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Abstract

In this paper, we present the results of the MitoEM challenge on mitochondria 3D instance segmentation from electron mi-

croscopy images, organized in conjunction with the IEEE-ISBI 2021 conference. Our benchmark dataset consists of two large-

scale 3D volumes, one from human and one from rat cortex tissue, which are 1,986 times larger than previously used datasets.

At the time of paper submission, 257 participants had registered for the challenge, 14 teams had submitted their results, and

six teams participated in the challenge workshop. Here, we present eight top-performing approaches from the challenge partic-

ipants, along with our own baseline strategies. Posterior to the challenge, annotation errors in the ground truth were corrected

without altering the final ranking. Additionally, we present a retrospective evaluation of the scoring system which revealed

that (1) the challenge metric was permissive with the false positive predictions and (2) the size-based grouping of instances did

not correctly categorize mitochondria of interest. Thus, we propose a new scoring system that better reflects the correctness

of the segmentation results. Although several of the top methods are compared favorably to our own baselines, substantial

errors remain unsolved for mitochondria with challenging morphologies. Thus, the challenge remains open for submission and

automatic evaluation, with all volumes available for download.
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Abstract— In this paper, we present the results of the
MitoEM challenge on mitochondria 3D instance segmenta-
tion from electron microscopy images, organized in con-
junction with the IEEE-ISBI 2021 conference. Our bench-
mark dataset consists of two large-scale 3D volumes, one
from human and one from rat cortex tissue, which are
3,600 times larger than previously used datasets. At the
time of paper submission, 257 participants had registered
for the challenge, 14 teams had submitted their results,
and six teams participated in the challenge workshop.
Here, we present eight top-performing approaches from
the challenge participants, along with our own baseline
strategies. Posterior to the challenge, annotation errors in
the ground truth were corrected without altering the final
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ranking. Although several of the top methods are compared
favorably to our own baselines, substantial errors remain
unsolved for mitochondria with challenging morphologies.
Thus, the challenge remains open for submission and au-
tomatic evaluation, with all volumes available for down-
load. Additionally, we present a retrospective evaluation
of the scoring system performed using TIMISE, our novel
open-source evaluation toolbox, which revealed that (1) the
challenge metric was permissive with the false positive
predictions and (2) the size-based grouping of instances
did not correctly categorize mitochondria of interest. Thus,
we propose a new scoring system that better reflects the
correctness of the segmentation results.

Index Terms— Mitochondria, Electron Microscopy, 3D In-
stance Segmentation, Connectomics, Brain.

I. INTRODUCTION

M ITOCHONDRIA are the primary energy providers for
cell activities, thus essential for metabolism. Quan-

tification of the size and geometry of mitochondria is not
only crucial to basic neuroscience research, e.g., neuron type
identification [1], but also informative to clinical studies, e.g.,
bipolar disorder [2] and diabetes [3]. High-resolution imaging
technologies like electron microscopy (EM) have been utilized
to reveal their detailed 3D geometry at the nanometer level
with the terabyte data scale [4]. Consequently, to enable an in-
depth biological analysis, we need high-throughput and robust
3D mitochondria instance segmentation methods. Publicly
accessible datasets that can exemplify the challenges are also
of essential importance for understanding the empirical gain
of segmentation approaches in this field.

The goal of this study is to (1) analyze the current progress
in the mitochondria segmentation task based on the results of
the Large-scale 3D Mitochondria Instance Segmentation chal-
lenge (MitoEM) 1, at the IEEE International Symposium on
Biomedical Imaging (ISBI) 2021, and (2) present TIMISE 2,
a novel open-source toolbox for identifying mitochondria
instance segmentation errors, that reveals the difficulties of the
current approaches and can be used as a guide for the creation
of the next generation mitochondria segmentation models. To
the best of our knowledge, MitoEM was the first open com-
parison of mitochondria instance segmentation algorithms on

1Challenge website: https://mitoem.grand-challenge.org
2https://github.com/danifranco/TIMISE

weidf@bc.edu
https://mitoem.grand-challenge.org
https://github.com/danifranco/TIMISE
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EM volumes. Moreover, we describe the associated annotated
dataset of two 3D EM image stacks at the scale of (30µm)3,
which are freely available from the challenge website, and are
two of a few large-scale 3D image volumes suitable for testing
instance segmentation algorithms.

A. Previous Works

Mitochondria segmentation datasets. The de facto bench-
mark dataset for evaluating methods of mitochondria segmen-
tation from EM images is the EPFL Hippocampus dataset [5],
referred to as the Lucchi dataset in this paper. This dataset
includes two EM image volumes along with corresponding
binary segmentation masks. Subsequently, Kasthuri et al. [6]
provided annotation for mitochondria masks for selected re-
gions within the 3-cylinder volume. Additionally, Casser et
al. [7] improved the annotation quality for both datasets
through the implementation of a consistent annotation protocol
for mask boundaries. Despite these efforts, the datasets remain
small in size, less than 0.3 Gigavoxels and (5 µm)3 physically,
which does not adequately capture the complexity of mito-
chondria morphology. Furthermore, the provided binary masks
are not easily converted into instance segmentation masks,
which are necessary for detailed biological analysis as the
instances of mitochondria can be connected to each other.
Instance segmentation evaluation metrics. The evaluation of
instance segmentation results can be done at either the pixel
level or the instance level. The pixel-level metric assumes
high-quality ground truth instance masks and measures the
correctness of the pixel grouping with a clustering-based
criterion, such as the Rand index [8]. However, as dataset
sizes increase, it becomes increasingly difficult to manually
refine all masks for pixel-level accuracy. As a result, instance-
level metrics are more commonly used for large-scale datasets.
For each predicted instance mask, if its intersection-over-
union (IoU) score with a ground truth mask is higher than
a predefined threshold, it is considered a true positive (TP).
Similarly, predictions that fall below the IoU threshold are
considered false positives (FP), while ground truth predictions
without a match with the TP prediction are considered false
negatives (FN). For biomedical image datasets, metrics based
on TP, FP, and FN rates, such as. accuracy= TP

TP+FP+FN
are widely used in the literature [9]–[11]. In the case of
natural 2D images, popular methods like Mask R-CNN-based
approaches, typically predict the confidence for each instance
detection, and the average precision (AP) metric is used to
average results over different detection thresholds [12], [13]. In
addition, instances are usually divided into small/medium/large
groups for separate evaluations. Wei et al. [14] provided an
efficient implementation of the AP metric for instances inside
3D volumes. To further break down the analysis of instance
matching results, Ka et al. [15] proposed association metrics,
categorizing them into one-to-one, over-segmentation, under-
segmentation, many-to-many, missing, and background.
Machine learning methods. Despite the advances in large-
scale instance segmentation for neurons from EM images [16],
[17], similar efforts for mitochondria have been largely over-
looked in the field. The lack of a large-scale, public dataset has

(a) (b) (c)

v1

v2

Fig. 1. Common annotation errors in the initial MitoEM dataset [14]
(v1): (a) false positives of organelles that look similar to mitochondria, (b)
false merges of mitochondrion, and (c) incomplete segmentation. Those
errors were fixed after another around of expert proofreading (v2).

led to the majority of recent mitochondria (semantic) segmen-
tation methods being benchmarked on the Lucchi dataset [5],
where mitochondria instances are small in number, simple in
morphology, and relatively sparse in distribution. Even in non-
public datasets [18], [19], the complexity of mitochondrial
shapes is limited by the small size of the dataset and the use of
non-mammalian tissue. In the field of mitochondria semantic
segmentation, previous studies have employed a variety of
techniques to segment the Lucchi dataset. Early works have
leveraged traditional image processing and machine learning
techniques [20]–[23], while recent methods utilized 2D or 3D
deep learning architectures for mitochondria segmentation [7],
[24]–[26]. Furthermore, Liu et al. [27] proposed an instance
segmentation approach utilizing a modified Mask R-CNN [28],
while Xiao et al. [29] achieved instance segmentation through
a tracking approach. However, it remains uncertain how the
performance of these methods, developed on small datasets,
would extend to larger datasets (e.g., (30 µm)3 cube) for neu-
roscience analysis, where mitochondria exhibit more complex
variations in appearance and shape.

II. MITOEM CHALLENGE

A. Dataset
We base the challenge on our released large-scale 3D

mitochondria instance segmentation benchmark, the MitoEM
dataset [14]. The MitoEM dataset consists of two (30µm)3 3D
EM image stacks, one from an adult rat brain tissue (MitoEM-
R) and one from an adult human brain tissue (MitoEM-H).
The physical sample size of the MitoEM dataset is 3,600×
larger than the previous Lucchi benchmark [5] by the physical
sample size. For information regarding the dataset acquisition
and annotation strategy, we refer readers to Wei et al. [14].
Improved Annotation (V2). After the initial release of the
MitoEM dataset, we identified three consistent categories
of annotation errors (as depicted in Fig. 1). These errors
include instances of organelles with a similar dark appearance
that were mistakenly labeled as mitochondria, instances of
neighboring mitochondria that were falsely merged into a
single mitochondrion, and instances of mitochondria-on-a-
string (MOAS) [30] that were occasionally incomplete due
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to their thin microtubule connections. To address these errors,
we enlisted three neuroscience experts who are familiar with
EM images and mitochondria morphology to independently
proofread the previous annotation. We then consolidated the
changes and resolved any discrepancies among the experts
through discussion. As a result of these efforts, the number
of confirmed instances in the MitoEM-H dataset was reduced
from 24.5K to 19K, and the number of confirmed instances in
the MitoEM-R dataset was reduced from 14.4K to 10.8K.

In light of these changes, the ground truth was updated and
uploaded to the grand-challenge website in December 2021,
and all methods were re-evaluated accordingly. Despite these
changes, the leaderboard rankings remained largely unaltered.

B. Evaluation Metric

In our initial release of the challenge, we used the evaluation
metric proposed by Wei et al. [14], which computes the AP-
75 score for small/medium/large groups of instances based on
the instance size. However, upon conducting an analysis of the
errors in the challenge submissions, we recognized the need
to make certain improvements to the evaluation metric.

Improved metric: from AP to accuracy. We found that the
AP-based metrics that were originally designed for top-down
instance segmentation methods, such as Mask RCNN [28], are
not well-suited for our challenge. In our case, most submission
methods employed a bottom-up approach for instance segmen-
tation, in which there is no estimation of the confidence score
for each instance. To address this issue, Wei et al. [14] ap-
proximated the confidence score with the size of the instance,
which can lead to unintuitive evaluation results, as discussed in
Section IV. After careful consideration, we decided to adopt
the popular accuracy metric [10] for evaluating the challenge
submissions. This metric matches prediction instances with
ground truth instances, providing a more intuitive evaluation
of the methods’ performance.

Improved instance grouping: from volume to cable length.
In our initial release of the challenge, we utilized a splitting
rule based on the volume to categorize mitochondria instances
into small, medium, and large groups. However, we noticed
that this approach was not effective for correctly categorizing
complex mitochondria instances, such as the MOAS instances.
For that reason, in this paper we have opted for the cable
length3 instead, using length thresholds of 1 µm and 4 µm
to split the mitochondria into three groups: small, medium
and large (as in the original MitoEM release). Under this
new categorization, the number of small, medium, and large
mitochondria instances are respectively: 5106, 3608, and 164
in MitoEM-H and 1292, 3832 and 524 in MitoEM-R. A
visualization of the mitochondria of each new split is depicted
in Fig. 2, where now all MOAS lie into the same (large)
category, as previously expected. A fast inspection reveals that
(1) the human tissue contains many more small mitochondria
than the rat tissue, and (2) the large mitochondria from the
human tissue are notably thinner than those of the rat tissue.

3Cable length is defined as the skeleton length of the instance taking into
account each axes resolution, e.g., 8× 8× 40 for (x, y, z) axes in MitoEM.

M
it
oE
M
-H

M
it
oE
M
-R

Small Medium Large

Fig. 2. Visualization of MitoEM-H and MitoEM-R datasets splitting
categories based on cable length. From left to right: 3D meshes of small
(length ≤ 1µm), medium (1µm < length < 4µm), and large (length
≥ 4µm) mitochondria of human (top) and rat tissue (bottom).

All these changes became effective in July 2022 in the
Grand Challenge platform, producing significant alterations in
the leaderboard as described in Section V.

C. Open-source Baseline Methods
In order to increase the accessibility of our challenge,

we have released two open-source baseline pipelines, each
accompanied by a reproducible tutorial. These pipelines are
designed to work on 2D and the 3D input image, respectively.
Both baseline models utilize a U-Net [31] based architecture
to predict both binary foreground segmentation masks and
instance contours masks (referred to as BC). The final step in
both models is to fuse the binary foreground mask and instance
contour channel outputs to create mitochondria instance seeds,
together with a foreground mask, which is then used as inputs
for the marker-controlled watershed (MW) [32] algorithm.
U2D-BC4. The model was trained using an input size of
256×256. Data augmentation techniques such as flips, random
rotations, variations in brightness and contrast, and elastic
transformations were applied during the training process. The
model was optimized until convergence, approximately 180
epochs, over a reduced version of the dataset (20% of training
data) with stochastic gradient descent (SGD) using a learning
rate of 0.002. We consider one epoch when visiting all training
samples. We further applied median filtering in y-z axes
to improve the network output predictions. This model was
implemented based on the networks developed in [26].
U3D-BC5. The model was trained with an input size of
225×225×17 for x, y, and z axes considering the anisotropy
of the datasets, which contains a mixture of 2D and 3D
convolutions. Besides applying common pixel and spatial
augmentations, we also used misalignment augmentation to
make the model more robust to the misalignment problem

4https://biapy.readthedocs.io/en/latest/tutorials/
mitoem.html

5https://connectomics.readthedocs.io/en/latest/
tutorials/mito.html

https://biapy.readthedocs.io/en/latest/tutorials/mitoem.html
https://biapy.readthedocs.io/en/latest/tutorials/mitoem.html
https://connectomics.readthedocs.io/en/latest/tutorials/mito.html
https://connectomics.readthedocs.io/en/latest/tutorials/mito.html
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introduced in dataset acquisition. The model was optimized for
150K iterations with an initial learning rate of 0.04 and cosine
learning-rate scheduling. We also applied Gaussian blending
and test-time augmentations (self-ensemble) to improve the
prediction quality. The model was implemented with PyTorch
Connectomics [33] and can be reproduced based on the tutorial
provided by the challenge organizers.

In comparison to our previous work [14], we made im-
provements to the implementation details in order to achieve
superior results. Specifically, we have incorporated a num-
ber of additional data augmentation techniques, including
misalignment, CutBlur [34], CutNoise, and motion-blur, in
addition to the brightness, flip, elastic transform, and missing
parts augmentations used in the original MitoEM paper [14].
Furthermore, we increased the probability and intensity of
all augmentations to enhance the robustness of the model.
Additionally, we updated the optimization technique used,
switching from ADAM optimizer [35] to SGD [36], [37],
following the recent findings of Zhou et al. [38], which
indicate that ADAM-alike adaptive optimization algorithms
do not generalize as well as SGD. We also implemented the
cosine learning rate decay policy [39] to update the learning
rate, while maintaining the number of training iterations and
the initial learning rate as in the original model.

D. Organization

The challenge was accepted to ISBI 2021 in October 2020
and officially announced in November 2020. This announce-
ment was accompanied by the creation of a dedicated website
and the preparation of an evaluation system. The two image
volumes, MitoEM-R and MitoEM-H, were made immediately
available to participants to enable them to begin developing
their methods. From the 1, 000 consecutive 3D slices of each
stack, ground-truth mitochondria instance labels were provided
for the first 500 slices and split into training (400 slices)
and validation (100 slices) subsets. The annotations of the
remaining 500 slices of each volume were kept private and
used as the test set. Participants performed the segmentation
on their own computers. The challenge was widely advertised
and was open to any interested participants. A total of 257
individuals registered for the challenge and 14 teams submitted
their results. For comparison, we also used two “internal sub-
missions” corresponding to our 2D and 3D baseline methods
(as described in Section III). To lower the barrier of entry
for the challenge, an initial version of the code of our 3D
baseline was made publicly available. The teams were also
asked to submit a description of their method. Eight teams
were invited to a workshop on April 13, during the ISBI 2021
conference, and to participate in the writing of this article. The
winners of the challenge were announced at this workshop.

Some of the teams that participated in the challenge did
not register for the conference or participate in the workshop.
However, six teams did submit short papers and presented
their methods. The results announced at the workshop (ranked
using the AP-75 metric) are given in Table VII. Those results
may be based on updated submissions. After the workshop,
the challenge remained open to submissions and all image

volumes, as well as their ground-truth labels, are available for
download. The testing labels are kept confidential.

III. SUMMARY OF SEGMENTATION METHODS

In this section, we described the evaluated segmentation
methods from the eight teams who successfully completed the
challenge, together with our baseline methods. See Table I for
an overview. Specific details of all algorithms are provided in
the respective manuscripts submitted by participants as per the
MitoEM challenge policies and are available at the challenge
webpage under the “manuscripts” tab.

A. Participants’ Methods

The following methods by the participant teams produced
successful results that were submitted to the challenge. Notice
that the method names used here may differ from the team
names found on the MitoEM webpage. See Table VII for the
link to the code, documentation and manuscript (if available)
for each method.

• VIDAR (USTC)6: Two specialized networks, Res-UNet-
R and Res-UNet-H, predict both the instance boundaries
and the semantic masks of mitochondria. Both architec-
tures are inspired by the 3D U-Net [40] and contain
residual blocks where the initial convolution is performed
only in 2D to address the anisotropic resolution of the
input data. While in the Res-UNet-R, the decoder outputs
the semantic mask and the instance boundary simul-
taneously, the Res-UNet-H contains two decoders, one
for each output. Moreover, they used a weighted binary
cross-entropy loss function to compensate for the class
imbalance and deployed a multi-scale training strategy
to train the network in two stages with progressively
larger input images. For pre-processing, denoising was
performed with their own image restoration network [41].
Finally, the semantic masks and instance boundaries
are used to create a seed map to perform hierarchical
agglomeration [42] and extract individual instances.
You can find more detailed information about the method
in the later work presented by the authors on [43].

• IIPPR (SJTU)7: The submissions were mostly based
on the U3D-BC+MW baseline method provided by the
challenge organizers, as described in the next section.
Different random seeds, as well as training and decoding
hyper-parameters, can result in different predictions from
those generated by the baseline configurations.

• VGG (NEL-BITA)8: A contrastive learning [44], [45]
framework is proposed using a representative point sam-
pling strategy, and a loss function combining a point-
wise similarity term (to increase the similarity of points
from the same class and the separability of points from
different classes) and an inter-frame consistency term
to enhance the sensitivity of the 3D model to changes
in image content from frame to frame. A classic 3D

6M. Li, C. Chen, Z. Xiong
7R. Xin, H. Liu, H. Chen
8Z. Li, J. Zhao, X. Chen
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TABLE I
OVERVIEW OF THE MITOEM PARTICIPANT METHODS. CE — CROSS-ENTROPY, WBCE — WEIGHTED BINARY CROSS-ENTROPY, MSE — MEAN

SQUARED ERROR, WMSE — WEIGHTED MSE, SGD — STOCHASTIC GRADIENT DESCENT, HA — HIERARCHICAL AGGLOMERATION, MCWS —
MARKER-CONTROLLED WATERSHED, MWSMC — MUTEX WATERSHED AND MULTICUT, CC — CONNECTED COMPONENTS, HUA — HUNGARIAN

ALGORITHM. (*) REUSE U3D-BC+MW CODE.

Method Available
code

Model
architecture

Input
shape

Loss
function Optimizer Connectivity

method Pre-/post-processing

VIDAR X Residual U-Net 3D WBCE Adam HA Denoising as pre-processing
IIPPR X(*) Residual U-Net 3D BCE+Dice Adam MCWS Ensemble+Blending inference
U3D-BC+MW* X Residual U-Net 3D BCE+Dice SGD MCWS Aggressive DA
U2D-BC+MW* X U-Net 2D BCE SGD MCWS Aggressive DA+YZ-Filtering
VGG U-Net 3D CE+Contrastive SGD MCWS None
EMBL X U-Net 3D Dice Adam MWSMC None
CEM-PDL X Panoptic-DeepLab 2D WBCE+MSE AdamW HUA CEM500K pretraining, Z-filtering...
FCI X U-Net 3D Dice Adam MCWS Tri-axis prediction
ABCS U-Net 3D Dice Adam CC Ensemble
H2RNet Hybrid-HRNet 2D WMSE Adam MCWS Morphological closing, size filtering

U-Net [40] is used as a backbone network to output
binary masks and boundary maps, and marker-controlled
watershed [32] is applied to extract the final instances.
Feature maps are extracted from the last two layers of the
backbone decoder to extract point features and build pos-
itive and negative pairs according to their classes. Thanks
to this, contrastive learning can be used to maximize the
similarity between feature vectors of the same class, while
minimizing those of two different classes. Similarly, the
consistency loss term is designed to enhance the feature
similarity between points belonging to the same class
at the same position in adjacent slices and contrastively
decrease the similarity of points from different classes.
You can find more detailed information about the method
in the later work presented by the authors on [46].

• EMBL (Heidelberg)9: Foreground probabilities and long-
range affinity maps [47] are predicted using a 3D U-
Net [40] without pooling across the z-axis in the first
2 pooling layers to address the anisotropy of the dataset.
Next, Mutex Watershed [48] is applied in parallel on the
predictions of subvolumes of the whole dataset, and the
final whole-volume instance segmentation is obtained by
means of solving a Multicut clustering problem [49].

• CEM-PDL (NIH)10: A Panoptic-DeepLab model [50]
with a ResNet50 [51] backbone is trained to perform
instance segmentation in 2D slices. More specifically,
the model has three outputs: semantic masks, instance
centers, and instance center regressions (offset from each
pixel to its corresponding center). Instances are obtained
by simple post-processing (assigning each pixel to the
closest predicted center). The backbone network uses
weights pre-trained on CEM500K [52], a large dataset
of EM images. Training is performed on 512 × 512
patches and the inference is applied to the full-size image
4096 × 4096. Several post-processing methods are used
including Z-filtering, 2D watershed to split false mergers,
and the Hungarian algorithm and the Intersection-over-
Area merging strategy to merge false splits.

9C. Pape
10R. Conrad

This method has been further developed since submission
to the MitoEM challenge into an open-source model
called MitoNet [53].

• FCI (London)11: Four separate convolutional neural net-
works (CNNs) were trained to predict semantic masks
and boundaries of mitochondria on each MitoEM-H and
MitoEM-R, respectively. All networks follow the same
architecture based on a 3D U-Net [40] with Inception-
like blocks [54], and were trained using a smoothed
dice coefficient (or F-measure) loss function. Weights
were initialized using a nuclear envelope segmentation
model trained on crowd-sourced citizen science annota-
tions [55]. Boundary predictions were improved by means
of combining predictions from all three views of the
volumes [55], and individual instances are extracted using
marker-controlled watershed [32].
You can find more detailed information about the method
in the later work presented by the authors on [56].

• ABCS (FNL)12: Two simple 3D versions of the original
U-Net architecture [31] were trained to simulate different
fields of views with input sizes of 64 × 128 × 128
voxels and 64 × 256 × 256, respectively. Basic data
augmentation was used with flipping in all three axes,
and ensemble prediction with patch overlap was applied
at inference time. Averaging the prediction of the two
networks improved both their individual scores.

• H2RNet (Zurich)13: A modified HRNet [57] network is
used with two heads that respectively predict the energy
surface and the curvature of mitochondria in 2D slices.
Both heads are fused into a final prediction. A weighted
mean-square-error loss function is used, with weighting
based on the frequency of a given value for the energy
head, and weighting based on bending loss [58] for the
contour head. Watershed post-processing in 2D is not
needed since a cut-off from the surface energy learned
is used as the hyper-parameter in the prediction. Due
to computing resource limitations, 2D predictions were
downsampled to apply marker-controlled watershed [32]

11L. Nightingale, J. de Folter, M. L. Jones
12Y. Liu, D. Ziaei
13S. Huschauer
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in 3D to connect regions across sections and later upsam-
pled using nearest-neighbor interpolation.

IV. TIMISE: ERROR ANALYSIS TOOLBOX

In addition to setting up the challenge and compiling
results, we aimed to build a toolbox to facilitate error anal-
ysis to inspire novel approaches, similar to the TIDE tool-
box [59] for 2D instance segmentation. To this end, we
introduce TIMISE14: an open-source Toolbox for Identifying
Mitochondria Instance Segmentation Errors. TIMISE enables
(1) a compact summary of error types, (2) a 3D visual com-
parison of instance segmentation results, and (3) comparisons
across datasets and object attributes for deeper analysis.

A. Compact Summary of Error Types

Instead of using a single set of metrics, we aim to select
from commonly used metrics to create a compact and informa-
tive error report to debug 3D instance segmentation methods.
Design choices. There are three commonly used sets of
metrics for the 3D instance segmentation task: average pre-
cision (AP)-based, matching-based, and association-based. (1)
No AP-based metric. The AP-based metric requires sorting
predictions by confidence, which is not provided by most
bottom-up segmentation approaches. Wei et al. [14] heuris-
tically used the segment size as the prediction confidence,
which can lead to undesirable biases for method ranking.
(2) Matching-based metric for ranking. The matching-based
metric focuses on the number of segments that are predicted
correctly without worrying about the type of segmentation
errors. It turns the segmentation result into the object detection
result by thresholding the IoU of the matched prediction and
ground truth masks. Then, the accuracy metric can combine
informative statistics, i.e., TP/FP/FN, into a single value to
rank the methods. (3) Association error for break-down analy-
sis. Many segmentation methods need to set hyper-parameters
to control the ratio between false-split and false-merge errors.
Thus, the pie chart displaying the proportion of different types
of segmentation association error [15] is critical for a more
interpretable result understanding. The association errors are
defined as follows:

• One-to-one, if it is an exact match.
• Over-segmentation, when one instance in the ground truth

is divided into two or more in the prediction.
• Under-segmentation, when two or more instances in the

ground truth are merged in the prediction.
• Many-to-many, when two or more instances in the ground

truth are associated with two or more in the prediction,
which is the most complex case.

• Missing, for instances of the ground truth that are not
captured in the prediction.

• Background, for instances associated with the back-
ground, i.e. false positives.

Validating design choices. To better understand the pros and
cons of each metric implemented in TIMISE, we created a toy

14https://github.com/danifranco/TIMISE

Ground truth PredictionSize categories

Small
Medium
Large

Fig. 3. Synthetic example of mitochondria instance segmentation. Left
to right: ground truth instances, same instances color-coded by size, and
model prediction.

TABLE II
AP-75, ASSOCIATION AND MATCHING METRICS EVALUATION OF THE

SYNTHETIC EXAMPLE OF FIG.3 PERFORMED WITH THE TIMISE
TOOLBOX. ASSOCIATION METRICS ARE EXPRESSED IN %.

Small Medium Large Total

AP-based AP-75 ↑ 0.51 0.44 0.00 0.22

Matching
metrics

Precision ↑ 0.06 0.67 0.00 0.12
Recall ↑ 0.50 0.67 0.00 0.50
Accuracy ↑ 0.05 0.50 0.00 0.10

Association
metrics

Correct ↑ 50.0 66.7 0.00 50.0
Missing ↓ 0.00 0.00 0.00 0.00
Over ↓ 0.00 0.00 100 16.7
Under ↓ 50.0 33.3 0.00 33.3
Many ↓ 0.00 0.00 0.00 0.00
Back ↓ - - - 65.4

example with a ground truth of mitochondria of different sizes
and a realistic model prediction (see Fig. 3). The ground truth
volume contains only six instances: one large (MOAS type),
three medium, and two small mitochondria based on their
cable lengths. The prediction presents an over-segmentation of
small and medium instances, a merger of two mitochondria,
and several split errors in the MOAS. The corresponding AP-
75, association, and accuracy values are shown in Table II.

AP-75 overvalues small-size instances. In the AP-75 cal-
culation [14], the mitochondria segments are sorted by size,
resulting in small segments having the lowest confidence
values. Therefore, when a small instance is merged with a
medium one in the prediction, the small instance is considered
an FN. Additionally, the large instance in the ground truth is
split into several segments that do not reach the minimum
IoU of 75% with the ground truth, so most of those seg-
ments are considered as medium FPs. This means the large
mitochondrion is only matched with the blue instance that
represents its bottom part (since it is the largest among all
pieces). Although the prediction contains several small FPs,
as well as more small and medium FPs considering the rest
of the MOAS pieces not matched with it (e.g. all but the blue
instance), the AP-75 values for small segments are still high.

Accuracy metric provides a good overall evaluation. As
shown in Table II, the association metrics are useful for
understanding the fate of the ground truth segments in the
prediction but do not provide information on the overlap
between the prediction and the ground truth. On the other

https://github.com/danifranco/TIMISE
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MitoEM-RMitoEM-H

Fig. 4. Summary of errors in MitoEM for the top three methods. The pie chart illustrates the proportion of each type of association error, while the
bar plots below show the absolute number of false positives (FP) and false negatives (FN) for each method. These values are used to calculate the
accuracy metric.

hand, the matching metrics do provide this information by
considering a prediction as a TP if the IoU with ground truth
is greater than 75% (following [14]). However, the association
metrics have multiple values, rather than just a single value,
which complicates the direct comparison of the performance
of different methods. For example, it is not clear whether a
low under-segmentation rate is better or worse than a low over-
segmentation rate, or whether many-to-many is worse than the
previous two. These questions depend on the specific task at
hand. Therefore, it is useful to have a single number, such
as accuracy, to enable easy comparison of the performance of
different models. In the toy example, there are many small FPs
in the prediction, as previously mentioned, which results in
low values for all matching metrics except recall. For medium
instances, only the one merged with the small instance is not
considered a TP due to its low IoU (< 0.75).

Association metrics provide a detailed breakdown of errors.
Examining the association metrics helps us to understand
where and how the prediction fails. A missing value of zero
in all cases indicates that all ground truth instances have been
captured by the prediction. More specifically, out of the two
small mitochondria in the ground truth, one has been correctly
predicted and is labeled as correct. The other one was merged
with a medium mitochondrion, resulting in both small and
medium being labeled as under-segmentation. The remaining
three medium mitochondria are also labeled as correct. Also,
the ground truth MOAS that was divided into medium-sized
pieces in the prediction is labeled as over-segmentation.

B. 3D Mesh Visualization
TIMISE offers different plotting options based on the

measured statistics and metrics with just a function call.
This way, the user can (1) find correlations between one
or more morphological measures and segmentation errors,
as depicted in Fig 7 with the cable length and association
metrics; (2) gather metrics of different methods to compare
their performance in a single chart (as depicted in Fig. 9); (3)
create neuroglancer 15 visualization scripts with just a function

15https://github.com/google/neuroglancer

TABLE III
MATCHING STATISTICS OF ALL METHODS ON THE MITOEM CHALLENGE

LEADERBOARD. THE RANKINGS PRESENTED IN THIS TABLE DIFFER

FROM THE ORIGINAL CHALLENGE LEADERBOARD AS A RESULT OF THE

ALTERATION OF THE EVALUATION METRIC, AS DISCUSSED IN THE

MANUSCRIPT. BASELINE METHODS FROM CHALLENGE ORGANIZERS

(MARKED WITH *) ARE SHOWN BUT NOT INCLUDED IN THE RANKING.
THE BEST SCORES ARE SHOWN IN BOLD.

Method Rank
MitoEM-H MitoEM-R

Prec.↑ Rec.↑ Acc.↑ Prec.↑ Rec.↑ Acc.↑ Total
Acc.

IIPPR 1 0.814 0.913 0.755 0.824 0.943 0.785 0.770
VIDAR 2 0.785 0.926 0.739 0.638 0.948 0.616 0.678
U3D-BC* 0.706 0.916 0.663 0.663 0.913 0.623 0.643
EMBL 3 0.740 0.879 0.672 0.637 0.906 0.597 0.635
VGG 4 0.658 0.911 0.619 0.697 0.905 0.649 0.634
CEM-PDL 5 0.734 0.794 0.617 0.721 0.860 0.645 0.631
FCI 6 0.741 0.754 0.596 0.669 0.771 0.558 0.577
H2RNet 7 0.636 0.698 0.499 0.709 0.811 0.608 0.554
ABCS 8 0.628 0.766 0.526 0.675 0.694 0.520 0.523
U2D-BC* 0.435 0.925 0.420 0.354 0.911 0.342 0.381

call to generate images such as Fig. 2 and 5; and (4) create
interactive 3D plots16 fusing more measurements and metrics.

V. ANALYSIS OF CURRENT PROGRESS ON MITOEM

A. Overall Performance

To have an overview of each model error we created Fig. 4
with our proposed TIMISE toolbox, following the same plot
types proposed in [59].
Matching based evaluation. To further analyze the perfor-
mance of the methods, we present their corresponding match-
ing metric values in Table III. The IIPPR method performs
better than VIDAR in most cases, except in terms of recall.
A similar pattern is observed in other cases, where high recall
is achieved at the expense of precision (U3D-BC, VGG, and
U2D-BC), due to a higher number of FPs and therefore higher
over-segmentation values. This conclusion can also be drawn

16Find them in our prepared notebooks here: https://github.com/
danifranco/TIMISE/tree/main/examples

https://github.com/google/neuroglancer
https://github.com/danifranco/TIMISE/tree/main/examples
https://github.com/danifranco/TIMISE/tree/main/examples
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Fig. 5. 3D visualization of MOAS instances with the TIMISE toolbox
for error inspection. We show the ground truth and segmentation results
from the two top-performing models (IIPPR and VIDAR) in one MOAS
instance per dataset. Different colors represent different instances.

by examining the FP, FN and missing values of each method
in Fig. 4. For a more detailed analysis, see Table VII.
Association based evaluation. To facilitate the understanding
of the types of errors made by each competing method, we
have created pie charts in Fig. 4. These pie charts provide a
relative overview of the errors, but we also need to consider
absolute magnitudes in order to compare between methods,
leading to the creation of horizontal bar plots. In general,
Fig.4 shows that the relative magnitude of missing instances is
similar among the top three methods for both tissues. However,
the absolute magnitudes indicate better performance for IIPPR
and VIDAR compared to EMBL. The top methods tend to ex-
hibit over-segmentation rather than under-segmentation (with
the exception of IIPPR in human tissue). This demonstrates
the failure of these methods in the most challenging instances
of MitoEM, which are the MOAS-type mitochondria. A visual
example of the over-segmentation problem is shown in Fig. 5.
For all association error percentages, see Table VI, and for a
more detailed breakdown analysis, see Fig. 9.

B. Comparison Across Skeleton Length
As previously mentioned, MOAS-type mitochondria pose a

significant challenge in MitoEM due to their thin connections,
which can result in over-segmentation, as illustrated in Fig. 5.
While we have identified this issue, we have not yet con-
sidered the number of associations that each error involves.
For example, an over-segmentation association may involve
one ground truth instance that has been split into twenty
predicted instances, while an under-segmentation may only
involve two ground truth instances that have been merged into
one predicted instance. It is therefore of interest to compare
over-segmentation, under-segmentation, and many-to-many as-
sociations to determine which is the most detrimental.
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Fig. 6. Summary of the absolute number of error types per instance cat-
egory for the three top-performing methods. The errors shown include
cumulative association errors (on the left) and false negatives (on the
right) for each method.

For that comparison, we generated Fig. 7 using the TIMISE
toolbox. This figure presents the number of associations per
skeleton length bin. The values were calculated by adding the
number of predicted over-segmented instances, subtracting the
number of under-segmented instances from the ground truth,
and calculating the ratio of predicted instances to those in the
ground truth for the many-to-many case (with a positive value
when there are more predicted instances than ground truth
ones in the association, and negative otherwise). For example,
a value of zero in a bin indicates that all associations sum to
zero, as in the case of an over-segmentation of a GT instance
that has been divided into two (resulting in a net increase
of two instances), or an under-segmentation case where a
predicted instance actually corresponds to two GT instances
(resulting in a net decrease of two instances). On the other
hand, a value of ten in a bin indicates that there are more
cases of over-segmentation present than under-segmentation.

It can be observed that there are more over-segmentation
associations in both tissues compared to other types of as-
sociations. Additionally, the number of associations appears
to increase with cable length. The observed trend can be
attributed to the MOAS-type mitochondria, as the size of
these structures tends to correspond with a higher quantity of
smaller constituent elements. It is also noted that the MOAS
in human tissue are more over-segmented than in rat tissue.
This difference is likely due to the thicker connections present
in rat MOAS, as depicted in the middle of Fig. 7, which make
them easier to segment in 3D.

Fig. 6 shows a breakdown analysis to identify the types
of mitochondria that demonstrated the highest failure rates.
In terms of the absolute number of cumulative association
errors, the results follow the same ranking as in Table III,
with IIPPR performing the best, followed by VIDAR, and
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Fig. 7. Comparison across object scales. Histograms of association errors of the two top-performing methods (VIDAR and IIPPR) on the MitoEM-H
(top) and MitoEM-R (bottom) test sets. The points show the association counts for mitochondria of each length, while the standard deviation is
represented by the vertical black lines. The point size is proportional to the number of instances inside that bin. Some representative instances of
different cable lengths are displayed in the middle and connected by dashed lines to their corresponding bins.

finally EMBL. In contrast, VIDAR performs better in terms of
false negatives compared to IIPPR. This result aligns with the
findings presented in Section V-A, which indicate that VIDAR
is able to identify more instances, albeit at the cost of higher
FP rates and lower precision.

VI. DISCUSSION ON REMAINING CHALLENGES

Despite the improved results during the competition, the
following challenges remain for the community to tackle.
Model challenge. In the current full-supervised learning set-
ting, i.e., 40-10-50% data split, the IIPPR method serves
as a strong baseline, achieving an overall 0.770 accuracy
score. However, for practical large-scale deployment to re-
cent petabyte scale datasets [17], the instance segmentation
methods need to achieve at least 0.9 (accuracy) to make the
saturated proofreading feasible. In addition to the challenges
mentioned in the paper, e.g., complex geometries and crowded
instances, there is still an open challenge on the “large”
segments (especially MOAS instances with super thin con-
nections) as they often split those mitochondria into smaller
pieces producing an over-segmentation. To address this issue,
the VIDAR team at USTC’s lab has proposed the use of
knowledge distillation training [60] as a potential solution.
Limited label challenge. In practice, the annotation budget
is often around 5-10% of the whole volume. Therefore, it

is critical to developing data-efficient methods, e.g., new
data augmentation methods [61], unsupervised [62], semi-
supervised, and active learning methods, that can achieve 0.9
(accuracy) with a limited amount of annotation.
Proofreading challenge. Regarding the suitability of a scoring
system based on accuracy, one should assess the purpose of the
segmentation result and its subsequent processing. In partic-
ular, for large datasets such as MitoEM, the current strategy
assumes a proofreading phase after automatic segmentation.
In that sense, a metric that does not penalize false positive
predictions as much as false negative ones may be the most
appropriate. In fact, eliminating false positives is proven much
faster than correcting false negatives when proofreading 3D
segments [63]. In a more general framework, the association
and matching metrics provided in TIMISE help us complete
the big picture in terms of evaluation.

VII. CONCLUSION

In this paper, we present the results of the ISBI 2021 chal-
lenge on MitoEM, the first large-scale instance mitochondria
segmentation challenge that thoroughly benchmarks state-of-
the-art methods in the field. To gain insight into the common
errors of the proposed methods and identify current challenges
that remain unresolved, we analyze the performance of the
methods using various types of evaluation metrics. To assist
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the research community in this endeavor, we have developed
TIMISE, an open-source and user-friendly toolbox for identi-
fying errors in mitochondria instance segmentation based on
a wide range of segmentation metrics.

The release of MitoEM had the dual goal of attracting new
computer vision researchers to the problem of EM mitochon-
dria segmentation and pushing the state-of-the-art forward.
We believe that the challenge was successful in this regard,
as the participants improve over our own initial baseline
methods. Furthermore, the competition received a very positive
reaction from the community and had good attendance at its
corresponding workshop at ISBI 2021.

After conducting a detailed analysis of the challenge results,
we identified consistent annotation errors and released an
updated version of the ground truth labels (V2). Additionally,
using the TIMISE toolbox, we identified issues with the
evaluation system based on the AP-75 metric and updated the
challenge and method ranking using a more robust metric that
is more sensitive to false negatives and over-segmentations,
such as accuracy. However, the current accuracy values are
still insufficient for fully automatic segmentation, therefore the
challenge remains open for submissions.

Finally, we believe that our large-scale annotated dataset,
similar to ImageNet for natural images, has the potential to be
useful for a variety of applications beyond its original purpose.
Some examples include using the dataset for deep feature
pre-training, performing 3D shape analysis, and testing novel
approaches such as active learning or domain adaptation.

APPENDIX I

TABLE IV
ADDITIONAL INFORMATION OF THE PRESENTED METHODS AT THE

MITOEM CHALLENGE. (*) REUSE U3D-BC CODE.

Method Accuracy
Rank Code Documentation Publication

IIPPR 1 Link (*) -
VIDAR 2 Link - [43]
U3D-BC* Link Link [33]
EMBL 3 Link Link
VGG 4 - - [46]
CEM-PDL 5 Link - [53]
FCI 6 Link - [56]
H2RNet 7 - -
ABCS 8 - -
U2D-BC* Link Link [26]
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Fig. 8. Some examples of common segmentation errors by the
analyzed methods in small, medium and large mitochondria of MitoEM-
H and MitoEM-R tissue from the test set. Every instance is given a
unique color. The scale bar represents 0.5 µm.

https://github.com/zudi-lin/pytorch_connectomics
https://github.com/Limingxing00/MitoEM2021-Challenge
https://github.com/zudi-lin/pytorch_connectomics
https://connectomics.readthedocs.io/en/latest/tutorials/mito.html
https://github.com/constantinpape/torch-em
https://github.com/constantinpape/torch-em/tree/main/experiments/mitochondria-segmentation/mito-em/challenge
https://github.com/volume-em/empanada
https://github.com/FrancisCrickInstitute/mitoem-challenge
https://github.com/danifranco/BiaPy
https://biapy.readthedocs.io/en/latest/tutorials/mitoem.html
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Fig. 9. Distribution of association errors of all methods on the MitoEM-H (top) and MitoEM-R (bottom) test sets for small (left), medium (center) and
large (right) mitochondria. The methods are ordered from left to right by lowest-to-highest value of AP-75. A remarkable difference in performance
can be appreciated for all methods on large mitochondria compared to small and medium mitochondria.

TABLE V
MATCHING BASED METRICS OF ALL METHODS ON THE MITOEM CHALLENGE LEADERBOARD PER CATEGORY. BASELINE METHODS FROM

CHALLENGE ORGANIZERS (MARKED WITH *) ARE SHOWN BUT NOT INCLUDED IN THE RANKING. BOLD AND UNDERLINED NUMBERS DENOTE THE

1ST AND 2ND SCORES, RESPECTIVELY.

Method Accuracy
Rank

MitoEM-H MitoEM-R

Category Precision ↑ Recall ↑ Accuracy ↑ Precision ↑ Recall ↑ Accuracy ↑

IIPPR 1 large 0.148 0.543 0.132 0.397 0.779 0.357
medium 0.930 0.934 0.872 0.969 0.967 0.938
small 0.811 0.910 0.750 0.753 0.938 0.717

VIDAR 2 large 0.172 0.549 0.151 0.353 0.794 0.323
medium 0.916 0.946 0.870 0.961 0.974 0.936
small 0.758 0.924 0.713 0.362 0.933 0.353

U3D-BC* large 0.131 0.537 0.118 0.268 0.763 0.247
medium 0.890 0.933 0.836 0.936 0.934 0.878
small 0.662 0.917 0.625 0.479 0.910 0.457

EMBL 3 large 0.108 0.549 0.099 0.231 0.725 0.212
medium 0.853 0.905 0.783 0.786 0.940 0.748
small 0.756 0.871 0.680 0.629 0.878 0.578

VGG 4 large 0.109 0.506 0.099 0.323 0.708 0.285
medium 0.884 0.915 0.818 0.938 0.927 0.873
small 0.603 0.922 0.574 0.494 0.919 0.473

CEM-PDL 5 large 0.164 0.427 0.134 0.232 0.519 0.191
medium 0.834 0.849 0.727 0.900 0.901 0.819
small 0.711 0.768 0.585 0.652 0.878 0.597

FCI 6 large 0.167 0.470 0.141 0.229 0.540 0.191
medium 0.821 0.831 0.703 0.833 0.813 0.699
small 0.733 0.709 0.564 0.624 0.741 0.513

H2RNet 7 large 0.117 0.341 0.096 0.214 0.515 0.178
medium 0.580 0.692 0.461 0.865 0.852 0.752
small 0.734 0.715 0.568 0.733 0.812 0.626

ABCS 8 large 0.134 0.537 0.120 0.381 0.548 0.290
medium 0.776 0.787 0.641 0.808 0.684 0.588
small 0.592 0.758 0.498 0.556 0.784 0.482

U2D-BC* large 0.166 0.530 0.145 0.213 0.708 0.196
medium 0.865 0.937 0.818 0.906 0.930 0.848
small 0.328 0.929 0.320 0.137 0.936 0.135



12 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2023

TABLE VI
ASSOCIATION BASED METRICS (IN %) OF ALL METHODS ON THE MITOEM CHALLENGE LEADERBOARD. BASELINE METHODS FROM CHALLENGE

ORGANIZERS (MARKED WITH *) ARE SHOWN BUT NOT INCLUDED IN THE RANKING. ’CORRECT’, ’MISSING’, ’OVER’, ’UNDER’ AND ’MANY’ STANDS

FOR ’ONE-TO-ONE’, ’MISSING’, ’OVER-SEGMENTATION’, ’UNDER-SEGMENTATION’, ’MANY-TO-MANY’ AND ’BACKGROUND’ ASSOCIATIONS,
RESPECTIVELY. BEST SCORES ARE SHOWN IN BOLD. ALL BUT BACKGROUND ASSOCIATIONS SUM ONE FOR EACH TISSUE, I.E. MITOEM-H AND

MITOEM-R. BACKGROUND PERCENTAGE HAS BEEN CALCULATED TAKEN INTO ACCOUNT ALL PREDICTED INSTANCES.

Accuracy
Rank

MitoEM-H MitoEM-R

Method Correct↑ Missing↓ Over↓ Under↓ Many↓ Back↓ Correct↑ Missing↓ Over↓ Under↓ Many↓ Back↓

IIPPR 1 93.07 1.93 1.99 2.87 0.14 8.48 94.92 0.41 2.97 1.66 0.04 5.25
VIDAR 2 92.61 1.89 3.62 1.76 0.12 11.77 93.89 0.46 3.98 1.52 0.14 24.39
U3D-BC* 91.82 1.22 4.10 2.65 0.21 17.43 90.95 0.51 4.97 4.07 0.50 15.26
EMBL 3 87.55 3.39 4.89 3.77 0.39 10.22 79.62 1.38 17.0 1.17 0.81 6.62
VGG 4 90.82 0.78 4.16 3.86 0.38 22.46 90.67 0.55 3.67 4.75 0.37 15.54
CEM-PDL 5 89.4 3.32 2.96 4.05 0.26 7.98 88.05 0.62 6.32 4.21 0.80 7.28
FCI 6 85.23 7.51 3.09 3.91 0.26 5.87 84.86 1.84 5.49 6.94 1.04 5.36
H2RNet 7 79.88 7.07 8.49 4.10 0.45 5.35 84.54 1.43 5.81 7.03 1.19 3.85
ABCS 8 76.02 2.65 3.47 16.9 0.97 18.1 67.76 0.74 2.76 25.62 3.12 10.76
U2D-BC* 91.32 0.32 6.10 2.05 0.21 49.05 88.6 0.09 7.15 3.43 0.73 52.02

TABLE VII
THE MITOEM CHALLENGE LEADERBOARD AS ANNOUNCED AT THE WORKSHOP. THE METHODS ARE RANKED ACCORDING TO THEIR AP-75

SCORES, WITH THE HIGHEST SCORES DISPLAYED IN BOLD. THE RANKINGS PRESENTED IN THIS TABLE ALIGN WITH THE ORIGINAL CHALLENGE

LEADERBOARD, BUT DEVIATE FROM THOSE PRESENTED IN THE PRESENT MANUSCRIPT DUE TO THE MODIFICATION OF THE EVALUATION METRIC.
THE BASELINE METHODS FROM THE CHALLENGE ORGANIZERS (MARKED WITH *) ARE DISPLAYED BUT WERE NOT INCLUDED IN THE RANKING.

Method AP-75
Rank

MitoEM-H MitoEM-R Overall
Small Medium Large All Small Medium Large All

VIDAR 1 0.835 0.905 0.420 0.827 0.727 0.955 0.550 0.850 0.839
IIPPR 2 0.807 0.884 0.328 0.796 0.815 0.941 0.517 0.842 0.819
U3D-BC* 0.799 0.885 0.331 0.790 0.780 0.896 0.505 0.811 0.801
VGG 3 0.794 0.854 0.333 0.786 0.788 0.885 0.425 0.790 0.788
EMBL 4 0.783 0.837 0.389 0.762 0.773 0.896 0.444 0.779 0.771
U2D-BC* 0.741 0.885 0.349 0.779 0.623 0.879 0.433 0.751 0.765
CEM-PDL 5 0.642 0.742 0.249 0.644 0.730 0.834 0.194 0.674 0.659
ABCS 7 0.655 0.669 0.295 0.636 0.709 0.586 0.304 0.572 0.604
FCI 6 0.610 0.745 0.345 0.620 0.598 0.710 0.270 0.582 0.601
H2RNet 8 0.574 0.541 0.216 0.474 0.656 0.764 0.260 0.605 0.540
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