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Abstract

This paper brings these two technologies together to investigate the current state of AI-powered BC.

We begin with an introduction to BC and an overview of the AI algorithms employed in BC. Then, we delve into the recent

advances in AI-based BC, covering key areas such as backscatter signal detection, channel estimation, and jammer control to

ensure security, mitigate interference, and improve throughput and latency. We also explore the exciting frontiers of AI in BC

using B5G/6G technologies, including backscatter-assisted relay and cognitive communication networks, backscatter-assisted

MEC networks, and BC with RIS, UAV, and vehicular networks. Finally, we highlight the challenges and present new research

opportunities in AI-powered BC. This survey provides a comprehensive overview of the potential of AI-powered BC and its

insightful impact on the future of IoT.
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Abstract—The Internet of Things (IoT) is undergoing signif-
icant advancements, driven by the emergence of Backscatter
Communication (BC) and Artificial Intelligence (AI). BC is
an energy-saving and cost-effective communication method
where passive backscatter devices communicate by modulating
ambient Radio-Frequency (RF) carriers. AI has the potential
to transform our way of communicating and interacting and
represents a powerful tool for enabling the next generation
of IoT devices and networks. By integrating AI with BC, we
can create new opportunities for energy-efficient and low-cost
communication and open the door to a range of innovative
applications that were previously not possible. This paper
brings these two technologies together to investigate the current
state of AI-powered BC. We begin with an introduction to
BC and an overview of the AI algorithms employed in BC.
Then, we delve into the recent advances in AI-based BC,
covering key areas such as backscatter signal detection, channel
estimation, and jammer control to ensure security, mitigate
interference, and improve throughput and latency. We also
explore the exciting frontiers of AI in BC using B5G/6G
technologies, including backscatter-assisted relay and cognitive
communication networks, backscatter-assisted MEC networks,
and BC with RIS, UAV, and vehicular networks. Finally, we
highlight the challenges and present new research opportunities
in AI-powered BC. This survey provides a comprehensive
overview of the potential of AI-powered BC and its insightful
impact on the future of IoT.

Index Terms—Backscattering communication, ambient
backscattering, wireless powered communication, AI, machine
learning, RL, DRL, and 6G.

I. INTRODUCTION

Manzoor Ahmed and Fang Xu are with the School of Computer and
Information Science and also with Institute for AI Industrial Technology
Research, Hubei Engineering University, Xiaogan City 432000, China
(e-mails: manzoor.achakzai@gmail.com, xf@hbeu.edu.cn), Corresponding
Author: Manzoor Ahmed (e-mail: manzoor.achakzai@gmail.com)

Touseef Hussain is the with College of Computer Science and Tech-
nology, Qingdao University, Qingdao 266071, China (e-mails: touseefhus-
sain098@gmail.com)

Khurshed Ali is with the DTU Compute, Technical University of Den-
mark, (email: khual@dtu.dk)

Muhammad Ayzed Mirza is with the BUPT-QMUL EM The-
ory and Application International Research Lab, Beijing University
of Posts and Telecommunications, Beijing 100876, China (e-mail:
mamirza@bupt.edu.cn).

Wali Ullah Khan is with the Interdisciplinary Centre for Security,
Reliability, and Trust (SnT), University of Luxembourg, 1855 Luxembourg
City, Luxembourg (e-mails: waliullah.khan@uni.lu).

Asim Ihsan is with the School of Computer Science and Elec-
tronic Engineering, Bangor University, Bangor LL57 1UT, UK. (e-mail:
a.ihsan@bangor.ac.uk)

Zhu Han is with the University of Houston, TX 77004 USA, and also
with the Department of Computer Science and Engineering, Kyung Hee
University, Seoul, South Korea (e-mail: zhan2@uh.edu).

AS we move towards a more connected future, the
deployment of billions of devices in B5G/6G networks

represents a significant opportunity to advance ultra-low
power wireless communication [1], [2]. Furthermore, the
Internet of Things (IoT), poised to be one of the key
technologies in the 6G era, will provide the necessary in-
frastructure to seamlessly connect an unprecedented number
of low-power, sensor-like devices with data sensing and
transmission capabilities, bringing to life a multitude of new
applications [3]. In this future vision, high-density hetero-
geneous devices needing high throughput, ultra-low latency,
and AI-powered decision-making will be the norm. However,
powering these billions of devices is a formidable challenge,
especially when battery maintenance is impossible due to the
cost, inconvenience, or network size involved [4].

Given the powering challenge of billions of devices,
Backscattering Communication (BC) technology becomes
an attractive alternative, providing a cost and energy-efficient
solution that enables passive devices to communicate by
modulating ambient Radio-Frequency (RF) signals, elimi-
nating the need for complex circuitry, power-hungry active
components and reducing power consumption to the bare
minimum [5], [6]. Backscattering technology was first used
in World War II to distinguish enemy fighter planes, and
subsequently, backscatter-related Radio Frequency Identifi-
cation (RFID) products emerged and focused on commodity
identification and supply, then used in electronic toll collec-
tion extensively [7], [8]. In a BC system, a backscattering
device uses an antenna to reflect and modulate the incom-
ing RF signal. This antenna is typically a passive device,
meaning it does not require its power source. Instead, the
backscattering device modulates its signal by modulating
the antenna’s reflection coefficient, which determines how
much of the incoming signal is reflected. One common
technique is to use a switch or diode to change the antenna’s
electrical length, which changes the phase of the reflected
signal. The backscattering device can transmit information
by modulating the reflected signal phase. BC offers several
advantages that make it a promising alternative to traditional
wireless communication technologies in certain applications.

BC is making its mark in the world of low-power com-
munication, as devices exchange data without being tied
to a power source. This remarkable feat is achieved by
modulating ambient RF signals, delivering a creative and
energy-efficient solution. However, the road ahead for BC
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technology has its challenges [9], [10]. The complex nature
of RF signals, with their varying strengths and frequencies,
presents obstacles to reliable and accurate BC communica-
tion. Furthermore, limited data rate and transmission range
are ongoing hurdles to overcome, apart from interference
and security issues. Despite these obstacles, the demand for
BC technology continues to grow, driving the need for more
efficient and scalable solutions [11], [12].

Nevertheless, BC remains a promising technology in the
world of low-power communication. With its innovative
approach, BC is paving the way for a more connected and
sustainable future. As BC technology continues to evolve,
we can expect to see more breakthroughs and solutions to the
challenges that lie ahead. This is where Artificial Intelligence
(AI) comes in, as it rapidly changes the technological
landscape of wireless communication networks. From the
IoT to Industry 5.0, AI is revolutionizing how we interact
with technology. With the advent of 6G wireless networks,
AI is set to take communication to the next level, as
highlighted in [13], [14]. AI’s ability to analyze vast amounts
of data in real-time and make intelligent decisions has been
instrumental in improving the efficiency and performance
of wireless networks. Its integration with big data analytics
allows real-time network status monitoring and predictions,
resulting in a more adaptable and reliable communication
infrastructure, as noted in [15], [16]. While BC technology
has already seen benefits in the IoT, with its energy-efficient
and cost-effective approach to communication proving to be
an attractive solution for battery-free and low-power devices,
the intelligence aspect of BC systems is still in its infancy.
The potential for improvement is vast, as discussed in [17],
[18]. AI can be utilized to solve the challenges that BC
systems face, such as poor signal detection and channel es-
timation, and to mitigate the impact of jamming/interference
while ensuring security. Its implementation in BC systems
will also lead to decreased delay and increased throughput,
making it a crucial component for the future of BC. AI-
based backscatter-assisted networks, such as relay, cognitive,
and MEC networks, have the potential to revolutionize
communication. Its integration with RIS, UAV, and vehicle
networks will bring about a new era of communication that
is more connected, efficient, and intelligent, as highlighted
in [15], [19].

A. Motivation for this Survey

Since the last decade, a speedy development in BC has
been noticed and several surveys have been published. How-
ever, there is still a need to provide an organized and com-
prehensive article on AI-based solutions to the challenges
and integration of B5G/6G technologies in backscattering
communication. This article aims to provide a complete AI-
based solution and a detailed overview of AI algorithms.
These AI-based solutions deal with the challenges while
applying the backscattering to practical systems and integrat-
ing with B5G/6G technologies. The article [20] reviews BC

and its practical applications, including encoding and data
extraction, communication modes, modulation schemes, and
multiple access techniques. It also discusses data and power
transfer schemes, reliability, security, and range extension
and highlights BC applications, research challenges, and
future directions. In contrast with our survey paper, [21] pro-
vided a thorough overview of backscatter communications,
including its historical development, fundamental principles,
and challenges. The survey also distinguishes monostatic and
bistatic backscatter and compares them. However, it does not
touch on the role of AI in the BC system, which is the focus
of this paper. Similarly, the work in [22] emphasized the
significance of backscattering in IoT, covering the advances
in the field of BC, including its working principles, network
architecture, applications, and techniques. However, this
paper does not address the role of AI in BC, its algorithms, or
the benefits it offers. As a result, it lacks AI-based solutions
to the challenges in BC.

In another survey [23], the authors provided an overview
of backscattering systems, specifically those with passive
receivers, which form the basis for Backscattering Tag-to-
Tag Networks (BTTNs). BTTNs allow tiny, batteryless RF
tags to communicate and perform RF-based sensing without
needing a battery. The paper discussed the recent innovations
in hardware design, energy harvesting, and the challenges in
scaling up the architecture to a network. It also highlighted
the potential applications and future research directions in
the field. In another survey, the authors in [24] described the
utilization of the backscattering along with the non-coherent
technique. Using the two techniques, the authors proposed
the 6G framework to achieve the desired properties like
optimal energy and spectral efficiency besides low hardware
cost. This paper presented an enabling framework for 6G
networks. Moreover, the integration of non-coherent and
backscattering with many technologies was discussed. The
joint scope of non-coherent and backscattering with other
emerging 6G technologies is also identified. In the end,
the detailed applications and uses of said technologies were
discussed.

In [25], the authors provided a comprehensive overview
of Ambient Backscatter Communications (AmBC) and its
literature. The paper covered the basic principles of the
technology, a new taxonomy based on the type of ambient
signals, a review of different systems, potential applications,
and open issues for future research. However, this survey
did not delve into AI-based BC systems. The authors in [26]
tackled the challenge of short range and low data rate in BC
by introducing the concept of RIS into BC systems, making
wireless propagation fully controllable and customizable
while being cost-effective and efficient. The article covered
three modes of RIS-assisted BC and highlighted its potential
improvements in throughput and efficiency. The authors also
discussed the basics of RIS technology and its integration
with BC, leading to the introduction of RIS-assisted NOMA-
enhanced BC. However, this paper did not focus AI based
BC.
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Fig. 1: Taxonomy of the survey

B. Contribution

Considering the existing surveys listed above [20]–[26]
there is an open gap and an intense need for a comprehensive
survey on the AI merger with BC. As shown in the taxonomy
Fig. 1, our survey discusses AI-based BC solutions for
technical issues and AI-based BC integration with 5G/6G
technologies. The primary contributions to our article are as
follows:

‚ Based on the existing literature on AI-based backscat-
tering communication, we compiled a detailed review
of current developments. We present an introduction
to BC and an overview of the AI algorithms used in
BC to provide theoretical analysis and serve as a quick
reference for both novice and seasoned researchers.

‚ We break down the AI-based BC solutions into their
parts and provide an in-depth comparison and analysis
of the works in backscatter signal detection and chan-
nel estimation, interference and jammer management,
and throughput and latency enhancement, respectively.
Moreover, summary tables are presented for each sub-
category to acquire deeper insight and capture the
logical link of the different schemes from multiple
aspects, such as AI domain and algorithm kinds, model
elements, and optimization aims.

‚ For AI-based BC involving B5G/6G technologies, we
also describe, compare, and analyze the research works
under each sub-category, i.e., AI-based backscatter-
assisted relay and cognitive communication networks,
AI-based backscatter-assisted MEC networks, and AI-
based BC involving RIS, UAV, and vehicular networks,
respectively. Moreover, a summary table considers sev-
eral aspects to aid the reader in comprehending the AI-
based schemes.

‚ Finally, the article offers insights into the future of
AI-based BC by identifying outstanding issues and
suggesting open research areas. Also, it provides valu-
able guidance for researchers looking to explore this
rapidly evolving field, highlighting key challenges and
opportunities that must be addressed to realize the full
potential of AI-based BC.

The rest of the survey is structured as follows: Section
II presents an overview to get acquainted with BC and
its variants. Section IIIcovers the AI algorithms used in
BC, including supervised, unsupervised, RL, DL, DRL, and
MARL. In Section IV, we provide AI-based approaches
to addressing the issues of signal detection and channel
estimates, avoiding interference/jamming and ensuring se-
curity, boosting throughput, and decreasing delay. Following
that, Section V delves into the topic of how AI-based BC
impacts B5G/6G technologies that includes relay, cognitive
communication, MEC, RIS, UAV, and vehicular networks. In
Section VI, open challenges and future works are presented.
Lastly, Section VII concludes the survey. Table I contains a
list of all related acronyms.

II. PRELIMINARIES OF BACKSCATTER
COMMUNICATIONS

A. Overview of Backscatter Communications

In 1948, the notion of BC was introduced [23]. It is now
the most promising field of research in the communica-
tions industry. BC is a technique in which the transmitter
communicates signals to the receiver by re-modulating and
reflecting already present signals, as opposed to producing
its own signals. This approach eliminates the requirement
for a local oscillator and other power-hungry, cumbersome,
and costly components. The signal source, the backscatter
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TABLE I: List of Important Abbreviations

Abbreviation Definition Abbreviation Definition
BC Backscattering Communication IoT Internet of Things

OOK On-Off Keying RFID Radion frquency Identification
WiFi Wireless Fidelity D2D Device to Device
LoRa Long Range CSI Channel State Information

MIMO Many Input Many Output QoS Quality of Service
RL Reinforcement Learning RNN Recurrent Neural Network

CNN Convolutional Neural Network AmBC Ambient Backscatter Communication system
ADC Analog to Digital Converter PB Power Beacon

DDPG Deep Deterministic Policy Gradient HTT Harvest Then Transmit
DDQN Double Deep Q Network SDN Software Defined Network

DL Deep Learning SMDP Semi-Markov Decision Process
DQN Deep Q Network SWIPT Simultaneous Wireless Information and Power Transfer
DRL Deep Reinforcement Learning UAV Unmanned Aerial Vehicles

DSRC Dedicated Short Range Communication WPBC Wireless Powered Backscatter Communication
WPCN Wireless Powered Communication Network HAP Hybrid Access Point

FSK Frequency Shift Keying V2V Vehicle-to-Vehicle
QAM Quadrature Amplitude Modulation AI Artifical Intelligence
BER Bit Error Rate DTL Deep Transfer Learning

MMSE Minimum Mean Square Error MAC Media Access Control
MBS Macro-cell Base Station SVM Support Vector Machine
MDP Markov Decision Process JRC Joint Radar Communication

ST Secondary Transmitters SINR Signal to Inference and Noise Ratio
MEC Multi-access Edge Computing VI Value Iteration
LPDA Log Periodic Dual Dipole Antenna VM Virtual Machine
DDNN Deep Dueling Neural Network SDN Software Defined Networking
BSN Backscater Sensor Nodes NSP Network Service Provider

SADOL Single Agent Aeep Option Learning MADOL Multi Agent Deep Option Learning
ANN Artificial Neural Network BS Base Station
AC Actor Critic MARL Multiagent Reinforcement Learning
LRT Likelihood Ratio Test DDQL Double Deep Q-Learning

MOGA Multi Objective Generic Algorithm DDQL Double Deep Q-Learning

transmitter with backscatter antennas, and the backscatter
receiver are the three major components of a conventional
BC system [27]. The signal source may be a permanent
or specified signal generator, an ambient TV station, or a
tower signal. Once the signal is detected at the backscatter
transmitter, the backscatter antennas will re-modulate [28]
and reflect those signals to broadcast the information. The
backscatter receiver will detect the signal reflected from the
backscatter antennas and decode it to extract the informa-
tion transmitted by the backscatter transmitter. Controlling
the impedance of the backscatter antennas while reflecting
signals to the backscatter receiver [12]. The operation of
backscatter antennas is easily understood by assuming two
states, reflecting and non-reflecting. On-Off Keying (OOK)
is a modulation system [29] in which bits “0” and “1” at
the backscatter transmitter are modulated onto the reflected
signals. Transmission of data bit “1” indicates the reflecting
status of the backscatter antennas; similarly, the transmission
of data bit “0” switches the antenna into non-reflecting
mode. At the backscatter transmitter, the sequence of “0”
and “1” data can be modulated into the reflection signal
and then communicated to a receiver. The receiver will then
precisely decode the data based on the changes in signal
strength.

1) BC’s Types: Especially with the IoT, [30] BC enables
battery-free applications. Using the surrounding signals al-
ready accessible for data transmission, the transmitter does
not need to generate its signal; instead, it must reuse the
surrounding signals to send data. Based on its structure and

architecture, the BC system is divided into monostatic and
bistatic backscatter communication.

In the architecture of monostatic BC, the signal source
and backscatter receiver are on the same device (Mono
= 1, signal and receiver are located on the same device)
[31]. In a monostatic BC system, the incoming signal from
the signal source travels to the transmitter as an excitation
signal and excites the transmitter; following excitation, the
transmitter modifies the sent information and reflects it
to the backscatter receiver. Radio Frequency Identification
(RFID) makes considerable use of monostatic design, and
the transmitter and receiver are referred to as an RFID tag
and an RFID reader, respectively. There are three types of
transmitters in monostatic BC: active, passive, and semi-
passive, as shown in Fig. 2. The active transmitter has
an internal power supply, and the transceiver may actively
transmit data and has an expanded communication range.
The passive transmitter is powered by energy collection and
has no internal power supply. It is compact, inexpensive,
and has a straightforward design. On the other hand, a semi-
passive transmitter combines active and passive transmitters
and only sends data when activated and supplied with an
internal power supply. In order to avoid self-interference
in this system, the incident and reflected signals must use
separate frequencies. Even so, two-way path loss still causes
incidental and reflected path losses, limiting communication
range.

In a bistatic BC system, the signal source and receiver are
positioned in separate places, with the signal source being
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either a dedicated or ambient signal source, as shown in
Fig. 3. Bistatic BC avoids the two-way path loss observed
in monostatic BC, which is its primary benefit. To overcome
the problem of two-way path loss, a signal source near
the backscatter transmitter employs a unique carrier emitter.
Thus, it avoids the two-way path loss and improves its
overall performance. Common characteristics of BC include
an antenna for backscatter at the transmitter, minimal power
consumption, and a weak backscatter signal at the receiver
[20].

2) BC’s Issues: As with any technology, the implemen-
tation of BC systems brings a set of challenges that must be
addressed to achieve optimal performance. In this part, we
explore the primary issues, including signal detection and
channel estimation, interference management, information
confidentiality, communication range, networking, and low
data rates, which are given as follows:

a) Signal Detection and Channel Estimation: In BC,
signal detection is crucial for improving the commu-
nication throughput [32]. However, due to the nature
of BC, which leverages the RF signals from the
surrounding environment, signal detection becomes
challenging as the shared spectrum makes it difficult
to obtain Channel State Information (CSI). This het-
erogeneous nature of the signals used in BC makes
it difficult to obtain accurate CSI, which is crucial for
signal detection. Despite this, the availability of CSI is
important for improving system efficiency, transceiver
design, and security. The lack of knowledge about
the RF signals and the channels’ inconsistencies at
reflective and absorptive states further pose challenges
for channel estimation [33].

b) Interference Management : It is challenging to man-
age interference in a small-powered BC system [34].
The transmitting nodes cannot receive feedback from
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Fig. 3: Illustration of bistatic configuration with a dedicated
and ambient signal source.

neighboring nodes; consequently, they lack informa-
tion and scheduling for signal transmission [35]. In
this manner, all nodes transmit data simultaneously,
causing interference between the backscattered signals
of different nodes, ultimately degrading the quality of
the received signal [36].

c) Information Confidentiality: BC system utilizes RF
signals for transmission, and these RF signals are
typically vulnerable to eavesdropper attacks. Nearby
eavesdropper tags could use these RF signals. Nu-
merous security measures are implemented to combat
these threats, including selecting the most effective
relay scheme to evade the eavesdropper’s attack [37],
[38]. The eavesdropping attack poses a significant risk
to the information carried by backscattering signals.

d) Communication Range: Although the nature of the
backscatter systems limits the communication range
of the backscatter reader and tag, many efforts have
been made to overcome this limitation. These efforts
include the use of various coherent receivers, Long
Range (LoRa) [39], Backscatter quantum tunneling
[40], power amplifier [41], and multi-antenna systems
[42]. In addition, backscattering aims to provide a
battery-free environment while maintaining a similar
communication range. As a result, increasing the
method’s effectiveness is crucial.

e) Networking: Networking is another significant issue
for the BC system. Backscattering is based on a
battery-free and low-energy environment, which the
network must support. [43] analyzed this issue and
envisioned the backscatter node as a virtual transmitter
that handles several tags (100 to 1000). More improve-
ment is needed to enhance the networking area of
backscattering communications.

f) Low Data Rate: The backscattering technique uses the
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available RF signals to modulate their information;
nevertheless, the data rates of backscattered signals
are relatively low. However, there needs to be more
data rate to run in an IoT context, and it also limits
the potential of 5G applications. Therefore, meeting
the needs of future BC in IoT devices can be
accomplished by obtaining high data rates [25].

3) BC’s Techniques: Future IoT-based applications will
rely on BC systems to enable long-distance, low-latency, and
high-rate device connectivity. Following is a brief overview
of several sophisticated backscattering techniques:

a) BC with Power Beacon (PB): Backscattering tags that
are used in the IOT has dual tasks, sensing and com-
puting; as a consequence, they require more energy.
For this, we use a technique BC with a power beacon
that could enhance the energy throughput. The beam-
forming [44] and multi-antenna Power Beacon for this
PB must-have CSI for getting higher energy. Similarly,
Another strategy for increasing power efficiency is
optimizing the Continuous Wave (CW). This design
aims to increase the PB signal’s peak-to-peak power
ratio, yielding higher energy-harvesting efficiency due
to its linearity.

b) Full Duplex BC: In future IoT, there would be a large
number of tag-to-reader connections operating at the
same time. Although the information flow in RFID is
unidirectional, it may still result in jitter, interference,
and other channel errors [25]. Utilizing full-duplex
communication can efficiently minimize the latency
and improve the capability of spectrum utilization of
IoT readers.

c) Time Hopping BC: Interference with high node den-
sity in IoT networks is a design challenge in BC
[25]. IoT devices that can behave as sensors in smart
homes and cities can be utilized to tackle interference.
A transmission technique known as the time-hopping
spread spectrum can be used to overcome this chal-
lenge. At the same time, each tag can randomly choose
a single slot in N, and the time slots for sending a
symbol and choosing different tags are independent
and unique.

d) MIMO BC: The most common loss in the BC is
double path loss since the backscattered signal at the
tag propagates in a closed-loop channel cascading in
the uplink and downlink channels. One solution is
to use the rays of an antenna (MIMO) [45] at tag
and reader, deploying spatial-diversity techniques to
enhance the channel reliability and reduce these losses.

B. Ambient Backscattering Communications (AmBC)

Have we ever thought of a world where small, compact
devices can communicate without relying on any external
power source? The concept of Ambient Backscattering Com-
munications (AmBC) makes this dream a reality [46]. By
harnessing the energy from ambient RF signals, AmBC
enables seamless communication between devices without

needing a dedicated power source, making it a low-cost
and low-power solution for IoT networks. AmBC has the
potential to revolutionize the way we think about device
communication. Using existing ambient signals from TV
towers, FM/AM base stations, or cellular BSs, the AmBC
system reduces the cost and power consumption of the
communication, eliminating the need for additional energy
sources [47]. The three essential components of AmBC
are: (1) the ambient RF signals, (2) the backscatter trans-
mitter, and (3) the backscatter receiver. These components
work together to enable energy-efficient and cost-effective
communication. The energy harvester within the backscatter
transceiver collects energy from the ambient RF signals,
which the transmitter modulates and reflects on transmitting
data. The receiver detects these modulated RF signals,
decodes the data, and completes communication. Finally,
the backscatter transceiver, which integrates the energy har-
vester, transmitter, and receiver, connects to a common BS
or antenna, creating a self-sustaining communication system.

However, the design of AmBC systems has its challenges.
The weak, random, and uncontrollable nature of ambient
backscatter signals poses limitations for the extraction and
decoding of data. Conventional power-hungry receivers and
complex decoding schemes are unsuitable for battery-free
environments, restricting the design space. AmBC does
not have a centralized controller, so it relies on multiple
access protocols for communication management and carrier
sensing capabilities. Interference from other ambient RF
sources may limit the bitrate and transmission range, and
noise and fading can further degrade the communication
channel [25]. Despite these constraints, AmBC is considered
legal and does not require a dedicated frequency spectrum,
making it a promising technology for the future of IoT
networks.

C. Wireless Powered BC (WPBC)

The world of connected devices is constantly evolving and
growing, with intelligent devices permeating every aspect of
our lives. From the tiny sensors in our bodies to the walls
of our homes and beyond, the IoT creates an intelligent
environment that relies on billions of connected devices
communicating. However, powering these tiny IoT devices
can be a challenge. With their nano-architecture and design,
powering them with batteries is costly and requires constant
maintenance [48]. To address this challenge, researchers
have devised a new approach called WPBC.

In this architecture, Power Beacons (PB) are deployed to
wirelessly powered backscatter D2D links, allowing nodes to
modulate and reflect signals sent from PBs to transmit their
data. This design offers more power delivery than energy
harvesting and is suitable for large-scale, dense IoT networks
with relatively high data rates [9]. However, this solution has
its challenges. For example, a co-existing transmitter can
result in mutual interference and lower data rates, and BC
networks lack scalability due to their dependence on ambient
RF signals.
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Historically, Energy Harvesting (EH) technology has de-
veloped in three primary directions: Simultaneously Wireless
Information and Power Transfer (SWIPT) [49], Wireless
Powered Communication Network (WPCN) [50], and Wire-
less Power Transfer (WPT) [51], [52]. In WPCN, devices
harvest energy from a hybrid-access point and then use this
stored energy to transmit data. In SWIPT, a single signal
carries energy and information, enabling energy-constrained
devices to receive both simultaneously. Moreover, in WPT,
a dedicated power transmitter transfers energy only [51].
As the world of connected devices continues to expand, it
is exciting to imagine the possibilities and advancements
that the future of IoT will bring. With new approaches like
wireless-powered BC and the continued development of EH
technology, we are on the cusp of a truly intelligent and
connected world.

III. OVERVIEW OF AI ALGORITHMS FOR BC

AI, a field that aims to create robots with human-like
behavior and intelligence, is the technology frontier, as
outlined in [53]. Remarkable strides have been made in this
endeavor, with AI programs like Alpha-Go demonstrating
the vast potential of machines with tens of millions of
parameters. Our path toward true AI requires a diverse range
of approaches and techniques. The integration of AI in
various domains is a testament to its recent technological
advancements.

Machine Learning (ML), as specified in [54], is a critical
component of AI. It involves two crucial steps: training and
prediction. A good ML model starts with a solid foundation,
a vast and diverse dataset that sets the accuracy bar for its
predictions [55]. The model is then trained on this data, and
its settings are optimized. The larger the data’s diversity,
the more influential the training process. Nevertheless, the
quest for ML excellence is never-ending, and the model
must be continuously refined. Before we delve into the
complexities of Reinforcement Learning (RL) and Deep
Reinforcement Learning (DRL), let us first introduce the
supervised (i.e., Section III-A) and unsupervised learning
(i.e., SectionIII-B) techniques. Then, we will delve into RL
(i.e., Section III-C), including traditional RL algorithms,
followed by a comprehensive examination of Deep Learning
(DL) and its cutting-edge DRL algorithms as shown in Fig.
4.

A. Supervised Learning for BC

Supervised Learning (SL) attempts to learn data mapping
from input to output using the labeled data sets as a guide. In
SL, for example, the input and output data tend to be
consistent with one another [56]. Finding such input/output
mapping relationships is a primary goal of SL. There are two
main types of SL algorithms, regression and classification.

1) Classification: The main difference between classifica-
tion and regression is that regression algorithms are used for
continuous data, while classification is for discrete data. The
output results of classification algorithms are restricted to
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discrete data, such as picture classification prediction, spam
identification, verification code recognition, etc. Consider
the case of handwritten digit recognition, where the dataset
consists of just the ten Labels 0–9. Once the model is trained,
the goal is to identify the range of numbers to which the
input data belongs, between zero and nine. Decision tree and
SVM are two common examples of classification algorithms
[57].

Naive Bayes Theorem : It is a probabilistic classifier based
on Bayes’s theorem. It calculates the probability of an event
based on prior probabilities of related events. The theorem
can be applied to continuous and discrete data, and it is
widely used in classification problems due to its simplicity
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and speed [58]. In addition, Naive Bayes classifiers can be
easily scaled to large datasets with little additional training
data and can provide near-real-time forecasts. However, a
potential flaw of the theorem is zero frequency allocation,
which assigns a zero probability to a variable whose value
is missing from the training dataset [59].

Support Vector Machine (SVM): It is a powerful ML tool
that handles various data types, including unstructured and
semi-structured data. SVM’s ability to handle non-linear data
using the Kernel Trick makes it well-suited for BC systems,
where the signal modulation can be non-linear [60]. For
example, SVM could classify data in a BC system, where
information is transmitted by reflecting a signal to the sender.
In this system, the receiver uses backscattering to modify
the signal’s amplitude or phase to convey information to
the transmitter. SVM could be used to classify the modified
signal and decode the information transmitted by the BC
system. However, SVM has limitations when processing
large datasets, and selecting the right kernel function and
hyperparameters can be challenging [61]. Nonetheless, SVM
remains a versatile and powerful tool in ML, capable of
solving complex problems and achieving high accuracy.

Random Forest: It is an ML algorithm that can be used
for classification and regression problems. The algorithm
is based on ensemble learning, which involves creating
multiple models and combining their outputs to produce a
final prediction [62]. In the case of a Random Forest, the
algorithm generates a group of decision trees from the input
data. The trees are created by randomly selecting subsets
of the data and using them to train individual decision
trees. The aggregate output of all the decision trees is then
calculated to produce the final prediction [63]. One of the
main advantages of using the Random Forest method is
its easy handling of large amounts of data. Additionally,
the algorithm produces intuitive output, making it easier to
interpret and use for decision-making. However, as more
trees are added to the forest, the complexity of the model
increases and more storage space is required to store the
model.

2) Regression: Regression algorithms are indeed well-
suited to solving continuous-variable problems, such as
predicting housing prices, airport traffic patterns, and box
office success for movies. These algorithms aim to find a
function that maps the input variables to the output variable
[64].

B. Unsupervised Learning for BC

Unsupervised learning is an ML approach that uses un-
labeled datasets to discover patterns and relationships in
the data. Clustering algorithms are a common technique
used in unsupervised learning to group data into categories
based on their similarities [65]. This approach is useful
when obtaining labeled data is expensive or not feasible. In
addition, unsupervised learning finds applications in various
fields, such as data mining and image processing, to uncover
hidden relationships and insights in large and complex [66].

C. Reinforcement Learning for BC

RL is an ML approach where an agent learns to make
decisions to maximize a cumulative reward. RL has been
applied in BC to optimize communication parameters based
on performance feedback. Agents learn to maximize the
cumulative reward in RL by interacting with the environment
[67]. The agent learns to make decisions by taking in
information about the environment as it is (i.e., its current
state) and then determining what kinds of actions it could
take by interacting with that environment to maximize the
system’s reward. Upon completing the action selection, the
agent receives a reward and a limited set of possible future
states of the environment. The agent’s performance in the
current state is evaluated quantitatively based on the success
or failure of the actions it has chosen (known as a reward)
[68].

The similarities between the RL model and the way
people learn are striking. Consequently, it is near to attaining
perfection. During the training phase, the model is capable
of correcting any faults that occur. Once the model has
addressed an error, the likelihood of the identical error
occurring again is extremely low [69]. Moreover, It can
generate the optimal solution model for a particular problem.
Also, learning from experience is possible even without
access to a training dataset. An excess of reinforcement
learning can result in an overabundance of states, which
can degrade the results. Similarly, for trivial problems, RL
is not the method of choice [70]. There is a significant
computational and data requirement for RL. The system has
an insatiable appetite for information.

RL is further categorized into the following two main
research fields:

1) Model based RL: In this form of RL, environmental
factors are determined beforehand to simulate the envi-
ronment’s response to the agent, making it suitable for
adjusting communication parameters. For example, they are
transitioning from state s to the next state s1 by performing
action a at the current time t. It consists of six components
(agent, action, reward, environment, state, and objective) to
simulate the environment’s response to the agent [71]. As a
result, the agent predicts the action for a state s at time t. In
addition, the agent requires the starting state to forecast the
action, and the next state is computed based on a probability
that considers the current action selection and the current
state.

2) Model free RL: One of the primary distinctions be-
tween model-free RL and model-based RL is that model-
free RL cannot anticipate the next state based on the current
state, instead relying on “trial and error” approaches [72].
In this technique, the agent explores the policy space by
evaluating the numerous incentives and selecting the optimal
action, considering the reward. Following is a list of the most
common approaches employed in RL.

Markov Decision Process (MDP): It is a mathematical
framework commonly used in RL to model decision-making
situations [73]. An MDP consists of a set of states, actions,
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and rewards that define a decision-making problem. In an
MDP, an agent interacts with an environment by taking
actions in states and receiving rewards. Furthermore, the
agent aims to find a policy that maximizes the expected cu-
mulative reward over time. The state transitions and rewards
are determined by a Markov property, which states that the
future depends only on the present state and not history.
MDP is a powerful tool for modeling decision-making prob-
lems in RL [74]. MDP provides the best and most accurate
decision-making solution, especially where the outcomes are
random or partly influenced by the decision-maker. However,
it becomes inefficient when states become larger and more
complex. Moreover, it requires a system model for higher
states, which is quite challenging to build.

Bandit Approach: The Bandit algorithm, named after a
slot machine with multiple arms, is a popular approach in
ML for allocating limited resources to competing options to
maximize the expected profit [75]. In the field of BC, Bandit
algorithms are used to optimize the communication parame-
ters for maximizing the system’s overall performance. This is
particularly useful when BC systems are highly mobile and
dynamic, such as healthcare, finance, and online commerce.
However, the basic Bandit algorithms do not consider the
system’s current state, potentially ignoring valuable infor-
mation that could assist in choosing the best action [76].

Value Iteration (VI): Dynamic programming (DP) is the
basis for the value iteration approach. A greedy strategy,
in which the agent picks the action with the highest value,
is the most natural and straightforward way to determine
the optimal policy. The problem may have overlapping sub-
problems and an ideal structure. Because of this, a DP-based
algorithm will serve its needs well [77]. The primary goal of
opting for the greedy approach is to pick the best possible
state by using or computing the system’s value. This is done
by continuously updating the policy state until the optimal
policy is reached. Value iteration has several benefits and
is straightforward to implement, but it is based on DP and
requires constant iteration. As a result, it is less efficient in
complex state settings [78].

Q-Learning (QL): BC can benefit from using RL algo-
rithms, such as Q-learning. In this model-free approach, the
agent learns the value of a specific state’s action through
trial and error, using a greedy strategy to select the next
action based on the highest value [79]. In the context of
backscattering, the agent can use QL to optimize commu-
nication by selecting the optimal transmission protocol and
adapting its parameters to the environmental conditions. For
instance, QL has been used to improve the energy efficiency
of BC systems by selecting the most suitable modulation
and coding schemes. By learning from the environment and
adapting to its changes, QL can enable BC to achieve better
performance and reliability. However, QL also has some
limitations, such as its reliance on online updates, which can
be time-consuming and resource-intensive in some cases.

Next, we review the DL-based and associated methods
proposed in the field.

D. Deep Learning for BC

Most traditional ML algorithms must be trained before
deployment due to increased power and time requirements.
Therefore, training the model before it is used in pro-
duction can be expensive. In order to address the issue
and lessen the training burden, DL is the most effective
method currently available. It consists of several different
layers of neurons [80]. DL has shown promising results in
improving the performance of BC systems. By leveraging
the power of DNNs to learn complex relationships in data,
DL can help overcome the limitations of traditional signal
processing techniques and enable more efficient and reliable
BC. There are a few well-known DL algorithms, including
Convolutional Neural Networks (CNN), Artificial Neural
Networks (ANN), and Recurrent Neural Networks (RNN).
Deep neural networks mimic human observation and moni-
toring by inspecting data like a human would when looking
at a problem. Simply put, its working process consists of
many layers performing repetitive steps, where the first steps
obtain generic data as input for data model learning and keep
adding new data as the number of steps increases [81].

Based on the following factors, the DL is deemed to be
superior to other ML techniques:

1) In model training and prediction, DL-based algorithms
are regarded as more effective due to the capacity
of DL to manage enormous amounts of data and its
scalability.

2) Automatic and hierarchical data extraction is made
possible with the help of DL. The high-level corre-
lations and core characteristics can be extracted from
the input data.

3) DL reduces the computational and temporal complex-
ity as a single trained model is well suited for multiple
tasks.

The main drawbacks of DL include the requirement
of a massive dataset, optimization techniques, and storage
requirements.

Now, we review the methods utilizing RL and DL meth-
ods, i.e., the combination of RL and neural network-based
methods.

E. Deep Reinforcement Learning for BC

The key idea is that the DRL agent learns to make optimal
decisions based on the current system state in order to
maximize the overall performance of the BC systems. In
order to obtain reward feedback in a loop, the DRL method
takes inspiration from neural networks, precisely function
approximators [82]. From then, the decision-maker can iter-
atively filter his next move; this technique has applications
in BC systems for resource allocation, channel estimation,
scheduling, beamforming, cooperative communication, etc.
[83]–[85]. Additional subtypes of DRL include:

Deep Q-Network (DQN): The Deep Q-Network (DQN)
algorithm optimizes the action-value function using a DNN
[86], [87]. It was applied to Atari games, where it takes
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multiple game frames as input and returns state values for
each action. The stability issue in DQN was resolved through
experience replay, which involves saving small sessions of
records, actions, and states in the system’s replay memory
to train the Q-network. The DQN algorithm is notable for
preventing instabilities and convergence and preventing the
state-action space from expanding too rapidly. However, its
learning rate for the agent may be slower, and its sample
complexity may increase.

Double Deep Q-Network (DDQN): Double Deep Q-
Network (DDQN) is a variant of the DQN algorithm, a
DRL algorithm that combines a deep neural network with Q-
learning. DDQN was proposed by Hasselt [88] to address the
overestimation bias in the original DQN algorithm. It uses
two separate NNs, an online network, and a target network.
The target network generates target values for training the
online network, and the online network generates action
values during the agent’s interactions with the environment.
As a result, the target network is updated less frequently,
stabilizing the training process and reducing overestimation
bias. DDQN has been effective in solving various challeng-
ing reinforcement learning problems. However, it increases
the system’s complexity and may result in latency issues due
to having two functions, one for estimating the advantage
function and another for the value function.

Policy-based DRL: In a policy-based method, a mapping
from states to actions is directly learned and improved
through interactions with the environment [84]. Unlike
value-based DRL, where the agent must first learn the value
function before improving the policy, policy-based methods
directly optimize the policy by updating the parameters of
a parametric policy function. Policy-based methods can be
more sample efficient, as they can directly learn from the
reward signal, but they can also be less stable and harder to
converge than value-based methods. Policy-based DRL can
be used in problems with high-dimensional or continuous
action spaces, where the optimal policy may be difficult to
represent as a value function.

Value-based DRL: The value function in RL predicts the
expected cumulative reward an agent can receive following
a particular policy, starting from a given state or state-action.
It estimates how good it is for the agent to be in a particular
state or to take a specific action. The value function can
improve the policy by finding the action that leads to the
maximum value in each state [89]. There are two main
types of value functions: state-value function and action-
value function. In value-based DRL, the agent’s efficiency
is measured against the value function, which improves the
policy by finding the action that leads to the maximum value.
The value-based approach is used in large state spaces where
it is infeasible to visit all possible states and actions.

Asynchronous Advantage Actor-Critic (A3C): Actor-
Critic (AC) algorithms are a type of RL algorithm that
combines both value approximation and policy gradient. The
algorithm consists of two main components, the “actor” and
the ”critic.” The actor is a neural network that outputs ac-

tions, while the critic is another neural network that evaluates
the action values of the actor-network. The AC architecture
has been further improved with the A3C algorithm, which is
highly efficient and requires minimal resources and samples
for learning [90]. AC-based algorithms use stochastic tech-
niques to select actions and solve RL problems. However,
the rapid acquisition of information can slow down the
calculation process.

Deep Deterministic Policy Gradient (DDPG): The DDPG
(Deep Deterministic Policy Gradient) algorithm is a DRL
algorithm that combines the advantages of both determinis-
tic policy gradients and actor-critic methods. It uses low-
dimensional observations to learn an optimal policy. It
uses four DNNs (actor-network, actor-target-network, critic-
network, and critic-target-network) to approximate the actor
and critic functions. The algorithm also has replay and target
networks, which help maintain stability during the learning
process [91].

The MADDPG (Multi-agent Deep Deterministic Policy
Gradient) can train multiple agents to coordinate and collect
data in uncertain environments in a multi-agent scenario.
However, finding the right hyperparameters for DDPG can
be task-dependent and unstable, but slow-moving target
values help to maintain stability during learning. Single-
agent RL algorithms train a single agent to find the optimal
policy for a task. In contrast, multi-agent RL algorithms
use multiple agents to find the optimal policy through
competition or coordination.

F. Multiagent Reinforcement Learning (MARL)

MARL is a new subfield of RL that focuses on developing
algorithms that allow multiple agents to learn from their
interactions with each other and their environment [92].
MARL aims to build systems that can solve complex prob-
lems through cooperation and coordination among multiple
agents. This can lead to more efficient and effective solutions
than those produced by individual agents working alone
[93]. Experience sharing between many makes agents get
better throughput and learn faster. However, it has many
more advantages. The big challenge in MARL is the curse
dimension due to multiple agents, which means when many
agents cooperate, action space increases, and thus it becomes
more challenging to handle than a single agent [94].

IV. AI-BASED SOLUTIONS FOR BC

The wireless world has been revolutionized by the intro-
duction of backscattering technology, paving the way for a
battery-free communication ecosystem [25]. This innovation
in wireless communication presents a novel and compelling
solution, yet it faces several challenges that need to be
overcome [95]. However, the integration of AI in backscat-
tering has come to the rescue by offering cutting-edge
algorithms and techniques to tackle these challenges. AI
optimizes the transmission of signals, mitigating interference
and enhancing security parameters. AI can also monitor and
analyzes the backscattered signals to address the limitations
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Fig. 5: Different categories of AI based Solutions for
Backscatter Communications under different AI domains
leveraging different algorithms

of backscattering in terms of throughput and latency. This
section will explore AI-based solutions to the issues of
signal detection and estimation, security and jamming, and
throughput and latency in BC systems utilizing different
algorithms, as shown in Fig. 5. For a comparative analysis
of AI-based backscattering solutions, a summary Table II is
also presented, providing a clear and concise understanding
of the different schemes and their outcomes for BC systems.

A. AI-based Backscatter Signal Detection and Channel Es-
timation

This subsection explores AI-based techniques for signal
detection and channel estimation in BC systems as shown
in Fig. 6. These techniques utilize ML algorithms to enhance
accuracy and efficiency in detecting signals and reduce
bit error rates. They also include a medium-access control
protocol based on DRL to optimize backscatter communica-
tions and mitigate interference with WiFi. These innovative
methods have the potential to revolutionize communication
in BC systems and lead to improved performance and
reduced power consumption. The authors of this paper
[96] proposed a new signal detection method for AmBC
systems using ML. The primary motivation behind this
research is the growing interest in AmBC systems due to
their low power consumption, which makes them ideal for
connecting billions of IoT devices in the future. However,
detecting signals in AmBC systems can be challenging
due to the difficulties in predicting communication channels

and sharing the spectrum. The proposed method starts by
exploring and clustering the characteristics and qualities
of the received signal using unsupervised learning. The
authors then use cluster-bit mapping to detect the signal,
even when noise power and channel estimation are unknown.
Two detection approaches are presented, one with N ą 1
spreading gain and the other with N “ 1 spreading gain. The
latter approach, optimal for the desired outcomes, maximizes
detection efficiency by computing the detection thresholds.
The results of the simulations show that the proposed method
outperforms baseline approaches and can help to improve
communication performance and reduce power consumption
in AmBC systems.

In another work [97], Liu et al. aimed at improving signal
detection in BC systems by reducing the Bit Error Rate
(BER). In BC systems, estimating CSI is often challenging,
resulting in a high BER in the baseline tag for signal detec-
tion algorithms. The authors proposed solving this issue by
developing a Deep Transfer Learning (DTL) based method.
The method involved using a novel Covariance Matrix-aware
neural Network (CMNet), which employed offline learning,
transfer learning, and online detection to capture the dynamic
nature of the wireless environment and improve signal detec-
tion accuracy. The CMNet was evaluated using a likelihood
ratio test based on the Minimum Error Probability (MEP)
criterion. The authors first trained the CMNet using offline
learning to capture the statistical properties of the channel
models. Transfer learning was then used to fine-tune the
network to the current channel. The well-trained CMNet was
then employed for online signal detection. The simulation
results showed that the proposed CMNet performed better
than other methods in accuracy and efficiency, even without
CSI. However, while the CMNet shows promising results, its
high computational needs may limit its feasibility for some
applications. Additionally, its applicability to all BC systems
remains to be determined through further research. Similarly,
in [98], the authors focused on finding the optimal solution to
the channel estimation problem in AmBC. Channel estima-
tion is regarded as a de-noising problem, and a CNN-based
deep Residual Learning De-noiser (CRLD) was created to
restore the channel coefficients. A three-dimensional (3D)
de-noising block is designed to simultaneously examine pilot
signals’ spatial and temporal characteristics to support de-
noising in CRLD. This innovative CRLD-based estimation
scheme consists of the online estimation and offline training
phases. The proposed CRLD employs multiple 3D de-
noising blocks to intelligently explore spatial and temporal
signal characteristics, enhancing estimation precision. Ac-
cording to simulation results, the proposed system achieves
near-optimal performance using the MMSE method.

The authors of this study proposed a novel Medium-
Access Control (MAC) protocol based on DRL (DRL-MAC)
to support and enhance IoT actions in BC [99]. This work
is primarily performed to solve the problem of WiFi signal
interference by utilizing the most recent WiFi infrastructure
to fix the BCs that cause interference with WiFi communica-
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tions. In this proposed model, DRL is also used to determine
which backscatter device will be serviced and the reservation
step for the serviced tag based on the reserved information.
In addition, a predefined utility function is present, and the
backscatter and WiFi communication optimization problems
are resolved. In addition, DRL is utilized to identify the
most optimal policy. A DRL-MAC integrates DRL with
on-demand reserved backscatter communications using the
DRL WiFi AP, which can train the tags based on the WiFi
infrastructure. With the implementation of the determined
action, the AP will attain a nominal throughput. Simulation
results demonstrate the effectiveness of DRL-MAC.

The AmBC allows the RF-powered devices to communi-
cate with the readers by harvesting and modulating their
ambient RF signals. Unlike traditional RF identification,
AmBC does not require the reader to transmit excitation
signals to the tag or additional carrier emitters (RFID). This
allows the AmBC to achieve low costs and an energy-
efficient environment. Conventional AmBC employs an en-
ergy or Minimum Mean Square Error (MMSE) detector
to detect signals with a BER. This work [100] describes
an ML-based algorithm for detecting tag signals in an
AmBC signal by transforming the detection problem into
a classification problem. In addition, the proposed system
divides the received signals into two groups based on their
properties and energy characteristics. This study used two
supervised ML techniques, SVM and random forest, to
decode the tag symbols. In addition, additional ML features
have been implemented to reduce the BER of the system.
Simulation results demonstrated that ML-based detectors
could achieve low BER and high throughput compared to
MMSE detectors.

B. AI-based Jamming/Security and Interference Manage-
ment

This subsection explores AI-based schemes for managing
jamming/security and interference in BC systems as shown
in Fig. 7. Traditional anti-jamming and security strategies
are ineffective against intelligent jammers, so novel DRL
algorithms and DNN are proposed for optimal anti-jamming
strategies utilizing techniques such as deception, directional
antennas, etc. These techniques aim to defend against jam-
ming attacks and increase system throughput. AI-based
schemes for managing interference involve learning to adjust
transmission duration and frequency, utilizing backscatter-
ing, or harvesting energy from jamming signals. The op-
timal policy is obtained through RL-based QL algorithms,
improving system performance.

Traditional anti-jamming strategies lack real-time protec-
tion against jamming attacks, particularly intelligent jam-
mers based on AI. The authors of this work [101] pro-
posed an anti-jamming architecture that combines the most
advanced neural network and AmBC techniques. This frame-
work will enable transmitters to confront and defeat jammers
rather than hide or flee. In this process, the transceivers
learn the jamming policy of the jammers before transmit-
ting their data on jamming signals or backscattering and
harvesting the necessary energy from the signals. Existing
work utilized QL algorithms to overcome unknown jamming
attacks, but these algorithms had drawbacks, such as slow
convergence for optimal policy. Considering these restric-
tions, the authors proposed a novel DRL algorithm based
on a recent dueling neural network architecture. This will
cause the transmitter to learn the strategy of the jammer
and adapt the necessary countermeasures. Specifically, the
authors have proposed an anti-jamming algorithm for trans-
mitters that adjusts transmission duration and frequency,
backscatters data via jamming signals, or harvests energy
from them. Furthermore, the authors proposed an MDP-
based optimal anti-jamming strategy to obtain the optimal
defense policy to learn about the jamming attack and the
working nature of jammers. Similarly, deep QL and deep
dueling techniques were used to achieve long-term results,
maximize the average throughput, and minimize packet
loss. The detailed simulation results demonstrated that the
technique is more effective. The authors in [102] have
devised a framework to manage the tradeoff between radar
sensing and data transmission in Joint Radar Communication
(JRC) systems. This paper examines an environment with
intelligent and reactive jamming attacks. Initially, the authors
created innovative JRC systems and deception technology
to manage jamming attacks against JRC systems. Two of
the technologies mentioned above have predefined functions:
deception technology is used to predict and idealize the
jammer’s action and respond immediately or appropriately,
while backscattering is used to transmit the data on jamming
signals. Due to the unpredictability of jamming signals, the
DRL algorithm was developed to determine the optimal
policy for JRC systems. The investigation reveals that the
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proposed system protects systems from jamming attacks
and utilizes jamming signals for data transmission while
increasing the system’s throughput. Various RL algorithms
and an MDP are used to solve the problem. Using the decep-
tion strategy and DRL algorithm, we rendered the jammer
ineffective and unable to launch continuous attacks. The
proposed algorithm was compared to conventional jamming
techniques, and extensive simulation results demonstrated
that the double-deep QL-based algorithms are more efficient
and achieve higher throughput.

In another work, the authors in [103] introduced deep
fake, a novel DRL-based deception technique to avoid jam-
ming attacks. For jammers to attack a system or a channel,
the jammer must detect and attack the channel if it detects
only the legitimate transmitter’s communications. To avoid
and protect the system and channel from jammer attacks, the
authors proposed a deception algorithm in which legitimate
transmitters emit bogus signals, luring jammers to attack
the channel. By utilizing AmBC or harvesting energy from
jamming signals, the transmitter can now generate strong
jamming signals for data transmission when the jammer
attacks the channel. The proposed strategy has dual benefits:
it defends against jammer attacks and utilizes the jamming
signals to increase the system’s overall throughput. However,
jammer attacks are dynamic and unpredictable. Therefore,
the authors proposed the DRL-based algorithm utilizing
the deep-dueling network design to achieve the optimal
policy many times more frequently than the other baseline
RL algorithms to achieve superior results. The authors of
this study avoid jamming attacks by employing deceptive
techniques, transmitting fictitious signals, and decreasing the
jammer’s output. In addition, cutting-edge techniques such
as ambient backscattering and deep dueling-based technol-
ogy were utilized.

Data security is a pressing concern and significant chal-

lenge in AmBC systems because of the tag hardware.
The majority of information leakage occurs in unidirec-
tional communication channels. In this research, the au-
thors [104] suggested the design of an antenna based
on ML technique to address the challenge of information
security. In which the patch antenna integrated on the Log
periodic antenna is designed in such a way that they attempt
to achieve directional communication from the relay tag to
receiving reader. This antenna is designed to have small
side lobes with high gain. The authors have used the multi-
objective genetic algorithm to achieve the desired results
that suppress the side lobe and enhance the antenna’s main
lobe, improving the antenna’s overall gain, standing wave
ratio, and return loss. This way, a directional antenna has
been designed for the tag to achieve beamforming—the
ultimate purpose of the secrecy capacity to evaluate the
system’s security. The secrecy capacity is the transmission
rate that can be communicated reliably through the primary
channel.

In this study [105], the authors sought to increase the
performance of BC by employing RL approaches. For com-
prehension, a multi-cluster BC model for short-range infor-
mation sharing is considered. Using the QL approach, the
purpose is to minimize interference in the BC network. The
authors attempted to satisfy the effective SINR requirements,
which are met by monitoring fault logs using an agent. A
feedback link is established between the RF source and the
backscatter tag in order for the system to make intelligent
and valuable power allocation decisions. This link will
convey the learning-related feedback information. The model
is constructed so that a feedback link between the RF source
and tag will assist the system in intelligently allocating
power, and smart decisions are made based on feedback data.
This intelligent power allocation reduces interference, hence
improving the SINR of the network. The agent is rewarded
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for appropriate behavior and punished for inappropriate
behavior. The agent attempts to maximize the effect of
its activity. Consequently, the feedback link and rewarding
scheme enhance the power allocation criterion compared to
the baseline scheme, in which the same amount of power is
allocated to all network devices. The results demonstrated
that this algorithm is superior to equal power distribution
systems regarding SINR, capacity, and energy consumption.
Future research must involve the use of numerous antennas
for transmitters and receivers.

The AmBC enables the IoT and other sensor-based fields
to operate without batteries. However, when we interact
with the IoT, we frequently encounter interference and
other jamming issues. In this manuscript [106], the authors
considered the interaction between the user and an intelligent
interferer in AmBC as a game. This algorithm engages the
user and interferer in a well-designed utility function and
considers the backscattering time. The issue arises, however,
when neither the SNR of the system nor the transmission
technique of the interferer is known. The authors utilized
the QL algorithm to overcome this issue and arrive at the
optimal strategy iteratively and dynamically. The time slot
is assumed to be divided into equal intervals of one, two,
three, and so on. Each time slot is assumed to be fixed, and
transmission occurs within these time slots. This paper aimed
to avoid interference for AmBC in which the user determines
the backscattering time, and an intelligent interferer attempts
to interfere with the transmission with its jamming power.
User-interferer interaction is a dynamic game due to the lack
of system state and interferer transmission power informa-
tion. Then, utilizing QL and analytical outcomes, optimal
strategies were developed. The comprehensive simulation
demonstrated that the proposed work enhances user utility.

In BC, the significant interference caused by the repeated
reuse of spectral resources is a major impediment. The
authors in [107] proposed RL-based solutions for high-level
interference management whenever backscatter tags interact
with other legacy devices in heterogeneous networks.
Agents are trained to reduce interference between legacy
users (macro-cell) and backscatter tags (micro-cell). The
appropriate rewarding function governs users’ transmission
power level for both macro and small cells. All BSs and the
centralized controller are linked via an optical fiber link.
The SDN controller regulates the power levels of macro
cells and micro BSs, which are assumed to operate on
channels with the same number of resource blocks. The BC
devices harvest energy from nearby signals and convert it to
DC. The transmission signal is typically known as the small
cell BS. Consequently, it can use interference management
techniques to acquire the signal from the monostatic
backscatter tag. This work’s primary objective is to provide
a QL-based framework for addressing the interference
problem in SDN. To improve the overall efficiency of
multi-antenna backscatter tags, further research is required.

C. AI-based Improvement in Throughput and Latency

This subsection discusses the use of AI in improving the
throughput and latency of wireless communication systems
that rely on ambient backscatter signals. It highlights various
approaches, including value iteration, QL algorithms, and
deep QL using DNN. It also discusses using ML techniques
such as SVM, ANN, and the Naive Bayes algorithm to read
sensor tags and supply power in RFID-based backscattering
systems. The following section provides an overview of the
impact of AI-based BC on wireless communication and IoT.

By absorbing and reusing the energy from ambient
backscatter signals, wireless devices can function in low- or
no-power environments. In this operation, wireless devices
must toggle between energy harvesting and communication.
The goal of [108] is to maximize throughput under a
fading channel environment by selecting an optimal operat-
ing mode. The authors presented this issue as an infinite-
horizon MDP problem. They used a dual scenario when
they knew the RF signal strength, and then they applied the
value iteration algorithm to find the optimal decision policy.
Likewise, when the signal strength is unknown, they have
suggested the QL algorithm to enhance the overall long-
term efficiency. The extensive simulation demonstrated that
QL methods improved upon and ultimately outperformed the
other, more conventional, baseline systems.

One of the main challenges to achieving 5G’s goals and
objectives is latency. Consequently, 5G needs to have the
lowest possible latency. The latency issue in AmBC has also
been considered, and the authors in [109] looked at latency
issues in wirelessly powered AmBC systems from a deep
QL perspective. First, a QL framework was developed for
AmBC, and then, for the complex Q-network, a DNN was
used, which proved to be more practical and effective. The
findings demonstrated that the proposed work guaranteed
low latency and high throughput.

To that end, RFID backscattering is a scalable and low-
cost wireless technology. It uses energy harvesting methods
to enable backscattering-based wireless power transfer. The
flexibility of this resource allows for a wide range of
potential uses. The authors in [110] presented the concept,
framework, and ML methods underlying an RFID-based
backscattering system. The algorithm for reading sensor
tags and supply power was developed using several ML
techniques, including SVM, ANN, and the Naive Bayes.
Experiment-based evidence supports the provision of such
methods. For example, the supervised SVM algorithm im-
proves chipless RFID sensor tag reading capabilities because
of the SVM method’s exceptional signal classification per-
formance. Comparatively, the magnetic WPT system with an
ANN-based adaptive dynamic matching network achieves
similar results across the entire WPT range. At the same
time, a naive Bayes algorithm-based position estimation
method for drones that receive their power wirelessly was
presented.

The goal of this paper [111] is to use online design
policies to improve the long-term average throughput
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TABLE II: Summary of AI-based Solutions for BC Systems

Cat. Ref. Year Source Domain Algorithm Model Elements Optimization ObjectiveState/Input Action Reward/Output
[96] 2017 Ambient RF Clustering Expectation Maximization (EM) An ambient Backscatter system

considers energy features of re-
ceived signal

1.Explores the
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signals directly. 2.
Grouping of signals
into clusters.

Improve performance To assist signal detec-
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coefficients and noise
power
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n [97] 2020 Ambient RF Classification CRLD 1.RF signals with complications
and are difficult to recover without
CSI.

1. DTL detection
framework utilizing
offline learning,
transfer learning, and
online detection.
2. DTL-based
Likelihood Ratio test.
3. CNN to explore
signal features

Tag signal detection
efficiently even with-
out CSI.

Improve BER and
Signal Detection
performance

[98] 2021 Ambient RF Classification CMNet-LRT Various states and information of
communication channel

Disable the partial
layers and tune the
remaining layers
of the channel to
fit the network to
the current channel
through transfer
learning.

The improved
tag detection
performance with
high throughput,
utilizing only few
training data.

Improve tag/signal
detection capability
conveniently

[99] 2019 WiFi Policy-Based 1.DRL-MAC, 2. DDQN Consists of. WiFi signals from
the WiFi Access Point(AP) and
Backscattered Signals from the tag.

1. Tag Selection for
Service, 2. Reserva-
tion Steps for the Tag

Compute Optimal
Reservation Strategy

Tackle the over-
optimistic estimation
issue in Tag Detection

[100] 2019 Ambient RF Classification SVM + Random Forest Ambient signal types(WiFi, cellu-
lar) received

Classify received sig-
nals based on energy
features.

An improved form of
received signal with
high efficiency.

Maximize the overall
throughout by lower-
ing BER

[101] 2019 Ambient RF Policy-Based DDNN Architecture State consist of four elements.
1)State of RF Channel, 2)State of
Jammer, 3)Number of Packets in
Data Queue, 4)State of energy units

(M+4) Actions i.e,
decide whether to
stay idle, transmit
data, harvest
energy, backscatter
data, adopts to
transmission rate

Number of packets
transmitted to gate-
ways successfully

Find an optimal pol-
icy of maximizing the
average long-term re-
ward

[102] 2021 Ambient RF Policy-Based Prioritized DDQL State consist of four elements.
1)Channel state from previous
time, 2)Deception status, 3)Num-
ber of Packets in Data Queue,
4)Total time of RARs

Six Possible actions
to choose

Reward value is de-
fined as a function of
resulting SINR

Determine the
optimal defense
strategy using DRL-
based method
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t [103] 2021 Ambient RF Policy-Based Dynamic MDP + DDNN State consist of four elements.
1)Deception status, 2)Jamming
Status, 3)Number of Packets in
Data Queue, 4)Number of energy
units

Action space includes
1)Transmit data,
2)Harvest energy,
3)Backscatter Data,
4)Adopt transmission
rate, 5)Stay Idle

Number of packets
successfully transmit-
ted

Determine optimal
defense policy for the
transmitter

[104] 2019 Ambient RF Policy-Based MOGA Optimization variables such as
length, width, spacing, range, and
so

Optimize Antenna pa-
rameters.

Reducing the number
of large side lobes
and side lobs level

to ensure security of
IoT communication
system, maintain
communication
quality, and leakage
prevention

[105] 2019 Ambient RF Value-Based QL Power allocation states/status Power allocation ac-
tions

Immediate reward
based on SINR at
each time interval

To improve the per-
formance of backscat-
ter networks particu-
larly power allocation
schemes in backscat-
ter devices

[106] 2019 Ambient RF Value-Based QL State is represented as SINR Determine time for
backscattering and
transmission power

Utility function of
user and interferer
time

improves the conver-
gence speed of QL.

[107] 2020 Ambient RF Policy-Based QL-reward function State is based on Macro-Cell States
and Small-cell States

Select transmission
power level

Reward is computed
based on correspond-
ing SINRs

Effectively manage
interference for
legacy users and
backscatter tags

[108] 2019 Ambient RF Value-Based QL State is composed of battery energy
and the channel gain

Determine whether
to harvest energy or
backscatter signal

Information
amount transmitted
successfully

Maximizing
the throughput
performance of
backscatter systems
by selecting operating
mode.
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[109] 2020 Ambient RF Value-Based Deep QL State is computed considering
1)other links interference, 2)the
channel gain, 3)remaining data to
transmit, 4)remaining time

Selecting a transmis-
sion power

reward function is
based on the capacity
of the link and the
latency constraint

Tto overcome the de-
lay constraints, while
maximizing data rates
and improving net-
work performance

[110] 2020 Ambient RF Supervised SVM + ANN RFID based backscatter sensor sys-
tem is presented.

1.SVM improves
reading accuracy of
sensor tags 2. ANN
improves wireless
power transfer system

Improves reading ac-
curacy and communi-
cation range.

To improve reading
capability of sensors.

[111] 2021 Ambient RF Value-Based Value-Iteration State consists of 1)data-link chan-
nel state, 2)battery state, 3)data
queue state

five different actions
to choose

Immediate reward is
computed as through-
put per block after de-
compression

Maximize long term
average throughput.

of backscatter-based WPC systems. First, they drew a
high-level diagram of the signal’s life cycle, including
sampling, encoding with compression, transmission,
reception, and decompression and decoding. All these
procedures are considered real-world issues like finite
battery life, stochastic uplink channels, and a nonlinear
energy harvesting model. High efficiency and gain were then

attained through the MDP with hybrid switching mode,
which allocated time and power and selected compression
ratios to maximize efficiency. In an early attempt to find a
perfect offline solution for this problem, the authors used
the Value Iteration algorithm. Ultimately, they turned to
the QL and Deep QL algorithms to find solutions online
without prior knowledge. Simulation results demonstrate
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Fig. 8: Categories leveraging different AI domains and
algorithms for BC based B5G/6G Technologies

that the hybrid transmission mode with adaptable data
compression performs superior to the two baseline schemes
(i.e., QL and random policy).

V. EXPLORING THE POTENTIAL OF AI-BASED
BACKSCATTERING FOR B5G/6G COMMUNICATIONS

BC is a rapidly evolving technology that holds tremendous
potential to revolutionize the field of wireless communi-
cation and the Internet of Everything (IoE). Its unique
capability of enabling devices to operate without relying
on internal power sources has already significantly impacted
various industries, including nanotechnology, UAVs, vehic-
ular networks, and MEC network workload management.
Moreover, BC has the potential to significantly enhance the
performance of various networks, such as relays, cognitive
radios, and MEC. However, the relationship between BC,
RIS, UAVs, and vehicular networks presents opportunities
and challenges for improvement.

This section provides a technical overview of these de-
velopments and highlights the impact of AI-based BC on
wireless communication and IoT. AI plays a critical role
in the advancement of BC technology. A comprehensive
overview of AI-based solutions for BC, including the rele-
vant domains and algorithms utilized, is presented in Fig. 8.
At the end of this section, a comparative analysis of various
schemes that leverage AI for BC in B5G/6G technologies
can be found in Table III. This information is a valuable
resource for individuals who aim to stay updated with the
latest advancements in BC.

A. AI-based Backscatter-Assisted Relay and Cognitive Com-
munication Networks

BC is a promising technology that has the potential to
revolutionize communication networks. BC can be used in
relay networks as an effective and low-power method of
transmitting data between relay nodes, source nodes, and
destination nodes [112] as shown in Fig. 9b. Furthermore,
its low-complexity design enables energy-saving benefits for
the network, as relay nodes can conserve energy when not
transmitting data [113]. Similarly, in cognitive communica-
tion networks, BC can play a vital role in improving the
utilization of available radio spectrum [114]. By reflecting
existing signals in the environment to transmit data, BC
reduces the need for dedicated transmission and frees up
valuable spectrum resources for other communication sys-
tems, as shown in Fig. 9f. BC can also provide additional
communication capacity in cognitive networks, especially in
environments where the available radio spectrum is limited
[115]. This sub-section will focus on AI schemes used
for backscatter-assisted relay and cognitive communication
networks.

In a Backscatter-assisted Relaying Network (BRN), D2D
actively transmits data to receivers during a given time
slot, while other D2D transmitters act as relays or helpers.
Consequently, it improves the transmitters’ data rate, energy
efficiency, and transmission range. This method of relaying
has been demonstrated to be effective, but a problem arises
when these relays compromise the network’s harvesting ca-
pability and thereby reduce overall performance. The authors
in [116] have addressed the issue of compromising network
harvesting capability in a BRN using DRL optimization
methods. However, the dynamic energy states of the channel
make it difficult for the Power Beacon Station (PBS) to find
optimal solutions. To tackle this, the authors proposed the
Deep Deterministic Policy Gradient (DDPG) algorithm as a
solution. The DDPG algorithm finds the optimal solutions
for the relays or helpers and addresses the PBS decision-
making problem as a probabilistic optimization problem. The
simulation results show that the proposed DRL scheme is
more effective than conventional methods.

In a network powered by wireless devices, the transmitter
requires more power to generate the RF signals due to its ac-
tive transmission. One of the best solutions to this problem is
to make the wireless devices operate in hybrid mode (active
and passive) modes and to switch between two modes, i.e.,
active (wireless-powered communication network) and pas-
sive mode (ambient backscatter communication powered).
In this paper [117], the authors suggested and presented an
algorithm to switch between active and passive transmission
modes. The authors first analyzed the hybrid relaying system
and derived the analytical expression to check the end-to-end
probability of success or failure. They have then leveraged
the bandit policy to design a practical selection method
where there is no need for network parameters but purely
works on the past data or transmission records. Finally, the
authors studied the selection problem for a hybrid relay that
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Fig. 9: Illustration of AI-based BC for B5G/6G technologies and networks, which include relays, cognitive radios, MEC,
RIS, UAVs, and vehicular networks.

can work with hybrid wireless powered (Active mode) and
ambient backscatter mode (passive mode). However, there
is still a notable gap between the calculated and actual
performance less practical. Therefore, further work can be
done to make it more applicable.

The authors of this study [118] designed several wireless-
powered relays to transport data or information from a
multi-antenna AP to a single antenna location. These relays
might function in active or passive modes based on channel
parameters and energy states. In addition, they can operate
in both modes but cannot deliver sufficient throughput due
to mismatching or insufficient optimization. By optimizing
both active and passive modes, optimal throughput can
be achieved. Optimizing AP’s beamforming with relays,
combined radio modes, and other factors is the objective of
this study, which aims to enhance overall performance. First,
beamforming, additional relay modes, and the Hierarchical
Deep Deterministic Policy Gradient (H-DDPG) algorithm
are leveraged. It operates in such a way that it discards
the selection of binary relay mode and transitions to a deep
outer loop Deep Q-network (DQN) algorithm before acquir-
ing optimization for continuous beamforming via the inner
loop DDPG algorithm. Second, model-based optimization
is integrated into the DDPG design by incorporating more

accurate target recognition and DNN training to increase the
system’s ability to learn and train. Although the simulation
results showed that the system appeared more feasible, the
suggested algorithm is more sophisticated and can be further
streamlined to be more helpful.

In the context of RF-powered backscatter cognitive radio
networks, multiple secondary users communicate with a
secondary-level gateway using backscatter or energy harvest-
ing from RF signals. The gateway manages the backscat-
tering, harvesting, and transmission time to prevent latency
or congestion among multiple secondary users. The authors
of [119] addressed this challenge by using a DRL-based
DDQN algorithm to determine the optimal time scheduling
policy for the gateway. The algorithm considers the hybrid
Harvest Then-Transmit and backscatter techniques and op-
timizes the control policy for the sleep and active switching
modes and the active mode reflection coefficient. Simulation
results showed that the DDQN-based approach improves the
system’s throughput compared to benchmark schemes.

In another study, a simplified dynamic spectrum access
architecture to enhance RF BC systems is proposed. After
reflecting and gathering enough energy from environmental
signals, a secondary transmitter in such a system then sends
modulated data. In order to reach the optimal policy and
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optimize the system throughput, the authors of [120] decided
to use the MDP for the ambient signals. Optimization based
on MDP requires system parameters such as the probability
of a channel being idle and the probability of correctly
transmitted packets. However, these are elusive and cannot
be obtained. With the authors’ proposed online RL method,
Secondary Transmitters (ST) can learn from their decisions
and arrive at an optimal policy despite the lack of available
channel characteristics. At the outset, the ST in the MDP
framework establishes the action and state spaces in which
an optimal policy can be found. The probabilistic matrix
of transitions was then determined. Because MDP lacks
context information, such as the odds of a channel being
idle or a packet arriving, an online reinforcement algorithm
was utilized instead. The controller does the action using
the specified policy, observes the outcomes, and modifies
the current policy. The iterative process helps the learning
algorithm refine its approach. Simulation findings revealed
that the suggested scheme is significantly more effective and
efficient than previous benchmark schemes.

The increasing proliferation of wireless gadgets and sen-
sor networks has necessitated the development of innovative
communication techniques, such as BC. Despite BC’s valu-
able benefits, wireless sensor networks have faced various
challenges, particularly in resource allocation and the use
of BC in mobile vehicles and UAVs. To address these
challenges, the authors in [121] proposed a CR-based smart
grid system that utilizes BC to improve resource allocation.
The authors utilized a DRL-based A3C scheme to enhance
system efficiency. The network architecture is based on
two types of transmission: active transmission and ambient
backscatter transmission. K-means clustering is applied as
a pre-processing technique in a massively parallel setting.
The algorithm prioritizes the output of high-priority users,
enabling higher system throughput with fewer resources.
Numerical results have confirmed the system’s superior
performance, demonstrating the feasibility and effectiveness
of utilizing BC in wireless sensor networks.

B. AI-based Backscatter-Assisted MEC Networks

MEC technology provides low-latency processing and
data storage at the edge of a network, closer to end-users.
This enables various IoT applications and services, including
augmented reality, video analytics, and edge computing
[122]. BC can be combined with MEC to provide low-power
and reliable communication for IoT and edge devices. BC
can enable real-time processing and faster response times for
IoT applications and services by transmitting data between
IoT devices and MEC servers. In addition, BC can increase
communication capacity for MEC systems, particularly in
environments with limited radio spectrum availability.

Using BC in MEC networks can improve energy effi-
ciency and communication reliability between edge devices
and MEC servers [123]. BC enables edge devices to trans-
mit data to the MEC server without active transmission,
reducing energy consumption. Furthermore, integrating AI

algorithms and ML techniques with BC can further enhance
communication efficiency for IoT devices and MEC systems.
Using BC and MEC, wireless networks can achieve effi-
cient communication while minimizing the impact on other
communication systems and preserving the available radio
spectrum.

Furthermore, BC can be integrated with AI algorithms
and ML techniques to provide efficient and effective com-
munication for IoT devices and MEC systems, as shown
in Fig. 9c. By leveraging BC and MEC, wireless networks
can achieve efficient and effective communication while
minimizing the impact on other communication systems
and preserving the available radio spectrum [124]. Several
studies have proposed AI-based BC-assisted MEC networks,
which aim to optimize the performance of MEC networks
by integrating BC into the network architecture presented in
this subsection.

There are many entities in a network, each with a unique
function and hence unique network service needs. Because
of the increasing scale and complexity of the problem,
optimizing wireless networks in this context is difficult. To
improve the network’s throughput, DRL can be used to train
and raise awareness of the entities’ decision-making capa-
bilities in conjunction with their surrounding network envi-
ronment. In this paper [125], the authors demonstrated how
DRL could be utilized for MEC and used for user devices
to offload computation workload to MEC servers. However,
for low-power networks like wireless networks, MEC can
be expensive due to its considerable power consumption
during offloading. To address this issue, we develop a hybrid
offloading paradigm that uses the complementing active and
passive operations available in RF communications to reduce
power usage. In this case, numerical findings demonstrated
that a hybrid offloading approach was superior to more
conventional efficiency improvement methods.

In a WPC network, devices opt to dump their tasks
to the edge servers through active and passive backscatter
transmission while consuming less or no energy. Multi-
wireless devices integrated onto the same antenna can share
the resources, i.e., channel. Therefore, work modes and time
management for energy harvesting, backscatter active, and
passive transmission should be appropriately managed to im-
prove the overall system performance. In this work [126], the
authors proposed a DDPG for the hybrid data offloading. By
considering the best wireless devices, servers, and systems,
try to find the best time in the consecutive domain to reduce
network offloading delay. Moreover, DDPG complexity is
analyzed, and the numerical results proved that approach
could achieve minimal offloading delay and improve the
energy harvesting efficiency. It is observed that wireless
devices using the same channel and the same antenna may
face scheduling problems and network transmission delays.
DDPG-based scheme tackles this problem and reduces over-
all network offloading delay.
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C. AI-based BC involving RIS, UAV, and Vehicular Networks

Integrating BC with B5G/6G technology is becoming
increasingly vital in low-power communication and energy
harvesting. One potential application of BC proposed is
the creation of zero-energy devices, relying on power har-
vesting for functionality. RIS with many elements provides
greater flexibility in balancing the trade-off between RF
energy harvesting and information transmission [127]–[129]
as shown in Fig. 9e. Moreover, the utilization of BC in
UAVs is gaining prominence, particularly in remote sensing,
environmental monitoring, and disaster relief [22], [130].
By enabling UAVs to communicate with ground devices
without consuming battery power, BC increases these ve-
hicles’ energy efficiency and longevity, as shown in Fig. 9d,
especially in environments where the line of sight between
the UAV and ground device is obstructed. Similarly, BC
offers a valuable solution in vehicular networks, enabling
vehicles to communicate with each other and with RSUs in
a more energy-efficient manner [131], [132]. By reflecting
incoming radio signals, BC reduces energy consumption,
extends communication range, and enhances network relia-
bility. Furthermore, BC provides an economical solution for
vehicular networks, requiring minimal hardware compared
to traditional communication methods. Integrating BC into
vehicular networks can improve traffic safety and efficiency
through real-time information exchange between vehicles
and RSUs, as shown in Fig. 9a. In this subsection, we will
delve deeper into the AI schemes involving RIS, UAVs, and
vehicular networks, highlighting BC’s significant impact in
promoting energy-efficient communication across multiple
fields.

The authors in [133] have conceptualized an AmBC
Systems assisted with the IRS. The optimization of IRS to
aid AmBC is challenging due to the lack of past channel
knowledge. Thus, the authors created a structure to syn-
chronize the IRS and reader beamforming simultaneously,
even when there is no channel coefficient and no CSI for
the channel and ambient signal. The CSI deficiency and
changing reward function in each interval were observed
with independent training and zero discount factor. The
authors have used the optimal eigenvector combiner with
appropriate eigenvalues without IRS for better exploration.
Based on their findings, the DRL framework can achieve
competitive results with many full-CSI baseline schemes.
In another study [134], the authors proposed a novel ap-
proach to design passive reflecting beamforming and symbol
detection for an IRS-based AmBC system. The proposed
approach uses a deep unfolding neural network (DUNN)
model, which consists of two sub-networks: a phase shift de-
sign sub-network (PSDSN) and an expectation maximization
detection sub-network (EMDSN). The PSDSN sub-network
is responsible for designing the optimal phase shifts of the
reflecting elements in the IRS. The EMDSN sub-network
learns the backscattered symbols’ BER model from training
samples and detects the backscattered symbols by unfold-
ing the expectation-maximization algorithm. The proposed

DUNN model solves the constrained optimization problem
by treating the optimization variables as network param-
eters. The study showed that the proposed DUNN model
outperforms the random passive reflecting beamforming and
AmBC systems without an IRS. However, further research
is necessary to test the proposed approach’s robustness and
effectiveness in various practical scenarios.

The backscattering technique is a promising subject in
communication, particularly in IoT. It allows sensor-based
IoT networks to exchange data without needing continuous
battery charge or replacement. As a result, wireless sensor
networks can collect data from remote sites without recharg-
ing or battery maintenance. However, the limited range of
backscattering is a challenge. To address this, the authors
[135] proposed using multi-UAVs to assist in data collection.
UAVs can fly near the Backscatter Sensor Nodes (BSN) to
activate and collect data, reducing the average flight time of
rechargeable UAVs during data collection. The authors used
a clustering method, the Gaussian mixture model, to simplify
the task and divide the BSNs into multiple clusters. Two
algorithms were proposed, one for deterministic boundaries
based on single-agent deep option learning (SADOL) and
another for ambiguous boundaries based on multiagent deep
option learning (MADOL). The results showed that the
proposed algorithms outperformed others, such as MAD-
DPG, DDPG, and Q network algorithms. Another paper
[136] investigated the problem of energy efficiency in a BC
network, where UAVs act as aerial BSs to improve system
performance. The authors framed the optimization problem
as an MDP. They proposed a DRL-based DDQN algorithm
to design the UAV trajectory, considering constraints such
as the scheduling of BDs, power reflection coefficients,
transmission power, and fairness among BDs. Simulation
results showed that the proposed algorithm achieved close-
to-optimal performance and significant energy efficiency
gains compared to benchmark schemes. The paper highlights
the potential of using UAVs to improve the energy efficiency
of BC networks in IoT applications.

Despite the growing user base and expanding coverage
needs, heterogeneous networks are a great way to meet
the capacity and coverage requirements of next-generation
vehicular networks. However, the researchers cannot identify
optimization opportunities for this class of networks. This
study [137] proposed a learning method to deal with
this optimization issue. The authors presented a strategy
for resource allocation and user association for vehicle net-
works that consider collaboration-centric spectrum sharing.
Network providers can serve the legacy and backscatter
vehicular networks. Therefore, the challenges of power allo-
cation, user association, and spectrum sharing are formulated
to broaden the scope of network providers’ utilization.
Using DL approaches, the subsequent work increases the
throughput of heterogeneous vehicle networks. A supervised
RL method based on DL was presented for this purpose. In
this method, DNN handled power allocation while QL was
employed for VUE association and spectrum sharing.
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TABLE III: Summary of AI-based BC Schemes for B5G/6G Communications

Cat. Ref. Year Source Domain Algorithm Model Elements Optimization ObjectiveState/Input Action Reward/Output
[116] 2020 Ambient RF Policy-Based DDPG State is comprised of energy trans-

mission status, energy status, and
energy storage capacity at time
slots

Determine optimal
reflection coefficients
for helpers or relays,
i.e., harvest or
backscatter at each
time slot

immediate reward is
the signal transmitted
at each time

Goal is to maximize
overall network
throughput over time
slots
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tte
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te
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el
ay

an
d
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ni
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e
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un
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n
N

et
w

or
ks [117] 2020 Ambient RF Value-Based Bandit approach Hybrid relay system formulated as

Bandit problem
Mode selection deci-
sion either action or
passive mode

Higher reliability of
data transmission.

Minimize unexpected
accumulated regret

[118] 2021 Ambient RF Value-Based DQN, H-DDPG State is comprised of channel con-
ditions and relay energy status

Time allocation
and beamforming
strategies

Optimize beamform-
ing, time allocation
and relay’s parame-
ters

To maximize overall
throughput by jointly
optimizing access
point’s beamforming
and relay’s radio
modes and operating
parameters

[119] 2019 Ambient RF Value-Based DDQN State is computed based on data
queue status and energy status

Number of time slots
selection (busy as
well idle time slots)

Total number of pack-
ets transmitted in both
modes

Find the optimal time
scheduling policy for
the gateway.

[120] 2019 Ambient RF Policy-Based MDP Channel state, energy level, data
buffer status

Possible actions to
choose are 1)Trans-
mit data, 2)Harvest
energy, 3)Backscatter
Data, 4)Stay Idle

average throughput of
the ST

Obtain optimal policy
that maximizes
throughput
performance of
backscatter and deals
with dynamics of
environment

[121] 2020 Ambient RF Policy-Based A3C State consists of data queue status,
energy state, weight status, and oc-
cupation status

Action space
consists of
waiting, harvesting,
backscattering and
transmission decision
on each time slot

Number of packets
sent

Ensure maximum
throughput of the
multi-user backscatter
system

B
ac

ks
ca
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r

A
ss

.
M

E
C

N
et

w
or

ks [125] 2020 Ambient RF Policy-Based DRL State is based on channel condi-
tion, energy status, and the work-
load status

Decision between lo-
cal computation and
the active offloading

Successful workload
processed per unit en-
ergy

Learn the optimal hy-
brid MEC offloading
policy

[126] 2020 Ambient RF Policy-Based DDPG State is based on wireless powered
communication networks observa-
tion

Offloading decisions
of every wireless de-
vices

total offloaded data Minimize the service
latency and increase
harvesting efficiency.

[133] 2021 WiFi Policy-Based DDPG It is computed as the combination
of previous combiner and IRS re-
flection coefficients

selection of real and
imaginary reflection
components and
combiners

improved detection
performance at
reader.

Facilitate further
AmBC and improve
its performance.

[134] 2023 Ambient RF Policy-Based DUNN Set of channel samples and training
samples of backscattered symbols

Phase angle vectors
of two RIS

Expectation
maximization

To minimize the
BER.
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[135] 2020 Ambient RF Policy-Based SADOL, MADOL State is based on data collection
ratios of BSNs, number of BSNs
assigned to agent, set of UAVs lo-
cations

determine flying to
the target, charge at
the station, or collect
the data

Reward is computed
on energy, data col-
lection, and the trajac-
tory time

Minimize total flight
time of rechargeable
UAVs when mission
is finished.

[136] 2020 Cellular Value-Based DDQN 1.Energy efficiency problem for en-
ergy limited backscatter communi-
cation network 2. backscatter de-
vices on ground harvest energy
from wireless signal

1.reformulation of
Energy efficiency
maximization
problem in an
RL framework. 2.
optimization of UAV
trajectory jointly with
reflection coefficients
and fairness

gradually achieves
significant energy
efficiency.

To dealt with chal-
lenge of energy effi-
ciency for UAVs.

[137] 2021 Cellular Policy-Based QL State is computed based on trans-
mission power, channel gains, and
harvesting energy capacity

allocate the number
of resources

Amount of informa-
tion transferred suc-
cessfully at each time

To maximize the util-
ity of Network Ser-
vice providers.

VI. OPEN ISSUES AND FUTURE WORK

This section discusses several unresolved problems and
challenges in BC and those aspects of backscattering that
need further investigation and require significant attention.
Future research must focus on flexible BC, considering
multiple parameters such as intelligent jamming attacks,
concurrent transmission, signal power, reflection coefficient,
and energy conservation efficiency [47]. Despite this, the
use of AI-based backscattering algorithms has been used to
address several backscattering issues and challenges, such
as signal recognition and channel estimates, interference and
jammer management related to security concerns, difficulty
in obtaining good throughput and minimizing latency in BC
systems, and backscatter networks such as MEC networks,
UAV and vehicle networks, etc. There are still some open
issues to be tackled.

‚ Heterogeneity of Ambient Signals: The backscattering
technique utilizes ambient signals for energy collection

and transmission. However, these ambient signals have
various origins and sources; as a result, they are un-
predictable and challenging to explore. In addition, the
backscatter receiver only recognizes familiar or trained
signals. Therefore, there is a need for such algorithms
or the development of an intelligent transceiver that can
detect and utilize the many ambient signals that strike
it to avoid this issue.

‚ Interference to Licensed Systems: Since backscatter-
ing occupies the frequency range of licensed users like
TV and cellular BSs, it inevitably results in interference.
Thus, these authorized users may experience signal
weakening and distortion. Interference with licensed
systems is a critical issue in BC systems, and several
approaches can leverage to mitigate this issue. For
example, BC systems can use adaptive techniques, cog-
nitive radio techniques, advanced modulation, coding
techniques, and regulatory measures to reduce interfer-
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ence and maintain the quality of service for licensed
systems. However, further research is needed to fully
understand the impact of BC systems on licensed
systems and develop efficient AI-based approaches to
reduce interference.

‚ BC Device Standards and Compatibility: The net-
work parameters used in backscattering are used for
specific use cases and have proprietary features. For
example, Flexible Macroblock Ordering (FMO) coding
minimizes the energy consumption of multi-bit and BC
devices to enhance the data rate. As a consequence,
the backscatter devices become less interoperable and
incompatible. Thus, it is compulsory to design commu-
nication standards and network protocols, e.g., packet
format, network stack, and MAC protocol, for future
AmBCs.

‚ Security Challenges: Since backscattering is based on
a simple and easy-to-decode approach, the backscatter
network is vulnerable to security vulnerabilities like
eavesdropping and jamming [138]. Therefore, protect-
ing a backscatter-based network is problematic because
it is passive. Depending on the attacker’s capabilities,
the BC could be vulnerable to a denial-of-service
attack, an impairment of the modulated backscatter,
or even a complete compromise of the system due
to the attacker’s use of a backscatter network with
more powerful and active transceivers. Furthermore,
unlike encryption and digital signatures, backscatter
transceivers do not seem to be able to provide any
unique security solutions. As a result, extensive re-
search needs to figure out how to fix the aforementioned
security issues and come up with a straightforward yet
foolproof method of protecting the BC network.

‚ Network Standards and Protocols: Using the WPN-
BC system, a cluster of devices can be handled si-
multaneously, with a decrease in interference. However,
the WPN-BC system should adopt new techniques that
could simultaneously handle RF energy and BC. Specif-
ically, the areas of decentralized MAC protocols should
be explored more, where nodes talk in a distributed
manner. Up to this, the coordination among the devices
and tag selection are essential issues to be tackled.

‚ Hardware Design Limitations: Due to subsequent
updates and modifications in WiFi and cellular network-
ing, ambient signals have become more complicated.
Thus designing AmBC systems has become a challenge
due to the unpredictability and random nature of the
existing network traffic and the hard fork to work in
existing infrastructure with no or fewer modifications.
Furthermore, the synchronization between transmission
and reception is still a pending problem. The carrier
phase and timing circuitry need a local oscillator, a
power-hungry device. Thus, designing such a system
with low complexity and high synchronization capabil-
ity algorithms is highly desirable.

‚ Integration of UAV with BC: The integration of

UAVs with BC networks has the potential to provide
wireless connectivity in remote locations, aid in channel
estimation and data transmission, and enable fast energy
transfer. This paper discusses the basic parameters and
problems of UAV-based BC networks using AI-based
algorithms. However, more research is needed to fully
integrate UAVs with WPN-BC and improve the perfor-
mance of UAV-based networks. We also acknowledge
the practical constraints of UAVs, such as scalability
and mobility, and suggest that future research should
explore ways to address these limitations. Nevertheless,
by integrating UAVs with WPN-BC and enhancing
their practicality, UAV-based BC networks can become
a more valuable and reliable technology for wireless
communication in remote locations.

‚ AI-based Approaches: The integration of AI with
wireless networks, specifically with BC systems, can
improve network performance, efficiency, and decision-
making. In addition, AI algorithms can help address
technical issues such as signal detection, interference
management, and network optimization. This leads to
improved performance and reliability in BC systems,
enabling low-power and reliable communication for
IoT devices and applications. However, more research
is needed to fully understand AI’s potential in BC
systems.
In 6G networks, AI-based BC systems can help achieve
high spectral efficiency through adaptive modulation,
coding, and frequency-domain resource allocation. Fu-
ture research can focus on using AI algorithms to
optimize network topology, link scheduling, and inter-
ference management.
In mmWave and THz communications, AI algorithms
can optimize the performance and reliability of BC.
Similarly, AI-based backscatter VLC systems can im-
prove the spectral efficiency, data rate, and power
efficiency of VLC links. Finally, AI-based backscatter
MIMO systems can enhance the performance of MIMO
networks by optimizing modulation, beamforming, and
link scheduling.

VII. CONCLUSION

This article comprehensively surveyed the current de-
velopments in AI-based BC. We covered different AI al-
gorithms being utilized in the BC system, provided an
introduction to BC, and then delved into the use of AI-based
BC in various domains, such as detecting backscatter signals,
estimating channels, regulating interference, and enhancing
throughput and latency. We also discussed research into
AI-based BC in the context of B5G/6G technologies, such
as backscatter-assisted relay and cognitive communication
networks, backscatter-assisted mobile edge computing net-
works, and BC incorporating elements like RIS, UAV, and
vehicles. Finally, future work in the area of AI-based BC in
B5G/6G networks could include developing AI algorithms
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for modulation and coding schemes, channel estimation,
network management, hybrid communications, IoT applica-
tions, and security. These algorithms can optimize various
aspects of BC performance, including spectral efficiency,
error correction, data rate, network management, energy
efficiency, and security. However, the specifics of these algo-
rithms depend on the specific challenges and requirements
of B5G/6G network environments.
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