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Abstract

This research paper presents a new approach to power definitions in multiphase AC systems in the frequency domain from

a purely geometric approach. The theoretical foundation is based on Geometric Algebra (GA) framework, which enables the

representation of harmonic voltages and currents as multidimensional vectors in Euclidean space. The use of the geometric

product allows to compute the geometric power multivector. The proposed method is a generalization and extension of previous

works that have focused on single- phase and balanced three-phase systems. This paper introduces a complete analysis of new

power terms in arbitrary multi- phase electrical systems entirely rooted on Geometric Algebra and Symmetrical Components.

Several synthetic and real-world examples are presented to illustrate the novelty, effectiveness and accuracy of the proposed

approach. The results of this study contribute to the development of a new geometric foundation for the power theory in

electrical engineering.
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Geometric Approach to Power Analysis in
Non-Sinusoidal and Unbalanced Multiphase AC

Circuits in the Frequency Domain
Francisco G. Montoya, Jorge Ventura, Francisco M. Arrabal-Campos and Alfredo Alcayde

Abstract—This research paper presents a new approach to
power definitions in multiphase AC circuits in the frequency
domain from a purely geometric approach. The theoretical
foundation is based on Geometric Algebra (GA) framework,
which enables the representation of harmonic voltages and
currents as multidimensional vectors in Euclidean space. The
use of the geometric product allows to compute the geometric
power multivector. The proposed method is a generalization
and extension of previous works that have focused on single-
phase and balanced three-phase systems. This paper introduces
a complete analysis of new power terms in arbitrary multi-
phase electrical circuits entirely rooted on Geometric Algebra
and Symmetrical Components. Several synthetic and real-world
examples are presented to illustrate the novelty, effectiveness and
accuracy of the proposed approach. The results of this study
contribute to the development of a new geometric foundation for
the power theory in electrical engineering.

Index Terms—geometric algebra, nonsinusoidal power flow, AC
systems, geometric electricity, harmonic power flow

I. INTRODUCTION

A. Motivation
The study of power performance in modern AC circuits

has gained significant attention due to its vital role in en-
suring the safe and efficient distribution of electrical energy
within various applications, such as motor driving systems
and power electronics. A comprehensive analysis of power
characteristics is essential to optimize the operation of these
systems, prevent potential instabilities, and ensure their re-
liability. In recent years, the increasing use of non-linear
loads and power electronic devices has led to the presence
of harmonics and unbalanced conditions in multiphase AC
circuits, complicating the analysis and control of power flow.
Traditional methods for analyzing power flow in AC circuits,
such as complex numbers and matrices, have limitations when
dealing with non-sinusoidal and unbalanced conditions [1].
Moreover, these methods cannot fully capture the interactions
between harmonics that occur in such systems. Consequently,
power definitions like apparent or reactive power become more
intricate [2], [3], resulting in different versions depending
on the chosen standard (e.g., IEEE 1459 or DIN 40110).
This work aims to address the above-mentioned issues and
proposes new tools to study and analyze power flow in non-
sinusoidal multiphase circuits in the frequency domain through
the powerful framework provided by Geometric Algebra.

B. Background and Literature Review
The efficient and optimal operation of electrical and power

systems has been a topic of interest since the development of
apparent and reactive power concepts. Adequate management
of these concepts is widely acknowledged as beneficial from
both an engineering and economic standpoint. Despite ongoing

debates on the physical interpretation of these concepts, this
paper primarily focuses on the economic and optimization
aspects of frequency-based power definitions, i.e., how the
power definitions affect the optimal operation of power circuits
with minimal losses. For an in-depth examination of the
physical interpretation of power in this context, readers are
referred to [4], [5], [6].

In the context of steady-state analysis, complex numbers
and matrix algebra have traditionally been used, along with
the Fourier transform in the frequency domain. In the case
of multiphase systems, the Fortescue transform (symmetrical
components) has proven useful for simplifying the process for
unbalanced or asymmetrical systems [7], [8]. However, the
interactions between different harmonics and phases involved
in the phenomenon of apparent (reactive) power flow cannot
be fully addressed using standard mathematical tools such as
matrices and complex numbers [9]. Therefore, the role of the
mathematical framework is essential in achieving satisfactory
results, and this serves as an example of how existing tools are
insufficient for the task at hand. In such cases, alternative tools
or frameworks should be developed or adapted. For instance,
the use of quaternions has shown advantages over matrix
algebra in computer vision problems [10] and navigation.

GA has been revealed as a universal and unifying framework
that includes a large number of traditional tools such as
complex numbers, quaternions, matrices, differential forms,
tensors, etc [11]. Recently, its versatility and capability have
been demonstrated in various fields of science and engineer-
ing such as quantum physics, mechanics, robotics, computer
vision, and also electrical engineering [12], [13], [14]. The
use of GA makes it possible to solve electrical circuits in
both frequency and time domain [15], [16] with a very similar
approach. Because of the inherent multidimensionality of elec-
trical systems [17], [18], GA is the appropriate tool to analyze
them. For instance, GA makes it possible to compute power
flows resulting from the interaction of harmonics of different
frequencies, a task that cannot currently be accomplished with
complex numbers or matrices [19].

C. Contributions
This work extends and elaborates on the results of [20] and

[21] by presenting the theoretical framework in multiphase
electrical circuits using symmetrical components. Specifically,
three-phase circuits are thoroughly analyzed in detail. The
novel contributions are the following:
• Introducing a new approach for analyzing the power

flow in arbitrary multiphase AC circuits from a purely
geometric approach using Geometric Algebra framework.

• Generalizing and extending previous works that have
focused on single-phase and balanced three-phase circuits
to provide a complete analysis of power flow in arbitrary
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multiphase non-sinusoidal, non-linear and/or unbalanced
electrical circuits.

• Definition of symmetrical components and new power
terms resulting from the interaction of current and voltage
of different sequences in the GA framework.

• Creation of a comprehensive and unified method to
understand harmonic powers in the GA framework.

• Presenting several examples to illustrate the novelty,
effectiveness, and accuracy of the proposed approach.

• Contributing to the development of a new geometric
foundations for the power theory in electrical engineering.

D. Outline

The outline of the paper is as follows. Section II presents
a brief overview of the application of geometric algebra to
electrical circuits. The concept of isomorphism among vector
spaces is crucial to define the voltage and current vector, along
with the concept of geometric power multivector. Section III
presents the formulation of symmetrical components in the
language of GA. The geometric positive, negative and zero
sequences are defined using geometric rotors for sinusoidal
and non-sinusoidal circuits. A list of scenarios is presented
in sections IV and V in increasing order of complexity, from
balanced, symmetric and sinusoidal 3-wire systems to asym-
metric, non-sinusoidal, unbalanced 4-wire circuits. In Section
VI, a practical case is presented highlighting the benefits and
advantages of the method for solving complex systems in the
real world. Finally, Section VII draws some conclusions.

II. BRIEF OVERVIEW OF GEOMETRIC ALGEBRA IN
ELECTRICAL SYSTEMS

Any periodic electrical signal (voltage or current) can be
expressed through the orthonormal basis in the vector space of
Fourier functions ϕ = {1,

√
2 cos kωt,

√
2 sin kωt}mk=1, where

m is the number of harmonics under consideration. This basis
is isomorphic [20] to the Euclidean basis σ = {σk}2mk=0, with
the following one-to-one mapping

1 ←→ σ0√
2 cosωt ←→ σ1√
2 sinωt ←→ σ2

. . .√
2 cosmωt ←→ σ2m−1√
2 sinmωt ←→ σ2m

(1)

Under this rationale, an arbitrary voltage u(t) or current i(t)
can be expressed as a vector, denoted by u or i, respectively.
As shown in [20], the geometric product of the voltage and
current vectors leads to the geometric power multivector

M = ui = u · i+ u ∧ i = P +MN (2)

where the · operator means inner/dot product, while ∧ means
exterior/outer product. P is the well-known active power
(scalar value), while MN is the geometric non-active power
bivector (see [20], sec. 4). It accounts for the classical reactive
power (in the Budeanu sense) but also new terms stemming
from the interaction between harmonics of different frequen-
cies. The norm of the geometric power fulfils the pythagorean
relationship ‖M‖2 = P 2 + ‖M2

N‖. Moreover, a geometric

impedance bivector Zk = uki
−1
k can be defined for every

harmonic k, with

uk = u2k−1σ2k−1 + u2kσ2k uk =
√
u2
2k−1 + u2

2k

ik = i2k−1σ2k−1 + i2kσ2k ik =
√
i22k−1 + i22k

(3)

being uk and ik the vector parts corresponding to harmonic
k for voltage and current, respectively. Thus, the use of GA
allows the application of the superposition theorem [15] and,
therefore, to solve electrical circuits by applying the well-
known laws and theorems of the circuit theory.

III. SYMMETRICAL COMPONENTS IN GA

A. Geometric Voltages and Currents

The proposed approach for the analysis of powers in
multiphase systems is based on GA and relies on the use
of Symmetrical Components (SC) instead of phase values
because of the orthogonality and linear independency between
sequences. The SC technique involves treating a multiphase
system with p phases as the superposition of p different
and independent balanced systems to compute the currents
and the voltage in an easier way. Thus, the complexity of
calculations is reduced and simplified. However, this poses a
problem for computing powers. For simplicity purposes and
due to space limitations, the case of a three-phase (p = 3)
circuit is presented here, but generalisation to more phases is
straightforward (just add more dimensions). The periodic but
arbitrary voltages and currents are

up(t) =
√

2
∑
k∈N

Upk cos(kωt + ϕv
pk)

ip(t) =
√

2
∑
k∈M

Ipk cos(kωt + ϕi
pk)

(4)

with p = {R,S, T} the phase numbering, k integer, Upk,
Ipk phase RMS values, N and M the set of voltage and
current harmonics, respectively. DC and interharmonic terms
are avoided for simplicity but can be added without loss of
generality. Eqs. (4) are transferred to the GA domain as

up =
∑
k∈N

upk =
∑
k∈N

Upk cosϕv
pkσ2k−1 + Upk sinϕv

pkσ2k

ip =
∑
k∈M

ipk =
∑
k∈M

Ipk cosϕi
pkσ2k−1 + Ipk sinϕi

pkσ2k

(5)
To facilitate comprehension and streamline the analysis,

this paper provides a detailed description of the process,
emphasizing the differentiation between sinusoidal and non-
sinusoidal scenarios. Moreover, the geometric symmetrical
components in power invariant form is applied solely to the
voltage vector in Eq. (5) for simplicity.

1) Sinusoidal case: For the sinusoidal case, the phase-to-
neutral voltage vectors are expressed as

uR = uR1σ1 + uR2σ2 = uRe
ϕRσ12σ1

uS = uS1σ1 + uS2σ2 = uSe
ϕSσ12σ1

uT = uT1σ1 + uT2σ2 = uT e
ϕTσ12σ1

(6)

Note that the polar form has been used for clarity where
the vector ui is expressed as a rotation of the base vector σ1.
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The first step for the geometrical transformation is to compute
the geometric sequence voltage vectors as follows

ūp =
1√
3

(
uR +AuS +A†uT

)
ūn =

1√
3

(
uR +A†uS +AuT

)
ū0 =

1√
3

(uR + uS + uT )

(7)

where ūp, ūn and ū0 are the geometric positive, negative and
zero sequence vectors, respectively (be aware that the decora-
tion bar has no special meaning). The bivector A = e120σ12

is a geometric rotor, performing a 120◦ rotation in the plane
σ12 when applied to a vector. The reverse A† = e−120σ12

also performs a rotation but in the opposite direction. Note
that A2 = A†, i.e., two consecutive rotations of 120º (240º
in total) in a direction is the same that rotate 120º in the
opposite direction. Once the geometric sequence components
are obtained, the SC vector is built. For this task, the sequence
components must be accommodated in an orthogonal way. The
most natural option is to add more dimensions when needed.
For the case of 3 sequences, we need 4 extra dimensions, thus
the initial basis σ for sinusoidal signals extend from σ2 to σ6.
The proposed method accomplish this task by renumbering
the basis vectors for the negative and zero sequences without
altering the positive sequence. This will be called the shifting
mechanism and it reads as follows
ūp = up1σ1 + up2σ2 → up = up1σ1 + up2σ2

ūn = un1σ1 + un2σ2 → un = un1σ3 + un2σ4

ū0 = u01σ1 + u02σ2 → u0 = u01σ5 + u02σ6

(8)

In this way, the SC voltage vector is simply

u = up + un + u0

= up1σ1 + up2σ2 + un1σ3 + un2σ4 + u01σ5 + u02σ6
(9)

To recover the original signals, the reverse process should be
followed, i.e., first split the SC vector into geometric sequence
components undoing the shifting process

up = up1σ1 + up2σ2 → ūp = up1σ1 + up2σ2

un = un1σ3 + un2σ4 → ūn = un1σ1 + un2σ2

u0 = u01σ5 + u02σ6 → ū0 = u01σ1 + u02σ2

(10)

and apply the inverse SC transformation

uR =
1√
3

(ūp + ūn + ū0)

uS =
1√
3

(
A†ūp +Aūn + ū0

)
uT =

1√
3

(
Aūp +A†ūn + ū0

) (11)

A similar procedure can be carried out for both the sequence
and the SC current vectors, resulting in

i = ip + in + i0 (12)

Finally, use the isomorphism defined in Eq. (1) to transform
the geometric vectors into phase time domain waveforms.

2) Non-Sinusoidal case: For the non-sinusoidal case, the
method explained in the previous section must be applied for

every harmonic k present in the electrical phases

ūpk =
1√
3

(
uRk +AkuSk +A†kuTk

)
ūnk =

1√
3

(
uRk +A†kuSk +AkuTk

)
ū0k =

1√
3

(uRk + uSk + uTk)

(13)

where ūpk, ūnk and ū0k are the positive, negative and zero
sequence vectors for harmonic k, respectively. The bivector
Ak = e120σ(2k−1)(2k) is a geometric rotor performing a 120º
rotation in the plane σ(2k−1)(2k). Note that, in the context
of electrical engineering, it is commonly assumed that all
sequences exhibit the same type of harmonics k. Thus, the
total positive, negative and zero sequence vectors are

ūp =

k∑
i=1

ūpi ūn =

k∑
i=1

ūni ū0 =

k∑
i=1

ū0i (14)

Applying the shifting mechanism, more dimensions will be
added depending on the number of harmonics

ūpk = up1kσ2k−1 + up2kσ2k → upk = up1kσ2k−1 + up2kσ2k

ūnk = un1kσ2k−1 + un2kσ2k → unk = un1kσ4k−1 + un2kσ4k

ū0k = u01kσ2k−1 + u02kσ2k → u0k = u01kσ6k−1 + u02kσ6k

(15)
Note that the SC vector has now 6k dimensions to accommo-
date the harmonics of all sequences. It makes sense because
it corresponds to the initial number of degrees of freedom of
the system. The sequence vectors are then

up =

k∑
k=1

upk un =

k∑
k=1

unk u0 =

k∑
k=1

u0k (16)

and the SC vector is

u = up + un + u0 (17)

B. Geometric Power
Once the sequence vectors and SC vector for voltage and

current have been obtained, and according to Eq. (2), the
geometric power can be computed as

M = ui = (up + un + u0)(ip + in + i0)

= upip + upin + upi0
+ unip + unin + uni0
+ u0ip + u0in + u0i0
= Mp +Mn +M0 +MR = P +MN

(18)

with

Mp = upip = P+ +M+
N = P+ +M+

Q +M+
D

Mn = unin = P− +M−
N = P− +M−

Q +M−
D

M0 = u0i0 = P 0 +M0
N = P 0 +M0

Q +M0
D

MR = M −Mp −Mn −M0

(19)

The terms Mp, Mn and M0 are the positive, negative
and zero sequence geometric power. They are the sum of the
positive, negative and zero sequence active power (scalars P+,
P− and P 0) and non-active power (bivectors M+

N , M−
N and
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M0
N ). The non-active power bivector MN can be decomposed

into MQ which accounts for the geometric reactive power (in
the Budeanu sense) and MD which accounts for the geometric
distorted power, a new power term resulting from the cross-
products between voltage and current of different frequencies
and same sequence. Finally, bivector MR is also a power
term due to the interaction of current and voltages of different
sequences. This is an original result of this work.

Another distinctive feature (as in the time domain version of
this framework [12], [16]) is that the reactive (in the Budeanu
sense) power terms MQ are grouped into bivectors terms of
the form σ(2k−1)(2k) for every harmonic order k.

IV. APPLICATION TO THREE-PHASE SYSTEMS.
SINUSOIDAL SUPPLY

In the upcoming sections, the proposed framework will be
applied to various three-phase electrical systems taken from
the literature and different sources. It will be included both
sinusoidal and non-sinusoidal supplies, as well as linear and
non-linear loads. The application to sinusoidal sources will
first be considered for convenience. This approach aims to
provide a comprehensive understanding of the new framework
by breaking down the analysis into manageable steps of
increasing difficulty. The methodology will be explained in
detail, providing examples and applications for each scenario.

A. Balanced Load and Symmetric Source 3-wire Circuit
Consider a system with a symmetrical and sinusoidal source

and balanced load, where the neutral point can be virtual
or real. The phase-to-neutral voltages of the source and the
supplied currents are

uR(t) =
√

2U cosωt iR(t) =
√

2I cos(ωt− ϕ)

uS(t) =
√

2U cos(ωt− 120) iS(t) =
√

2I cos(ωt− 120− ϕ)

uT (t) =
√

2U cos(ωt + 120) iT (t) =
√

2I cos(ωt + 120− ϕ)

Note that all angles are assumed to be in degrees. The
transformation of voltages and currents to the geometrical
domain is

uR = Uσ1 iR = Ie−ϕσ12σ1

uS = UA†σ1 iS = IA†e−ϕσ12σ1

uT = UAσ1 iT = IAe−ϕσ12σ1

Again, the polar form has been used for clarity. The geo-
metric SC is now applied to the vectors. Because the system
is symmetrical and balanced, we know that there will be no
negative or zero sequences in both current and voltage,

ūp =
U√

3

(
σ1 +AA†σ1 +A†Aσ1

)
=
√

3Uσ1

ūn =
U√

3

(
σ1 +A†A†σ1 +AAσ1

)
= 0

ū0 =
U√

3

(
σ1 +A†σ1 +Aσ1

)
= 0

(20)

īp =
Ie−ϕσ12

√
3

(
σ1 +AA†σ1 +A†Aσ1

)
=
√

3Ie−ϕσ12σ1

īn =
Ie−ϕσ12

√
3

(
σ1 +A†A†σ1 +AAσ1

)
= 0

ī0 =
Ie−ϕσ12

√
3

(
σ1 +A†σ1 +Aσ1

)
= 0

(21)

Figure 1: Unbalanced load supplied by a symmetrical voltage
source in a 3-wire circuit. The load is composed of a trans-
former and impedance on the secondary.

where the properties AA† = 1, (A†)2 = A and A2 = A†

have been applied. For this simple case, the SC vectors are

u = up = ūp =
√

3Uσ1 ‖u‖ =
√

3U

i = ip = īp =
√

3Ie−ϕσ12σ1 ‖i‖ =
√

3I
(22)

The geometric SC power multivector M is then computed as

M = ui =
√

3Uσ1

√
3Ie−ϕσ12σ1

= 3UIeϕσ12 = 3UI cosϕ + 3UI sinϕσ12

(23)

It can be readily checked that ‖M‖ = ‖u‖‖i‖ = 3UI , which
coincides with the expected results. Note that the role of the
imaginary unit j in traditional complex phasor computations
is now played by the bivector term σ12, since σ2

12 = −1.

B. Unbalanced Load and Symmetric Source 3-wire Circuit

The circuit in Fig. 1 represents a symmetrical, sinusoidal
system of voltages feeding a highly unbalanced three-phase
load. The considered values for the phase-to-neutral voltages
at the source are

uR(t) =
√

2 277 cos(ωt− 30)

uS(t) =
√

2 277 cos(ωt− 150)

uT (t) =
√

2 277 cos(ωt + 90)

The current can be obtained by the simple application of circuit
theory to the set transformer–impedance

iR(t) =
√

2 151.72 cos(ωt− 18.43)

iS(t) =
√

2 151.72 cos(ωt + 161.56)

iT (t) = 0

The voltages and currents are transformed into the geometric
domain as

uR = 277e−30σ12σ1 iR = 151.72e−18.43σ12σ1

uS = 277e−150σ12σ1 iS = 151.72e161.56σ12σ1

uT = 277e90σ12σ1 iT = 0

The sequence components of the voltage and current are now
being computed. As in the previous example, it is observed
that the voltage is balanced, resulting in the existence of only
a positive sequence

ūp =
√

3 277e−30σ12σ1 (24)

In contrast, positive and negative sequences are now present
in the current, and thus the basis is now comprised of four
base vectors σ = {σ1,σ2,σ3,σ4}. Following Eq. (7), the
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geometric sequence current vectors are

īp =
151.72√

3

(
e−18.43σ12σ1 +Ae161.56σ12σ1

)
= 151.72e−48.43σ12σ1

īn =
151.72√

3

(
e−18.43σ12σ1 +A†e161.56σ12σ1

)
= 151.72e11.56σ12σ1

ī0 = 0

(25)

and based on the shifting mechanism proposed in (8), the
shifted sequence vectors are

ip = 151.72e−48.43σ12σ1 in = 151.72e11.56σ34σ3 (26)

The voltage and current SC vectors are then

u =
√

3 277e−30σ12σ1

i = 151.72e−48.43σ12σ1 + 151.72e11.56σ34σ3

The geometric SC power obtained in this particular example
is worth

M = ui = 69, 058 + 23, 013σ12 + 61, 760σ13

− 12, 632σ14 + 35, 657σ23 − 7293σ24

The result will be examined for a moment. As can be observed,
there is a scalar value which represents the active power solely
caused by the interaction of voltage and current of positive
sequence (P+). It is coincident with Joule’s law applied to
the load RI2 = 3 · 151.722 = 69, 058 W. The reactive
power XI2 = 1 · 151.722 = 23, 013 VAr is represented by
the bivector term Q = 23, 013σ12. The interaction between
positive sequence voltage and negative sequence current is
represented by the remaining bivector terms. The norm of the
geometric power is |M | =

√
〈MM †〉0 = |u||i| = 102, 943

VA. One of the advantages of using GA is that the current
decomposition can be easily obtained by inverting the voltage
vector. In this example, the result is

ia = u−1P =
u

‖u‖2
P = 143.93e−30σ12σ1

ir = u−1Qσ12 = 47.97e−120σ12σ2

iu = i− ia − ir = 151.72e11.56σ34σ3

Being ia, ir and iu the geometric active, reactive and un-
balanced current, respectively. It can be readily checked that
ia +ir +iu = i. Note that to recover the time domain signals,
Eqs. (9) to (11) must be applied.

C. Unbalanced Load and Asymmetric Source 3-wire Circuit

The circuit in Fig. 2 represents an asymmetrical, sinusoidal
voltage source feeding an unbalanced three-phase load in a
3-wire system. The time domain phase-to-neutral voltages at
the source are

uR(t) =
√

2 100 cosωt

uS(t) =
√

2 100 cos(ωt− 120)

uT (t) = 0

Figure 2: Unbalanced load supplied by an asymmetrical sinu-
soidal voltage source in a 3-wire circuit.

The line voltages can be readily derived and jointly trans-
formed to the geometric domain as

uR = 100σ1 uRS =
√

3 100e30σ12σ1

uS = 100e−120σ12σ1 uST = 100e−120σ12σ1

uT = 0 uTR = −100σ1

The configuration of the load is that of an unbalanced delta
so that solving for the currents, one gets

iR(t) =
√

2 100 cos(ωt− 90)

iS(t) =
√

2 100 cos(ωt− 120)

iT (t) =
√

2 193.18 cos(ωt + 75)

The geometrical counterpart is computed as usual

iR = 100σ2

iS = 100e−120σ12σ1

iT = 193.18e75σ12σ1

The next step is to compute the sequence components of the
voltage source

ūp =
100√

3

(
σ1 +AA†σ1

)
=

200√
3
σ1

ūn =
100√

3

(
σ1 +A†A†σ1

)
=

100√
3
e60σ12σ1

ū0 =
100√

3

(
σ1 +A†σ1

)
=

100√
3
e−60σ12σ1

Since the load has no neutral and it is unbalanced, a neutral
displacement uNN ′ will occur. Therefore, this means that the
phase voltages at the load do not match the phase voltages at
the source. To compute these phase voltages at the load, the
zero sequence is removed and the SC method is applied

uR′ =
1√
3

(ūp + ūn) =
1√
3

(
200√

3
σ1 +

100√
3
e60σ12σ1

)
= 88.19e19.1σ12σ1

uS′ =
1√
3

(
A†ūp +Aūn

)
=

1√
3

(
A†

200√
3
σ1 +A

100√
3
e60σ12σ1

)
= 88.19e−139.1σ12σ1

uT ′ =
1√
3

(
Aūp +A†ūn

)
=

1√
3

(
A

200√
3
σ1 +A†

100√
3
e60σ12σ1

)
= 33.33e120σ12σ1
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Note that no zero sequence component should be present at the
load because of the 3-wire configuration. Now, the sequence
currents are computed

īp =
1√
3

(
100σ2 +A100e−120σ12σ1 +A†193.18e75σ12σ1

)
= 193.18e−45σ12σ1

īn =
1√
3

(
100σ2 +A†100e−120σ12σ1 +A193.18e75σ12σ1

)
=
√

2 100e−165σ12σ1

ī0 = 0
(27)

The final step involves the computation of the shifted sequence
and SC vectors. Note that now the basis has 4 elements from
σ1 to σ4 to accommodate the two non-null sequences in the
voltage at the load. The SC voltage and current vectors are

u =
200√

3
σ1 +

100√
3
e60σ34σ3

i = 193.18e−45σ12σ1 +
√

2 100e−165σ34σ3

and the geometric power is

M = ui = 10, 000 + 15, 773σ12 − 19, 716σ13 + 11, 056σ14

− 3943σ23 + 6829σ24 − 5773σ34

Notice that the total active power is the sum of the positive
and negative sequence active power P = P+ + P− =
15, 773−5773 = 10, 000 W. Furthermore, it corresponds to the
total expected active power RI2S = 10, 000 W. The traditional
reactive power XI2S = 10, 000 VAr is disaggregated into
the bivector terms 15, 773σ12 and −5773σ34 corresponding
to the reactive power of the positive and negative sequence,
respectively. The decomposition of currents is as follows

i = u−1M =
u

‖u‖2
(P +MN ) = ia + iN

where ia is the geometrical active current (similar to that
of the traditional Fryze decomposition) and iN is the non-
active current. A typical compensator would take care of
removing the non-active component of the current so that
the minimum possible current is obtained from the supply
grid. Nonetheless, this step may not be optimal as negative
sequence components, which can be harmful to the electrical
equipment, would still exist. An alternative approach could be
to compensate for a fully sinusoidal current consisting solely
of positive sequence components demanding the same active
power P+ = 15, 773 W, then

i+ = u−1p P+ = 136.6σ1

so that the current to be generated by the active compensator
will be icomp = i − i+. Obviously, the negative sequence
component of the voltage must be removed as a preliminary
step. Otherwise, the active power and the resulting current
will be lower since ‖u‖ > ‖up‖. In general, it is possible
to establish different compensation policies depending on the
practical interest of each application.

D. Unbalanced Load and Symmetric Source 4-wire Circuit
The attention is now shifted towards three-phase 4-wire

circuits, wherein distinct configurations will be examined. The
balanced load with symmetrical power supply configuration

Figure 3: Unbalanced load supplied by a symmetrical sinu-
soidal voltage source in a 4-wire circuit. The values for the
load are R1 = R2 = 0.5 Ω and XL = 0.87 Ω.

is skipped as it is solved in the same way as a 3-wire
system because there is no zero sequence component. A three-
phase 4-wire circuit with symmetrical sinusoidal supply and
unbalanced load is shown in Fig. 3. The phase-to-neutral
voltage supply is given by

uR(t) =
√

2 120 cosωt

uS(t) =
√

2 120 cos(ωt− 120)

uT (t) =
√

2 120 cos(ωt + 120)

with transformed voltages to the geometric domain as

uR = 120σ1

uS = 120e−120σ12σ1

uT = 120e120σ12σ1

Since it is a symmetrical power supply, there is only a positive
sequence component with value ūp =

√
3 120σ1. Solving the

circuit for the impedances ZRN = 0.5 + 0.87σ12 and ZSN =
0.5, the following currents are obtained

iR = 119.59e−60.11σ12σ1 iT = 0

iS = 240e−120σ12σ1 iN = 317.33e79.02σ12σ1

After the computation of the sequence vectors and taking into
account the shifting process, the shifted sequence components
of the current are worth

ip = 172.97σ1 + 59.86σ2 = 183.03e−19.09σ12σ1

in = −34.88σ3 − 60.14σ4 = 69.52e120.11σ34σ3

i0 = −34.88σ5 + 179.86σ6 = 183.21e−100.97σ56σ5

(28)

The geometric SC vectors are

u =
√

3 120σ1

i = 183.03e−19.09σ12σ1 + 69.52e120.11σ34σ3

+ 183.21e−100.97σ56σ5

The result for the geometric power follows

M = ui = 35, 950.66 + 12, 442.14σ12 − 7249.34σ13

− 12, 499.39σ14 − 7249.34σ15 + 37, 383.68σ16

In this example, it can be recognised that there are different
bivector terms resulting from the interaction of the positive
voltage sequence and the negative and zero current sequences.
The expected active power value according to Joule’s law is

R1I
2
R + R2I

2
S = 0.5 · 119.592 + 0.5 · 2402 = 35, 950.66 W
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Figure 4: Unbalanced load supplied by an asymmetrical sinu-
soidal voltage source in a 4-wire circuit. The values for the
load are R = 1 Ω, XL1 = 0.5 Ω, XL2 = 1 Ω and XC = 1 Ω.

and the reactive power according to Budeanu is

X2I
2
R = 0.87 · 119.592 = 12, 442.14 VAr

E. Unbalanced Load and Asymmetric Source 4-wire Circuit

Adding further complexity to the circuit structure, an unbal-
anced 4-wire circuit with an asymmetrical sinusoidal supply
is shown in Fig. 4. The values of the phase-to-neutral voltages
are

uR(t) =
√

2 100 cosωt

uS(t) = 0

uT (t) =
√

2 100 cos(ωt + 120)

with transformed values to the geometrical domain as

uR = 100σ1 uS = 0 uT = 100e120σ12σ1

Solving the circuit for the impedances specified in Fig. 4, the
currents in the geometrical domain are obtained

iR = 50σ1 + 50σ2 iT = 173.2σ1 − 100σ2

iS = 0 iN = −223.2σ1 + 50σ2

In this case, the rectangular form has been chosen instead
of the polar form, in no order of preference. The geometric
shifted sequence vectors are

up = 115.47σ1 ip = 28.86σ1 + 144.3376σ2

un = 28.86σ3 + 50σ4 in = −71.13σ3 − 28.86σ4

u0 = 28.86σ5 − 50σ6 i0 = 128.86σ5 − 28.86σ6

and the SC vectors are
u = 115.47σ1 + 28.86σ3 + 50σ4 + 28.86σ5 − 50σ6

i = 28.86σ1 + 144.33σ2 − 71.13σ3 − 28.86σ4

+ 128.86σ5 − 28.86σ6

Computing again the geometric power, we get

M = ui = 5000 + 16, 666.66σ12 + 2723.29σ34

+ 5610.04σ56 +R

where the term R represents the bivector terms due to the
interaction between different sequences. Once again, Joule’s
law is fulfilled and the reactive power due to the positive,
negative and zero sequences is accommodated into bivector
terms σ12, σ34 and σ56, respectively. The magnitude of the
geometric power is ‖M‖ = ‖u‖‖i‖ = 30, 000 VA. It can
be readily checked that the Pythagorean relationship is also
fulfilled because of the inherent orthogonality among the terms
in the multivector M . The geometric power factor is defined
as

pf =
P

‖M‖
= 0.1667

Figure 5: Unbalanced load supplied by a symmetrical non-
sinusoidal voltage source in a 3-wire circuit. The values for
the load are R = 1 Ω, XL = 2 Ω and XC = 2.5 Ω. The
transformer ratio is 1:1.

V. APPLICATION TO THREE-PHASE SYSTEMS.
NON-SINUSOIDAL SUPPLY

In this section, the method is applied to systems supplied by
non-sinusoidal sources, thus generating steady-state harmon-
ics. As in the previous sections, different scenarios with an
increasing level of complexity are considered.

A. Unbalanced Load and Symmetric Source 3-wire Circuit
Henceforth, non-sinusoidal circuits will be considered in

detail. They present a greater analytical challenge due to
harmonic distortions. Figure 5 depicts a system where a sym-
metrical, non-sinusoidal voltage supplies an unbalanced three-
phase load. This configuration is analogous to others studied
previously, with the exception that the negative sequence
component is conveyed by a negative sequence harmonic,
rather than a source asymmetry. As will be demonstrated, the
resolution methodology is similar.

The values of the phase-to-neutral voltages are

uR(t) =
√

2 277 cosωt +
√

2 11 cos(5ωt)

uS(t) =
√

2 277 cos(ωt− 120) +
√

2 11 cos(5ωt + 120)

uT (t) =
√

2 277 cos(ωt + 120) +
√

2 11 cos(5ωt− 120)

It is noteworthy that the fifth-order harmonic is character-
ized by a negative sequence. Consequently, to account for
the involvement of two harmonics, a 4-dimensional basis is
necessary to conform to the geometric domain

√
2 cosωt→ σ1

√
2 cos 5ωt→ σ3√

2 sinωt→ σ2

√
2 sin 5ωt→ σ4

The geometric voltage vectors are now

uR = 277σ1 + 11σ3

uS = 277e−120σ12σ1 + 11e120σ34σ3

uT = 277e120σ12σ1 + 11e−120σ34σ3

The load configuration is unbalanced, with only phase R in
the secondary circuit being loaded. As a result, the currents
are

iR(t) =
√

2 95.95 cos(ωt + 30) +
√

2 36.2 cos(5ωt + 59.702)

iS(t) =
√

2 95.95 cos(ωt− 150) +
√

2 36.2 cos(5ωt− 120.298)

iT (t) = 0

The geometric transformation for the currents is

iR = 95.95e30σ12σ1 + 36.2e59.70158σ34σ3

iS = 95.95e−150σ12σ1 + 36.2e−120.298σ34σ3

iT = 0
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Hence, the determination of symmetrical components at the
source is now feasible. Given the presence of two harmonics,
the calculation of sequences requires their separate evaluation

ūp1 =
√

3 277σ1 ūn1 = 0 ū01 = 0

ūp5 = 0 ūn5 =
√

3 11σ3 ū05 = 0

The SC for the current is worth

īp1 = 95.95σ1 īn1 = 95.95e60σ12σ1 ī01 = 0

īp5 = 36.22e29.7σ34σ3 īn5 = 36.22e89.7σ34σ3 ī05 = 0

To obtain the sequence shifted vectors, it is necessary to
consider the expressions given in Eqs. (13) through (16).
In this particular case, the dimensionality of the problem is
n = 8 as a result of the presence of two harmonics and two
sequences (positive and negative). The following table presents
a summary of the mapping:

positive seq. negative seq.
√

2 cosωt → σ1

√
2 cosωt → σ5√

2 sinωt → σ2

√
2 sinωt → σ6√

2 cos 5ωt → σ3

√
2 cos 5ωt → σ7√

2 sin 5ωt → σ4

√
2 sin 5ωt → σ8

(29)

Therefore, the geometrical voltage and current are now ex-
pressed as

u =
√

3 277σ1 +
√

3 11σ7

i = 95.95σ1 + 36.22e29.7σ34σ3 + 95.95e60σ56σ5

+ 36.22e89.7σ78σ7

which yields the geometric power

M = ui = 46, 037︸ ︷︷ ︸
P+

+ 3.1︸︷︷︸
P−

+15, 094σ13 − 8609σ14

+ 23, 018σ15 − 39, 869σ16 − 1737σ17 − 17, 377σ18

− 599σ37 + 341σ47 − 914σ57 + 1583σ67 − 690.07︸ ︷︷ ︸
Q−

σ78

Different components with engineering significance can be
identified. The geometric power has two components, a scalar
and a bivector. The scalar part includes the active power
components P = P+ + P−. The negative sequence reactive
power Q = Q− is accommodated in the bivector σ78.
The remaining bivectors account for the interactions between
harmonics of different frequencies and/or sequences. In this
scenario, the reactive power is exclusively attributed to the
fifth harmonic, given that there is no phase shift between
the positive sequence voltage and current for the fundamen-
tal component. It is noteworthy that these spurious powers,
which arise from cross-interactions between sequences and/or
harmonics, are not addressed by conventional methods that
rely on complex numbers and matrices. The magnitude of the
current and voltage vectors and power multivector is shown
below

‖u‖ =
√

3(2772 + 112) = 480.15 V

‖i‖ =
√

95.952 + 36.222 + 95.952 + 36.222 = 145.04 A

‖M‖ =
√
〈MM †〉0 = ‖u‖‖i‖ = 69, 645 VA

(30)

Figure 6: Unbalanced load supplied by an asymmetrical non-
sinusoidal voltage source in a 3-wire circuit.

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 ‖ · ‖
uR 100.00 0.00 30.00 0.00 20.00 0.00 10.00 0.00 106.77
uS -50.00 86.60 30.00 0.00 -10.00 -17.32 -5.00 8.66 106.77
uT -25.00 -43.30 15.00 0.00 -5.00 8.66 -2.50 -4.33 53.38

ūp 144.33 0.00 4.33 -7.50 2.88 5.00 14.43 0.00 145.43
ūn 14.43 -25.00 4.33 7.50 28.87 0.00 1.44 -2.50 41.83
ū0 14.43 25.00 43.30 0.00 2.89 -5.00 1.44 2.50 52.44

uR 91.66 -14.43 5.00 0.00 18.33 2.88 9.16 -1.44 95.22
uS -58.33 72.17 5.00 0.00 -11.67 -14.43 5.83 7.22 95.22
uT -33.33 -57.73 -10.00 0.00 -6.67 11.55 -3.33 -5.77 69.04

uRS 150.00 -86.60 0.00 0.00 30.00 17.32 15.00 -8.66 177.48
uST -25.00 129.90 15.00 0.00 -5.00 -25.98 -2.50 12.99 136.38
uTR -125.00 -43.30 -15.00 0.00 -25.00 8.66 -12.50 -4.33 136.38

Table I: Phase and sequence geometric voltages for circuit in
Fig. 6. All values in volts [V].

B. Unbalanced Load and Asymmetrical Source 3-wire Circuit

Consider the circuit depicted in Fig. 6, where a non-
sinusoidal, asymmetrical power supply is delivering energy to
an unbalanced 3-wire load. The value for the phase-to-neutral
voltage in phase R is

uR(t) =
√

2(100 cosωt + 30 cos 3ωt + 20 cos 5ωt + 10 cos 7ωt)

The voltage for the phase-to-neutral S and T is worth uS(t) =
uR(t − T/3) y uT (t) = 0.5uR(t + T/3), respectively. The
impedances connected to the secondary of the transformer
have the following values

RR = XR = RT = XT = 1 Ω BR = BT = 0.5 S

Harmonics of different sequences are evidenced in the voltage.
Furthermore, it is worth noting that line S is not loaded, which
results in an unbalanced configuration of the overall system.
Following the proposed methodology, the initial step involves
transforming the phase voltages and line currents into the
geometric domain, followed by the computation of the shifted
sequence components, and ultimately the construction of the
SC voltage and current vector. As the load in the current sys-
tem is unbalanced, there will be neutral displacement between
the source and load, causing the zero sequence component in
the primary of the transformer to be null. In this case, the
selected basis has a dimensionality of k = s × (2n) = 16,
with n = 4 representing the number of harmonics and s = 2
the two non-null sequences (positive and negative). Table I
lists the phase voltages at the source and load, line voltages,
and symmetrical components in the geometric domain. The
line currents are obtained by solving the circuit using KCL,
and their values in the geometric domain, as well as the
symmetrical components, are presented in Table II.

The construction of the SC voltage and current vector is
the final step following the proposed method. This involves
combining the results of the sequence components, taking
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σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 ‖ · ‖
iR 137.50 -21.65 1.50 -18.00 22.08 -126.47 -14.01 -92.54 212.00
iS -75.00 43.30 0.00 0.00 -41.09 68.50 28.82 50.60 131.42
iT -62.50 -21.65 -1.50 18.00 19.00 57.97 -14.81 41.94 102.00

īp 151.55 -12.50 -7.70 -16.34 24.39 -79.48 -7.80 -101.95 202.04
īn 86.60 -25.00 10.30 -14.84 13.86 -139.57 -16.46 -58.33 178.31

Table II: Line and sequence geometric currents in Fig. 6. All
values in amperes [A].

#1 #3 #5 #7 Total

P+ 21,875.00 89.19 -327.00 -112.57 21,524.63
P− 1875.22 -66.69 400.15 122.07 2330.52
P 23,750.22 22.50 73.15 9.50 23,855.15

Q+ -1804.22 -128.50 -351.40 -1471.60 -3755.70
Q− 1804.22 -141.50 -4029.07 -125.35 -2491.70
Q 0.00 -270.00 -4380.45 -1596.95 −6247.40

Table III: Active and reactive harmonic power decomposition
for the circuit in Fig. 6. Units of P in Watts and Q in VAr.

into account that there are only two sequences. The base is
constructed in the same way as in (29)

u = 144.33σ1 + 4.33σ3 − 7.5σ4 + 2.88σ5 + 5σ6

+ 14.43σ7 + 14.43σ9 − 25σ10 + 4.33σ11 + 7.5σ12

+ 28.87σ13 + 1.44σ15 − 2.50σ16

i = 151.55σ1 − 12.5σ2 − 7.70σ3 − 16.34σ4 + 24.39σ5

− 79.48σ6 − 7.8σ7 − 101.95σ8 + 86.6σ9 − 25σ10 + 10.3σ11

− 14.84σ12 + 13.86σ13 − 139.57σ14 − 16.46σ15 − 58.33σ16

Now, the product can be performed to obtain the geometrical
power. Naturally, due to the high number of harmonics,
numerous non-active power cross terms will appear. The
most interesting power values, including active and reactive
power, are summarised in the Table III. The decomposition
of currents could be done as explained previously so that
the minimum current (in the Fryze sense) can be found, or
unwanted harmonic and negative sequence components can
be eliminated.

C. Unbalanced Load and Symmetric Source 4-wire Circuit
The circuit shown in Fig. 7, illustrates a 4-wire unbalanced

system with a symmetrical non-sinusoidal power supply. It
includes harmonic components with RMS values are U1 = 240
V, U3 = 4.8 V, U5 = 7.2 V and U7 = 3.6 V. The values
of the admittances for each harmonic are Y1 = 0.5, Y3 =
0.1+1.2σ34, Y5 = 0.038+2.31σ56 and Y7 = 0.02+3.36σ78.
Following the same methodology as in section V-A, the sym-
metrical components for each voltage and current harmonic

Figure 7: Unbalanced load supplied by a symmetrical non-
sinusoidal voltage source in a 4-wire circuit.

positive negative zero

#1
√

2 cosωt → σ1

√
2 cosωt → σ9

√
2 cosωt → σ17√

2 sinωt → σ2

√
2 sinωt → σ10

√
2 sinωt → σ18

#3
√

2 cos 3ωt → σ3

√
2 cos 3ωt → σ11

√
2 cos 3ωt → σ19√

2 sin 3ωt → σ4

√
2 sin 3ωt → σ12

√
2 sin 3ωt → σ20

#5
√

2 cos 5ωt → σ5

√
2 cos 5ωt → σ13

√
2 cos 5ωt → σ21√

2 sin 5ωt → σ6

√
2 sin 5ωt → σ14

√
2 sin 5ωt → σ22

#7
√

2 cos 7ωt → σ7

√
2 cos 7ωt → σ15

√
2 cos 7ωt → σ23√

2 sin 7ωt → σ8

√
2 sin 7ωt → σ16

√
2 sin 7ωt → σ24

Table IV: Mapping of Fourier base and Euclidean base for the
circuit in Fig. 7.

#1 #3 #5 #7

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 ‖ · ‖
uR 240.00 0.00 4.80 0.00 7.20 0.00 3.60 0.00 240.18
uS -120.00 207.85 4.80 0.00 -3.60 -6.23 -1.80 3.12 240.18
uT -120.00 -207.85 4.80 0.00 -3.60 6.23 -1.80 -3.12 240.18

ūp 415.69 0.00 0.00 0.00 0.00 0.00 6.24 0.00 415.74
ūn 0.00 0.00 0.00 0.00 12.47 0.00 0.00 0.00 12.47
ū0 0.00 0.00 8.31 0.00 0.00 0.00 0.00 0.00 8.31

iR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
iS -60.00 103.92 0.48 -5.76 -14.53 8.07 10.44 6.11 121.88
iT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

īp 69.28 0.00 -3.02 1.42 8.23 4.94 0.04 -6.98 70.37
īn -34.64 -60.00 2.74 1.90 0.16 -9.59 -6.07 3.46 70.37
ī0 -34.64 60.00 0.28 -3.32 -8.39 4.65 6.03 3.52 70.37

Table V: Phase-to-neutral and sequence components for cur-
rent [A] and voltage [V] vectors for problem in Fig. 7.

can be obtained. In this case, the transformation of voltages
and currents is presented in Table IV. The corresponding
values for the phases and sequences of each harmonic are
shown in Table V. Based on the data obtained, the geometric
power results in

M = ui = 28, 804.56− 43.54σ(7)(8) − 119.65σ(13)(14)

− 27.65σ(19)(20) +R

The magnitude of the multivector power is ‖M‖ = 50, 705,
so the power factor yields pf = 28, 804/50, 705 = 0.568.
The reactive power components are due to the positive se-
quence of harmonic 7th, negative sequence of harmonic 5th

and zero sequence of harmonic 3rd represented by blades
σ(7)(8), σ(13)(14) and σ(19)(20), respectively. The total reactive
power in Budeanu sense is Q = −43.54− 119.65− 27.65 =
−190.84 VAr. The current compensation of the system can
be approached as usual, either by a Fryze strategy or by
a symmetrical component strategy. For example, the Fryze
current can be obtained as

ia =
u

‖u‖2
P = 69.19σ1 + 1.04σ7 + 2.08σ13 + 1.38σ19

and the norm of the compensated current ‖ia‖ = 69.24 A.

VI. APPLICATION TO THREE-PHASE REAL-WORLD CASE

As a final example, a real three-phase 4-wire installation in
a research building is analyzed, which exhibits an unbalanced
and distorted voltage at the source, as well as an unbalanced
load. The voltage and current measurements were acquired
using the openzmeter device [22], [23], which provides both
the raw samples and the frequency phasors of the current
and voltage signals. A snapshot of the measured voltage and
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Figure 8: Time domain currents and voltages acquired using
the openzmeter device in a research building.

‖V ‖ ‖I‖ ‖M‖ P P+ P− P 0 Q pf

Original 405.77 167.75 68,069 21,671 21,663 5.18 2.58 64,294 0.32
Positive 405.77 167.36 67,908 21,663 21,663 0.00 0.00 64,307 0.32
Fryze 405.77 53.41 21,671 21,671 21,667 2.89 0.19 0.00 1.00
PHC 405.77 53.35 21,649 21,647 21,647 0.00 0.00 0.00 1.00

Table VI: Main results for the research building example.
Different current compensation strategies are shown in each
row. PHC stands for Perfect Harmonic Cancellation.

current waveforms is presented in Fig. 8, where slight voltage
distortion and significant asymmetry and distortion in the
current are observed. To analyze this system, a total of 50
harmonics are considered for the voltage and current signals.
They are first transformed into the geometrical domain, and
then the sequence components and SC voltage and current
vectors are calculated. The proposed method can compute the
system’s performance and the characteristics of the geometric
power flow can be accurately determined. Table VI shows
the main results for the different variables involved. The
uncompensated geometric current (power) is compared with
three compensation strategies: positive only, minimum current
with the same active power (Fryze) and Perfect Harmonic
Cancellation (PHC). The best results are obtained using Fryze
and PHC compensation methods.

VII. CONCLUSIONS

This research paper presented a novel approach for power
definitions and computations in multi-phase AC circuits in
the frequency domain using Geometric Algebra. This proposal
enables the representation of harmonic voltages and currents
as multidimensional vectors in Euclidean space, and the def-
inition of the geometric product to conform to the geometric
power. The proposed method provides a generalization and
extension of previous works that have focused on single-phase
and balanced three-phase systems. The results demonstrate
that the GA-based approach can accurately and effectively
analyze power flow in arbitrary multi-phase electrical systems,
surpassing traditional methods based on complex numbers and
matrices. The contribution of this research provides a new
geometric foundation for power flow analysis in electrical
engineering, with the potential to optimize power system
operation and ensure the reliability of the electrical grid.
Further research could focus on applying this approach to
more complex systems and integrating it with optimal power
flow and contingency analysis techniques. It may be possible

to identify more efficient and reliable ways of transmitting
and distributing electrical energy, which could have significant
practical applications in the field of electrical engineering.
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