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Abstract

Line shunts are usually ignored by various power flow (PF) models in distribution system analysis, planning and optimization.

However, “charging effects” from line shunts of underground/submarine power cables would cause non-negligible model errors

for these commonly used PF models. In this brief, we propose a modified linear Distflow model (LinDist) with line shunts

(LinDistS) to address relevant model errors. The strength of the proposed model not only lies in a straightforward structure

like LinDist, but also maintaining the linearity after further considering three-phase unbalanced systems. The linearization error

of voltage component is theoretically analyzed. Case studies show that compared with non-linear and linear models, LinDistS

achieves the descent calculation accuracy and efficiency in large scale distribution systems.
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Abstract—Line shunts are usually ignored by various power
flow (PF) models in distribution system analysis, planning and
optimization. However, “charging effects” from line shunts of
underground/submarine power cables would cause non-negligible
model errors for these commonly used PF models. In this brief,
we propose a modified linear Distflow model (LinDist) with line
shunts (LinDistS) to address relevant model errors. The strength
of the proposed model not only lies in a straightforward structure
like LinDist, but also maintaining the linearity after further
considering three-phase unbalanced systems. The linearization
error of voltage component is theoretically analyzed. Case studies
show that compared with non-linear and linear models, LinDistS
achieves the descent calculation accuracy and efficiency in large
scale distribution systems.

Index Terms—Distflow equations, line shunts, linear power flow
model, power flow analysis

I. INTRODUCTION

POWER flow model is the most important component
of many power system problems, including planning

and optimization problems. The transmission lines of both
transmission and distribution systems are originally modelled
with the Π circuit line model, whose shunt elements are
usually assumed to be zero in distribution systems, which can
be accepted previously when the majority of distribution lines
are overhead lines with nearly zero shunt admittance. However,
according to a field test report from Shenzhen Power Supply
Company, when distribution networks are gradually mod-
ernised, overhead lines are replaced by underground cables for
urban appearance, whose shunt admittance is 5-10 times larger
[1], [2], even larger for submarine cables [3], [4]. Therefore,
the “charging effect” caused by the capacitive susceptance of
line shunt admittance would introduce model errors to power
flow models with zero line shunts, lift the voltage magnitude
at ending nodes [5], cause voltage violations, and affect the
stability and reliability in power distribution systems (PDS).
Thus, the shunt elements in the Π circuit line model cannot be
ignored for the precise calculation of voltage in modern PDS.

Alternating current power flow (ACPF) is a general PF
model which has a full consideration of system parameters.
However, due to its complexity and non-convexity [6], ACPF
cannot be applied directly. The Distflow model, as a simplifi-
cation of ACPF for radial distribution systems is proposed
by [7], assuming zero line shunts. The first approximation
method is the linearization of Distflow model. Linear Distflow
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model is widely used when line loss is small [7]. Another
linearized AC power flow model is proposed in [8]. Study
[9] provides an implicit linearization method using the flat
voltage solution, which can obtain the linear Distflow model.
An approximated linear PF model for three-phase unbalanced
systems is proposed in [10]. Another approximation method
is the relaxation of Distflow model. Second order cone pro-
gramming (SOCP) of optimal power flow (OPF) problems is
proposed and the exactness of convex relaxations are proved
in [11]. However, as all the aforementioned models assume
zero line shunts, model errors brought by “charging effects”
of underground/submarine power cables would be large and
not acceptable, and sufficient conditions for the exactness of
convex relaxations might not be guaranteed [12].

To address this issue, three recent studies have proposed
non-linear branch flow model (BFM) based on SOCP with
non-zero shunt elements. Study [13] computes the local solu-
tion of OPF problem based on BFM with line shunts (BFMS).
Another BFM including line charging is proposed by [12] as
a replacement of the SOCP relaxation, whose exactness is
proved to hold [14]. However, the optimal solution cannot be
guaranteed by using the BFM in [13], and the relaxation error
would become non-negligible if the squared current magnitude
is not bounded at the lower bound, like the reverse power
flow [15]. Besides, a PF analytical method with non-zero line
shunts is proposed by [16], but it cannot be applied easily
as the multi-dimensional holomorphic embedding method is
required.

In this case, linear models are highly required for higher
efficiency, strong duality and better accuracy in case of reverse
power flow. A linear BFM with line shunts (LBFS) is proposed
in [17] to replace BFMS considering the effect of reverse
power flow, but LBFS shows relatively large errors in branch
flow as it regards apparent power flow as current magnitude.
Thus, we propose a modified linear Distflow model with
line shunts (LinDistS) in this brief with a decent calculation
accuracy to address model errors caused by the capacitive
susceptance of line shunts. The main contributions are sum-
marized as follows:

• LinDistS is proposed to address model errors brought by
“charging effects” of line shunts. Its superiority lies in
preserving the structure of the original LinDist model
with a modified factor added in the voltage drop equa-
tion. The error of voltage component in the lineariza-
tion process is analyzed, which shows that the error
mainly depends on the squared magnitude of voltage
difference between neighboring nodes. Simulation results
exhibit LinDistS’s enhanced calculation efficiency than
non-linear models and accuracy than the original LinDist
model and other linear models.

• LinDistS is further extended to three-phase unbalanced
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systems. The strength of LinDistS lies in maintaining the
linearity, and hence the convex nature after the extension.
Case studies with comparisons of sufficient counterparts
highlight the significance of introducing line shunts into
the LinDist model in three-phase systems.

The rest of this brief is organized as follows. Section
II presents the background of Distflow model. Then, the
model formulation of LinDistS and its extensions are given
in Section III. Numerical results are provided in Section IV
and conclusions are drawn in Section V.

Fig. 1. Part of a radial distribution network with Π circuit model

II. BACKGROUND

Notations. C and R denote the set of complex numbers and
real numbers, respectively. For any n ∈ C, n∗ means its
complex conjugate. Let L denotes the set of all branches and
N denotes the set of buses of a single-phase power network.

A widely used power flow model, Distflow Model, is
proposed in [7] with the assumption of zero shunt elements,
namely ym = 0. Distflow equations are used for the calcu-
lation of single-phase radial distribution networks (shown in
Fig. 1) and have the following formulation:

S−
l + sl =

∑
S+
l =

∑
k:l→k

(S−
k + zlkℓlk) (1)

vl − vk = 2Re(z∗lkS
−
k )− |zlk|2ℓlk (2)

vlℓlk = |S+
l |2 (3)

where sl := pl+iql is the complex power injections at bus l, in
which pl, ql ∈ R denote its active and reactive part, S−

l /S+
l ∈

C is the receiving/sending end power flow at bus l, and vl =
|Vl|2 ∈ R means the squared voltage magnitude of bus l, l ∈
N . ℓlk = |Ilk|2 ∈ R is the squared current magnitude, zlk =
1/yslk := rlk + ixlk denotes the series impedance (resistance
and reactance), and ymlk := Gslk + iBslk denotes the shunt
admittance (conductance and susceptance) of line l → k ∈ L.

Linear Distflow equations (LinDist) [7] are modified from
equations (Eqs.) (1)-(3) according to following assumptions:

• The losses on both series impedance and shunt admittance
are neglected for each line.

• The shunt admittance of each line is assumed to be zero.

S−
l + sl =

∑
k:l→k

S−
k (4)

vl − vk = 2Re(z∗lkS
−
k ) (5)

A linear power flow manifold model with line shunts
(LPFS) is also proposed according to the implicit linearization
around the flat voltage profile described in [9]. The linear

approximation matrix in [9] is modified to consider nonzero
shunt elements:

Ash =

[
Re(diagym) + Re(Y ) −Im(diagym)− Im(Y )
Im(diagym)− Im(Y ) Re(diagym)− Re(Y )

]
(6)

The implicit linear manifold is described by: Ash ∗ (x −
x∗) = 02n based on the flat voltage solution: x∗ =
(1n, 0n,Re(y

m), Im(ym)). x = (|V |, θ, p, q) is the solution
of power flow manifold, and θ denotes the phase angle of
nodal voltage. The implicit linear model after the transformed
coordinate is shown as:

Ash

[
|V |2/2

θ

]
=

[
p− Re(ym)
q − Im(ym)

]
(7)

As a linear PF model, LPFS would be compared with the
proposed model in this brief.

III. MODEL FORMULATION

A. Single-phase Equivalent Model

According to Eqs. (1)-(3), we consider the Distflow equa-
tions with line shunts in complex form. As for the voltage
drop equation (2), it is difficult to form a linear mathematical
structure of Π circuit model with nonzero shunt elements. In
this case, we start the derivation in a two-bus system (Fig. 1.).

We assume ymlk = ymkl within a single branch because
the two-bus system does not have transformers. According
to the two-bus system in Fig. 1., the current through series
impedance, zlk, can be expressed as:

Ilk = I−k + Vk(y
m
lk)

∗ (8)

where Ilk denotes the current of the line l → k and I−k is the
receiving-end current at bus k. Then, the power flow through
the same impedance is:

Slk = VlI
∗
lk (9)

and the voltage at node l is the summation of voltage at another
node and the voltage drop on series impedance:

Vl = Vk + zlkIlk (10)

Take (10) and multiply each side by its complex conjugate:

|Vl|2 = VlV
∗
k + Vlz

∗
lkI

∗
lk (11)

= (Vk + zlkIlk)V
∗
k + Slkz

∗
lk (12)

= |Vk|2 + zlkIlk(V
∗
l − z∗lkI

∗
lk) + Slkz

∗
lk (13)

= |Vk|2 + 2Re(z∗lkSlk)− |zlk|2|I−k + Vk(y
m
lk)

∗|2 (14)

≥ |Vk|2 + 2Re(z∗lkSlk)− |zlk|2(|I−k |+ |Vk(y
m
lk)

∗|)2
(15)

= vk + 2Re(z∗lkSlk)− |zlk|2|I−k |2 − vk|zlk(ymlk)∗|2

− 2|zlk|2|I−k ||Vk(y
m
lk)

∗| (16)

≈ (1− |zlk(ymlk)∗|2)vk + 2Re(z∗lkSlk) (17)

= (1− |zlk(ymlk)∗|2 + 2Re(zlky
m
lk))vk + 2Re(z∗lkS

−
k )
(18)

The linear approximation of voltage drop equation can be
accessed by adopting an approximation in (15) (taking the
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lower bound of the inequality equation) and ignoring two parts,
|zlk|2|I−k |2 and 2|zlk|2|I−k ||Vky

m
lk |, in (16).

Remark 1: The approximation from (14) to (15) is achieved
with the assumption that current phasors’ angles are equal.
Taking the 33-bus system described in Section IV as an
example, this mild assumption is based on the findings that
the average angle difference, θ, between I−k and Imkl of the
whole system is around 19.36◦, and the average error between
|I−k + Imkl | and |I−k | + |Imkl | is 1.32%, , visualized in Fig. 2
(Error = 0.4% for IEEE 123-bus system).

Fig. 2. Vector graph of branch currents
Remark 2: Both |zlk|2|I−k |2 and 2|zlk|2|I−k ||Vky

m
lk | in (16)

share the mathematical nature of the product of squared
impedance magnitude and squared current magnitude. The
value of squared impedance magnitude in p.u. can be neglected
compared with the squared voltage magnitude in p.u, thus
these two parts can be ignored in the linear approximation.

With regard to the power balance equation (1), power
injections on shunts at both sides should be considered. The
linear approximation of power balance equation is achieved
by neglecting the losses on series admittance, zlkℓlk. Then the
formulation of LinDist with line shunts (LinDistS) is shown
as follows according to the Π circuit model in Fig. 1.

S−
l + sl =

∑
k:l→k

(S−
k + (vk + vl)(y

m
lk)

∗) (19)

vl − γ∗
lk ∗ vk = 2Re(z∗lkS

−
k ) (20)

γ∗
lk = (1− |zlk|2|ymlk |2 + 2Re(zlky

m
lk)) (21)

Note that LinDistS shares the similar mathematical structure
of LinDist with a fixed factor, γ∗

lk, to modify the node-branch
matrix in the voltage drop equation.

B. Error Analysis for Voltage Component in Linearization

The quantitative analysis for the linearization error of volt-
age magnitude in the voltage drop equation, eqs. (11)-(18), is
provided. As for the branch flow balance equation (19), the
error of ignoring power loss on series impedance is widely
discussed by previous studies [18].

The nonlinear (real) and linear squared voltage magnitude
at bus l are presented as follows (bus l and bus k are the two
ends of a branch):

|V R
l |2 = |Vk|2 + 2Re(z∗lkSlk)− |zlk|2|I−k + Vk(y

m
lk)

∗|2
(22)

|V L
l |2 = (1− |zlk(ymlk)∗|2)|Vk|2 + 2Re(z∗lkSlk) (23)

Therefore, the linearization error evl can be expressed as:

evl = [|V L
l |2 − |V R

l |2] (24)

= [−|zlk(ymlk)∗|2|Vk|2 + |zlk|2|I−k + Vk(y
m
lk)

∗|2] (25)

= [−|zlk(ymlk)∗|2|Vk|2 + |zlk|2|I∗lk|2] (26)

= [−|zlk(ymlk)∗|2|Vk|2 + |Vl − Vk|2] (27)

where [...] represents the absolute sign. Notice that the product
of squared magnitude of series impedance and shunt admit-
tance in p.u. value is small. For example, the largest value
is 2.02 × 10−5 for 33-bus system, and |zlk(ymlk)∗|2|Vk|2 =
2.23×10−5 can be ignored even if Vk reaches the upper bound,
1.05 p.u. Thus, the linearization error can be approximated as:

evl ≈ [|Vl − Vk|2] (28)

which is a quadratic term representing the influence of V on
the losses. As shown in case studies, because the squared
magnitude of voltage difference in distribution networks is
normally small due to the local reactive balance and loss
reduction [18], the linearization error can be acceptable.

C. Extension to Three-phase Unbalanced Case

For three-phase systems, the Krichhoff’s voltage law, Eq.
(10), is rewritten as:

Ṽl = Ṽk + zabclk Ĩlk (29)

where Ṽl := [V a
l , V

b
l , V

c
l ]

T ∈ C3×1, Ĩlk := [Ialk, I
b
lk, I

c
lk]

T ∈
C3×1 and zabclk ∈ C3×3 is the total line series impedance
matrix [19]. The branch current through the line impedance
is:

Ĩ∗lk = S̃lk ⊘ Ṽl (30)

where ⊙ and ⊘ are the element wise product and division,
respectively.

Take (29) and multiply each side by its complex conjugate:

Ṽl ⊙ Ṽ ∗
l = Ṽl ⊙ Ṽ ∗

k + (zabclk )∗Ĩ∗lk ⊙ Ṽl (31)

ṽl = (Ṽk + zabclk Ĩlk)⊙ Ṽ ∗
k + z̃∗lkS̃lk (32)

= Ṽk ⊙ Ṽ ∗
k + z̃∗lkS̃lk + z̃lkS̃

∗
lk − [|zabclk Ĩlk|⊗2] (33)

= ṽk + z̃∗lkS̃lk + z̃lkS̃
∗
lk − [|zabclk (Ĩ−k + (ỹmlk)

∗⊙
Ṽk)|⊗2] (34)

≥ ṽk + z̃∗lkS̃lk + z̃lkS̃
∗
lk − [(|zabclk Ĩ−k |+ |zabclk (ỹmlk)

∗

⊙ Ṽk|)⊗2] (35)

≈ (1− |z̃∗lk(ỹmlk)∗|⊗2)⊙ ṽk + z̃∗lkS̃lk + z̃lkS̃
∗
lk (36)

= (1− |z̃∗lk(ỹmlk)∗|⊗2 + z̃∗lk(ỹ
m
lk)

∗ + z̃lkỹ
m
lk)⊙ ṽk

+ z̃∗lkS̃
−
k + z̃lkS̃

−∗
k (37)

where ṽl := [|V a
l |2, |V b

l |2, |V c
l |2]T ∈ C3×1, ỹmlk ∈ C3×1

means the phase shunt admittance, obtained from diagonal
terms of the admittance matrix, and [| . . . |⊗2] denotes the
squared element-wise magnitude, like ṽl. z̃∗lk := α ⊙ zabclk ∈
C3×3. According to the nearly balanced voltages for three-
phase buses [10], α is defined as:

α =

 1 e−j2π/3 ej2π/3

ej2π/3 1 e−j2π/3

e−j2π/3 ej2π/3 1

 (38)

The approximation methods adopted in Eqs. (31)-(37) are
similar to the single-phase version, Eqs. (11)-(18), including
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Remark 1 & 2. Together with the power balance equation, the
LinDistS for three-phase systems is shown as:

S̃−
l + s̃l =

∑
k:l→k

(S̃−
k + (ỹmlk)

∗ ⊙ (ṽk + ṽl)) (39)

ṽl − γ̃∗
lk ⊙ ṽk = z̃∗lkS̃

−
k + z̃lkS̃

−∗
k (40)

γ̃∗
lk = 1− |z̃∗lk(ỹmlk)∗|⊗2 + z̃∗lk(ỹ

m
lk)

∗ + z̃lkỹ
m
lk (41)

Then, the three-phase wye-connected power load can be
described as:

p̃ZIP
l = p̃l(apṽl + bpṽl/2 + bp/2 + cp) (42)

q̃ZIP
l = q̃l(aq ṽl + bq ṽl/2 + bq/2 + cq) (43)

A linear approximation of constant current loads, bp
√
vl, (the

same for reactive part) is implemented in the ZIP load model
by defining v = 1 + ∆v and neglecting high order terms of
Taylor series around zero: bp

√
vl = bp

√
1 + ∆v ≈ bp(1 +

∆v
2 ) = bp(

vl+1
2 ). According to [19], the approximated wye-

connected load of delta-connected load can be obtained: sal
sbl
scl

 =
1√
3

 e−
jπ
6 0 −e−

j5π
6

−e−
j5π
6 e−

jπ
6 0

0 −e−
j5π
6 e−

jπ
6


 sabl

sbcl
scal


(44)

Equations (39)-(43) form the linear Distflow model with line
shunts for unbalanced three-phase systems.

IV. NUMERICAL RESULTS

We tested the proposed models in four radial distribution
systems, whose modifications are shown as follows:

• The 18-bus system, 33-bus system and 69-bus system:
Test systems are modified with the consideration of
nonzero shunt admittance: the shunt conductance is the
same for the whole system, Gs = 0.0005 p.u; the shunt
susceptance, Bs, is 1/4 of the series impedance magnitude
in the same branch.

• IEEE 123-bus system (short as case123): The value of
line shunt admittance is five times larger than that of
the original system to replace the overhead lines with
underground cables [20]. The original system is modified
according to the system description in [10], which is used
for three-phase model analysis. In the single-phase anal-
ysis, it is transferred into a single-phase system through
the positive sequence equivalent and the application of
Kron’s reduction in case neutral is also present.

The test systems are expanded to 100 scenarios with
randomly different load levels (including light, normal and
heavy conditions) to verify the calculating performance in
large scale PDS. The computation error is calculated as
ϵ = |Test−Real|/Real (Real is solved from ACPF).

Four linear models are introduced to test LinDistS’s perfor-
mance: (i) LBFS from [17]; (ii) LPFS from [9]; (iii) A linear
branch flow model (LBFMS) is modified through ignoring
squared branch current terms, ℓjk, in [14]; (iv) A linear load
flow model (LLFS) is extended to consider line shunts through
the modification of the admittance matrix in [21].

TABLE I
ERROR OF NODAL VOLTAGE MAGNITUDE (%)

Test Models Test Indices Case18 Case33 Case69 Case123

LinDist V ϵ 1.23 2.40 1.10 0.32
V ϵmax 3.16 5.50 2.23 0.69

LinDistS V ϵ 0.07 0.09 0.08 0.05
V ϵmax 0.29 0.18 0.23 0.07

LPFS V ϵ 0.11 0.19 0.14 0.09
V ϵmax 1.63 2.38 1.92 0.21

LBFMS V ϵ 0.37 0.58 0.42 0.29
V ϵmax 1.17 2.39 1.50 0.43

LLFS V ϵ 0.06 0.08 0.09 0.08
V ϵmax 0.18 0.21 0.26 0.12

LBFS V ϵ 0.76 1.31 0.71 0.24
V ϵmax 1.79 3.02 2.16 1.05

TABLE II
AVERAGE ERROR OF BRANCH FLOW (%)

Test Models Test Indices Case18 Case33 Case69 Case123

LinDist

Pϵ 3.01 1.67 2.77 1.46
Qϵ 36.17 69.63 44.53 39.14
Iϵ 20.92 30.36 26.08 10.67

Pϵloss 24.80 33.93 25.37 17.23

LinDistS

Pϵ 3.01 1.67 2.77 1.46
Qϵ 13.79 18.89 17.10 9.43
Iϵ 10.02 11.42 10.40 6.12

Pϵloss 10.33 10.45 10.74 7.37

LPFS

Pϵ 2.98 1.73 2.70 1.54
Qϵ 11.85 17.45 19.31 8.49
Iϵ 9.29 10.82 9.89 6.14

Pϵloss 11.76 8.76 15.73 8.61

LBFMS

Pϵ 3.01 1.67 2.77 1.47
Qϵ 15.93 16.74 23.06 9.21
Iϵ 10.72 9.36 9.79 6.06

Pϵloss 10.47 9.17 10.51 6.92

LLFS

Pϵ 3.11 1.72 2.73 1.45
Qϵ 13.37 19.18 21.65 12.18
Iϵ 8.24 11.82 11.94 7.63

Pϵloss 9.86 12.77 13.46 10.32

LBFS Iϵ 19.43 16.81 18.17 8.38
Pϵloss 21.25 18.13 22.96 14.59

TABLE III
COMPUTING TIME COMPARISON OF ALL SCENARIOS(S)

Test Models Case18 Case33 Case69 Case123
ACPF 9.347 15.982 21.683 40.579
BFMS 3.182 4.801 5.735 11.594
LBFS 1.232 1.437 3.601 5.799

LinDistS 1.310 1.633 3.694 6.003

TABLE IV
SIMULATION RESULTS OF THREE-PHASE 123-BUS SYSTEM (%)

Test Models V Pϵ Qϵ Pϵloss Time(s)
FBS ∼ ∼ ∼ ∼ 69.13
LPF 0.28 1.38 27.89 15.87 10.649

LLFSmo 0.12 2.17 10.32 11.24 12.006
LinDistS 0.07 1.38 7.85 7.13 11.396

According to Table I, LinDistS shows a 80% improve-
ment than LinDist in accuracy of nodal voltage magnitude,
which is highly required in large PDS. LinDistS has a better
performance compared with other linear models. Both LPFS
and LBFMS modify the power flow with line parameters in
the voltage drop equation, which might affect the accuracy
of voltage magnitude. The 33-bus system has long feeders,
thus large value of series impedance and shunt admittance
magnitude, resulting in a higher error. As for reactive power,
LinDistS, LPFS and LBFMS have similar errors, as shown in
Table II, and are much smaller than that of LBFS. LinDistS



5

still significantly improves the accuracy of branch current and
hence power loss compared with LinDist, and errors around
10% can be accepted as it is not so important in PDS where
line capacities are large enough, and line losses reduction is
not the major concern. The error of power loss maybe smaller
than that of current magnitude as the current error varies from
positive and negative values. LLFS shows a slightly higher
accuracy than LinDistS in voltage magnitude in case18 and
case33, but lower accuracy in power loss because of its load
flow nature. When the scale of test systems increases, LLFS’s
error of voltage magnitude is higher than that of LinDistS.

Moreover, the accuracy of LinDistS are not significantly
affected by the type of network topology and load levels, while
the error of voltage magnitude would be large (0.11% and
0.38% for 300% and 500% in case33, respectively) when the
system is at the maximum loading point. The accuracy of volt-
age magnitude is similar for different line R/X ratios, while
the exactitude of power loss decreases as the ratio increases,
for example V ϵ, P ϵloss increase from 0.12%, 9.38% (average
R/X = 0.7) to 0.14%, 13.24% (average R/X = 2.3) in the
33-bus system. According to Table III, the overall computing
time of LinDistS is nearly the same as that of LBFS (and
other linear models) because of the shared linearity. Besides,
the proposed model dramatically decreases the computing time
compared to BFMS and ACPF.

In the three-phase analysis, ZIP load parameters are set as
ap,q : bp,q : cp,q = 3 : 4 : 3. A linear power flow (LPF) model
from [10], [19] and LLFS’s three-phase extension model
modified from [22] are introduced to evaluate LinDistS’s
performance. The power injections from distributed resources
are computed by the BFM-SDP in [10], and the real power
flows and voltage magnitudes of the modified 123-bus system
are solved through the forward backward sweep algorithm
(FBS). Thus, LPF, LLFS and LinDistS are compared under
the same benchmark. Relevant results are shown in Table IV.

Note that the accuracy of LinDistS in voltage magnitude and
branch flow is improved significantly from the original linear
Distflow model (LPF) by considering line shunts in the three-
phase unbalanced system, which obeys the conclusion from
the single-phase analysis. Moreover, the calculation accuracy
of LinDistS in three-phase analysis is enhanced from that in
the single-phase analysis. For example, the calculation error of
voltage magnitude is 0.0684%, which is lower than that in the
equivalent 123-bus system with ZIP loads, 0.0902%. Besides,
LinDistS shows a higher calculation accuracy in both voltage
magnitude and power loss than LLFSmo. This highlights the
accuracy of LinDistS in three-phase unbalance systems.

V. CONCLUSION

We showed that a small change in linear Distflow equations,
by introducing a fixed factor in voltage drop equation, can
address the model errors brought by “charging effects” of
underground/submarine power cables with the consideration
of nonzero line shunts. LinDistS is structure-preserving after
the extension to there-phase unbalanced systems. Theoretical
analysis and simulation results prove its strength in calculation
accuracy and fast computing efficiency by comparing with
sufficient counterparts.

APPENDIX A
EXTENSION TO CONSIDER WEAKLY MESHED TOPOLOGY

AND ZIP LOAD MODEL

The following equation of voltage drop phasor angle differ-
ence θlk is introduced to consider weakly meshed topology:

|Vl||Vk|sinθlk = xlkPlk − rlkQlk (45)

According to [23], Eq. (45) can be linearized to:

θlk = xlkPlk − rlkQlk (46)

Furthermore, the following ZIP load model (in active and
reactive power form) is considered in the formulation of
LinDistS:

pZIP
l = pl ∗ (aph2|Vl|2 + bph|Vl|+ cp) (47)

qZIP
l = ql ∗ (aqh2|Vl|2 + bqh|Vl|+ cq) (48)

where h = 1/Vnorm = 1 for per unit representation [22]. By
using vl = |Vl|2, the ZIP load equations can be reformed as
(taking active power as an example):

pZIP
l = pl ∗ (apvl + bp

√
vl + cp) (49)

Notice the ZIP model is linear in vl except for the constant
current loads (pl ∗ bp). A linear approximation of bp

√
vl (the

same for reactive part) is implemented by defining v = 1+∆v
and neglecting high order terms of Taylor series around zero:

bp
√
vl = bp

√
1 + ∆v ≈ bp(1 +

∆v

2
) = bp(

vl + 1

2
) (50)

The error for this approximation is calculated by defining
a function, 100 × ||(√vl − (vl + 1)/2)||. For example, the
error for vl = 1.052 is around 0.12% and decreases when vl
approaches 1. Thus, the formulation of LinDistS considering
weakly-meshed topology and ZIP load model is given:∑

l:j→l

(P−
l ) + pZIP

l =
∑

k:l→k

(P−
k +

Bslk
2

(vl + vk)) (51)

∑
l:j→l

(Q−
l ) + qZIP

l =
∑

k:l→k

(Q−
k − Bslk

2
(vl + vk)) (52)

vl − γ∗
lk ∗ vk = 2(rlkP

−
k + xlkQ

−
k ) (53)

θlk = xlk(P
−
k + vk

Gslk
2

)− rlk(Q
−
k − Bslk

2
vk) (54)

where the value of pZIP
l = pl(apvl+ bpvl/2+ bp/2+ cp) (the

same equation for qZIP
l ) is negative for power load.
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