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Abstract—The complexity of interactions between pedestrians
poses a challenge to pedestrian trajectory prediction, and existing
trajectory prediction methods based on data-driven models lack
interpretation for modeling interactions between pedestrians. To
address this problem, an improved avoidance force algorithm is
proposed to model the interaction of pedestrian forces explicitly.
Multiple socially acceptable pedestrian trajectory information is
generated by using the prior knowledge of observed trajectory
and the avoidance force algorithm.The avoidance force trajecto-
ries are evaluated by an attention network to generate confidence
scores; the avoidance force trajectories are selected based on the
confidence scores;The final accurate trajectories are refined using
Teacher-forcing. Compared to Social-Implicit, ours experimental
results conducted on the ETH and UCY datasets show that the
proposed method improves the average displacement error (ADE)
and final displacement error (FDE) by 6% and 16 %, respectively.

Index Terms—Social force, Avoidance algorithm, Self-attention,
Teacher-forcing.

I. INTRODUCTION

HE workflow of pedestrian trajectory prediction is to

predict the trajectory information of one or more inter-
acting bodies in the future given the prior knowledge of the
known observation trajectory. As an important component of
unmanned vehicles, intelligent transportation, and interactive
robots, pedestrian trajectory prediction has become a hot
research direction[1].

Much of the early work was based on data-driven[2] ap-
proaches, which are better at fitting data and can learn from
a large number of datasets. They do, however, lack a certain
level of interpretability. The next approach is based on physical
rules, which are derived from certain knowledge of physics
and have good interpretability.

However, the physical rule-based approach is less efficient
than the data-driven approach in terms of data fitting due to the
inherent physical rule constraint. Therefore, a pedestrian force
model incorporating neural networks is proposed in this paper.
The technical route of this paper consists of two major parts: 1)
generating multiple socially acceptable trajectory information
by improving the avoidance force algorithm model; 2) evalu-
ating the avoidance force trajectories by attention networks to

Manuscript created October, 2020; This work is partly supported by the Cixi
Science and Technology Bureau under Grant No.2021Z069 and Department
of Education of the Hubei Province of China under Grant No.D20211701, and
the Engineering Research Cen ter of Hubei Province for Clothing Information.

The authors extend their appreciation to the Department of Education
of the Hubei Province of China for fund ing this research work through
grant No.2020BAB116 and No.D20211701. The help of Hubei Provincial
Engineering Research Center for Intelligent Textile and Fashion and En
gineering Research Center of Hubei Province for Clothing Information in
this research completion is greatly appreciated.

generate confidence scores; and selecting the avoidance force
trajectories based on the confidence scores.
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Fig. 1. The framework of overview.Given the observed trajectories of
pedestrians, generate endpoints. Use the initial endpoint to sample all end-
point information, then complete the complete trajectory by improving the
avoidance force, and finally select the best trajectory.

The steps of generating an improved collision avoidance
force trajectory conforming to pedestrian movement charac-
teristics are mainly divided into two parts: 1) the generation of
pedestrian trajectory endpoints; 2) the generation of complete
improved avoidance force trajectories using the improved
avoidance force algorithm based on the trajectory endpoint
information. As shown in Figure 1, in order to express the
generation of trajectory endpoints more concisely, the future
trajectory is generated using the higher-order velocities of the
last two frames of the observed trajectory, and the obtained
trajectory is the trajectory in the straight-ahead direction.Using
the observed end point as the center of the circle and the
straight trajectory as the radius, the trajectory is uniformly
rotated at a certain angle in order to obtain all the end point
sampling information.

In order to generate the complete improved avoidance force
trajectory, the improved avoidance force is used to complement
the complete trajectory information. The social force model, as
a basic model for describing pedestrian motion, can simulate
pedestrian motion in the normal state. However, the selection
of avoidance for two-way pedestrian flow is still a difficult area
of current research, where pedestrians will traverse each other
in the case of zero longitudinal distance. Current research on
the avoidance problem has focused on deceleration avoidance
[3] and proposes active avoidance forces [4] as well as
changing the desired direction for selective avoidance.

The avoidance algorithm proposed in this paper is based on
the tradition active avoidance force for decision optimization,
and the research focuses on the following: for two-way pedes-
trian flow(A pedestrian walking in opposite directions), not
only pedestrians with zero longitudinal distance will choose
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Fig. 2. Avoidance Strategies. The active avoidance force is indicated by (a);
(b) indicates that the active avoidance force can be used to avoid normally;
and (c) indicates that the pedestrian will traversing the horizontal center line
to perform abnormal avoidance using the active avoidance force.

to avoid; for opposite pedestrians with a longitudinal distance
less than the sum of the radius of two lines of people in
the vertical direction, such pedestrians will still choose to
avoid as well.Tradition active avoidance force-based avoidance
algorithm In this case, there is distortion. The specific distor-
tion problem is shown in the following two aspects: 1)tradition
active avoidance force principle is the pedestrian to the right
to change their own direction of motion, this algorithm has
certain limitations, as shown in Figure 2, pedestrian (a), (b) can
simulate the normal avoidance mode, if A, B position changes
as shown in (c), tradition active avoidance force algorithm
in this In this case, there is a distortion situation:A, B will
not choose the direction of collision avoidance nearby, but
chooses a far collision avoidance path, which is not in line
with the actual situation. To address this problem, this paper
proposes a dynamic direction decision avoidance algorithm,
which can dynamically change the avoidance direction ac-
cording to the relative position of the pedestrian, so that the
trajectory prediction results are closer to the real situation.
2) In the tradition active avoidance force algorithm, in the
process of choosing avoidance, entities A and B will deflect
to avoid. However, in the actual situation, it is more likely
that pedestrians on one side will avoid, and pedestrians on
the other side will go straight ahead, so the tradition active
avoidance force algorithm has this defect in the simulation
of the avoidance process.To address this problem, this paper
proposes a dynamic selection avoidance algorithm, which
selects whether to avoid or not by calculating the relative
values of the velocity mapping of entities A and B on vectors
AB and BA, so that the trajectory prediction can be closer to
the real two-way pedestrian flow.

In order to select the optimal path from the multiple
improved avoidance force trajectory, the improved avoidance
force trajectory is evaluated by the attention network to
generate a confidence score; The improved avoidance force
trajectory is selected as the initial prediction trajectory based
on the confidence score. The ground truth trajectory is used
to generate the ground truth coarse trajectory, and the gen-
erated ground truth coarse trajectory is used to optimize the
trajectory closest to it in the initial prediction trajectory. In
the training phase, the top-1 trajectory is selected as the
preliminary prediction trajectory, and then refined for refine-
ment using Teacher-forcing[5]; In the inference phase, the
top-k preliminary prediction trajectory is selected to serve
as the final prediction trajectory. The contributions of this

paper are as follows: 1) An improved avoidance force algo-
rithm is proposed to describe the avoidance pattern among
pedestrians. 2)The improved collision avoidance algorithm is
used to generate the pedestrian trajectory that conforms to
the characteristics of pedestrian movement. 3) The generated
trajectory of improved avoidance force can explicitly interpret
the trajectory information of pedestrian’s future movement.

II. RELATED WORK
A. Pedestrian trajectory prediction

Pedestrian trajectory prediction in the early days adopted a
deterministic rule-based approach using models such as social
forces [6], Bayesian filters and kinematic model combinations
[7], Markov processes [8], and dynamic Bayesian networks
[7]. Relying on prior knowledge, the manual method explicitly
expresses the interpretability of trajectory prediction. These
trajectory prediction methods require rigorous modeling of
the model and have limitations that make them difficult to
generalize to complex scenarios.

In recent years, data-driven approaches based on image
recognition [9], [10], [11], behavior recognition [12], and
visual localization [13] have made remarkable progress. Since
no inherent rule models need to be pre-defined, better mapping
relationships can be fitted by virtue of large-scale datasets.
Similarly, data-driven-based approaches have led to significant
progress in pedestrian trajectory prediction. A large number of
data-driven trajectory prediction methods have been proposed,
Alahi [2] et al. used the Social Long Short-Term Memory
(S-LSTM) network to extract interactions between nearby
pedestrians and set up a social pool to share information
about interactions between pedestrians. sophie [14] used CNN
to extract features from the whole GAT. Social-BIGAT [15]
uses LSTM to model the trajectory of each pedestrian and
the interaction of the Graph Attention network (GAT). STAR
[16] models spatial interactions and temporal dependencies
through the Transformer framework. SGCN [17] proposes a
sparse graph convolutional network that models spatial and
temporal graphs separately to learn pedestrian interactions and
pedestrian movement trends to predict pedestrian trajectories.
SGAN [18] uses a Generative Adversarial Network (GAN) to
model pedestrian trajectories. Social-STGCNN [19] directly
models the pedestrian trajectory as a graph, where the edges
are weighted by the relative distance between pedestrians to
represent the interaction between pedestrians. Social-Implicit
[20] constructs a Social-Zone, which aggregates the observed
trajectories based on the observed maximum velocity. Each
Social-Zone is then processed by a Social-Cell, which consists
of a local stream and a global stream, each consisting of two
CNN:E.

B. Social force model

The social force model consists of three major components:
self-driven forces of pedestrians; interaction forces between
pedestrians; and interaction forces between pedestrians and
obstacles. The self-driven force between pedestrians is in
accordance with Newton’s second law, which indicates that
pedestrian sets out at the desired speed towards the desired
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destination; The interaction force between pedestrians includes
psychological repulsive force and physical contact force. The
psychological repulsive force is the force manifested by the
fact that pedestrians automatically maintain a certain distance
with other pedestrians during the walking process. Physical
contact force refers to the physical positive pressure and
sliding friction generated when pedestrians are very close
to each other. The forces between pedestrians and obstacles
are described as physical contact forces and psychological
repulsion forces between pedestrians and obstacles.

C. Active avoidance force

The active avoidance force [4] is a judgment mechanism
based on the valid conflict point, and after the conflict point is
determined to be valid, the pedestrian’s right avoidance is used
as the benchmark to choose avoidance, as shown in Figure 3.
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Fig. 3. Tradition active avoidance force. Pedestrians will choose to avoid to
the right.

The tradition active avoidance force is related to the target
direction of pedestrians and the density of pedestrians, which
are defined in equation (1).

F,=A-exp(D/B)-cosa-d; (1)

where A denotes the force intensity coefficient of the
pedestrian, D denotes the distance between the pedestrian’s
new destination and the potential conflict point, B denotes the
range of the pedestrian’s force, cosa denotes the cosine of
the angle between the vector of the pedestrian pointing to the
new destination and the current velocity; and d; denotes the
unit vector perpendicular to the desired direction.

III. IMPROVED AVOIDANCE FORCE TRAJECTORY

Existing works has used deep learning networks to construct
pedestrian interactions, Graph convolutional networks with
physical adjacency matrices [21] and attention mechanisms
with learnable adjacency matrices [22] have been used to
inherit spatial interaction information. This approach is able
to de-learn features from a large amount of data, but still lacks
some interpretability for constructing pedestrian forces.In or-
der to explicitly construct the force between pedestrians, a
pedestrian trajectory prediction based on improved avoidance
force trajectory is proposed.The general framework is shown
in Figure 7. Firstly, the endpoint information of the pedestrian
trajectory is generated using the observed trajectory, and the
complete trajectory information is complemented by the im-
proved avoidance force. Then, the generated improved avoid-
ance force trajectories are embedded and encoded, while the

spatial interactions of the observed trajectories are encoded,
and by attention, each trajectory is scored, and the trajectories
with high confidence are selected and optimized. Finally, the
trajectories are further optimized using Teacher-forcing in the
training process.

A. Improved avoidance force trajectory

In order to generate rough trajectory endpoint information
for pedestrians, first the higher-order velocity of the last two
frames of the observed trajectory is used as a way to advance
the future trajectory and thus to obtain the trajectory informa-
tion in the straight ahead direction. Assuming the prediction
length Tpreq = Tau — Tops = 12, a straight trajectory with a
depth of d = 12 will be generated. After obtaining the initial
straight trajectory, take the end point of the observed trajectory
as the center of the circle and the initial straight trajectory as
the radius, and rotate the sampling to the left and right sides
at a certain angle 0(0+ <= m/2) to obtain all the end point
sampling information.

In order to generate the complete trajectory information of
the improved avoidance force, the improved avoidance force is
adopted, In order to avoid the collision of pedestrians coming
in the opposite direction, that is, the direction of the line
of the center of gravity of pedestrians coincides with the
direction of the resultant force of pedestrians (as shown in
Figure 2 (a)), it is necessary to introduce the active avoidance
force to avoid collision with each other, so as to solve the
phenomenon of pedestrians crossing each other in the primitive
social force. With the increase of pedestrian density, the
phenomenon of pedestrians crossing each other will become
more serious. However, the tradition active avoidance force
has certain defects in design, and this paper introduces a
dynamic direction decision avoidance algorithm and a dynamic
selection avoidance algorithm for the original active avoidance
force to solve the defects of the tradition active avoidance
force.

1) Dynamic directional decision avoidance algorithm: The
tradition active avoidance force only considers the special case
where the direction of the pedestrian’s center of gravity(in
Figure 2 (a)) and the direction of the pedestrian’s combined
force coincide, and the design is based on avoidance to
the right. Considering that for two-way pedestrian flow, not
only the pedestrians whose center of gravity line direction
coincides with the direction of pedestrian occur avoid, but
also the opposing pedestrian flow whose longitudinal distance
of the center of gravity is less than the sum of the radii
of the two pedestrians occur avoid. As the traditional active
avoidance force adopts the right avoidance strategy, it will
lead to pedestrians not choosing to avoid nearby: as shown in
Figure 4, the positions of pedestrians A and B are as shown in
the figure.If according to the traditional active avoidance force,
when the opposite pedestrians are found, A and B will make
the right avoidance strategy, and then both sides of pedestrians
will cross the horizontal centerline to avoid, rather than choose
to avoid in the nearest direction, which is inconsistent with the
actual situation.

To address the above problem, this paper proposes a dy-
namic directional decision avoidance algorithm, which can
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Fig. 4. Abnormal avoidance. Using the principle of active avoidance force,
pedestrians will traverse the horizontal center line for abnormal avoidance.

select the avoidance direction according to the relative position
of the pedestrian in close proximity, rather than just choosing
the avoidance direction to the right. The choice of avoidance
direction is actually the choice of vertical vector, as shown in
Figure 5, assuming that T vector is the unit vector of pedestrian
A pointing to the target position, D, and D! are the unit
vectors perpendicular to it, vector AB is the unit vector of A
pointing to B, cos (AB, D,) and cos (AB, D) are the cosines
of AB and the perpendicular vector, respectively. The choice
of the vertical vector is defined in equation (2).

Dy = g(cos (AB, D,) < 07D, : D)) @

The g{-} function indicates that if the equation holds, the
D, is returned, and if it does not hold, the D/, is returned.
The avoidance direction of the pedestrian is determined by
calculating the corresponding cosine value, and a cosine value
less than zero indicates that the corresponding vertical vector
is the vertical vector in the direction of proximity avoidance,
and vice versa.

Fig. 5. Dynamic direction decision avoidance. Pedestrians will choose to
avoid them according to their relative positions.

Since the improved collision avoidance force is optimized
based on the traditional active collision avoidance force, after
determining the pedestrian collision avoidance direction, the
improved collision avoidance force can be understood as the
active collision avoidance force that can automatically select
the collision avoidance direction, so the improved collision
avoidance force is defined as: (3).

Fipp =A-exp(D/B)-cosa- D, 3)

Finp is the avoidance force after improving the decision
direction; D is the distance between the pedestrian’s new
destination and the potential conflict point; « is the angle
between the vector of pedestrian A pointing to B and the
velocity direction of the current entity A; and D, is the unit
vector dynamically chosen to be perpendicular to the desired
direction.

2) Dynamic selection avoidance algorithm: In the design of
the Active avoidance principle, the two entities that are about
to be avoided are equal entities. That is, in the occurrence
of avoidance, both entities will choose to avoid. While the
principle of avoidance in the real world scenario is more for
one party to avoid, the other party will go straight ahead.

To address the above problem, this paper proposes a
dynamic selection avoidance algorithm, which will decide
whether to select avoidance based on the size of the mapping
of the pedestrian’s current velocity on the vector pointing to
the opposite pedestrian. As shown in Figure 6, V,, and V}, are
the actual velocities of entities A and B. V, is the mapping
of V, on vector AB, and V] is the mapping of V; on vector
BA. By comparing the relative magnitudes of V] and V] to
choose to determine whether the pedestrians are avoiding or
not.

Fig. 6. Dynamic selection avoidance. Pedestrians will choose whether to
evade according to the relative speed.

Judging whether pedestrians avoid is actually to judge
whether there is a avoidance force. Based on obtaining the
avoidance force in the dynamically selected direction, the
improved avoidance force can be set to zero if no avoidance,
and the improved avoidance force is defined as follows (4).

Fipp =A-exp(D/B) - cosa - Dy - sign (€))

Where Sign is a 0 or 1 function to determine the relative size
of pedestrian A and B mapping speed, when V] <= V}/,Sign
returns to 1, otherwise 0, indicating that the pedestrian with
a small speed is facing the oncoming pedestrian with a large
speed, the pedestrian with a small speed to avoid, as expressed
in equation (5).

sign = S (V] <VJ/?71:0) (5)

Since the improved avoidance force needs to generate the
complete trajectory, it requires three initial conditions: initial
coordinates, initial velocity, and endpoint coordinates; the
initial coordinates use the coordinates of the last frame of
the observed trajectory; the initial velocity uses the higher-
order velocity of the last two frames of the observed trajectory,
i.e., the difference between the two coordinates; The endpoint
coordinates are obtained by rotating sampling of the endpoint
coordinates in the direction of pedestrian walking, The specific
implementation is described in Section 3.1.In this algorithm,
each pedestrian is regarded as a particle, and each particle
follows Newton’s second law of motion, so the resultant force
F,;; of pedestrian motion depends on the target attraction
and the improved avoidance force. The target attractive force
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Fig. 7. model overview. The endpoint information of the pedestrian trajectory is generated using the observed trajectory, and the complete trajectory information
is complemented by the improved avoidance force. Then, the generated improved avoidance force trajectories are embedded and encoded, while the spatial
interactions of the observed trajectories are encoded, and by attention, each trajectory is scored, and the trajectories with high confidence are selected and
optimized. Finally, the trajectories are further optimized using Teacher-forcing in the training process.

is defined in equation (6), and the combined force Fy; is
specifically expressed in equation (7).

Fooat =m ((Vo-€—=V) /t) (6)
Fall = Fgoal + >\Fimp @)

m is the pedestrian mass; Vj is the desired velocity; V' is
the initial velocity; € is the direction vector of the pedestrian
towards the destination; and t is the reaction time of the
pedestrian; A is the weight to improve avoidance force.

The trajectory of pedestrian is realized according to the
speed and coordinates of the dynamic update of pedestrian,
based on Newton’s second law F' = ma. The pedestrian
is regarded as a particle, the pedestrian mass m is ignored,
and a is the acceleration. Then the formula can be derived
as F' = (Vpew — v)/step, and the updated velocity can be
defined as Equation (8). Pedestrian coordinates are determined
by pedestrian initial coordinates and displacement, and dis-
placement is obtained by multiplying the current speed and
time interval. Then the updated coordinates can be defined
as Formula (9). The speed and coordinates are updated alter-
nately, and all the coordinate points of future pedestrians are
recurred, which is the pedestrian trajectory.

Vnew =v+ Step ' Fall (8)
Prew =p+step-v 9

P is the initial coordinates of the pedestrian, i.e., the last
frame of the observed trajectory, v is the initial velocity of
the pedestrian, and step is the time interval to update the next
position.

IV. TRAJECTORY SELECTION AND OPTIMIZATION

In order to select the best predicted trajectory from multiple
improved avoidance force trajectories, the generated multiple

trajectories need to be scored. Firstly, given the observation
trajectory X = {z!|t=1,2...,Tpps,i=1,2...,n}, the
observation trajectory X and the avoidance force trajectory
Awvoid, are embedded and encoded by the embedding layer
to obtain the observation code obs. and the avoidance force
trajectory code Avoid,, respectively. The embedding layer ()
is realized by the three-layer MLP, which is represented as
equations (10), (11).

obs. = P(X) (10)

(1)

Pedestrian trajectory is not only related to the pedestrian’s
own motion state but also to the interaction of other pedes-
trians. Since self-attention can pay attention to each other’s
feature elements in the same group, the interaction features
between pedestrians in the same group can be better captured.
Therefore, the observation code obs. is modeled by GCN
implemented by self-attention to generate interactive code /.
In order to select the trajectory with high confidence from
multiple trajectories of improved collision avoidance force, the
trajectory of collision avoidance force is coded Avoid, as the
Key of attention, and I. is coded intersely as the Query of
attention, and the corresponding attention Score is obtained as
the confidence score.which is represented as in equation (12).

Avoid, = 9 (Avoid,)

Score = softmax (w (I.) @ (Avoide)T) (12)

In order to make the improved avoidance force trajectory
closest to the ground truth value obtain the highest confidence,
the path metric is used to measure the distance between each
improved avoidance force trajectory and the true value, and
the position in the improved avoidance force trajectory closest
to the true value is used as the label Scoregy; to supervise the
scoring operation, Scoreg; is obtained by measuring the ADE
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of the improved avoidance force trajectory and the true value.
The loss function uses cross-entropy loss, and the specific loss
function is as in equation (13).

Losscf = Lossc. (Score, Scoreg;) (13)

In the training, in order to make the improved avoidance
force trajectory Awoids with the highest confidence better
optimized, the interaction code I, and Avoids are fused into
the MLP to obtain the predicted trajectory Avoid,,., and the
ground truth coarse trajectory Y is used for its supervised
optimization. The loss function is Huber loss, and the specific
optimized loss function is represented as in equation (14).

Lossreg = L08Syeq (Avaidpre, Y) (14)

The ground truth coarse trajectory Y is generated from
the truth trajectory Y. First, the ground truth is divided into
multiple equal-length segments with time interval .S, and then
the breakpoints are connected sequentially.

In order to make the trajectories with high confidence
further refined to get more accurate prediction trajectories,
Teacher-forcing is used for training, i.e., when Refinement is
performed, the trajectory with the highest confidence score
is replaced by the ground truth coarse trajectory Y, and the
final prediction trajectory Avoidy is obtained by Refinement
refinement. i.e., optimization The loss function is as in Eq.
(15), so the total loss of network training is as in Eq. (16).

5)
(16)

Lossyep = LoSSreq (Avoidy,Y)
Loss = Losspef + Losscif + L0SSyeg

Refinement consists of three layers of MLP; Avoid; is
the final predicted trajectory output by the network, Y is the
ground truth trajectory, and the loss function is Huber loss.In
the inference, the top K predicted trajectories are selected
according to the confidence scores, and the final prediction
trajectories are obtained by Refinement refinement.

V. EXPERIMENTS AND RESULTS
A. Datasets and evaluation criteria

The experiments are trained on two datasets for pedestrian
trajectory prediction, ETH [23] and UCY [24]. ETH contains
two scenarios, ETH and HOTEL, while UCY contains three
scenarios, ZARA1, ZARA2 and UNIV. Trajectorys in the data
set are sampled every 0.4 seconds. The data set contains
1536 trajectorys with rich interactive behaviors, including col-
lision avoidance, deceleration avoidance, acceleration overtak-
ing, etc.The training and evaluation follow the leave-one-out
strategy[17],the model is trained on four scenes and evaluated
on the rest of the scene.In the experimental parameter setting,
the model observed trajectorys corresponding to 8 frames, 3.2
seconds, and predicted trajectorys for the next 4.8 seconds,
namely 12 frames of pedestrian trajectorys.

The experimental evaluation criteria are evaluated using
two metrics: Average Displacement Error (ADE) and Final
Displacement Error (FDE). ADE measures the average L-2
distance between all predicted trajectory positions and the
ground truth position. FDE measures the L-2 distance between

the predicted position of the trajectory at the last moment and
the true position.

B. Experimental parameter setting

In the experiment, the rotation angle of pedestrian endpoint
sampling is set to 7/24, and the cumulative angle of rotation
sampling is less than 7/2. The parameters related to the
improved avoidance force and target attraction follow the
settings of [4]. The weight m is set to 60KG; the force strength
factor A is set to 1200N/m; the pedestrian force range is set
to 0.3 m; the reaction time t of the pedestrian is set to 0.5 s;
the desired velocity of the pedestrian is set to 1.3m/s. In the
network, the number of dimensions of the embedding layers
is set to 64 and the GCN cascade is set to 3 layers. In the
inference stage, K=20 trajectories are selected as prediction
trajectory.

C. Experimental result

The experimental results are shown in Table 1, and the
experiments on the ETH and UCY datasets show that this
algorithm outperforms the above algorithms, especially for the
metric of FDE data. The algorithm in this paper improves
16% on the basis of Social-Implicit, and for the metric of
ADE, the algorithm in this paper improves 6% on the basis of
Social-Implicit. The analysis shows that the use of improved
avoidance force can effectively capture the avoidance interac-
tion information between pedestrians and therefore can obtain
better prediction results.

D. Ablation study

To verify the influence of different avoidance strategies
and different weight parameters on the overall prediction
performance, ablation tests were conducted on the ETH and
UCY datasets.

As shown in Table 2, the avoidance strategies contain
dynamic directional decision avoidance and dynamic selection
avoidance. The ablation experiments of avoidance strategies
were carried out under the optimal weight of improved avoid-
ance force .V1) Dynamic direction selection avoidance was
removed and only pedestrians were allowed to avoid the
right. The results show a 2% decrease in ADE and a 2%
decrease in FDE, verifying the contribution of the dynamic
direction selection avoidance algorithm to pedestrian trajectory
prediction. V2) Remove dynamic direction selection avoid-
ance, and pedestrians traveling in opposite directions both
choose to avoid. The results show that ADE decreases by
7% and FDE decreases by 11%, especially for UNIV dataset,
the performance decreases significantly. It is understood that
UNIV is a university dataset, which is densely populated, and
the situation of choosing to avoid is more common, and the
situation of choosing to avoid both walking in opposite direc-
tions is less; therefore, the contribution of dynamic direction
selection avoidance algorithm in this case is verified. The con-
clusions show that the removal of either component leads to a
reduction in the accuracy of the prediction. The experimental
results show that improving the avoidance force can effectively
capture the avoidance patterns between pedestrians.
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TABLE I
(ADE/FDE) EXPERIMENTS ON ETH AND UCY DATASETS.
Model Year ETH HOTEL UNIV ZARA1 ZARA2 AVG
S-LSTM[2] 2016 1.09/2.35 0.79/1.76  0.67/1.40 0.47/1.00 0.56/1.17  0.72/1.54
SGAN[18] 2018 0.87/1.62 0.67/1.37 0.76/1.52  0.35/0.68  0.42/0.84 0.61/1.21
Sophie[14] 2019  0.70/1.43  0.76/1.67 0.54/1.24  0.30/0.63  0.38/0.78 0.51/1.15
S-BIGAT[15] 2019  0.69/1.29 0.49/1.01 0.55/1.32  0.30/0.62  0.36/0.75  0.48/1.00
GAT[15] 2019  0.68/1.29 0.68/1.40 0.57/1.29  0.29/0.60 0.37/0.75  0.52/1.07
SSTGCNNJ19] | 2020 0.64/1.11 0.49/0.85 0.44/0.79  0.34/0.53  0.30/0.48  0.44/0.75
STAR[16] 2020 0.56/1.11 0.26/0.50  0.52/1.15  0.41/0.90 0.31/0.71  0.41/0.87
SGCNI[17] 2021  0.63/1.03  0.32/0.55 0.37/0.70  0.29/0.53  0.25/0.45  0.37/0.65
SImplicit[20] 2022 0.66/1.44  0.20/0.36  0.31/0.60  0.25/0.50  0.22/0.43  0.33/0.67
OURs - 0.41/0.72  0.17/0.30  0.35/0.67  0.25/0.47  0.19/0.39  0.27/0.51
TABLE 11
(ADE/FDE) ABLATION EXPERIMENT IN DIFFERENT COMPONENTS.
Model ETH HOTEL UNIV ZARA1 ZARA2 AVG
V1 0.44/0.72  0.18/0.33  0.37/0.71  0.25/0.49  0.22/0.42  0.29/0.53
V2 0.43/0.76  0.17/0.32  0.60/1.10  0.27/0.50  0.22/0.43  0.34/0.62
OURs | 0.41/0.72 0.17/0.30  0.35/0.67 0.25/0.47  0.19/0.39  0.27/0.51
TABLE III
(ADE/FDE) DIFFERENT A\ ABLATION EXPERIMENT OF WEIGHT IMPROVED AVOIDANCE.
Model ETH HOTEL UNIV ZARA1 ZARA2 AVG
(A=0.00) | 046/0.76 0.20/0.33  0.34/0.68  0.25/0.47  0.20/0.40  0.29/0.53
(A=10.25) | 0.44/0.75 0.20/0.34  0.36/0.72  0.25/0.48  0.20/0.42  0.29/0.54
(A=10.50) | 0.41/0.72 0.18/0.34  0.44/0.84  0.25/0.47  0.19/0.39  0.29/0.55
(A=0.75) | 0.43/0.74 0.18/0.31 0.49/0.91  0.25/0.48  0.20/0.42  0.31/0.57
(A=1.00) | 0.43/0.72 0.17/0.30  0.35/0.67 0.25/0.48  0.20/0.41  0.28/0.52

In order to verify the impact of different improved avoidance
force weights on the prediction performance, this paper sets
five different sizes of A\ to find the appropriate weights, as
shown in Table 3. A = 0 means there is no avoidance effect
between pedestrians; A = 0.5 means there is some avoidance
force between pedestrians; A = 1 means pedestrians have a
strong avoidance magnitude; the larger A means the magnitude
of pedestrian encounter avoidance is larger; the smaller A
means pedestrians the smaller magnitude of avoidance, or even
no avoidance. The ablation study indicates that ETH, ZARAI,
and ZARA2 perform optimally when A = 0.5, and Hotel and
UNIV perform optimally when A = 1. Each dataset has the
most suitable weight size applicable to itself.

E. Visualization of results

As shown in Figure 8, the visualization effects in the ETH
and Hotel scenarios are displayed in the actual scenario. Bright
yellow in the figure indicates the observation trajectory; Red
represents the real trajectory; Green indicates the predicted
trajectory; The blue color indicates the trajectory generated by

the improved avoidance force. The twists and turns of the blue
trajectory in the figure indicate the avoidance phenomenon
when the improved avoidance force generates the trajectory;
The figure can also accurately predict the standing pedestrian.
It can be seen from the green prediction trajectory in the figure
that the proposed algorithm can accurately predict the future
trajectory of pedestrians.

VI. CONCLUSION AND FUTURE WORK

In this paper,We propose an improved collision avoidance
algorithm to explicitly model the interaction between pedes-
trians and generate socially acceptable pedestrian trajectorys,
which achieves good results with the ETH and UCY datasets.
For the existing methods, the endpoint coordinate information
is not accurately predicted, but the endpoint coordinate infor-
mation is uniformly sampled, so there is still room for upward
movement in the accuracy for trajectory prediction. In future
work, how to fuse the observed trajectory information and
scene map information to obtain accurate endpoint coordinate
information is a direction worthy of research.
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Fig. 8. Visualization representation. The graphs show the visualized trajectories in the ETH and UCY scenarios, respectively.
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