
P
os
te
d
on

7
M
ar

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
22
19
42
3.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

UAV Route Planning to Anticipate the COVID-19 Crowd Clusters

with Dynamic Programming

Leonard Matheus Wastupranata 1

1Institut Teknologi Bandung

October 30, 2023

Abstract

Crowds are considered trivial by the community because they feel they have implemented health protocols by wearing masks.

Crowds must be minimized so that the spread of the Covid-19 virus does not get higher. This paper aims to plan a UAV

shuttle route so that it can approach as many locations as possible with potential crowding while simultaneously leading to

the destination of the flight route without having to go around first. The method used is a comparison of Greedy algorithms

and Dynamic Programs in determining the most effective route. The flight simulation was carried out using Software in The

Loop (SITL) and ArduPilot Mission Planner. The results obtained are that the Dynamic Program can visit 14 locations out

of 18 existing location choices, whereas with the Greedy algorithm approach, UAV can only visit 8 locations out of 18 existing

location choices. The conclusion is that the Dynamic Program is able to maximize routes so that more locations are visited by

UAVs and certainly better than the Greedy Algorithm.

1

UAV Route Planning to Anticipate the COVID-19

Crowd Clusters with Dynamic Programming

Leonard Matheus Wastupranata

School of Electrical Engineering & Informatics

Institut Teknologi Bandung

leo.matt.547@gmail.com

Abstract—Crowds are considered trivial by the community

because they feel they have implemented health protocols by

wearing masks. Crowds must be minimized so that the spread

of the Covid-19 virus does not get higher. This paper aims to

plan a UAV shuttle route so that it can approach as many

locations as possible with potential crowding while

simultaneously leading to the destination of the flight route

without having to go around first. The method used is a

comparison of Greedy algorithms and Dynamic Programs in

determining the most effective route. The flight simulation was

carried out using Software in The Loop (SITL) and ArduPilot

Mission Planner. The results obtained are that the Dynamic

Program can visit 14 locations out of 18 existing location choices,

whereas with the Greedy algorithm approach, UAV can only

visit 8 locations out of 18 existing location choices. The

conclusion is that the Dynamic Program is able to maximize

routes so that more locations are visited by UAVs and certainly

better than the Greedy Algorithm.

Keywords—UAV; Dynamic Programming; Greedy Algorithm;

COVID-19; crowd

I. INTRODUCTION

The Covid-19 pandemic has brought many changes to
world life. Many traditions and cultures have had to face all
kinds of adjustments to coexist with the Covid-19 virus,
whose spread is never ending. Time goes on and life can't stop
moving. Phases in human life will change quickly, especially
in the lifeline of Bandung Institute of Technology students
who are currently studying. The plan for hybrid lectures
continues to be echoed to fill all the deficiencies in taking
online lectures.

However, students must follow the health protocols that
have been designed by ITB, especially in terms of minimizing
crowds. Unfortunately, it is not known whether there was
someone in the crowd who tested positive for the Covid-19
virus in their body or not. For this reason, it is necessary to
periodically monitor and spray disinfectants during rush hours
amidst busy campus activities. Much research has been done
on preventing Covid-19, one of which is preventing crowds
by spraying disinfectants. Efelina et al. [1] have conducted
research on the use of drones to spray disinfectants in rural
areas. However, the drone control that is conducted still uses
the manual method and is still less effective if it turns out that
a large crowd is created. Therefore, an algorithmic strategy is
needed that can optimize periodic disinfectant spraying.

In this paper, a comparison of the UAV range strategy to
prevent crowds is given by making a comparison between
greedy algorithms and dynamic programs. The more locations
that are regularly covered by UAVs, the faster crowds can be
minimized. However, due to limited UAV power, flight routes
will be shuttled from certain locations. The UAV's task is to

find a shuttle route that will maximize the location of the
crowd to be visited while leading to its destination.

This paper will be divided into five major sections. The
Introduction section will explain the background of the
problems that arise. Next, the Literature Study section will
explain the basics of algorithmic strategies in conducting
flight experiments. The part that is no less important, namely
the method, will discuss the steps to solve the problem with
the greedy algorithm approach and dynamic programming.
The Results and Discussion section will provide an
explanation of flight simulation and strategy analysis. Finally,
the Conclusion section will bring together all the frameworks
and experiments that have been conducted in this paper.

II. LITERATURE STUDY

A. Greedy Algorithm

A greedy algorithm is an algorithm that solves a problem
step by step in such a way that at each step it takes the best
option that can be obtained at that time without regard to
future consequences (the principle of "take what you can get
now!") and "hope" that by choosing a local optimum at each
step will end up with a global optimum.

This algorithm is the most popular and simple method for
solving optimization problems. This algorithm puts forward
the problem to find the optimal solution. There are two kinds
of optimization problems, namely maximization and
minimization problems. The general scheme of the greedy
algorithm is as shown below. [2]

function greedy (C : candidate set)→ solution_set
Declaration
x : candidate
S : solution_set

Algorithm:
S ← {}
while (not SOLUTION(S)) and (C ≠ {}) do
x ← SELECTION(C) { select a candidate from C }
C ← C – {x} { discard x from C as it has been selected }
if LAYAK(S ⋃ {x}) then { x meets eligibility for inclusion
in the set of solutions }
S ← S ⋃ {x} { plug x into the solution set }
endif
endwhile
{ SOLUTION(S) or C = {}}
if SOLUTION(S) then { solution is complete }
return S
else
write('no solution')
endif

This Greedy algorithm is almost the same as the
exhaustive search and brute force methods, where Exhaustive
search is a brute force search technique for solutions to

problems that involve searching for elements with special
properties, usually among combinatoric objects such as
permutations, combinations, or subsets of a set. Based on this
definition, exhaustive search is also brute force. Therefore,
exhaustive search is one implementation of brute force in the
search case. [3]

B. Dynamic Programming

Dynamic programming is a method of solving problems
by decomposing a solution into a set of stages so that the
solution to a problem can be viewed as a series of interrelated
decisions. Dynamic programming is used to solve
optimization problems (maximization or minimization).

In dynamic programming, the optimal set of decisions is
made using the Optimality Principle. According to the
Optimality Principle, if the total solution is optimal, then the
part of the solution up to the k stage is also optimal. The
principle of optimality means that if we work from stage k to
stage k + 1, we can use the optimal result from stage k without
having to go back to the initial stage.

The characteristics of the problem with dynamic
programming are as follows:

1. The problem can be divided into several stages, in which
at each stage only one decision is taken.

2. Each stage consists of several states associated with that
stage. In general, statuses are the various possible inputs
that exist at a stage.

3. The results of the decisions taken at each stage are
transformed from the status concerned to the next status in
the next stage.

4. Cost at a stage increases steadily with increasing number
of stages.

5. The cost at a stage depends on the cost of the stages that
are already running and the cost from that stage to the next.

6. There is a recursive relationship that identifies the best
decision for each status at stage k to provide the best
decision for each state at stage k + 1.

7. The principle of optimality applies to this problem.[4]

C. Coin-collecting Problem

In this problem, coins are placed in n×m cells of the board,
not more than one coin per cell. The robot starts from the top
left of the cell board. The mission of this problem is that the
robot must collect as many coins as possible and finish at the
bottom right of the cell board.

At each step, the robot can move either one cell to the right
or down from its current location. When the robot visits a cell
containing coins, the robot will always take the coins. The
robot must find the maximum number of coins it can pick and
determine the path it must follow to be efficient. [5]

Fig. 1. Coin-collecting Problem [5]

III. PROPOSED METHOD

A. Mission Planner

There are several potential crowd points that are projected
to emerge on the ITB Ganesha campus, the locations of which
can be seen in the table below.

TABLE I. LOCATIONS PRONE TO CROWDS IN CAMPUS ENVIRONMENT

Number
Specific Location

Location Name Latitude Longitude

HOME Saraga Parking -6.885423 107.608179

1 Saraga Digital Clock -6.8856415 107.6101238

2 Saraga Canteen -6.8869463 107.6100782

3 ITB Ganesha North Gate -6.8878970 107.6103544

4 Octagon Roundabout-TVST -6.8892657 107.6103705

5 Labtek Lobby 1 -6.8892151 107.6114380

6 East GKU -6.8903628 107.6117063

7 DPR -6.8899660 107.6103625

8 West GKU -6.8903920 107.6091984

9 Intel Pool -6.8903521 107.6103678

10 Soekarno Monument -6.8909166 107.6103759

11 CTim-CBar -6.8912335 107.6103839

12 Basketball Court -6.8916649 107.6100540

13 Love Square -6.8916702 107.6106602

14 East Hall -6.8923972 107.6106924

15 West hall -6.8924291 107.6102981

16 Southwest Gate ITB -6.8931294 107.6102981

17 Southeast Gate ITB -6.8930895 107.6106495

18 Public East Parking -6.8931294 107.6116392

There are eighteen locations that can be visited to
distribute disinfectants to help sterilize when there are crowds.
However, because the spraying has been conducted
thoroughly at night and in the morning, the UAV will fly from
HOME to the last point, namely the East Public Parking with
a relative altitude of 100 meters from the ground. A flight
route will be determined so that the UAV can visit as many

potential crowds as possible, with the weight of each location
having the same value (in this case it is symbolized by the
number 1).

The flight simulation will be conducted using Software in
the Loop (SITL) with ArduPilot Library and Mission Planner
version 1.3.74. As shown in Figure 2, the potential crowd
locations are scattered in Table 1. Since the UAV will fly
from the HOME point which is in the northwest and headed
for the ITB East Public Parking Destination Point which is in
the southeast, the UAV will incline past ITB Ganesha in a
diagonal direction.

Fig. 2. Locations Prone to Crowds in the Campus Environment

B. Element of Greedy Algorithm

In solving this problem, the solution will be abstracted into
elements in the Greedy algorithm as follows.

1) Candidate Set of C

Contains the node candidates to be selected at each step,
containing at least one node candidate. The selected node can
only be to the right or bottom of the previous node. In this
case, the node to be selected will be a representation of the
location that has the potential to cause crowding.

2) Solution Set S
 Pre-selected nodes. In this case, S is a location that has
been visited and disinfectant spraying has been conducted.

3) Solution Function
 This function will check whether the selected node is a
goal node (ITB East Parking) or not.

4) Selection Function
 The selected node is the node that is in the vicinity (both
on the right and bottom of the previous node) with the closest
distance.

5) Feasible Function
 Checks whether the newly selected node makes the UAV
movement inclined to move southeast (because of site
selection that is only to the right or below the previous
location).

6) Objective Function
Get a UAV flight route with as many locations to visit as

possible.

C. Development Elements in Dynamic Programs

1) Characterize the structure of the optimal solution.
Suppose F(i, j) is the largest number of the problem of

abstraction of the location to be visited in the cell(i,j) in the i-
th row and the j-th column. The cell can be reached from the
cell (i-1, j) to above it or from the cell (i, j-1) to around its left.

Of course, in this case, there is no other row above it in the
cell in the first row and no other column to the left of it in the
column in the first cell. It is assumed that F(i-1, j) and F(i, j-1)
are equal to the number 0 for locations that do not have the
potential to cause crowds.

2) Recursively define the optimal solution value.

𝐹(0, 𝑗) = 0 , 1 ≤ 𝑗 ≤ 𝑚 basis

𝐹(𝑖, 0) = 0 , 1 ≤ 𝑖 ≤ 𝑛 basis

𝐹(𝑖, 𝑗) = 𝑚𝑎𝑥{𝐹(𝑖 − 1, 𝑗), 𝐹(𝑖, 𝑗 − 1)} + 𝑐𝑖𝑗

𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 recurrent

Where,

F(i, j): is the value of the i-th row and the jth column, it could
be the cell to be selected next.

n: number of rows of the completion table

m: number of columns of the settlement table

𝑐𝑖𝑗: constant, in this case serves as a Boolean of whether there

is a location pin in the table (number 0 if there is no defined
location, number 1 if there is a location defined).

3) Calculate the value of the optimal solution in advance.

Before performing calculations regarding the optimal
solution, a table will be created containing the division of rows
and columns from the extraction of the coordinates of each
location. This division is based on approximations for some

specific latitude and longitude scales and maximizes free
space for more effective cell decomposition.

Fig. 3. Locations Prone to Crowds in the Campus Environment

As shown in Figure 3, there are 5×11 cells joined in a
location representation table. One cell is only filled with a
maximum of one location pin, so that the calculation of each
stage will be right on target and will not experience excessive
bias. In addition, the position of HOME and the destination
node of the UAV will also be incorporated in the calculation
at the time of flying.

The above decomposition can be translated in the form of
a binary table representing the location to be visited as much
as possible. In this case, each pin will be represented by the

number 0 or 1 to represent the presence of a crowd location in
the table.

TABLE II. BINARY TABLE REPRESENTATION OF LOCATIONS TO VISIT

(i, j) 0 1 2 3 4

0 1 0 1 0 0

1 0 0 1 0 0

2 0 0 1 0 0

3 0 0 1 0 1

4 0 0 1 0 0

5 0 1 1 0 1

6 0 0 1 0 0

7 0 0 1 0 0

8 0 0 1 1 0

9 0 0 1 1 0

10 0 0 1 1 1

4) Reconstruction of the optimal solution.
The solutions found in the completion table will be used

to reconstruct the route that the UAV must travel to obtain the
optimal route.

D. Waypoint Drafting

1) Drafting with the Greedy Algorithm
Since the principle of the Greedy algorithm is to find the

shortest route first that prioritizes its right or bottom direction,
the movement pattern will look like this.

Fig. 4. Waypoint Preparation with Greedy Algorithm

Thus, the route will be generated in waypoint numbers as
follows: HOME → 1 → 2 → 3 → 4 → 5 → 6 → 18

2) Drafting with Dynamic Programs

 The calculation is conducted to get a place that will spray
as much disinfectant as possible. The table of calculation of
the optimal solution can be seen below.

TABLE III. PROCESSING TABLE OF LOCATIONS TO VISIT

(i, j) 0 1 2 3 4

0 1 1 2 2 2

1 1 1 3 3 3

2 1 1 4 4 4

3 1 1 5 5 5

4 1 1 6 6 6

5 1 2 7 7 7

6 1 2 8 8 8

7 1 2 9 9 9

8 1 2 10 10 11

9 1 2 11 12 12

10 1 2 12 13 14

With this processing table, the solution will be
reconstructed from the destination node by looking for
numbers around the node after which there is a dispute of one,
where a node whose number is smaller than itself will be
searched. Since movement is prioritized to the right first, if the
above and left nodes are of equal value, the construction of the
node on the left of itself will be searched first.

Thus, the route will be generated in waypoint numbers as
follows: HOME → 1 → 2 → 3 → 4 → 7 → 9 → 10 → 11 →
12 → 15 → 14 → 17 → 18

E. Simulation Environment

The program will run on Lubuntu Operating System
version 18.04 as most applications will run on the Linux
environment. For Visualization, a Gazebo application (Figure
5) is used so that the UAV's flying behavior can be seen. The
UAV will fly following the distance on the GPS so that the
visualization of the waypoint passed can be seen properly. [6]

Fig. 5. Drone View via Gazebo application in real time

IV. RESULTS AND DISCUSSION

A. Results

A simulation of UAV flying behavior has been conducted
designed to approach the location of the swarming site. The
Flight Route Plan will be arranged in such a way by the
application that later the UAV will fly according to the
algorithm that has been prepared before.

The experiment of the flight route planner with the Greedy
Algorithm resulted in 8 waypoints that included HOME itself,
the specific route arrangement can be seen in Figure 6.

Fig. 6. Routes with the Greedy Algorithm approach

With this approach, UAVs can visit 6 locations that have
the potential to cause crowds, namely Saraga Digital Clock,
Saraga Canteen, ITB Ganesha North Door, Oktagon-TVST
Roundabout, Labtek 1 Hall, and East GKU.

The total time the UAV spends flying from Take Off all
the way to the public East parking lot is 4 minutes 30 seconds.
The battery used to perform one flight route is 9.2644 Volts
from the battery capacity of 12.19 Volts. The distance traveled
by the UAV starts from HOME to reach the ITB Public Park
as far as 1,205 meters.

In the next experiment, an experiment is conducted using
the Dynamic Program approach. This experiment resulted in
14 waypoints that included HOME itself, the specific route
arrangement can be seen in Figure 7.

Fig. 7. Routes with a Dynamic Program Approach

With this approach, UAVs can visit 12 locations that have
the potential to cause crowds, namely Saraga Digital Clock,
Saraga Canteen, ITB Ganesha North Door, Oktagon-TVST
Roundabout, DPR, Intel Pond, Soekarno Monument, CTim-
CBar, Basketball Court, West Hall, East Hall, and ITB South
Door east side.

The total time the UAV spends flying from Take Off all
the way to the public East parking lot is 4 minutes 30 seconds.
The battery used to perform a single flight route is 9,752 Volts
from the battery capacity of 12.19 Volts. The distance traveled
by the UAV starts from HOME to reach the ITB Public Park
as far as 1,280 meters.

The time, distance, and size of the battery used are
calculated only for the trip, not counting the time to spray
disinfectant in the crowd. More details about the experimental
results can be found in Table 4.

TABLE IV. UAV FLIGHT ROUTE EXPERIMENT RESULTS

 Parameter

Algorithm

Greedy
Dynamic
Programming

1.
Number of Locations

visited
6 14

2. Flying Time 4’30’’ 4’30’’

3. Flying Distance 1.205 m 1.280 m

4. Battery Used 9.2644 V 9.752 V

B. Discussions

Experiments in determining an Effective Route to visit
potentially crowded locations have been conducted. The
interesting thing is the number of locations approached by the
UAV for different algorithms.

In the Greedy Algorithm, a node around it will be searched
for that has the closest distance, no matter whether at the stage
ahead it turns out that the result is not optimal. As a result, in
waypoint number 4, this decision-making error also reduces
the location that UAVs can approach. On the contrary, in the
Dynamic Program Algorithm, node optimization will be
sought at a certain stage of maximum value. Of course, this
consideration is based not only on the closest distance, but the
optimum solution for the whole case.

At the decomposition stage of each location using the
Dynamic Program Algorithm, the waypoint taken is seen
turning left even though the restrictions in this case are not
allowed. This happens because the dynamic program will
divide each problem into smaller sub-problems so that for
tolerances of several degrees, longitude and latitude in the
image will be one solid and parallel column.

Furthermore, for the comparison parameter of total flying
time, the interesting thing is that the time difference between
the two is ridiculously small, so it can be seen that the
optimization problem emphasized is how many locations can
be approached by UAVs to prevent potential crowds from
appearing in the middle of the campus.

The total Flying Distance between the two experiments
has a difference of 75 meters. The determination of flight
routes using greedy algorithms proves that the problem of
distance optimization is highly prioritized for the surrounding
location that is closest to the previous location. Experiments
with a dynamic program approach resulted in a longer total
flight distance due to correspondence with the number of
locations already visited.

The batteries used in the UAV for both experiments
showed a difference of about 0.5 Volts. Experiments with the
Dynamic Program approach consume more battery because
the locations visited are also more than using the Greedy
algorithm. That is, for battery parameters, the values
correspond to the parameters of the visited location as shown
in Table 4.

V. CONCLUSION

Crowding or gathering is something that must be avoided
because the spread of the Covid-19 virus will be higher if it is
considered trivial. With this, UAVs can be a solution to
monitor and spray disinfectants to sterilize the potential
crowd. For this reason, an effective strategy is needed so that

UAVs can reach as many locations as possible with the shuttle
method.

The more locations that will become potential swarming
points, the more alternative UAV solutions will be to approach
as many existing points as possible. For this reason, the
strategy of the UAV route determination algorithm to prevent
gathering points is seen from the parameters of many
locations, distances, time, and battery power used. UAV route
determination for Gathering Point Prevention is better using
Dynamic Programs than Greedy Algorithms.

VI. FUTURE WORKS

The next suggestion for researchers is that further UAV
implementation can be developed using Robotic Operating
System (ROS) and HITL (Hardware In The Loop). In
addition, the Dynamic Program decomposition table can be
developed by giving weight to each different crowd intensity
so that the UAV can prioritize the highest intensity crowds
must first be visited and disinfectant spraying conducted.

It is also recommended to do comparisons other than the
Greedy Algorithm, for example the Branch & Bound
Algorithm, the A* Algorithm, and others. This is necessary
because for different cases, it is hoped that the best solution
can be found so that the UAV route determination as much as
possible reaches the crowd location and conducts prevention
effectively and efficiently.

VIDEO LINK AT YOUTUBE

https://youtu.be/22x-_2e10tm

REFERENCES

[1] V. Efelina, S. Dampang, and I. Maulana, “Penggunaan Drone untuk
Penyemprotan Disinfektan dalam Pencegahan Covid-19 di Masa
Pandemi (Studi Kasus di Desa Margasari),” Selaparang, vol. 4, no.
April, pp. 368–373, 2021.

[2] R. Munir, “Algoritma Greedy,” no. Bagian 1, 2021, [Online].

Available: http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-
2018/Algoritma-Greedy-(2018).pdf

[3] H. Sunandar and Pristiwanto, “Optimalisasi Implementasi Algoritma
Greedy dalam Fungsi Penukaran Mata Uang Rupiah,” J. Tek. Inform.
Unika St. Thomas, vol. 04, no. 02, pp. 193–201, 2019.

[4] R. Munir, “Program Dinamis (Dynamic Programming),” Progr.

Stud. Tek. Inform. STEI-ITB, vol. 2021, pp. 1–57, 2021, [Online].

Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Program-Dinamis-2020-Bagian1.pdf

[5] N. Meghanathan, “Module 4 Dynamic Programming,” pp. 6–11,

2015, [Online]. Available:

http://www.jsums.edu/nmeghanathan/files/2015/04/CSC323-Sp2015-
Module-4-DynamicProgramming.pdf?x61976

[6] L. M. Wastupranata, “UAV Waypoint Strategy for COVID-19
Medicine Delivery based on Cheapest Link and Hamilton Circuit

Algorithm,” TechRxiv, 2023, [Online]. Available:
https://doi.org/10.36227/techrxiv.22218544

https://youtu.be/22x-_2e10tm

