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Abstract

Most two way relay network (TWRN) half-duplex channel estimation algorithms have been developed for single path channels,

except for those in frequency domain OFDM systems. We derive a novel time-domain, blind Maximum A posteriori Probability

(MAP) estimation method for multipath estimation in TWRN OFDM systems. Since a TWRN half-duplex system is a cascade

of two/more bidirectional transmission systems, there are multiple forward and reverse, individual, as well as composite/cascade

(of two individual) channels (unlike only one channel in traditional transmission). The situation is further complicated in the

case of multipath channels. Additionally, TWRN systems suffer from having noise components at different nodes, including

colored (non-white) at the receiver terminal node. Thus most recent research works concentrate on the easier task of estimating

single-path (flat frequency) channels, that too by pilot-based, and sometimes, even by suboptimal least squares (LS) methods.

However, in this paper, forward, composite/individual mulipath channel estimators developed are semiblind (for enhanced spec-

tral efficiency), and which turn out to be nonlinear. Moreover, an unique “Factor Analysis Alternating Maximization” method

(used in psychometrics and some Machine Learning (MLe) applications, but not in signal processing, communication/TWRN

systems), is used, in a novel manner, to overcome the colored noise problem, allowing one to derive novel, closed-form, analyt-

ical expressions for reverse individual channel h estimation, (with its convergence provided), which is unavailable in existing

literature. Non-trivial Cramer Rao bounds have also been derived for these novel multipath channel estimators. Comprehensive

simulation results show the novel forward, reverse, composite and individual channel estimation methods perform much better

than the existing ones.
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Abstract— Most two way relay network (TWRN) half-duplex
channel estimation algorithms have been developed for single
path channels, except for those in frequency domain OFDM
systems. We derive a novel time-domain, blind Maximum A
posteriori Probability (MAP) estimation method for multi-
path estimation in TWRN OFDM systems. Since a TWRN
half-duplex system is a cascade of two/more bidirectional
transmission systems, there are multiple forward and reverse,
individual, as well as composite/cascade (of two individual)
channels (unlike only one channel in traditional transmission).
The situation is further complicated in the case of multipath
channels. Additionally, TWRN systems suffer from having noise
components at different nodes, including colored (non-white) at
the receiver terminal node. Thus most recent research works
concentrate on the easier task of estimating single-path (flat
frequency) channels, that too by pilot-based, and sometimes,
even by suboptimal least squares (LS) methods. However, in this
paper, forward, composite/individual mulipath channel estima-
tors developed are semiblind (for enhanced spectral efficiency),
and which turn out to be nonlinear. Moreover, an unique
“Factor Analysis Alternating Maximization” method (used in
psychometrics and some Machine Learning (MLe) applications,
but not in signal processing, communication/TWRN systems),
is used, in a novel manner, to overcome the colored noise
problem, allowing one to derive novel, closed-form, analytical
expressions for reverse individual channel h estimation, (with
its convergence provided), which is unavailable in existing
literature. Non-trivial Cramer Rao bounds have also been
derived for these novel multipath channel estimators. Com-
prehensive simulation results show the novel forward, reverse,
composite and individual channel estimation methods perform
much better than the existing ones.

I. INTRODUCTION

Advanced 5G and 6G wireless systems are required to
deliver very high data rate communications. Two-way relay
networks (TWRN) play an important part in building spec-
trally efficient communications. In TWRN amplify-forward
(AF) mode, the relay node (in between two/many termi-
nals) amplifies the faded signal it receives from the two
terminals. TWRN may thus be considered as a distributed
MIMO system, by reducing the number of transmit/receive
antennas on the source/destination nodes. Additionally, the
relay facilitates a bidirectional system, as it sends data to
both the terminals in the same timeslot, thereby improving
the spectrally efficiency and information rate. The spectral
efficiency can be further enhanced by transmitting only few
pilot subcarriers and resorting to semiblind data/channel
estimation.

This interest in TWRNs has sparked significant research
in its various aspects. Starting from joint relay and antenna
selection [1], multiple-relay network, it has been extended
to asynchronous TWRNs [2]. Advanced research has been
performed in timing-offset estimation [3], [4], carrier offset
and phase noise estimation in TWRNs [5], [6], [7]. The
research has then continued into full-duplex ones (for even

more spectrally efficient systems) [8], [9] and expanded to
relaying with Massive MIMO (MMIMO) [10] and cloud
based multi-way MIMO TWRNS [11]. Distributed beam-
forming [12], energy efficiency of millimeter-wave TWRNs
[13] and time-varying MIMO dual hop relay (though one-
directional) channel estimation [14] have also been inves-
tigated. One advantage of TWRN AF protocol is that no
signal processing is required at the relay (R) node, in that
R just amplifies its received signal signal and transmits it
to both the terminal nodes T1, T2. This results in cheaper,
reduced complexity relay components, without sacrificing
on transmission latency. However, this comes at the cost of
advanced signal processing/hardware at the receiver terminal,
as it has to semi-blindly estimate the signal (from the other
terminal), for interference cancellation (IC)), as well as
estimate the reverse channel (comprising its own channel
h to the relay R, assuming channel reciprocity) to enable
self-interference cancellation (SIC) caused by its own (self)
signal. Thus, developing low-complexity and fast TWRN
AF algorithms are still an area of significant research, to
enable superior, spectrally efficient, reception of high data
rate communications in emerging 5G/6G wireless modems.

The concatenation of two/more bidirectional transmission
systems, (in TWRN half-duplex systems), involves two/more
forward/reverse, individual/composite (cascade of two indi-
vidual) channels, which is unlike only one individual channel
in traditional transmission. This situation is particularly
very complicated in long multipath channels, which require
careful modelling and estimation of multiple (and even
coupled) parameters. A single-input, single-output (SISO)
system, with a single antenna (at the relay, as well as the
2 terminals) is considered here. This is a difficult scenario,
as multiple antennas in MIMO relays may facilitate TWRN
channel estimation [15].

An innovative time-domain model of a two-way, half-
duplex relay TWRN over a block based orthogonal division
multiple access transmission system (OFDM), in a full
multipath channel, is developed here, (as only few channel
paths have to be estimated in a time-domain method, instead
of estimating a large number of subcarriers in a frequency
domain approach [16]). Most of existing works concentrate
on single channel path/tapTWRN systems. Only few works
address multipath channel estimation in OFDM TWRN sys-
tem The alternative TWRN estimators in multipath OFDM
channels [16], [9], by neglecting all noise components, resort
to least squares (LS) methods, which will shown to be
suboptimal (see (10) below), and suffer in performance, in
comparison to the optimal ML (let alone MAP) methods,
in estimating the reverse channel. Additionally, individual
channels in [16] are estimated in the frequency domain (see
expressions in Sec. III. A. 3, and equation (38) in [16]).
This calculation may involve some scalar divisions, which
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are prone to noise enhancement at channel spectral nulls.
The contributions of the paper are:
i) Development of a novel time-domain model of a SISO,

two-way half-duplex relay network (TWRN) over a block
based orthogonal division multiple access transmission sys-
tem (OFDM), in full multipath channels, in contrast to most
existing works on (pilot based) single-path/tap (frequency
flat) channel estimation (Section II). The time-domain model
of multitude of TWRN multipath (i. e. frequency selective)
channels require appropriate signal models and estimation
techniques.

ii) Formulation of the forward, composite multipath
TWRN channels b in Section III, along with new derivation
of the prior probability density function (pdf) of multipath
composite channels, required for subsequent MAP estima-
tion.

iii) Novel blind, non-linear, (full mulipath) TWRN for-
ward composite channel (b) estimator in Section IV, along
with estimation of individual multipath channel h, g (from
composite channel b) (Section IV. A). Semiblind estimation
is achieved by using an EM algorithm (which is more
complicated than the one for single-path scalar channel [3]).

iv) Reverse channel estimation is complicated by a colored
(channel dependent) noise at the receiver terminal, as shown
in equation (10) below and [17], thereby rendering the Least
Squares (LS) estimators suboptimal. In spite of that, existing
TWRN multipath channel estimators [16], [9] still resort
to LS methods (to simplify matters), resulting in inferior
performance.

v) Though expressions for the ML based single-path,
reverse TWRN channel estimator can be derived [17], [3], it
is difficult to derive closed form expressions for MAP based
reverse channel estimation (even for single-path channels), as
seen in [5], and for full-duplex single-path TWRN networks
[8]. Our paper overcomes this problem by deriving an
unique, innovative MAP based reverse multipath channel
(a and h) estimators, using Factor Analysis Alternating
Maximization (a concept used sometimes in statistics and
machine learning, but not used in signal processing and
wireless communications), whose performance is superior
over LS methods (Section V). A closed form expression for
the reverse channel estimator is developed, and iterated using
a second EM algorithm in a novel way, and this estimator’s
convergence is proved.

v) Comprehensive and clear comparisons with existing
TWRN channel estimators (Sec. VI),

vi) Derivation of Cramer-Rao bounds for forward com-
posite channel b, and reverse channel h (Sec. VII),

vii) Simulation Results, illustrating the superior perfor-
mance of the novel estimators, over existing methods (Sec.
VIII), for varying number of subcarriers, channel length, and
varying number of OFDM blocks for all forward and reverse
independent and composite channels, along with estimating
time offsets and including CP-OFDM TWRN channels
Notations: Bold upper-case symbols A denote matrices.
Bold lower-case symbols b denote vectors. Ii is an identity
matrix of size i× i, 0j,k is a j × k-sized zero matrix. Also,
A(i : j, k : l) denotes the ith to jth rows and kth to lth
columns of the matrix A. For any vector s and matrix A,
∥s∥2A denotes sHAs. ⊗ denotes the Kronecker product.

II. SYSTEM MODEL

The TWRN considered in this paper consists of two
terminals T1, T2 and one relay node R, though extension
to multiple relays and terminals is simpleforward. Consider
a OFDM system, with s

(k)
i = [s

(k)
i (N − 1), . . . , s

(k)
i (0)]T

be the ith transmitted OFDM block’s data from kth ter-
minal; k = 1, 2 are the two terminals. (N is the discrete
Fourier transform (DFT) size). The time-domain signals
u
(k)
i := [u

(k)
i (N − 1), . . . , u

(k)
i (0)]T are obtained by taking

the inverse DFT (IDFT) of s(k)i . The ith transmitted OFDM
block symbol consists of u(k)

i , padded with a guard interval
of Z (≥ 0) zero samples (or preceded with a cyclic prefix).
The guard interval enables simple subcarrier-by-subcarrier
equalization in the frequency domain at the receiver, pro-
vided that the guard interval length is greater than or equal
to the channel delay spread L; the ith transmitted OFDM
block di is of size P = N + Z = N + L. Thus d

(k)
i =

[u(k)T

i , 01,L]
T ∈ CP . A few (pilot) subcarriers in d

(2)
i , say

7 (out of 64 in one OFDM block/symbol) subcarriers, are
assumed to be known at T1 )pilots), but others 64− 7 = 57
are unknown (blind subcarriers).

Note Extension to OFDM with cyclic-prefix(CP) can be
done, as in [18], where a CP system, after a specific signal re-
modulation (using 2 consecutive OFDM blocks in equation
(12), [18]), can be converted into a zero-padded (ZP) system
(also see equations (11) to (14), Section III.A., [18]). Thus
we consider ZP systems only here.

Define the ith OFDM block’s, P × (L + 1)-sized, trans-
mitted data matrix from Terminal k, (k = 1, 2 terminals),

D
(k)
i (P − 1) =


d
(k)
i (P − 1) 0 · · · 0

d
(k)
i (P − 2) d

(k)
i (P − 1) 0 0

. . .
0 · · · d

(k)
i (0) d

(k)
i (1)

0 · · · d
(k)
i (0)


∈ CP×(L+1), (1)

where d(k)i (n) = 0, N ≤ n ≤ P − 1. The received signal (at
relay R), P × 1-sized r̄i, (with sufficient guard interval), is

r̄i
∆

−
[ri(P − 1) ri(P − 2) · · · , ri(0)]T

= D
(1)
i (P − 1)h+D

(2)
i (P − 1)g + nr, (2)

where h = [hL hL−1 · · · h0]T is (L + 1)-path multipath
channel from T1 to R; g = [gL gL−1 · · · g0]T is (L + 1)-
path multipath channel from T2 to R, nr is the AWGN at R.
Relay R then adds another zero padding of L null subcarriers
to r̄i, and sends out a signal ri = [r̄Ti , 01,L]

T ∈ CP̃×1, P̃ =
P + L, to both the terminals T1, T2. Note that ri(n) =
0, P ≤ n ≤ P̃ − 1. Defining the data matrix (corresponding
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to ri(n)) as

D
(r)
i (P̃ − 1) =


ri(P̃ − 1) 0 · · · 0

ri(P̃ − 2) ri(P̃ − 1) 0 · · ·
. . .

0 0 · · · ri(0)


∈ C(P̃×(L+1) = Toeplitz([ri(P̃ − 1) ri(P̃ − 2) · · · 0]),
= [D̃

(1)
i (P̃ − 1)h| D̃(1)

i (P̃ )h| · · · , |D̃(1)
i (P̃ + L− 1)h]

+ [D̃
(2)
i (P̃ − 1)g| D̃(2)

i (P̃ )g| · · · D̃(2)
i (P̃ + L− 1)g]

+ [nr(P̃ − 1)|nr(P̃ ), | · · · |nr(P̃ + L− 1)], (3)

where Toeplitz(x) is a Toeplitz matrix with x as its first
column, and (defining D̃

(k)
i (n) as a P̃ × (L + 1)-sized

extension of D(k)
i (n)). Then the received signal, at terminal

T1, (from the relay R), is zi(n), given by

zi
∆

−
[zi(P̃ − 1) zi(P̃ − 2) · · · , zi(0)]T

= D
(r)
i (P̃ − 1)[hL hL−1 · · · h0]T + n1 ∈ CP̃×1, (4)

where n1 is the AWGN at T1.
Three general assumptions are made as follows:

(A1) The symbol sequence of each terminal k, s(k)(n) is
temporally white with zero mean and unit variance,
and is statistically uncorrelated with s(k)(n −m) for
m ̸= 0.

(A2) The two noise sequences w(n) are both stationary,
and temporally and spatially white with zero mean
and variance σ2.

(A3) The symbol sequences s(1)(n) and s(2)(n) are statis-
tically uncorrelated with each other, and also with the
noise sequences w(n).

Note that because the IDFT matrix is unitary, the as-
sumptions (A1) and (A3) also hold for the time-domain
sequences u(k)i (n).

III. FORMULATION OF THE FORWARD, COMPOSITE,
MULIPATH TWRN CHANNEL b

The system model, above, is further extended. Equation
(4) gives

zi = [D̃
(1)
i (P̃ − 1)h| · · · |D̃(1)

i (P̃ + L− 1)h]h

+ [D̃
(2)
i (P̃ − 1)g| · · · |D(2)

i (P̃ + L− 1)g]h

+ [ñr(P̃ − 1)| · · · |ñr(P̃ + L− 1)]h+ n1

= [D̃
(1)
i (P̃ − 1)| · · · |D̃(1)

i (P̃ + L− 1)]

h 0 0
. . .

0 0 h

 h

+ [D̃
(2)
i (P̃ − 1)| · · · | D̃(2)

i (P̃ + L− 1)]

g 0 0
. . .

0 0 g

h

+ [ñr(P̃ − 1)| | · · · |ñr(P̃ + L− 1)])h+ n1. (5)

Then defining ¯̄D
(k)
i

∆
− [D̃

(1)
i (P̃ −1)| · · · |D̃(k)

i (P̃ −1+L)] ∈
CP̃×(L+1)2 , k = 1, 2, equation (5) becomes

zi =
¯̄D
(1)
i

h 0 0
. . .

0 0 h

h+ ¯̄D
(2)
i

g 0 0
. . .

0 0 g

h+ ñ,

(6)

We finally have

zi =
¯̄D
(1)
i


hLh
hL−1h

...
h0h

+ ¯̄D
(2)
i


gLh
gL−1h

...
g0h


+ ([nr(P̃ − 1) · · · nr(P̃ + L− 1)]h+ n1),

= ¯̄D
(1)
i (h⊗ h) + ¯̄D

(2)
i (g ⊗ h) + n̄, (7)

where ⊗ is the Kronecker product. The associated composite
channel vectors, defined as ã = (h ⊗ h), b̃ = (g ⊗ h),
are both (L+ 1)2 × 1-sized vectors. n∆

− [n̄r(n) · · · n̄r(n−
L)])h+ n1 is the P̃ × 1 (overall) noise vector. However, in
equation (7), only L̄ = (2L + 1) (incidentally, the length
of the convolution of two (L + 1) sequences) columns
of ¯̄D

(k)
i , k = 1, 2 are linearly independent. The linearly

independent columns of ¯̄D
(k)
i are its 1, 2, · · · , (L+1), 2(L+

1), 3(L+1), · · · , (L+1)2-th columns. Thus we define mod-
ified data matrices D̄

(k)
i

∆
−
¯̄D
(k)
i (:, 1, 2, · · · , (L + 1), 2(L +

1), 3(L + 1), · · · , (L + 1)2). The corresponding parameters
ā/b̄ include a subset of L̄ components of ã/b̃. Moreover,
ā, is given by

ā
∆

=



1 0
L2+2L

0 1 03 10
L2+2L−5

0L 1 0L−1 1 0L−1 1 0L−1 1 0L−1 1

.

.

.


ã

= T(h ⊗ h) = (h ∗ h), (8)

where h ∗ h ∈ CL̄×1 is the linear convolution of h with h.
Note: The Kronecker product vectors ã = (h ⊗ h) and

b̃ consist of (L + 1)2 elements, each of which is a single
term, consisting of a pairwise product of elements of h/g
with h (see equation (7)). T is the transformation matrix
which sums up some elements of ã(b̃) to form a reduced
subset of L̄ elements, which is actually the convolution
ā = h ∗ h. Equation (8) thus provides a relation between ⊗
and ∗ operators. The complex valued L̄× 1 vector ā can be
expressed in terms of its magnitude and phase components
by

ā = diag(a)[ejψa ], b̄ = diag(b)[ejψb ], (9)

where a, b and ψa, ψb are the magnitudes and phases of the
composite channels a,b respectively. Then the magnitude of
equation (7) becomes

zi = D̄
(1)
i (h ∗ h) + D̄

(2)
i (g ∗ h) + (Hnr + n1)

= D̄
(1)
i a+ D̄

(2)
i b+ (Hnr + n1), (10)

where H is the Toeplitz matrix with h as its first column.
(The phases of all variables in (10), including composite
channels ā, b̄, will be dealt with separately). The overall
noise n = (Hnr + n1) then depends on the multipath
channel h, (as also in single-path channels [17]), has a non-
diagonal correlation matrix, C = (HHH + I)σ2, making
it a colored noise. The least-squares (LS) solutions, by
neglecting all noise terms, is then not equivalent to the
optimal ML estimate, and thus inadequate to solve the relay
composite channel estimation problem [17].

A. Derivation of prior pdfs of composite channels

Next, to obtain the maximum aposteriori probability
(MAP) estimate of the associated channels, the joint prior
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probability density function (pdf) of composite channels (in
(7)), has to be determined [5], [19]. Recall that in [5],
only the prior pdf of scalar (single-path) channel parameters
a = h20 and b = g0h0 needed to be determined, while
here the composite channels are convolutions b = g ∗ h,
a = h ∗ h, determining whose apriori pdfs, is considerably
more complicated. For simplicity and ease of presentation,
consider two 3 (L+ 1 = 3)-path individual channels whose
magnitudes are h = [h3, h2, h1] and g = [g3, g2, g1]
respectively (their phases will be determined separately).
Then magnitudes of composite channels a = h ∗ h =
[a1, a2, · · · , aL̄]T , b = g ∗ h = [b1, b2, · · · , bL̄]T , given by

a1 = h21, a2 = 2h1h2, a3 = 2h1h3 + h22, a4 = 2h2h3,

a5 = h23.b1 = h1g1, b2 = h2g1 + h1g2, b3 = g1h3 + g2h2

+ g3h1, b4 = g2h3 + g3h2, b5 = g3h3.

Lemma 1: The logarithm of the joint aprior pdf, f(a,b),
of the magnitudes of the composite channels a,b, is given
by

logf(a,b) = logf(a)logf(b|a) = logf(a) + log(
2b1
a1v

)

− b21
a1v

+ log(
2(b2

√
a1 − αb1)

a1v
)−

(b2
√
a1 − αb1)

2

a1v

+ log(
2(b3a1 − β̄

a1v
)− (b3a1 − β̄)2

a21v

+ log([2(b4
√
a1 −

√
a5β)/(α

2√a1v)])−(b4
√
a1

−
√
a5β)

2
/(α4a1v) + log(2b5/(a5v))−b25/(a5v). (11)

Proof: See Appendix B. The results can be easily extended
to arbitrary values of L+ 1, (channel length), as illustrated
in Appendix B. The method (in Appendix B) can be pro-
grammed on a computer for any generic value of L

Then the gradient of the log prior-pdf, ▽b[logf(b|a)], is

▽b [logf(b|a)] =


1/b1√

a1/(b2
√
a1 − αb1)

a1/(b3a1 − β̄)√
a1/(b4

√
a1 −

√
a5β)

1/b5



+


−(2b1/(a1v))[1− α

√
a1 + (

√
a5 − α2)/(a1)−

√
a5/α

3]
−(2b2/v)[1− (α/a21) + (a5/(α

4a1))]
−2b3/(a1v)
−2b4/(a1v)
−2b5/(a1v)

 ,
(12)

IV. DERIVATION OF NOVEL BLIND, FULL MULIPATH
TWRN FORWARD, COMPOSITE CHANNEL (b) Non-Linear

ESTIMATOR

Defining z̄i
∆
− [zi − D̄

(1)
i a] = D̄

(2)
i b + n. First, we assume

that the composite channel parameter a = (h ∗ h) is known
from the last iteration, from which h can be determined (by
deconvolution), or as in Appendix A. Then H is formed
and used to compute the noise correlation matrix C. Also,
terminal T1 knows its own transmitted data D̄

(1)
i . Thus z̄i

can be computed. MAP estimation of the composite channel
b requires the aposteriori pdf of b, (given data z̄i, and a

(from last iteration)). This is given by

f(b|z̄i,a) =
f(z̄i|b,a)f(b|a)

f(zi|a)

=
e−

1
2 [z̄i−D̄

(2)
i b]HC−1[z̄i−D̄

(2)
i b] × f(b|a)

f(zi|a)
(13)

The aposteriori pdf, f(b|z̄i,a), is then maximized with
respect to (w.r.t) b, to find MAP estimate [20]- [26]. This is
equivalent to maximizing L∆

− loge(f(z̄i|b,a)f(b|a)) w.r.t
b. Then

L = −1

2
[z̄i − D̄

(2)
i b]HC−1[z̄i − D̄

(2)
i b] + log(f(b|a)),

(14)

with log(f(b|a)) given in (11). However, maximizing (14),
at terminal T1, with respect to the composite channel param-
eter diag(b), also requires knowledge of D̄

(2)
i , ith OFDM

data block transmitted from other terminal T2 to R. Since
data D̄

(2)
i is unknown at T1 [27]- [29], an Expectation-

Maximization (EM) algorithm is applied to the likelihood
function L (in (14). An EM algorithm is used for TWRN
relay channel estimation in [3], but only single path/tap
channels are considered, which simplifies the situation con-
siderably. Moreover, [3] does not exploit the MAP optimality
criterion. Since D̄

(2)
i is unknown at T1, the conditional ex-

pectation of the likelihood function (14) (over the unknown
data D̄

(2)
i , given z̄i), i. e. the E-step in EM algorithm, is

computed,

E
D̄

(2)
i |z̄i

{L} = −1

2
E

D̄
(2)
i |z̄i

{[z̄i − D̄
(2)
i b]HC−1[z̄i − D̄

(2)
i b]}

− P̃ loge(det(C)− E
D̄

(2)
i |z̄i

{log(f(b|a)}. (15)

However,if a ML criterion based estimator is employed,
then there is no priori pdf {log(f(b|a)} term, so that its
likelihood function becomes

EML

D̄
(2)
i |z̄i

{L} = −1

2
E

D̄
(2)
i |z̄i

{[z̄i − D̄
(2)
i b]HC−1[z̄i − D̄

(2)
i b]}

− P̃ loge det(C) (16)

The 1st term of (15) is

− 1

2
([z̄Hi C−1z̄i] + bHE

D̄
(2)
i |z̄i

[D̄
(2)
i

HC−1D̄
(2)
i ]b

− 2ℜ{z̄Hi C−1E
D̄

(2)
i |z̄i

[D̄
(2)
i ]b}), (17)

where two Expectation terms, namely,
E

D̄
(2)
i |z̄i

[D̄
(2)
i

HC−1D̄
(2)
i ] and E

D̄
(2)
i |z̄i

[D̄
(2)
i ] have to

be derived, for which the required pdfs have to be
determined. We assume that the transmitted discrete
data d

(2)
i is independent, uniformly distributed, with

pdf f(d(2)i = Al) = 1
M , Al = 1, 2, · · · ,M . Then each

column c of D̄
(2)
i , denoted by [D̄(2)]c, is a P̃ -sized

column vector, with only N non-zero random entries
Al = [Al,0Al,1 · · · , Al,N−1]

H (for the lth random
experiment).

Lemma 2: Defining for the ith OFDM block’s,
Xi

∆
−
∑MN

l=1 [Al,i]L̄columns
A
B , (15) becomes

E
D̄

(2)
i
{L} = z̄Hi C−1z̄i − 2ℜ{z̄Hi C−1Xb}

+ (
B

A
)bH(

MN∑
l=1

[XC−1XH ])b+ other terms. (18)
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Proof: See Appendix C.
Obviously, minimizing E

D̄
(2)
i
{L} involves maximizing

2ℜ{z̄Hi C−1Xb}, the 2nd term in (18). {z̄Hi C−1Xb} has
the maximum value, when it is real (i. e. does not have any
imaginary component), which then gives 2ℜ{z̄Hi C−1X}b =
2∥z̄Hi C−1Xdiag(b)]. Then the term 2ℜ{z̄Hi C−1Xb} in
(18) can be re-written as

2ℜ{z̄Hi C−1Xb} = 2ℜ{z̄Hi C−1Xdiag(b)[ejψb ]}, (19)

where [ejψb ] is a L̃× 1 vector. By estimating ψb as

ψb = −∠z̄Hi C−1X, (20)

we have

2ℜ{z̄Hi C−1Xb} = 2ℜ{z̄Hi C−1Xdiag(b)[ejψb ]}
= 2∥z̄Hi C−1Xdiag(b)∥. (21)

With the choice of ψb in (20), A becomes

A = exp−
1
2

∑L̄
l=1[z̄i−Alb]

HC−1[z̄i−Alb]

= exp−
1
2

∑L̄
l=1[∥z̄

H
i ∥2

C−1+2ℜ{z̄H
i C−1Xb}+∥bHX∥2

C−1 ]

= exp−
1
2

∑L̄
l=1[∥z̄

H
i ∥2

C−1+2∥z̄H
i C−1Xdiag(b)∥+∥bHX]∥2

C−1 ]

B =

MN∑
t=1

[exp−
1
2 [∥z̄

H
i ∥2

C−1+2∥z̄H
i C−1Xdiag(b)∥+∥bHX]∥2

C−1 ]]L̄,

X =

MN∑
l=1

Al
A

B
(22)

Then both A and B are real and positive.
It is to be noted that Hermitian, non-negative definite noise

correlation matrix C has non-negative (possibly positive)
eigen-values {λi}’s; det (C) =

∏
k λk, λk −C′s kth eigen-

value, thus its determinant is also non-negative ( possibly
positive). Thus, C permits a Cholesky decomposition C =
CTC

H
T , CT being the Cholesky factor. Now, ψb (in equation

(20) can be re-written as

ψb = −∠z̄Hi C−1X. (23)

Using trace operator’s properties, a = trace(a), a :
scalar, trace(AB) = trace(BA), and applying (23), (22),
the 3rd term in (18) is

MN∑
l=1

trace{bH [AlC
−1AH

l ]b}

=
Ā

B

MN∑
l=1

trace{∥diag(b)2Al(C
H
T )−1∥2}, (24)

where Ā = A(e∥z
H
i C−1Al∥2

).
The gradient of the log of prior-pdf, ▽b[logf(b|a)], in

(12), has reciprocal coefficients of {1/bi} in the first term
on its RHS, and coefficients of its linear term bi in the 2nd
term on its RH Using matrix identities ∂trace(AX)

∂X = A,
∂|X|
∂X = |X|X−1, (∂XHAX

∂X) = 2AX (for Hermitian A), [30].

Differentiation of (18), with respect to the parameter b gives

∂E
D̄

(2)
i
{L}

∂b
= 2

A

B

MN∑
l=1

[AH
l C−1Alb− (|z̄Hi AlC

−1|)]

+


1/b1√

a1/(b2
√
a1 − αb1)

a1/(b3a1 − β̄)√
a1/(b4

√
a1 −

√
a5β)

1/b5



+


−(2b1/(a1v))[1− α

√
a1 + (

√
a5 − α2)/(a1)−

√
a5/α

3]
−(2b2/v)[1− (α/a21) + (a5/(α

4a1))]
−2b3/(a1v)
−2b4/(a1v)
−2b5/(a1v)

 ,
(25)

which reduces to

∂E{L}
∂b

= 2
A

B

MN∑
l=1

[AH
l C−1Alb− (|z̄Hi AlC

−1|)] + F
1

b
+Gb,

F = diag(1,
√
a1/[

√
a1 − α(b

(l−1)
1 /b

(l−1)
2 )],

a1/[a1 − (β̄/b
(l−1)
3 )],

√
a1/[

√
a1 − (

√
a5β/b

(l−1)
4 )], 1],

G = diag(−(2/(a1v))[1− α
√
a1 + (

√
a5 − α2)/(a1)−√

a5/α
3],−(2/v)[1− (α/a21) + (a5/(α

4a1))],−2/(a1v),

− 2/(a1v)− 2/(a1v)), (26)

where the superscript (l−1) refers to the earlier (l − 1) EM
iteration.

Putting
∂E

D̃
(2)
i

{L}

∂|b̄| = 0, we need to solve the equation
(below) for estimating the channel magnitude b,

W(b(l).)2 +Bb(l) +D(l) = 0,

W = 2
A

B

MN∑
l=1

[AH
l C−1Al] +G,

B = −A
B

MN∑
l=1

(|z̄Hi AlC
−1|)

D = F. (27)

Equation (27) is a matrix quadratic, non-linear equation,
unlike linear MMSE or LS algorithms, typically used in one-
way single channel estimation. The reciprocal coefficients of
{1/bi} in ▽b[logf(b|a)], in its 1st term in RHS of (12),
gives rise to the quadratic coefficients of b in (27) and
coefficients of its linear term bi in the 2nd term on its RHS.
The estimate of composite channel magnitude b is given
by that solution of (27) that gives non-negative entries of b
(since b is the magnitude of the forward composite channel
vector)

b = (2W)−1[−B+ (B2 − 4WD)1/2],

ψb = −∠z̄Hi C−1X (28)

(.)1/2 is the matrix square root operator.
Note: Multipath channel estimation (equation (16) [16],

equation (40) [9]) uses LS methods, by neglecting all noise
terms. It is different from MAP or even ML method, (which
uses the noise correlation matrix C).
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A. Estimation of Individual Channels from Composite
Channel Estimation

In addition to estimation of composite channels a,b at
terminals T1, T2, individual channels h and g estimation
may be needed for beamforming, power allocation at the
relay node and the 2 terminals [17], [16], [5], to obtain
more efficient directional transmission between relay node
R and T1, T2. Let us start with 3(L + 1 = 3) channels
whose magnitudes are h = [h3, h2, h1] and g = [g3, g2, g1]
respectively (their phases will be determined separately).
Then the individual channel h can be reconstructed from
a by time-domain deconvolution as

h1 =
√
a1, h2 =

a2
2h1

=
a2

2
√
a1
, h3 =

√
a5 (29)

Similarly, L = 4, then h,a are 5 × 1 and
(L̄ = 9) × 1-sized vectors. Then h is obtained
from a by, h = [

√
a1, a2/(2

√
a1), (a4 −

a8/(2
√
aL̄))/a2, a8/(2

√
aL̄),

√
aL̄]

T . From the other
composite channel b = g ∗ h = [b1b2 · · · bL̄], individual
channel g is reconstructed by

g1 = b1/h1 = b1/
√
a1, g3 = b5/

√
a5

g2 = (b2
√
a1 − αb1)/a1, α

∆

−
(2a4 − a2)/(2

√
a5), (30)

Extension to generic L multipath channels is given at the
end of Appendix A.

V. ESTIMATION OF REVERSE CHANNEL PARAMETER a

Reverse channel estimation is complicated by a colored
(channel dependent) noise at the receiver terminal, as shown
in equation (10) and [17], thereby rendering the LS es-
timator ineffective. Though expressions for the ML based
single-path, reverse channel estimator can be derived [17],
[3], it is difficult to derive closed form expressions for
MAP based reverse channel estimation (even for single-path
channels), as noted in [5], and for full-duplex single-path
TWRN networks [8]. Our paper overcomes this problem
by deriving an unique, innovative MAP based multipath,
reverse channel (a and h) estimators, using Factor Analysis
(a concept used sometimes in statistics and machine learning,
but not used in signal processing and wireless communica-
tions). Factor Analysis allows us to convert the associated
difficult maximum likelihood (ML) problem, into a tractable
likelihood function, which can be maximized analytically.

From (7), we have, for the lth (received) OFDM block,

z̃l
∆

−
[zl − D̃

(2)
l b] = D̃

(1)
l a

+ ([nr(n) · · · nr(n− L)]h+ n1,l, (31)

which can be re-written as

z̃l = ATd
(1)
l +Hnr,l + n1,l, (32)

H and AT are the Toeplitz matrices constructed from h and
a respectively. Extending (equation (14) in [33]), we have,

for S = 3 OFDM blocks in a time-invariant channel,

z̃1z̃2
z̃3

 = diag(AT , AT , AT )

d
(1)
1

d
(1)
2

d
(1)
3


+ diag(H,H,H)

nr1nr2
nr3

+

n1

n2

n3

 ,
= diag(AT , AT , AT )

d
(1)
1

d
(1)
2

d
(1)
3

+

 n̄1

n̄2

n̄3.

 (33)

n̄l = Hnr,l+nl is the total noise, where the first noise term
Hnr,l is still Gaussian (as a filtered Gaussian noise remains
Gaussian [19]), but colored (non-white). Thus, n̄l is a Gaus-
sian, colored noise. Since E{d(1)

l } = 0, E{d(1)
l (d

(1)
m )H} =

δ(l−m), and E{(nr)l} = 0, E{(nr)l((nr)m)H} = σ2δ(l−
m), (and similarly for noise sequence nl). The mean and
covariance matrix of zl are

z̃l = ATd
(1)
l +Hnr,l + n1,l,

µz̃ = 0

Cov(z̃l) = HE{nrnHr }HH +ATE{d(1)
l d

(1)
l

H
}AH

T

+ E{(n1ln1l
H)} = σ2(HHH + I) +ATA

H
T = C̃. (34)

C̃ is the covariance matrix here (different from C in equation
(14), Sec. IV). Suppose at this stage, a and its Toeplitz
extension AT are known from the last (l − 1)th iteration.
Then,

Ĥ = maxHL(H, Â)
∆

−

S∑
l=1

log(p(z̃l|H,A))

=

S∑
l=1

(z̃l − µz̃)
H(C̃)−1(z̃l − µz̃)(2π)

−P̄ /2|det(C̃)|− 1
2 .

(35)

Using (34), we have

maxHL(H,A) =

S∑
l=1

([z̃Hl ](C̃)−1[z̃l]
H)

(2π)−P̄ /2|det(C̃)|− 1
2 , C̃ = σ2(I+HHH) +E,E = AAH .

(36)

However, maximizing L(H, Â) is difficult, for which there
is no known method, see [20].

It is here, that a technique called “Factor Analysis” (used
in machine learning for separating mixture of distributions
[31], [32], and very recently in speech and signal processing
[33]), comes to the rescue. The received signal (observation
vector) z̃l can be viewed as filtering white nr through
the unknown H factor, (along with other factors) in the
factor analysis model (32). Thus, nr can be considered as
a latent/hidden variable, which generates filtered Hnr (the
2nd term in equation (32). Since, Hnr, has non-diagonal
covariance matrix, it is correlated, almost signal-like. Re-
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writing (36),

L(H, Ê) =

S∑
l=1

log(p(z̃l|H,E)) =

S∑
l=1

log(
∑
nr

p(z̃l,nr;H,E))

=

S∑
l=1

log(
∑
nr

f(nr|z̃l)×
p(z̃l,nr;H,E)

f(nr|z̃l)
)

=

S∑
l=1

log(Enr|z̃l
{p(z̃l,nr;H,E)

f(nr|z̃l)
}), (37)

by multiplying both numerator and denominator by f(nr|z̃l).
Using Jensen’s in-equality for concave log function, i. e.
log(E{X}) ≥ E{log(X)} , we have

L(H,A) ≥
S∑
l=1

Enr|z̃l
{log(p(z̃l|nr;H,E)f(nr|z̃l)

f(nr|z̃l)
)}

=

S∑
l=1

∑
nr

f(nr|z̃l)× log(p(z̃l|nr;H,E). (38)

This reduces to

≥
S∑
l=1

Enr|z̃l
{log(p(z̃l|nr;H, Ê)} =⇒ maxHL(H,E)

= maxH [maxf(nr|z̃l) [Enr|z̃l

S∑
l=1

{log(p(z̃l|nr;H,E)}]],

(39)

which falls within the category of EM algorithms, with the
last equation in (39), encompassing its E (Expectation) and
M (Maximization) steps. Maximization of L, over the pdf
f(nr|z̃l), followed by maximization over H, are carried
out in an alternating fashion, as in [33]. This requires
that the pdf p(z̃l|nr) be determined first, after which its
Expectation (over the hidden variable nr|z̃l) is computed
in (39). To compute (39), the conditional pdfs, f(nr|z̃l)
and p(z̃l|nr;H,E), have to be determined. The conditional
random variables (nr|z̃l) and (z̃l|n) are both Gaussian
distributed, with pdfs f(nr|z̃l) ∼ N(µnr|z̃l

, [Cov(nr|z̃l)])
and p(z̃l|nr) ∼ N(µz̃l|nr

, Cov(z̃l|nr) respectively. Using
z̃l = H(nr)l +A

(k−1)
T d

(1)
l + (n)l (from equation (34)), we

have

Lemma 3

The conditional means and covariances of the pdfs
p(z̃l|nr;H,A) and f(nr|z̃l) are given by

µz̃l|nr
= Hnr, Cov(z̃l|nr) = σ2I (40)

µnr|z̃l
= σ2HH(C̃)−1(z̃l),

Cov(nr|z̃l) = σ2[I− σ2HH [C̃]−1H]. (41)

Proof: See Appendix D.

Continuing from (39) and employing Lemma 3, it follows

S∑
l=1

E{log(p(z̃l|nr;H,A)}

=

S∑
l=1

En|z̃l
[−log(2π)−P̃ /2 − log(det(Cov(z̃l|nr))−

1
2 )

− 1

2
(z̃l − µz̃l|nr

)H(Cov(z̃l|nr))−1(z̃l − µz̃l|nr
)],

=

S∑
l=1

E[−log(2π)−P̃ /2 − log(det(σ2I)−
1
2 )−

1

2
(z̃l −Hnr)

H 1

σ2
(z̃l −Hnr)], (42)

=
1

2

S∑
l=1

[E(
z̃Hl z̃l
σ2

)− (E[nHr ]HH z̃l)

σ2
− E(

z̃Hl Hnr
σ2

)

+ E(
(nHr HHHnr

σ2
)] + other terms. (43)

Then using a = trace(a), a : scalar, trace(AB) =
trace(BA), equation (43) gives the log-likelihood (for kth
iteration) as

L =
1

2

S∑
l=1

trace[Enr|z̃l,(
z̃Hl z̃l
σ2

)−
Enr|z̃l

(nHr )HH z̃l

σ2

−
z̃Hl HEnr|z̃l

(nr)

σ2
+

(HHH)Enr|z̃l
(nHr nr)

σ2
]

+ other terms, (44)

Now, one has to maximize the likelihood function over H,
for which we take the differentiation of (44) with respect
to H, and equate it to 0. This provides an estimate of
the channel parameter H matrix, (rather than the composite
channel ã vector). Using the identity , ∂(trace(ABATC))

∂A =
CAB+CHABH , (for any generic we have ,

∂Enr|z̃l
(log(L)

∂H
=

1

2

S∑
l=1

2
H

σ2
Enr|z̃l

(nHr nr)

− 2[
z̃l
σ2
Enr|z̃l

(nHr )] = 0. (45)

Finally, the estimate Ĥ ı̀s

Ĥ = (

S∑
l=1

[z̃lµ
H
nr|z̃l

])× (

S∑
l=1

[Cov(nr|z̃l) + µnr|z̃l
µHnr|z̃l

])−1,

(46)

by using E(nHr nr) = Cov(nr|z̃l) + µnr|z̃l
µHnr|z̃l

. If apriori
information about the pdf H is utilized, then the MAP
estimate of H is obtained by defining W = ∂f(h)

∂H =

(
(
∏L

i=0 hi)

(2πσ2)L+1 e
−

∑L
j=0

h2
i

2σ2 ) × T, where T is a Toeplitz
matrix with its first row given by [(σ2 − h2L), (σ

2 −
h2L−1), · · · , (σ2 − h20), 0, · · · , 0]. Then equation (46) is
modified by

Ĥ = (

S∑
l=1

[z̃lµ
H
nr|z̃l

+W]×

(

S∑
l=1

[Cov(nr|z̃l) + µnr|z̃l
µHnr|z̃l

])−1 (47)
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H is initialized by its LS estimate,

Ĥ(0) = (

S∑
l=1

[D(1)H z̃l])× (

S∑
l=1

D(1)HD(1))−1, (48)

In (46), one needs to compute substitute the values µnr|z̃l

and Cov(nr|z̃l), using equation (41) (Lemma 3). Then the
lth iteration of Ĥ(l), is computed (from its (l−1)th iteration
estimate), by

Ĥ(l) = (

S∑
l=1

σ2[z̃lz̃
H
l C̃−1H(l−1)])

× (

S∑
l=1

σ2[[I− σ2H(l−1)HC̃−1H(l−1)]

+ σ2[H(l−1)HC̃−1z̃lz̃
H
l C̃−1H(l−1)]])−1 (49)

where C̃(l−1) = σ2(I+H(l−1)H(l−1)H)+A
(l−1)
T A

(l−1)
T

H
.

The estimated channel matrix H being a Toeplitz matrix, the
individual channel h is estimated by

ĥ(l)(k) = mean(diag(H(l), k)), k = 0, 1, · · · , L, (50)

where diag(H, k) is kth sub-diagonal of H matrix
(diag(H, 0) is the main diagonal of H). The NRMSE of
ĥ, in (50) is less than than of LS estimates, Fig. 7. Then the
reverse composite channel vector a can be estimated by

â(l) = ĥ(l) ∗ ĥ(l). (51)

So this algorithm proceeds, as follows: In every lth EM
iteration, determine ĥ(l) is obtained by equation (50). Then
we estimate â(l) by (51), from which the matrix A

(l)
T is

constructed from a Toeplitz extension of â(l). These are all
used in the (l + 1)th iteration to compute H(l+1), h(l+1),
by using (49) and (50). Since fixed values of â(l) and Â

(l)
T

are used to estimate Ĥ(l+1) at (l + 1)th iteration. Ĥ(l+1) is
then fixed at its present value, and then it is used to estimate
â(l+1) and Â

(l+1)
T , and so on. Thus the above parameters

are coupled together, which has, till date, been solved by
numerical means only, as in existing literature [5], [8]. The
complete algorithm is tabulated in Table II.

A. Convergence

It can be shown that (49) converges to the optimal solution.
After processing an adequate number (S) of OFDM blocks,

Ĥ(l) → σ2[E(z̃lz̃
H
l )C̃−1H(l−1)])× (σ2[[I− σ2H(l−1)H

· C̃−1H(l−1)] + σ2[H(l−1)HC̃−1E(z̃lz̃
H
l )C̃−1H(l−1)]])−1

= (σ2[C̃C̃−1H(l−1)])× (σ2[[I− σ2H(l−1)HC̃−1H(l−1)]

+ σ2[H(l−1)HC̃−1C̃C̃−1H(l−1)]])−1

= (σ2[H(l−1)])])× [σ2I]−1 = Ĥ(l−1), (52)

by recalling that E(z̃lz̃
H
l ) = C̃ (equation (34)). The above

convergence confirms the validity of the reverse channel
estimator in (49). Estimating h in this way may be less erro-
neous, than estimating (a = (h ∗h) first, and then obtaining
ĥ by de-convolving a noisy estimate of a). Equation (49)
is a non-linear equation, which is unlike linear MMSE or
LS algorithms, typically used in one-way individual channel
estimation. Recall, estimation is being done at terminal T1,
and thus knows its own transmitted data D̃

(1)
i .

TABLE I
Two Way Relay Networks (TWRN) Composite Channel Estimation

Step A. Estimation of Composite Channel b
Step A. 1 2 L-tap individual channels h = [hL hL−1 · · · h0], g =

[gL gL−1 · · · g0]. Define the magnitude of composite channels
a = (h ∗ h), b = (g ∗ h), ∗ : linear convolution.
P̃ × L̄ matrices D̃

(k)
i , k = 1, 2 are Toeplitz matrices constructed

from the transmitted data from 2 terminals Tk , L̄ = 2L+ 1.
Step A. 2 Let a be known (or, from previous iteration), From a, determine

h by deconvolution.
For example, for (L + 1) = 3 path multipath channels h,g,
the composite channel a if of length L̄ = 2L + 1 = 5. Then
h = [

√
a1, a2/(2

√
a1),

√
a2L+1)] can be easily determined. See

Appendix A for details.
Step A. 3 Construct channel matrix H as the Toeplitz matrix from h. Then

compute C = (HHH + I)σ2.
Step A. 4 Moreover, Terminal T1 knows its own transmitted data D̃

(1)
i .

Step A. 5 Define: z̄i∆− [zi − D̃
(1)
i a] = D̃

(2)
i b+ n(n)

Let Al be the P̄ × L̄-sized alphabet matrix at lth
computer experiment, corresponding to D̃

(2)
i (ith OFDM

block transmitted block from terminal T2). Define A =∑L̄
l=1 exp

− 1
2
[∥z̄Hi ∥2

C−1+2∥z̄Hi C−1Xdiag(b)∥+∥bHX]∥2
C−1 ]

, B =∑MN

t=1 [exp
− 1

2
[∥z̄Hi ∥2

C−1+2∥z̄Hi C−1Xdiag(b)∥+∥bHX]∥2
C−1 ]

]L̄, X =∑MN

l=1 Al
A
B

Step A.6 Phase of composite (complex) b̄b is given by ψ
(l)
b =

−∠z̄Hi C−1X = −∠b̄(l)HAH
l C−1Al, with b̄ on RHS of

(equation above) having been computed at the last (l − 1) EM
iteration and ψb) on LHS, is the phase estimate at the current lth
EM iteration.

Step A.7 Expectation of Maximum A-posteriori (MAP) criterion {L} for
estimating composite channel b:
E

D̄
(2)
i

{L} = −trace{[z̄Hi C−1z̄i]}− trace{∥[z̄Hi C−1X[b̄]∥]}

+
∑M2L+1

l=1
Ā
B
AH
l C−1trace{∥diag(b)AH

l CT )
H∥2} +

other terms, Ā = A(e∥b̄
HAl∥

2

).
Step A.8 Differentiation of E[L] with respect to b, ∂E{L}

∂b
=

2A
B

∑MN

l=1 [AH
l C−1Alb − (|z̄Hi AlC

−1|)] + F 1
b

+ Gb.,
F and G given in equation (26). where the superscript
(l−1) refers to the earlier (l − 1) EM iteration.
∂E

D̃
(2)
i

{L}

∂b
= 2 Ā

B

∑M2L+1

l=1 AH
l C−1(CTAl)b −

2
∑ML̄

l=1

√
A
B
(|z̄Hi AlC

−1|) + F 1
b

+ Gb. F and G given
in equation (26).

Step A.9 Putting
∂E

D̃
(2)
i

{L}

∂b
to 0, equation to estimate the mag-

nitude of the composite channel b: W(b.)2 + Bb +

D = 0, W = Ā
B

∑M2L+1

l=1 AH
l C−1(CTAl) + B =

−
∑M2L+1

l=1

√
A
B
(|z̄Hi AlC

−1|)D = F (.)1/2 : matrix square
root.
Finally using Step Step A.8 , estimate b̃ = diag(ˆ̄b)ejψ̂b .

VI. COMPARISON WITH EXISTING METHODS

Our novel semiblind multipath relay estimation algorithm
is specifically compared with 1. [17], 2. [16], 3. [3], 4. [5],
5. [9].

A. Comparison with [17], [16]

[17] is a relay estimation method in single-carrier, con-
tinuous transmission (CT not block-based system with a
single path, which eases the problem considerably. In case
of multipath channels, the forward channel b is estimated
by a LS method [16], by neglecting all noise terms. The LS
method (not equivalent to ML) in this case, as the overall
noise (ñ = Hnr + n1) in (10) depends on the multipath
channel h, (as for single-path channels in [17]), making it
a colored noise. This fact makes LS solutions inadequate
to estimate the reverse relay channel a. A ML method is
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TABLE II
Two Way Relay Networks (TWRN) Cascaded Channel Estimation

Step B Estimation of Composite Channel a
Step B.1 For lth iteration, assume that a(l−1) known from (l − 1)th EM

iteration.
Step B.1 From received signal at Terminal 1, define

z̃l
∆
− [zl − D̃

(2)
l b̄] = z̃l = ATd

(1)
l +H(nr)l + (n1)l,. H and

AT are the Toeplitz matrices constructed from h and a.
Step B.2 Mean and covariance matrix of z̃l are µz̃ = 0, Cov(z̃l) =

σ2(HHH + I) +ATA
H
T = C̃

Step B.3 maxHL(H, Â) solved using Method of alternating Maximiza-
tion.

maxH [maxf(nr|z̃l) [Enr|z̃l [
S∑
l=1

{log(p(z̃l|nr,H)}]]

Maximization of L, over the pdf f(nr|z̃l), followed by maximiza-
tion over H, are carried out in an alternating fashion.
Use EM algorithm with Expectation (E) and Maximization (M)
steps.

Step B.4 Then the likelihood function is

L =
1

2

S∑
l=1

trace[Enr|z̃l,(
z̃Hl z̃l

σ2
)−

Enr|z̃l (n
H
r )HH z̃l

σ2

−
z̃Hl HEnr|z̃l (nr)

σ2
+

(HHH)Enr|z̃l (n
H
r nr)

σ2
] + ·

Step B.5 Using EM algorithm and Factor Analysis, lth iteration Ĥ(l)H ,
from its (l − 1)th iteration estimate, given by

Ĥ(l) = (
S∑
l=1

σ2[z̃lz̃
H
l C̃−1H(l−1)] +W)

× (

S∑
l=1

σ2[[I− σ2H(l−1)HC̃−1H(l−1)]

+ σ2[H(l−1)HC̃−1z̃lz̃
H
l C̃−1H(l−1)]])−1,

where W = (
(
∏L

i=0 hi)

(2πσ2)L+1 e
−

∑L
j=0

h2
i

2σ2 ) × T, where T is a

Toeplitz matrix with its first row given by [(σ2 − h2L), (σ
2 −

h2L−1), · · · , (σ
2 − h20), 0, · · · , 0].

Step B.6 H is initialized by its LS estimate,

Ĥ(0) = (

S∑
l=1

[D(1)H z̃l])× (

S∑
l=1

D(1)HD(1))−1.

Step B.7 From Toeplitz Ĥ, ĥ is obtained by averaging over its diagonal
and sub-diagonal entries.

Step B.8 For next iteration, calculate a = h ∗ h (linear convolution), and
AT is a Toeplitz extension of a.

Step B.9 Estimating h in this way is less erroneous, than estimating a =
(h∗h) first, and then obtaining ĥ by de-convolving a noisy estimate
of a.

thus used in [17] to estimate single-tap a, with enhanced
performance.

On the other hand, [16] estimates multipath channels in
an OFDM system via a time-domain method. However,
composite channels a and b are jointly estimated by a
LS method only, neglecting all noise terms, see equation
(16), [16], which is clearly sub-optimal for estimating a
in noisy situations, as overall noise is colored, depending
on individual channel h, as explained in [17], and above
paragraph. Simulations show inferior performance in noisy
multipath cascaded channels, compared to our novel method
here, but extraction of individual channel estimation is done
in equivalent frequency domain (see expressions in Sec. III.
A. 3, and equation (38) in [16])-which may lead to noise
enhancement, due to scalar divisions, at channel spectral

null frequencies); also requires some restrictions on each
channel length (along with sign ambiguity). Additionally,
[16] is an entirely pilot-data based estimation method, not
exploiting prior channel pdf as in MAP estimators, while our
novel method is blind/semi-blind, thus making it spectrally
efficient, by allowing more OFDM blocks/symbols to be
transmitted in a certain amount of time.

Note: Multipath channel estimation (equation (16) [16],
equation (40) [9]) use LS methods (not MAP or even ML
method, which uses the noise correlation matrix C in the
associated likelihood function in equation (16)).

B. Comparison with [4], [3], [2]

[4], [3] estimate a single-path/tap L + 1 = 1 TWRN
channel; the estimation is semi-blind, as much of the trans-
mitted symbols from the other terminal (except for few
pilot symbols is unknown but the method is designed for
a single path channels. The semi-blindness is achieved by
using an EM algorithm (hidden variables being the unknown
transmitted symbols from the other terminal, similar to our
approach).

Also, [3] (and [2]) considers a half-duplex single-path
TWRN h,g channels, with timing offsets and pulse-shaping
filters, using a ML method, along with optimization of pulse-
shaping filters and training sequences. In asynchronous [3],
it is assumed that the data from terminal T1 arrives at relay
R arrives earlier than from other terminal T2 by a timing
offset of τ . The value of τ may be summation of integral
multiple of symbol period and a fraction (of symbol period)
part. Equation (12) in [3] shows the received signal (at T1)
consists a term, which is the summation of few (instead
of a single, in synchronous case) data symbols transmitted
from Terminal T2, which leads to a multipath channel g.
Specifically Sec. III. B. [3] considers a rectangular pulse
truncated to 2 symbol periods, so the received signal (at
T1) consists of interference, corresponding to 2 transmitted
data symbols from T2 (denoted by sk2 , k = 1, 2) in equation
(31) [3]. This results in a L+ 1 = 2 tap multipath channel,
which is just a particular case of our generic L + 1 (for
any L) g channel. Our method can thus be easily applied to
asynchronous system, with timing offsets (though oversam-
pling may be required to handle the fractional part of timing
offset). Not only that, [3], [4], do not exploit the channel
pdf information (if available), as it is not based on MAP
optimality. Our novel method, on the other hand, employs a
MAP method for a multipath channels.

C. Comparison with [5] and [6]

: TWRN channel estimators are derived using the MAP
criterion in [5], and show improved over ML estimators in
certain cases. However, [5] deals with only single-tap/path
channels, while ours deal with multipath channels, which is
a more complicated situation in two-way cascaded channels.
These methods also suffer from another disadvantage in
that even for single-path channels, MAP based [5] does not
provide close-form expressions for the ML reverse channel
(a) estimation problem; instead the likelihood function is
maximized via (exhaustive search, in both magnitude and
phase dimensions) or suboptimal search and numerical tech-
niques [5]. While, close-form expressions can be derived
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for our novel MAP reverse multipath channel estimator (by
employing “Factor Analysis” technique).

D. Comparison with [8]

[8] estimates single-path channels, but for full duplex, AF
TWRN systems. Due to the feedback in the self interference
link, at the relay, the overall system cannot avoid being a
multipath (ISI) channel. However, the multipath weights are
all related to each other (which makes it easier), whereas
ours is a random multipath channel, with multipath tap
values uncorrelated to each other. Another problem with
[8] is that it does not provide close-form solutions for
the ML reverse channel (a) estimation problem, unlike our
novel MAP reverse channel estimator. By incorporating the
self-interference in full duplex networks, our novel method
may be extended to full duplex TWRN multipath channels.
However, this is not provided in this paper, due to brevity
(space limitations).

E. Comparison with [9]

[9] employs a EM-based method for semi-blinding esti-
mating a full-duplex TWRN OFDM multipath channel, along
with frequency offsets. However, composite channels a and
b are each estimated by a suboptimal LS method only, (see
equation (40) in [9]). The noise terms w1(n) (in equation
(9), and described above equation (11), pp. 5, [9]) is taken
as white noise (with a diagonal correlation matrix), which
is clearly sub-optimal for estimating a in noisy situations,
(because the colored noise term in (10) depends on individual
channel h, as seen in equation (10) above and in [17])). It
provides for spectrally efficient, semiblind estimation (via
EM algorithm), but, being semiblind, performs worse than
even all training-pilots-based [16].Not only that, another
disadvantage of [9] is that it does not provide methods
for individual channels h and g estimation, which may be
needed for beamforming, power allocation at the relay node
and the 2 terminals [17], [16], [5], nor does it use MAP
optimality criterion.

Ours is a time-domain, MAP based TWRN multipath
channel estimator, which works well in reduced guard in-
terval. The MAP likelihood functions, for both a and b
channels, are in the time-domain. The colored noise situa-
tion, in eqn (10) leads to a complicated likelihood function,
with noise correlation matrix C = σ2(HHH + I), which
is difficult to maximize, in estimating reverse channel a.
We overcome this problem by employing a novel “Factor
Analysis” method. The “Factor Analysis” method allows us
to transform the associated likelihood function to a simpler
form, which can be maximized analytically, see equation
(49). We also provide individual channels h and g estimation
methods.

To the best of our knowledge, Factor Analysis method has
not been employed for TWRN channel estimation before.
Even for single-path channels, MAP based [5] and [8] do not
provide close-form solutions for the ML reverse channel (a)
estimation problem; instead the likelihood function is maxi-
mized via (exhaustive search, in both channel magnitude and
phase dimensions) and numerical techniques [5].

VII. DERIVATION OF CRAMER-RAO BOUNDS (CRB) FOR
CASCADED CHANNELS IN TWRN

Derivation of Cramer Rao(CR) lower bounds (CRLB) for
forward and reverse channels is quite complicated, especially
for multipath TWRN channels.

Lemma 4: The CRLBs for forward (b) and reverse chan-
nels (H/h) are given by

CRLBb = Jb,b
−1 = (1/4)

∑
l

((||H||2 + I)σ2)

([||AH
l ||2]−1

) (53)

JH,H =
4

σ4
[E{∥µH z̃l∥2}+ E{∥Cov(nr|z̃l)H]∥2}

− E{µH z̃lCov
∗(nr|z̃l)H∗} − E{Cov(nr|z̃l)Hµ∗z̃∗l },

(54)

from which Jh,h is easily obtained.
Proof: See Appendix E.

VIII. SIMULATION RESULTS

The channels from both terminals Tj , j = 1, 2 to the relay
R, are assumed to have five or three taps, each represented
by a symmetric complex Gaussian random variable with
zero mean and unit variance. The novel algorithms for MAP
multi-path TWRN channel estimators are compared existing
methods. Their performances have been compared in terms
of i) varying number of subcarriers (size) of each OFDM
block, ii) varying SNRs, iii) varying length of multipath
channels (L + 1), iv) number of OFDM blocks used in
estimation. The CRBs have been derived for both forward
(and) reverse composite/individual channels, used as a lower
bound benchmark of performance for all estimators.

The data signals {s(k)i (n)} are binary phase shift keying
(BPSK)/quadrature phase shift keying (QPSK) modulated,
with a single transmit/receive antenna at relay R and at each
of 2 terminals T1, T2. Few (T̄ ) of the transmitted subcarriers
{d(k)i (n)}, in each OFDM block, are known at the receiver
(pilots), the rest are unknown data subcarriers. Simulation
results are obtained by averaging over 100 trials; for each
computer trial, independent and identically distributed com-
plex Gaussian channel coefficients with zero mean and
unit variance (Rayleigh fading channel) are generated. The
receiver signal-to-noise ratio (SNR) is defined as SNR =
E(||y(n)−w(n)||2)

E(||w(n)||2) , (w(n) : AWGN noise); performance of
different estimators measured by normalized MSE (NRMSE)

NRMSE =
1

100

100∑
p=1


∑L
ℓ=0 ||Ch(p)(ℓ)− Ĉh

(p)
(ℓ)||2F∑L

ℓ=0 ||Ch(p)(ℓ)||2F

 ,

(55)

for any generic channel Ch. Ch could be composite chan-
nels a, b or individual channels g, h.

As mentioned earlier, multiple forward and reverse, indi-
vidual as well as composite channels estimators (for novel
semiblind, and existing training, semiblind algorithms) have
to be simulated, for performance comparisons:

i) Novel Semiblind MAP based Composite b,a (Forward
and Reverse) Multipath Channel Estimation, using EM algo-
rithm, in ZP-OFDM multipath transmission system, (denoted
by “Semiblind-EM-ChbEst” in Figs/plots)
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ii) Blind MAP channel estimation of Reverse individual
channel h and individual channel g. Factor Analysis and a
2nd EM algorithm, (denoted by “Est-ChH-Novel” and “Est-
ChG-Novel”)

iii) Novel training pilots based all composite and individ-
ual channel estimators, (denoted by “Training-Chb-Est”)

iv) Existing OFDM multipath (composite and individual)
channel estimator [16], (denoted by “Gao-Chb-Est”, “Est-
ChH-Gao” and “Est-ChG-Gao”)

v) Another existing semiblind OFDM multipath (com-
posite) channel estimator [9], (denoted by “Chak-Chb-Est”,
“Est-ChH-Chak” and “Est-ChG-Chak”)

vi) Another existing ML based semiblind single-path/tap
composite channel, with timing offsets in asynchronous
systems, [3], and compared with our novel method, (denoted
by “[4]-Timing Offset”)

vii) Simulation of cyclic-prefix (CP) based OFDM system,
viii) Simulation of CRB lower bounds of both composite

and individual channels, (denoted by “CRB-Chb” and “CRB-
HH”).

It is to be noted that only few OFDM blocks/symbols are
used here, as compared to that in [3] etc.

Fig. 1 a) considers a SISO OFDM system with 64 subcar-
riers and plots NRMSE of forward composite b estimated
by our novel method, [16], [9] in a 5 multipath channel. Of
this, only T̄ = 7 training subcarriers are employed as pilot
subcarriers; and 6 OFDM blocks are used. It is to be recalled
that even forward, composite (multipath) channel estimation
(equation (16) [16], equation (40) [9]) uses suboptimal LS
methods (not MAP or even ML estimator, which uses the
noise correlation matrix C in its associated likelihood
function in equation (16)). The associated CRB lower bounds
are plotted in Fig. 1 b). Note that our novel methods, (using
the entire received OFDM block of P̃ subcarriers, instead of
removing the ZP/CP subcarriers from the received OFDM
block, as in most existing estimators) exploit the additional
information in received signal block (even those correspond-
ing to the transmitted zero subcarriers). Fig. 2 considers
the same system with more training subcarriers (T̄ = 14),
where the performance of “Training” and “Semiblind-EM”
estimators are very close to each other. Semiblind estimators
perform well, as the channel information is still embedded
in its received OFDM blocks (which can be extracted by
advanced signal processing techniques, as we do in Section
IV). The NRMSE of the novel estimator is pretty close to
CR lower bound (for most of the SNR range). This result
holds, even for long multipath TWRN channel, which has
mostly been avoided in the existing literature.

Fig. 3 compares the performance of different forward
composite channel (b) estimators for a 32 subcarrier (for
each OFDM block) system. Figs 3 a) and b) compares the
performances, for 2, 4, 6 OFDM blocks; the performance
improves with more OFDM blocks, as expected.

And in the more difficult reverse channel (a, h) estimation
case in Figs. 4-6, the noise is correlated (see equation (10)
above). The existing multipath reverse channel (a, h) esti-
mators (equation (16) [16], equation (40) [9]) use suboptimal
LS methods, and thus their performance degrades. The novel
reverse channel estimator takes care of all correlated noise
terms and uses a MAP (enhanced from ML) criterion/cost
function. Due to the difficulty in reverse channel (a, h)

estimation, its NRMSE is higher than that of b estimator.
Simulation results are provided for varying channel length,
number of subcarriers and number of OFDM blocks used
in estimation. Fig. 5 b) shows that the NRMSE of reverse
channel estimator, using 6 blocks, is close to CRB lower
bounds. Also, individual channel g is estimated from com-
posite channel b, and individual reverse channel h (after
they have been estimated), as in Sec. V. A., and its NRMSE
also plotted in Figs. 4-6. The NRMSE of ĝ is higher than
that of the other individual channel ĥ, as ĥ is estimated
directly from the received signal, whereas estimation of ĝ,
in equation (60), involves some divisions (by noisy estimates
of other channels). Such a situation has also been witnessed
for MAP estimated single-tap channel - (see Figs. 7, 8 in
[5]).

Fig. 7 plots the NRMSE of reverse channel h vs. EM
iteration no. for SNRs of 2, 13 dB. The Factor Analysis-
EM algorithm convergences quickly. However, there is a
sharp drop in NRMSE of h vs iteration no., at low SNR
of 2dB, while there is slight drop in NRMSE (from its
initial estimate), vs iteration no., at higher SNR of 13 dB,
indicating superiority of our novel algorithms, especially in
noisy situations.

Fig. 8 compares our novel semiblind-EM channel estima-
tor with that of [3]. We consider a rectangular pulse truncated
to 2 symbol periods, so the received signal (at T1) consists
of interference, corresponding to 2 transmitted data symbols
from T2 (denoted by s

(l)
2 , l = 1, 2) in equation (31) [3]. This

results in a L+1 = 2 tap multipath channel, which is just a
particular case of our generic L+ 1-sized g channel, which
again affects composite channel b. Our estimators performs
better than ML-based estimator in [3], as we use apriori
channel pdf in our novel MAP estimator.

Fig. 9 simulates the composite and individual channel
estimators in a CP-OFDM multipath transmission system,
with similar results. Following the discussion in Note in Sec.
II, and also [18], CP-OFDM is converted into a ZP-OFDM
system, then our novel methods are applied to it. Even for
CP-OFDM system, our novel estimators perform appreciably
better than the existing ones.

IX. CONCLUSIONS

Semiblind estimation of multiple forward, reverse, indi-
vidual and composite channels in bi-directional AF TWRN
systems, continues to be a very active area of research to
deliver spectrally efficient, high data rate 6G systems. Supe-
rior reception and demodulation require non-trivial sophis-
ticated, fast IC/SIC receiver architectures. at the terminals.
The noise (including colored noise), at different relay and
terminal nodes, make LS methods [16], [9], inadequate for
demodulation. As a result, most existing works have concen-
trated on the easier task of single-path channel estimation.
These disadvantages are overcome by developing optimal
MAP estimators in this paper. Of particular importance is
the derivation of an closed-form analytical expression for
multipath reverse iterative channel estimator, via the inno-
vative Factor Analysis approach and using an Alternating
Maximization method, and whose performance is superior
to LS methods. The convergence of the reverse channel h
estimator, proved in (52) , confirms the validity of the reverse
channel estimator in (49). Estimating h in this way may be
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less erroneous, than estimating (a = (h ∗ h) first, and then
obtaining ĥ by de-convolving a noisy estimate of a). Even
for single-path channels, MAP based [5] and [8] do not
provide close-form expressions for the ML reverse channel
(a) estimation problem. Instead the likelihood function is
maximized via (exhaustive search, in both magnitude and
phase dimensions) or suboptimal numerical techniques [5],
without providing any insight into expression for the re-
verse channel estimators. Asynchronization, timing offsets
etc. particularly affect TWRN performance, as there may
be two/multiple terminal and relay nodes involved. Also
bidirectional communications complicate the situation, as the
timing offset in a timeslot affect the transmission/reception in
the next timeslot. Thus effects of asynchronization, timing
offsets have received substantial interest in existing works
[12], [2], [4], [3]; however, as discussed in Sec. VI. B., this
asynchronization can be accommodated within the generic
framework of our novel TWRN full multipath channel
estimators. Simulation results demonstrate the supremacy
of the novel estimators over existing methods. Future work
include developing time-domain method of full mulipath,
along with alleviation of phase noise and carrier offset
effects, as well as time-varying TWRN channel estimation
in advanced full-duplex (FD) TWRN and for other emerging
communication systems (with cascaded channels), e. g.,
unmanned aero vehicle (UAV)s [35], Intelligent Reflecting
Systems (IRS) [36].
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Appendix A: Reconstruction of individual channels
h,g from composite channels a,b

Let us start with 3(L+1 = 3) channels whose magnitudes
are h = [h3, h2, h1] and g = [g3, g2, g1] respectively (their
phases will be determined separately). Then a = h ∗ h =[
a1 a2 a3 a4 a5

]
, given by

a1 = h21, a2 = 2h1h2, a3 = 2h1h3 + h22,

a4 = 2h2h3, a5 = h23. (56)

Then the magnitude of the reverse composite channel is
given by a = [h ∗ h] = [a1, a2, · · · , aL̄], where hl , is
the lth channel tap magnitude of h. (the phase of h will
be dealt with later on). Then the individual channel h can
be reconstructed from a by time-domain deconvolution as

h1 =
√
a1, h2 =

a2
2h1

=
a2

2
√
a1
, h3 =

√
a5 (57)

Also, the following relationships exist,

h2 = (a4)/(2
√
a5) =

√
a3 − 2γ, γ

∆

−
√
a1a5 (58)

The 2 equations above will be used in Appendix B to derive
apriori pdfs of composite channels a,b. Similarly, L = 4,
then h,a are 5 × 1 and (L̄ = 9) × 1-sized vectors. Then
h is obtained from a by, h = [

√
a1, a2/(2

√
a1), (a4 −

a8/(2
√
aL̄))/a2, a8/(2

√
aL̄),

√
aL̄]

T Extension to generic
L multipath channels is given at the end of this section.
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The other composite channel b = g ∗ h is given by

b = [b1b2 · · · bL̄],
b1 = h1g1, b2 = h2g1 + h1g2, b3 = g1h3 + g2h2 + g3h1,

b4 = g2h3 + g3h2, b5 = g3h3. (59)

Then from b, individual channel g is reconstructed by

g1 = b1/h1 = b1/
√
a1, g3 = b5/

√
a5,

g2 = (b2
√
a1 − αb1)/a1, α

∆

−
(2a4 − a2)/(2

√
a5). (60)

The above analysis can be easily extended to any value of
L+ 1, L̄ = (2L+ 1).The first and the last (i. e. L̄)th points
of the convolution have only one term, involving one hi
coefficient (for ai) or a product higi (for bi), This allows
us to find the conditional pdfs of a1, aL̄, b1, bL̄ directly.
The second and second-last terms of the convolution are
a summation of one/two terms invloving 2 coefficients of
hi, gi (see a2, a4, b2, b4). Their pdfs are determined next.
Continuing in this way, the third and third-last of the
convolution are a summation of two or third terms, their pdfs
are next determined in the same way as L + 1 = 3, L̄ = 5
example above. This is then continued for the other points
of the convolution. This analysis holds for any arbitrary
value of L. If value of L is known apriori, the equations
for reconstructing individual channels h,g from composite
channels, can be easily determined beforehand. This method
can be programmed on a computer for a generic value of L.
Moreover, equations (56) to (60) will be used in Appendix B
to evaluate the apriori pdfs of the composite channels a, b.

Appendix B: Proof of Lemma 1: Derivation of Apriori
PDFs of composite channels a,b

Since complex h̄, ḡ are Gaussian distributed with variance
v, their magnitudes h,g are Rayleigh distributed. Then the
pdf of each component of h is fhi

(x) = 2x
v1
e−

x2

v . Then using
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(56) to (58), and using the formula for pdf of a function of
random variable, the pdf of a is

fa1(a1) = fh1(h1 =
√
a1)/(|∂a1/∂h1|)

= (2
√
a1/v)e

−a1/v/2
√
a1 = e−a1/v/v,

fa5(a5) = fh3
(h3) =

√
a5)/(|∂a5/∂h3|)

= (2
√
a5/v)e

−a5/v/2
√
a5 = e−a5/v/v

h2 =
a2

2
√
a1

=⇒ fa2(a2|a1) = fh2(h2 =

(a2/2
√
a1))/(2

√
a1) = (a2/(a1v))e

−a22/(4a1v),

h2 = (a4)/2
√
a5 =⇒ f(a4|a5) = (2a4)/(va5)×

e−a4
2/(4a5v),

h2 =
√
a3 − 2

√
a1a5 =⇒ fa3(a3|a1, a5)

= ((2
√
a3 − 2γ)/v)× e−(a3−2γ)/v, γ =

√
a1a5,

fa(a) = fa1(a1)fa2(a2|a1)fa3(a3|a1, a5)f(a4|a5)fa5(a5)
(61)

The phase of a is =[θ1, θ2, · · · , θL̄] are distributed jointly by
unform distribution as

f([θ1, θ2, · · · , θ5]) =
1

(2π)
L̄
, 0 < θi < 2π.
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Similarly, employing (60), the pdf of b = g ∗ h is

fb1(b1|a1) = fg1(g1 = b1/
√
a1)/(|∂b1/∂g1|)

= (2b1/(a1v))e
−b21/(a1v),

fb5(b5) = fg3(g3 = b5/
√
a5)/(|∂b5/∂g3|)

= (2b5/(a5v))e
−b25/(a5v)

f(b2|b1, a2, a4, a5) = 2(b2
√
a1 − αb1)/(a1v)

e−(b2
√
a1−αb1)2/a1v, α = (2a4 − a2)/(2

√
a5),

f(b4) = [2(b4
√
a1 −

√
a5β)/(α

2√a1v)]
e−(b4

√
a1−

√
a5β)

2/(α4a1v), β = b2
√
a1 − αb1. (62)

Now it remains for us to determine

b3 = h3g1 + h2g2 + h1g3 =⇒
g3 = (b3a1 − β̄)/a1, β̄ = [b1

√
a5 + α(b2 − αb1)],

fb3(b3|ai, bi) = 2(b3a1 − β̄)/(a1v)e
−(b3a1−β̄)2/(a21v). (63)

Then the joint pdf of { a, b} is

f(a,b) = e−a1/v/v × a2/(a1v)e
−a22/(4a1v)

× ((2
√
a3 − 2γ)/v)e−(a3−2γ)/v×

2a4/(va5)e
−a42/(4a5v) × e−a5/v/v×

2b1/(a1v)e
−b21/(a1v) × 2(b2

√
a1 − αb1)/(a1v)

e−(b2
√
a1−αb1)2/a1v × 2(b3a1 − β̄)/(a1v)

e−(b3a1−β̄)2/(a21v) × [2(b4
√
a1 −

√
a5β)/(α

2√a1v)]
e−(b4

√
a1−

√
a5β)

2/(α4a1v) × 2b5/(a5v)e
−b25/(a5v) (64)

The logarithm of f(a,b), is then given in (11).
As in Appendix A, f(a,b) can be derived for any arbitrary

value of L. This method can be programmed on a computer
for a generic value of L. Since individual channels h,g are
Rayleigh distributed, expressing the composite channels a,b
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as functions of h,g (see Appendix A), allow their pdfs to
be determined, by using the formula for the pdf of functions
of random variables.

C: Proof of Lemma 2
The 1st term of (15) is

− 1

2
([z̄Hi C−1z̄i] + bHE

D̄
(2)
i |z̄i

[D̄
(2)
i

HC−1D̄
(2)
i ]b

− 2ℜ{z̄Hi C−1E
D̄

(2)
i |z̄i

[D̄
(2)
i ]b}), (65)

In (65), it is seen that one needs to compute two
Expectation terms, namely, E

D̄
(2)
i |z̄i

[D̄
(2)
i

HC−1D̄
(2)
i ] and

E
D̄

(2)
i |z̄i

[D̄
(2)
i ], for which the required pdfs have to be

derived. We assume that the transmitted discrete data d(2)i is
independent, uniformly distributed, with pdf f(d(2)i = Al) =
1
M , Al = 1, 2, · · · ,M . Then each column c of D̄(2)

i , denoted
by [D̄(2)]c has the pdf, (skipping the subscript {i}, for ease
of notation), f([D̄(2)]c = Al]) = 1

M

N , since each column
has only N random d

(2)
i ’s (N : number of subcarriers in each

OFDM block), the rest are zero entries in [D̄(2)]c. Now, the
conditional pdf f(D̄(2)

c = Al|z̄i,b) is given by

f(D̄(2)
c = Al|z̄i,b) =

f(z̄i|b, D̄(2)
c = Al)f(D̄

(2)
c ) = Al)∑MN

l=1 f(z̄i|b, D̄
(2)
c = Al)f(D̄

(2)
c ) = Al)

=
exp−

1
2 [z̄i−Alb̄]

HC−1[z̄i−Alb]∑MN

t=1 exp
− 1

2 [z̄i−Atb]HC−1[z̄i−Alb]
(66)

Finally over the independent L̄ columns of D̄
(2)
c , the data

matrix D̄(2) has the pdf

f(D̄(2) = [Al]L̄ columns|z̄i,b)

=
(exp−

1
2

∑L̄
l=1[z̄i−Alb]

HC−1[z̄i−Alb])

[
∑MN

t=1 exp
− 1

2 [z̄i−Atb]HC−1[z̄i−Alb]]L̄

∆

−
A

B
, (67)
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where A = exp−
1
2

∑L̄
l=1[z̄i−Alb]

HC−1[z̄i−Alb] and B =

[
∑MN

t=1 exp
− 1

2 [z̄i−Atb]
HC−1[z̄i−Alb]]L̄. Then

E[D̄
(2)
i = Al|b, zi] =

MN∑
l=1

[Alf(D̄
(2)|z̄i,b)] =

MN∑
l=1

Al
A

B
,

(68)

E[D̄
(2)
i C−1D̄

(2)
i

H |b̄, zi] =
MN∑
l=1

AlC
−1Al

H A

B
, (69)

where Al is the alphabet for D̄(2), at the lth experi-
ment, and and E[D̄

(2)
i C−1D̄

(2)
j

H |b̄, zi] ≈ 0, i ̸= j (see
note [6] in [34]). We use the notation sHC−1s∆

−∥s∥2C−1

(for any vector s)), Defining for the ith OFDM block’s,
Xi

∆
−
∑MN

l=1 [Al,i]L̄ columns
A
B , we have

E
D̄

(2)
i
{L} = z̄Hi C−1z̄i − 2ℜ{z̄Hi C−1Xb}

+ (
B

A
)bH(

MN∑
l=1

[XC−1XH ])b+ other terms. (70)

D: Proof of Lemma 3
For 2 Gaussian random variables x1 and x2, the con-

ditional pdf of x1|x2 is still Gaussian [20] and its
conditional mean and covariance matrix are µx1|x2

=
µx1

+ Cov(x1, x2)[Cov(x2)]
−1(x2 − µ2), Cov(x1|x2) =

Cov(x1) − Cov(x1, x2)[Cov(x2)]
−1Cov(x2, x1). Consider

the 2 dimensional Gaussian random vector x = {[z̃Ti ,nTr ]T }.
Then, Using (34), we have

µx = µ[z̃l,nrl]
H = [0,0]H ,

Cov(nr, z̃l) = E{nr(Ad
(1)
l +Hnrl + n1l)

H}

= E{nrd(1)
l

H
}+ E{{nr(nHr }HH + E{nrnH1 )} = σ2HH ,

Cov(z̃l) = C̃ (71)

Then

Cov(x) =

[
Cov(z̃l) E(z̃ln

H
r )

E(nrz̃
H
l ) E(nrn

H
r )

]
=

[
C̃ σ2H

σ2HH σ2I

]
.

(72)

Then

µz̃l|nr
= µzl

+ Cov(z̃,nr)[Cov(nr)]
−1(nr)

= (σ2)H)[σ2I]−1nr = Hnr,

Cov(z̃l|nr) = Cov(z̃l)− Cov(z̃l,nr)[Cov(nr)]
−1

· Cov(nr, z̃l) = C̃− (σ2H)
I

σ2
σ2HH = σ2I.

Defining differently, x = [nTr z̃Tl ]
T , and proceeding in the

same way as (72), we have

µnr|z̃l
= µnr

+ Cov(nr, z̃l)[Cov(z̃l)]
−1(z̃l)

= 0+ σ2HH(C̃)−1z̃l,

Cov(nr|z̃l) = Cov(nr)− Cov(nr, z̃l)[Cov(z̃l)]
−1

· Cov(z̃l,nr) = σ2I− [σ2HH [C̃]−1Hσ2]. (73)

E: Proof of Lemma 4,
Derivation of Cramer-Rao Lower Bounds (CRLB) for

estimating composite channels a,b

E.1 CRLB for b channel
The CR bounds for ML channel estimates (without using

any prior channel information), are derived in this Subsec-
tion.

Re-defining {L} = E
D̃

(2)
i
{L} (with slight abuse of

notation), the complex Fisher information matrix (FIM) is
defined, [17],

Jb,b = E{∂{L}
∂b̄∗ (

∂{L}
∂b̄∗ )H} = E{∂{L}

∂b̄∗
∂{L}
∂b̄T

}, (74)

Since complex b = ba + jbb and using the formula for
derivatives of (product of functions), we have

∂E{L}
∂b∗ =

∂E{L}
∂ba

+ j
∂E{L}
∂bb

∂E{L}
∂ba

=
∂[z̄i −

∑
lAlb]

HC−1[z̄i −
∑
l′ Al′b]

∂ba

= −
∑
l

AH
l C−1[z̄i −

∑
l′

Al′b] + [z̄i −
∑
l

Alb]
H

·C−1(−
∑
l′

Al′ )

∂E{L}
∂bb

=
∑
l

jAH
l C−1[z̄i −

∑
l′

Al′b]

+ [z̄i −
∑
l

Alb]
HC−1(−j

∑
l′

Al′ ). (75)

Then, we have

∂E{L}
∂b∗ = −2

∑
l

AH
l C−1[z̄i −

∑
l′

Al′b]

∂{L}
∂b̄T

= (
∂{L}
∂b̄

)T = ([z̄i −
∑
l

Alb]
HC−1(−

∑
l′

Al′ ))
T

(76)
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Then the FIM is given by

Jb,b = E{∂{L}
∂b̄∗

∂{L}
∂b̄T

= 4[(−
∑
l

AH
l )C−1[z̄i −

∑
l′

Al′b]][([z̄i −
∑
l

Alb]
H

·C−1(−
∑
l′

Al′ ))
T ]

= 4[(
∑
l

AH
l )C−1[z̄i −

∑
l′

Al′b]][(
∑
l′

AH
l′
)

·C−1[z̄i −
∑
l

Alb]
∗]

= 4[
∑
l

||AH
l C−1[Hn+ n]||2]

= 4[
∑
l

||AH
l ||2][(||H||2 + I)σ2)−2][||(H||2 + I)σ2]

= 4[
∑
l

||AH
l ||2][(||H||2 + I)σ2)−2(||H||2 + I)σ2)]

= 4[
∑
l

||AH
l ||2][(||H||2 + I)σ2]−1 (77)

since

z̄i =
∑
l

Alb+Hn+ n ⇒ [z̄i −
∑
l

Alb] = Hn+ n,

(78)

and

|C| = |HHH + I|σ2 = (|H|2 + I)σ2

Finally, (77) becomes

Jb,b = 4[
∑
l

AH
l [Hn+ n1]C

−1][−C−∗[H∗n∗ + n∗
1]∑

l′

(AT
l′
) = 4E{[

∑
l

AH
l ||[Hn+ n1]C

−1]||2[
∑
l′

AT
l′
)]}}

= 4tr{[
∑
l

AH
l [||H||2 + I]σ2(||HHH ||+ I)−2σ−4(A∗

l )
H

= 4tr{
∑
l

((||H||2 + I)σ2)−1(||Al||2H) (79)

Then the Cramer Rao bound for parameter b(CRLBb is

CRLBb = Jb,b
−1 = (1/4)

∑
l

((||H||2 + I)σ2)[||AH
l ||2]−1

(80)

since data A (generated in lth and l
′
th experiments) are zero

mean and uncorrelated with each other. Since in training-
based estimation of b, transmitted data D̃

(2)
l (from terminal

T2) is available, then

CRLBb = (1/4)
∑
l

((||H||2 + I)σ2)[||D̃(2)
l ||2]

−1
, (81)

for lth experiment.
C.2 CRLB for H (and h) channel
Let complex channel matrix H = HR+ jHI . From (42),

L =
S∑
l=1

En|z̃l
[
1

2
(z̃l − [HR + jHI ]nr)

H 1

σ2

(z̃l − [HR + jHI ]nr)] + · · · , (82)

∂L
∂H

=
1

2
[
∂L
∂HR

− j
∂L
∂HI

]

Using product rule of differentiation,

∂L/∂HR =

1

σ2
E{[∂(z̃l − [HR + jHI ]nr)

H/∂HR](z̃l − [HR + jHI ]nr)]

+ (z̃l − [HR + jHI ]nr)
H [∂(z̃l − [HR + jHI ]nr)/∂HR]}

=
1

σ2
E{−nr

H [z̃l − [HR + jHI ]nr)] + (z̃Hl − nHr

· [HR − jHI ])(−nr)} (83)

Similarly,

∂L/∂HI =

1

σ2
E{(∂(z̃Hl − nHr [HR − jHI ])/(∂HI)(z̃l − [HR + jHI ]nr)

+ (z̃Hl − nHr [HR − jHI ])∂(z̃l − [HR + jHI ]nr)/∂HI}

=
1

σ2
E{[(−jnHr )(z̃l − [HR + jHI ]nr)] + [(z̃Hl − nHr

· [HR − jHI ](−nr))(j)]}

Finally, we have

∂L/∂H = ∂L/∂HR − j∂L/∂HI

= − 2

σ2
E{[z̃Hl − nHr HH ]nr}

∂L/∂H∗ = ∂L/∂HR + j∂L/∂HI

= − 2

σ2
E{nrH [z̃l −Hnr]} (84)

JH,H = E{∂{L}
∂H̄∗ (

∂{L}
∂H̄

)T , (85)

JH,H = (
2

σ2
)2[E{(µH z̃l − Cov(nr|z̃l)H][E{(µ∗z̃∗l−

Cov∗(nr|z̃l)H∗] = (
2

σ2
)2[E{∥(µH z̃l − Cov(nr|z̃l)H]∥2}

(86)

Then (86) becomes

JH,H =
4

σ4
[E{∥µH z̃l∥2}+ E{∥Cov(nr|z̃l)H]∥2} − E{µH

z̃lCov
∗(nr|z̃l)H∗} − E{Cov(nr|z̃l)Hµ∗z̃∗l }, (87)

from which Jh,h is easily obtained.
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