPPG signals generated from
CVD (first row) and PhysNet (second row) without (left column) and with
(right column) the NLMS motion filtering. The reference PR trace and the
estimated PR traces generated by the AMTC and ME methods are plotted on
top of each spectrogram. The combination of motion filtering and AMTC-
based-tracking produces the closest estimated pulse signal to the reference.

Fig. 9. Failure cases for each of the two neural network based systems. A
weak PR trace produced by the neural network prevents AMTC from tracking
the PR signal.

To verify the utility of our optimized system, we compare
the PR estimation performance when the NLMS filter is
and is not applied, and also compare the performance when
AMTC and ME are used for pulse extraction, on our fitness
exercise dataset. Visual results from these experiments are
displayed in Fig. 8. We can see that motion artifacts can still
dominate the spectrograms of the rPPG signals produced by
both neural network methods from the left column of plots
in this figure in which rPPG spectrograms without motion
filtering are displayed. This degrades the quality of the AMTC
and ME tracking methods since the subjects’ motions lead to
strong traces in these spectrograms. In the right column of
plots, NLMS filtering is applied to the rPPG signals produced
by these methods prior to spectrogram generation. It can
be observed that the NLMS filter effectively eliminates the
motion artifacts in both spectrograms, indicating that this
module has utility in processing neural network rPPG signals.
Since AMTC is robust in frequency tracking, it is able to track
the frequency of the PR signal in both spectrograms once the
motion trace is removed. However, because the ME method is
less robust to noise, the PR estimates produced by this signal
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are still extremely unstable for both spectrograms in the right
column of plots.

Neural networks often struggle to generalize when the char-
acteristics of the training and testing data differ significantly.
We illustrate an example of a failure case in Fig. 9 in which the
dominating traces that appear in the spectrograms of rPPG sig-
nals produced the optimized neural network framework for the
CVD and PhysNet models are significantly different from the
ground truth PR estimates, making it impossible for the pulse
extraction methods to extract the heart rate accurately. While
domain adaptation and transfer learning techniques may help
address the data mismatch between training and deployment,
it is challenging to automatically identify the mismatch, gather
necessary additional data, and perform additional training or
adaptation. That said, a more thorough analysis must be con-
ducted to verify the generalization capabilities (especially for
end-to-end neural network systems); gain broader insights into
the roles that a system with principled, explainable approaches
such as ours can have on these neural network methods; and
use these insights to guide the future design of neural networks
for PR extraction under challenging fitness scenarios. Such
efforts can lead to the design and optimization of explainable
neural-network-based modules in a systematic pipeline, for
example, to understand the roles of adaptive filtering versus the
recurrent neural network adopted in Maity et al.’s design [70]
to handle motion.

Moreover, it has been shown that traditional oximeters and
video-based-oximetry methods are less accurate for people
with darker skin tones [71]. Mantri and Jokerst [71] propose
a compensation method to de-bias the results of people with
different skin tones. Insights from such methods can be taken
to design a neural network that explicitly accounts for such a
bias term in the color mapping module, thereby improving its
precision and the overall robustness the proposed system. We
plan to devote future research efforts to these tasks.

VI. CONCLUSION

In this paper, we have carried out a quantitative review
of the last decade’s representative efforts in the rPPG field,
and have built a robust PR monitoring system for fitness
exercise videos. We focused on building a high-precision
motion compensation scheme with the help of the localized
facial optical flow, and used motion information as a cue
to adaptively remove ambiguous frequency components
for improving the PR estimates. We have compared
different methods at each module level by examining four
representative performance measures. The results demonstrate
the synergistic strength of the POS pulse color mapping
and NLMS motion compensation schemes. The results also
suggest the importance of robust frequency tracking for
accurate PR estimation in low SNR fitness scenarios.
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