
P
os
te
d
on

17
M
ar

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
22
84
42
1.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

A Dataset on CSI-based Activity Recognition in Real-World

Environments

Florenc Demrozi 1, Cristian Turetta 2, Alejandro Masrur 2, Martin Schmidhammer 2,
Christian Gentner 2, Samarjit Chakraborty 2, Graziano Pravadelli 2, and Philipp Kindt 2

1University of Stavanger
2Affiliation not available

October 30, 2023

Abstract

Activity recognition, e.g., identifying individuals, recognizing their physical activities, or estimating their number in a room,
based on WiFi’s Channel State Information (CSI) has been studied intensively in the last decade.

While most existing works consider analyzing CSI data from a single person in a rather constrained environment, almost none
of them has been successful in generalizing these results to unconstrained, real-world environments, in particular, when multiple
individuals are present.

In this paper, to address this problem, we introduce a fully annotated dataset ($\approx$ 70 GB of data) containing CSI
and environmental data collected from two real-world offices over multiple days of continuous monitoring. To the best of our
knowledge, this is the first freely available dataset of its kind.

On the one hand, our dataset evidences that vastly disregarded {\em implicit changes} in the environment – due to small

objects being repositioned, added or removed – are the main reason for the lack of generalizability by existing approaches.

On the other hand, we expect it to promote further research work in this area and, thereby, to facilitate general solutions for

CSI-based activity recognition in real-world environments.
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Abstract— Activity recognition, e.g., identifying individuals, recog-
nizing their physical activities, or estimating their number in a room,
based on WiFi’s Channel State Information (CSI) has been studied
intensively in the last decade. While most existing works consider
analyzing CSI data from a single person in a rather constrained
environment, almost none of them has been successful in gener-
alizing these results to unconstrained, real-world environments, in
particular, when multiple individuals are present. In this paper, to
address this problem, we introduce a fully annotated dataset (≈ 70
GB of data) containing CSI and environmental data collected from
two real-world offices over multiple days of continuous monitoring.
To the best of our knowledge, this is the first freely available dataset
of its kind. On the one hand, our dataset evidences that vastly
disregarded implicit changes in the environment – due to small
objects being repositioned, added or removed – are the main reason
for the lack of generalizability by existing approaches. On the other
hand, we expect it to promote further research work in this area and,
thereby, to facilitate general solutions for CSI-based activity recognition in real-world environments.

Index Terms— Channel State Information, Activity Recognition, Wireless Communication, Pattern Recognition

I. INTRODUCTION

While originally designed for communication purposes,
IEEE 802.11 networks (aka WiFi) have also become popular
for sensing. In particular, when a WiFi signal travels from a
sender to a receiver, it is altered by the environment through
absorption, reflection, and scattering [1]–[5]. The receiver
can detect these changes and thereby reconstruct activities or
events of interest taking place in the environment [6]–[10].
For example, the following human-related contexts can be
reconstructed: performed activities [11], [12], the number of
persons being present in a room [13]–[16], spoken words [17],
[18], people’s identity [19]–[21], heart rate [22]–[24], res-
piratory rate [23], [25]–[28], body temperature [29], sleep
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quality [30]–[33], emotional status [34], [35], localization [8],
[36]–[39], gait analysis [40], [41], smoking [42], eating [43],
pose estimation [44]–[46], or gesture recognition [47]–[51].

WiFi-based sensing is interesting for activity recognition,
healthcare, and environmental monitoring, in particular, when
device-free systems are required, which do not require users
to wear or carry any devices on their bodies [9], [52]–[55].
Moreover, since WiFi networks are verily ubiquitous, the only
additional hardware required for sensing purposes is a receiver
or passive observer as more commonly refer to it [56], [57].
This can be a commercial off-the-shelf (COTS) radio, resulting
in a low-cost solution for the mentioned applications.

The passive observer extracts the so-called Channel State
Information (CSI), i.e., it keeps track of variations in the
amplitude and phase of WiFi signals, which are caused by
changes in the environment. This data is typically processed
by pattern recognition (i.e., machine and deep learning) algo-
rithms that infer what changes in the environment might have
led to the received CSI amplitude and phase variations [58]–
[60]. To this end, a classification or regression model is first
trained using labeled CSI data and then used to classify or
estimate previously unseen data [7], [56], [57], [61].

However, a system trained on data obtained in a specific
environment and involving a certain set of persons does not
perform well in a different environment, even if the same
persons are considered. Such explicit or evident changes in
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the environment are already known to be a major problem for
CSI-based activity recognition [19], [52], [62]. In other words,
CSI data is often collected in a typically constrained/controlled
environment (e.g., a fixed room/office with a fixed distance
between WiFi receiver and transmitter, etc.). However, classi-
fication models – either based on classic machine learning
(CML) or deep learning (DL) – mainly generalize to the
collected data [7], [58], [60], [61]. Thus, using the model in
a different environment, in which no training data has been
collected, unavoidably leads to unsatisfactory results.

Moreover, as discussed later in detail, this is aggravated
by the fact that, even within the same environment, implicit
or subtle changes may also severely affect classification
results. For example, in almost any real-world environment,
the positions of objects (e.g., a monitor, a chair, etc.)
change at least marginally over time, or simply humidity
and temperature gradually vary, thereby, possibly affecting
the recognition performance [63]–[65]. As a result, existing
solutions lack generality and do not easily extend to real-
world environments.

Our Contributions: In this paper, we are concerned with the
above limitations and make the following, basically two-fold
contributions.

First and foremost, to investigate the reasons for this lack
of generality, we collected and carefully labeled CSI data in
two different real-world offices, involving multiple subjects
performing unconstrained daily activities, for 4 consecutive
days. To the best of our knowledge, this is the first dataset
(≈ 70 GB) of its kind, which we make freely available to the
community for further analysis.

Second, we conducted a preliminary analysis of our own
on the collected data using signal processing and machine
learning methods. We unequivocally show that, besides ex-
plicit/evident changes, also implicit/subtle changes in the en-
vironment are indeed the cause of a declining accuracy in
CSI-based activity recognition. In particular, this is revealed
when comparing CSI data recorded during different nights.
The data from each night exhibits significantly different CSI
measurements, even though having been recorded in the same
office without any human activity. The only difference is that
some objects (e.g., chairs, monitors, etc.) were moved during
the day and left at different positions.

Further, we observed that CSI data also varied within
the same night, although there were no changes in the
environment, neither explicit nor implicit. We observed a
correlation with changing environmental conditions, such
as temperature and humidity, and were even able to train
different regression models capable of estimating temperature
and humidity based on CSI data with a surprisingly low error
as detailed later.

Our dataset vs. existing datasets: Table I presents an
overview of the existing freely available datasets similar to
the one accompanying this paper. In particular, such datasets
are collected in study setups/environments where:

• participants only perform a very restricted range of ac-
tivities (e.g., walking, specific gesture, jumping, etc.);

• participants are trained to perform the activities in a
specific manner;

• participants perform activities within a specific area in the
environment (most commonly, only between the receivers
and the emitters);

• only one participant is present at a time in the environ-
ment;

• the used instrumentation is costly (i.e., SDR, mmWave,
or an arrangement of multiple WiFi receivers/emitters).

As a result, such datasets can only be used for the origi-
nally intended purpose and do not extend well to other case
studies nor do they include information about environmental
conditions such as temperature or humidity, which we show
to have an influence on results.

Instead, our dataset, along with the CSI data, contains
detailed environmental information, such as temperature, hu-
midity, CO2, and air pressure. In addition, it is fully annotated
with the activities of all persons (also simultaneously inside the
environment) at every point in time, which – we hope – enables
further research in this area. Having fully annotated CSI data
from real-world settings, together with detailed environmental
information, allows researchers to focus on developing, com-
paring and improving robust CSI-based activity recognition
systems.

Paper Structure: The rest of the paper is organized as follows.
Section II introduces some related concepts and preliminaries.
Section III presents our data collection setup and its associated
processing steps. Finally, Section IV introduces our dataset
and discusses some results substantiating our above assertions,
while Section V concludes the paper.

II. CONCEPTS AND PRELIMINARIES

This section describes some necessary concepts, i.e., the
already mentioned Channel State Information (CSI) and the
Received Signal Strength Indicator (RSSI), and discusses
preliminaries such as the used devices and software.

A. Channel State Information (CSI)
The signal sent on a wireless channel is altered in the envi-

ronment by additive noise, interference, signal attenuation and
multipath propagation. Multipath propagation is experienced
when the transmitted signal arrives at the receiver via different
propagation paths. These propagation paths involve reflections,
diffractions and scattering of the wireless signal, leading to
different delays. Hence, the received signal consists of a
superposition of multiple altered instances of the transmitted
signal, which are called multipath components.

Variations in the environment, e.g. moving persons, moved
objects, etc., change the pattern of superposed signals, and can
hence be detected by the receiver. In the frequency domain, the
signal X(f) is emitted by a WiFi device. Similarly, a receiver
receives a signal Y (f), for which the following holds:

Y (f) = X(f) ·H(f) +N(f), (1)

where H(f) is the channel transfer function, N(f) repre-
sents the noise on the channel and f the frequency. WiFi
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TABLE I
OVERVIEW OF EXISTING FREELY AVAILABLE DATASETS.

Ref. # of # of Defined # of Constrained Dataset # of # of Env.
(Year) Participants Activities Activities Environments Yes/No Size Emitters Receiver Size

[66]
(2019) 10 16

horizontal arm waving, two hand waving,
tossing paper, drawing tick, phone, drawing X
clap hands, high arm waving, drinking water

throwing objects upward, kicking forward
kicking to the side, squatting, sitting down

bowing, walking

3∗ Yes ≈ 100 Mb 1 3
6x8 m

6x10 m
6x8 m

[67]
(2019) 9 6 clapping, walking, waving,

jumping, sitting, falling 1∗ Yes ≈ 550 Mb 1 1 8.6x3.4 m

[68]
(2021) 1 8 empty, lying, sitting, standing,

sitting down, standing up, walking, falling 3∗ Yes ≈ 830 Mb 1 2
4x4.5 m

3.5x4.5 m
4.5x5

[69]
(2022) 3 5-9∗∗

empty room, sitting, walking,
running, jumping, standing, sitting down,

standing up, jumping, moving arms
3∗ Yes ≈ 20 GB 1 1-4∗∗

5x6 m
5x6 m

7.5x3.7 m

Our [70] 6 5
entering the office, walking,

standing, sitting,
leaving the office, empty room

2 No ≈ 70 GB 2∗∗ 1 12x6 m
6x4 m

∗ Participants perform their activities in a specific area of the environment. ∗∗ Different tests in different configurations.

simultaneously transmits data on different frequencies, called
subcarriers. When receiving a WiFi signal, the receiver can
obtain an estimate on H(f). It is given in the form of a vector
of complex values H.

Each element of H defines the CSI estimate of a certain
subcarrier. Hence, H is an estimate how the WiFi signal is
propagated from the transmitter to the receiver. Thus, H also
contains information on, e.g., human activities in the signal
propagation path [4], [7], [57], [61].

B. Received Signal Strength Indicator (RSSI)
The RSSI provides an indication of the power level at which

data frames are received. The rationale is that a higher RSSI
value implies a stronger signal power and, hence, a closer
distance between sender and receiver. In this work, besides
CSI, we use RSSI measurements to implement various filtering
techniques as explained later in detail.

C. Devices used
To collect and store CSI data, we used an experimental

setting consisting of the following devices:
• Two wireless routers (Fritz!Box 7530, $ 1901) were used

to create two different WiFi networks at 2.4 GHz for
transmitting data from a sender (i.e., a Raspberry Pi) to
a receiver (i.e., a PC or laptop).

• Two Raspberry Pi 4 Model B ($ 35, 85 x 56 x 17 mm)
containing a WiFi radio of the BCM43 device family
from Broadcom. They were used to collect CSI data from
the WiFi networks created by the two routers.

• Two Nordic Thingy 52 devices ($ 36, 50 x 55 x 15 mm),
used to collect environmental data such as temperature
(T), humidity (H), air pressure (P), CO2 level, and light
intensity (L) [71].

• A Laptop (Dell Inspiron 7559) handling the CSI data
storage and used for labeling.

• An Android smartphone to record videos of the environ-
ment for context annotation.

1We indicate the estimative cost of the used equipment for information
purposes. This, however, may vary depending on different factors, which are
beyond relevance.

D. CSI extraction software

To extract CSI data from the WiFi radios, we use the
Nexmon firmware patching framework [72], [73], which works
on multiple Broadcom radios – as the one featured on the
Raspberry Pi boards we use – and allows accessing the
CSI data from the host computer. For data preprocessing,
visualization and recording, we use the WiFiEye software
framework [74].

III. DATA COLLECTION

In this section, we describe our data collection setup and
the designed data processing pipeline we employed for this
dataset analysis.

A. Real-world environments

The most significant limitations of commonly used methods
for CSI data collection based on COTS radios are as follows.2

First, data is collected under well-defined constraints. For ex-
ample, exactly one participant has to be in the environment at
a specific timestamp. This participant is instructed to perform
specific activities at specific positions, e.g., in the line of sight
between sender and receiver. Second, the dimensions of the
environment are reduced to, e.g., only a few meters between
sender and receiver.

In contrast to this, we collected our data in two different
real-world offices. The first office, shown in Figure 1 (a),
contains twelve work spaces divided in two blocks, with one
monitor and one desktop PC each.

The size of this office is 12 × 6 × 3 meters, with one
entrance door and three (2 × 1.8 meters) windows. Internal
walls, i.e., those without windows) are made of plasterboard
with a thickness of 12 centimeters, whereas external walls are
of reinforced concrete with a thickness of 55 centimeters.

The second office, shown in Figure 1 (b), presents a size of
6× 4× 2.75 meters, containing six work spaces, one entrance

2Note that using more complex hardware such as software-defined radios
(SDRs) might ease these restrictions; however, it also increases costs con-
siderably and hinders applicability. In this paper, we hence focus on COTS
radios.
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(a) Office 1 (b) Office 2

Fig. 1. Overview of the two real-world offices used for CSI data collection in this paper

door, and two windows of 2.5 × 3.5 meters. Internal and
external walls have the same composition as the previously
described office.

B. Device arrangement

As shown in Figure 1 (a) and (b), we used six different
devices (i.e., two APs, two Raspberry Pi boards, and two
Nordic Thingy devices) to collect CSI and environmental data
(i.e., humidity, temperature, etc.). In addition, to annotate the
recorded data, i.e., with labels corresponding to the activities
of the subjects in the environment, we used an Android
smartphone, which continuously recorded videos during the
experiments. A Dell Inspiron 7559 laptop was used to store
the collected CSI and environmental data.

The APs were placed at the center of the two blocks of work
spaces, 5 meters apart from each other at the height of 140
cm. A LAN cable connects the APs into a mesh network. The
first Nordic Thingy device is placed inside the room near RP2
(i.e., Raspberry Pi 2) and transmits its environmental context
(i.e., temperature, humidity, CO2 level, pressure, and light
intensity) to the latter upon each status variation. The second
Nordic Thingy is placed outside the window, but otherwise
behaves the same as the first one.

The Raspberry RP1, patched with the Nexmon framework,
collects and sends the CSI data to the Dell laptop. RP1 is
approximately placed in the middle of the office.

People in our experiments could stand/walk in between RP1
and AP2, but not between RP1 and AP1. The same applies
for RP2 (i.e., Raspberry Pi 2), however, this latter generates
traffic towards AP1 instead. A similar setup was replicated for
the second office shown in Figure 1 (b).

C. Communication between devices

As sketched in Figure 1 (a) and (b), we used the following
communication technologies between devices:

• WiFi (i.e., 802.11ax) enables the communication between
RP23 and AP1, AP2 and the Dell laptop.

• A LAN is used to connect AP1 to AP2, RP1 to the Dell
laptop.

3Note that RP1 (i.e., which extracts CSI data) behaves as a sniffer without
being connected to any WiFi network.

• Bluetooth Low Energy (BLE) communicates the indoor
and outdoor Nordic Thingy devices with RP2.

WiFi’s utilization, i.e., the amount of traffic sent over
the network, is of central importance when extracting CSI
information. In particular, if the network is not being used (i.e.,
there are no data packets transmitted), then the CSI extractor
(i.e., RP1) will extract CSI data at a frequency of 10 Hz
(i.e., the frequency with which an AP transmits advertising
beacons), potentially reducing the discerning capabilities of
the CSI-based activity recognition. In our setup, to prevent
this from happening, RP2 generates traffic at around 120 Hz
towards AP1. AP1 transmits such data towards AP2 through
LAN and then from AP2 transmits to the Dell laptop again
via WiFi. Finally, RP1 extracts the CSI data from the WiFi
network constituted by the above device arrangement around
AP1 and AP2.

D. Collected data
As mentioned above, we collected the following data based

on the described setup consisting of two real-world offices:
• CSI data, collected by RP1 in the corresponding offices;
• environmental data from within and outside the offices,

collected by the Nordic Thingy devices;
• annotation data, manually extracted from the recorded

videos of the environment during the experiments.
The CSI and environment data is synchronized based
on timestamps (at the Dell laptop and RP1). However, to
synchronize this data with the video recording, one participant
is instructed to shake the indoor Nordic Thingy device clearly
in front of the video recording smartphone at the beginning of
the data collection. This causees a glitch in the environmental
data with can be associated with a timestamp and, hence,
sincronized to the video recording. The collected (i.e., CSI
and environmental) data and the generated annotations are
stored in .csv files. In the following, this section discusses
each single type of collected data.

CSI data: Once that CSI data is extracted by RP1 throughout
the Nexmon patch, it is immediately transmitted to the Dell
laptop creating a .csv file for each monitored AP. Table II
presents the format with which this data is stored.

In particular, each captured CSI sample presents the
reception timestamp of the corresponding frame, CSI
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TABLE II
CSI DATA FORMAT

CSI Amplitude CSI Phase
Timestamp S0 ... S63 S0 ... S63 RSSI

15:38:45.550 0.027 ... 1 1388.14 ... 7563.08 -48
15:38:45.600 0.027 ... 1 1388.14 ... 7563.08 -46
15:38:45.650 0.027 ... 1 1388.14 ... 7461.06 -50

... ... ... ... ... ... ... ...
15:38:45.700 0.027 ... 1 1388.14 ... 7563.16 -55

amplitude and phase for each of the 64 subcarriers together
with the corresponding RSSI value.

Environmental data: Table III presents an overview of
the data collected by the indoor and outdoor Nordic Thingy
devices. In particular, each of such devices collects the temper-
ature (T), humidity (H), CO2 level (C), air pressure (P), and
light intensity or luminosity (L). A new sample is stored every
time the environmental indoor or outdoor conditions vary.

TABLE III
ENVIRONMENTAL DATA FORMAT

Indoor Outdoor
Timestamp T H C P L T H C P L

(◦C) (%) (ppm) (hPa) (lum) (◦C) (%) (ppm) (hPa) (lum)

15:38:45.284 21.97 43 400 1005.29 920 7.23 91 340 1004.87 672
15:38:45.425 21.82 43 400 1005.29 920 7.23 91 340 1004.87 672
15:40:12.680 22.32 40 412 1005.29 920 7.23 91 340 1004.87 672

... ... ... ... ... ... ... ... ... ... ...
15:45:35.701 22.66 36 452 1005.29 1022 7.35 92 341 1004.90 624

Annotation data: Table IV presents an overview of the
annotation data. In particular, observing the video recording, a
new row is added to the annotations file at each context change
in the environment. A context change identifies a change of
the participant’s activity, such as the transition from sitting
to standing (and vice versa). Columns P1 to Pn identify the
participant’s ID and contain the activity they start to perform
at the particular timestamp. The observed activities are: 1)
entering the office, 2) walking, 3) standing, 4) sitting, 5)
leaving the office, and 6) out of the office. Column occupancy
detection (OD) equals 0 if the office is empty and 1, if
someone is in the environment. Finally, the column occupancy
counting (OC) is an integer value representing the number
occupants in the environment.

TABLE IV
ANNOTATION DATA FORMAT

Timestamp P1 P2 P3 .. Pn OD OC
15:38:45.000 Sitting Entering Sitting ... Walking 1 4
15:38:56.500 Sitting Sitting Sitting ... Leaving 1 4
15:38:58.000 Sitting Standing Sitting ... Out 1 3

... ... ... ... ... ... ... ...
17:38:50.050 Out Out Out ... Out 0 0

Combinations and variations of such annotations are also
possible, but not further considered in this paper. For exam-
ple, it is possible to identify time instants during which all
participants are sitting or standing, or to include information
about the identity of participants currently present in the
environment, etc.

E. Data processing

To mitigate the issue related to the sampling frequency of
the CSI data, to adapt the data to the input format required by
CSI-based recognition models, and to evaluate such models,
we performed the processing steps shown in Figure 2. The
designed processing flow is composed of three blocks:

• Dataset generation: This block generates the dataset that
accompanies this paper. Note that this processing step
does not clean, modify, or create any synthetic data. All
data is obtained by measurements.

• Preprocessing: This block removes noise and extract
features from the CSI data.

• CSI-based recognition models evaluation: This block is
concerned with dimensionality reduction, training and
testing of different pattern recognition models as well as
with evaluating their performance.

In the following, this section discusses each single block and
sub-block shown in Figure 2.

Data under-sampling: Starting from the collected data, for-
matted as shown in Tables II and III, the first processing step
concerns under-sampling the data from the existing dynamic
sampling frequency to a constant sampling frequency. In
particular, we under-sampled AP1 data to 100 Hz and AP2
data to 20 Hz to consider different sampling frequencies in the
dataset and later be able to compare results based on different
such frequencies.

This step is performed by segmenting the AP1/AP2 raw
data for each subcarrier in time windows of one second and
extracting 100/20 equidistant samples from the segments. This
process homogenizes the sampling frequency, since this raw
data present a dynamic sampling frequency greater than 100Hz
and 20 Hz, respectively, for traffic generated by AP1 and AP2.

The same approach is performed on the environmental
data, thus, resampling such data at 20 Hz. Greater sampling
frequencies were not used, since the maximal sampling
frequency observed on the environment data was 23 Hz.
Again, note that no synthetic data was generated, but only
measured data is used.

Data synchronization: As already mentioned, the CSI and
the environmental data are synchronized based on timestamps
at the Dell laptop and at RP1 correspondingly. Video data
required for labeling needs to be manually synchronized
instead. To this end, we need to identify the timestamp of the
first video frame in the environmental data and, thereby, also
in the CSI data. This is achieved again by instructing one
participant to shake the indoor Nordic Thingy device in front
of the camera before experiments start. This then produces a
clearly distinguishable glitch in the environmental data and,
hence, the corresponding video frame can be anchored to the
a timestamp, which is then used as a starting point for the
next processing step.

Video-based data annotation: The data annotation procedure
uses Python Video Annotator [75] on the video recorded at
ten frames per second. At each variation of the environment
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Fig. 2. CSI data processing workflow

status, the annotator inserts a new sample at the annotation
file (as described in Table IV). Further annotations (e.g.,
position of the users in the room and their activities/status)
were added manually in a following step and based on
carefully observing the video recording.

Filtering: The propagation pattern of radio signals is af-
fected by the environmental changes (e.g., occupants moving
or objects moving), HW noise, and multi-path propagation.
Moreover, the amplitude values are affected by the Automatic
Gain Control (AGC) function that adjust the amplitude of
the received signal, distorting CSI data. To prevent this from
happening, we calibrate the measured CSI amplitudes by
removing AGC, which can be done using RSSI measurements.
This is because RSSI is obtained before AGC takes effect,
while CSI is obtained thereafter [4], [76]. The calibration
follows the equation:

CSIi = CSIi ×

√
10

RSSI
10∑

CSI2i
, (2)

introduced in [5]. With regard to Table II, RSSI identifies the
measured RSSI values at each timestamp, and CSIi identifies
the amplitude of the i − th subcarrier received at the same
timestamp.

Once that AGC is compensated, the two CSI datasets –
obtained from AP1 and AP2 respectively – are merged by
reducing the AP1’s sampling frequency from 100 Hz to 20
Hz and removing the phase information. This results in a
(merged) dataset of N rows and 129 columns (i.e., 64/64 CSI
amplitude streams from AP1/AP2 and the timestamp stream).
Subsequently, we removed all pilot subcarriers (i.e., 0, 1, 2, 3,
32, 61, and 63), which generally present a standard deviation
equal to 0, i.e., which contain no usable CSI information. The
remaining amplitude streams are normalized at each timestamp
as described next:

CSIi =
CSIi −max(CSI)

max(CSI)
, (3)

where CSIi identifies the amplitude of the i − th subcarrier
(i.e., the remaining subcarriers after excluding 0, 1, 2, 3, 32,
61, and 63) and max(CSI) denotes the maximum amplitude
value received among all subcarriers at that a given timestamp.

Finally, we apply a Hampel filter [52], [65], [77] using a
2-second time window, since this is the shortest time interval,

in which a participant’s context change can be reliably
detected. This step thus returns a dataset of N rows and 115
columns (57/57 CSI amplitude streams from AP1/AP2 and
the timestamp stream).

Feature extraction: Since raw data is not always inter-
pretable [78], in this processing step, the CSI amplitude
data of each subcarrier is segmented into 1-second time
windows and subsequently used as input to the feature ex-
traction module (i.e., Time Series Feature Extraction Library
(TSFEL) library [79]). In particular, the feature extraction
module extracts a total of 54 features from each 1-second time
window/segment (e.g., interquartile range, kurtosis, min, max,
mean, mean absolute deviation, median, median absolute de-
viation, etc., which correspond to features in the temporal and
statistical domain). The complete list of features is available
in [80].

We did not consider frequency domain features in order to
reduce the dimension of the data to treat in the subsequent
processing steps. Another reason for excluding features from
the frequency domain is that they require a considerable time
and computational effort to be extracted compared to features
from the temporal and statistical domains.

This step returns a dataset of N/20 rows (i.e., N initial
rows / 20 Hz) and 6156 columns (114 amplitude streams x 54
features). Moreover, the number of columns is further reduced
by eliminating all features presenting a standard deviation
of 0 (i.e., eliminating 1680 features, thus maintaining 4476
features). Note that, since we do not have any overlap
between consecutive time windows/segments, there is no
interdependence between the features extracted from them.

Train/test split: This process is usually performed using the
following two techniques, a) k-fold and b) leave-out [81], [82].
The former divides the dataset into “k” folds and iteratively
uses “k-1” folds to train and “one” fold to test the model.
Each fold will randomly contain samples from all the classes,
preserving the original dataset’s class distribution.

The latter splits the dataset based on specific criteria. For
example, iteratively use data from specific days, subjects,
or hours to train the model and the data from other days,
subjects, or hours to test it. For both techniques, the accuracy
is represented by the average accuracy of all interactions.
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Feature dimensionality reduction: Due to the big dimension
of the training and testing datasets (more than 250 thousand
samples or rows) and 4476 features or columns), it is of
central importance to reduce their size. We use the well-
known Principal Component Analysis (PCA) algorithm to
reduce the size of the input dataset by keeping a sufficient
number of principal components such that the variance of the
initial dataset is preserved by at least 95 % [83].

Model training: We use five classification CML models (i.e.,
k-Nearest-Neighbor (k-NN), Weighted k-Nearest-Neighbor
(Wk-NN), Support Vector Machine (SVM), Random Forest
(RF), and Decision Tree (DT)), one DL model (i.e.,
Convolution Neural Networks (CNN)), and five regression
models (i.e., Gradient boosting, RF, Linear regressor,
Ridge regressor, and Bayesian regressor). To increase the
performance of such models, we made use of the grid
search hyper tuning in the training process [84], [85]. The
“best” resulting model’s performance was measured using
the metrics of Precision, Recall, Specificity, F1-Score, and
Accuracy for classification models, while Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) were used
for regression models [86].

In conclusion, for each observed environment (i.e., each
of the real-world offices), we collected and processed the
following:

a) two CSI datasets (AP1 sampled at 100Hz and AP2
sampled at 20 Hz, formatted as shown in Table II),

b) the indoor and outdoor environmental data (sampled at
20 Hz and formatted as shown in Table III), and

c) the annotation data (sampled at 20 Hz and formatted as
shown in Table IV).

As mentioned before, we make all this data freely available
for further analysis, which can be downloaded from [70].

IV. DATASET AND ANALYSIS

This section presents an overview of the dataset collected
in the first office (shown in Figure 1 (a)) using the setup and
the processing steps described before. This dataset provides,
for example, the possibility to perform, in increasing order
of difficulty, the following recognition tasks: a) occupancy
detection (i.e., whether the environment is empty or not), b)
occupancy estimation (i.e., the number of persons/occupants
in the environment), c) identity recognition (i.e., who is in
the environment at a given time), and d) occupants’ activity
recognition (i.e., walking, sitting, running, etc.). Clearly, the
complexity of recognizing such tasks increases when per-
formed over data representing more occupants simultaneously.
We will discuss the limitations of CSI-based recognition
methodologies, concentrating on studying the environment’s
occupancy detection and on how implicit/subtle changes affect
the models’ accuracy.

A. Dataset characteristics

Fig. 3. The CSI patterns for the same empty environment are different
in the different nights.

The data collection started on January 04, 2022, at
15:08:404, and concluded on January 07, 2022, at 17:38:40,
for a total of 74 hours (i.e., 268117 seconds) or 32174040×
129 samples and a final size of around 70 GB.

The sampling frequencies of AP1 and AP2 were respec-
tively in the range 112 Hz to 375 Hz and 20 Hz to 35 Hz.
Such data represents the input raw data shown in Figure 2. At
the end of the dataset generation step, four different .csv files
are generated: 1) CSI data of AP1 sampled at 100 Hz, 2) CSI
data of AP2 sampled at 20 Hz, 3) environment data sampled
at 20 Hz, and 4) annotation data sampled at 20 Hz, with the
formats shown in Tables II, III and IV. Again, all this data is
made available under [70].

Six different persons (two females and four males) par-
ticipated in our experiments and were informed of the data
monitoring system and instructed to perform their daily routine
without constraints. Table V provides an overview of the distri-
bution of activities (i.e., one-second segments) per participant
in our experiments.

Finally, Table VI shows the occupancy distribution in
this environment/office. It becomes evident that our dataset
presents an imbalance between the different occupancy states,
increasing the difficulty of designing an accurate CSI-based
activity recognition with this goal.

B. Dataset evaluation

Starting from the dataset obtained after the dataset genera-
tion process, we performed the filtering and feature extraction

4Timestamp of the first video frame, with which environmental and CSI
data was synchronize as explained above.

TABLE V
ACTIVITY DISTRIBUTION PER PARTICIPANT

PID Sitting Standing Walking Entering Leaving Out
P1 39111 1947 899 26 28 226106
P2 8664 304 197 4 6 258942
P3 79738 2280 1022 56 58 184963
P4 5163 33 28 2 2 262889
P5 35310 2788 618 16 16 229369
P6 0 20 231 2 2 267862

TABLE VI
ONE-SECOND SEGMENTS OCCUPANCY DISTRIBUTION

Occupancy Empty = 0 Occcupied = 1
Occupants Zero One Two Three Four

Total 169492 49309 28474 16622 4220
268117 169492 (62.94%) 98625 (37.06%)
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TABLE VII
CSI-BASED OCCUPANCY DETECTION (1)-(4) AND NIGHT ID RECOGNITION (5)

Test (1) Test (2) Test (3) Test (4) Test (5)
k-fold on all the dataset k-fold on all days leave-out inter days leave-out inter three-hours slots k-fold intra nights

Model Pre Rec Spe F1 Acc Pre Rec Spe F1 Acc Pre Rec Spe F1 Acc Pre Rec Spe F1 Acc Pre Rec Spe F1 Acc
SVM 98.8 99.2 99.3 99.0 99.3 98.8 98.3 98.3 98.6 98.7 78.5 54.4 54.4 64.3 69.2 40.9 50.0 52.3 45.0 48.8 100 100 100 100 100
k-NN 99.0 97.0 99.4 98.0 98.5 97.9 98.0 98.0 98.0 98.2 76.4 62.3 62.3 68.6 73.6 54.6 49.6 56.0 52.0 49.8 100 100 100 100 100

Wk-NN 99.0 97.1 99.4 98.0 98.5 98.0 98.0 98.0 98.0 98.2 76.3 62.3 62.3 68.6 73.6 66.9 49.5 55.9 56.9 49.8 100 100 100 100 100
RF 98.1 97.7 98.9 97.9 98.4 96.8 95.0 95.0 95.9 96.4 66.7 53.5 53.5 59.4 68.8 50.6 63.6 38.7 56.4 54.0 100 100 100 100 100
DT 90.4 89.1 94.4 89.7 92.4 86.9 86.1 86.1 86.5 88.1 67.0 57.0 57.0 61.6 68.9 67.6 54.0 48.5 60.1 50.8 99.7 99.7 99.8 99.7 99.7

CNN 99.3 97.4 99.4 98.3 98.6 99.2 98.8 98.8 99.0 98.9 77.2 68.5 54.1 72.6 73.5 55.5 67.6 41.2 61.0 58.2 100 100 100 100 100
Precision (Per), Recall (Rec), Specificity (Spe), F1-Score (F1), Accuracy (Acc)

steps described in Section III. As a result, the returned dataset
is represented by 268117 one-second segments, each repre-
sented by 4476 temporal and statistical features. Such a dataset
is used to evaluate different CSI-based occupancy recognition
(i.e., is the environment empty or is there at least one person
in it?) models differentiating on the train/test splitting method
(i.e., k-fold or leave-out). The dimensionality reduction and
the training step are, however, the same for each method.

Next, we discuss the results obtained by training and testing
the different models according to the workflow presented
in Figure 2. We consider 9 different contexts/scenarios, for
which results are shown in Tables VII, VIII, and IX.

Tests 1-4: The results of tests (1) and (2) show that CML
and DL models, trained respectively over the whole dataset
using the k-fold technique and the data obtained from the days
of monitoring, achieve high F1-Score (99 %) on occupancy
recognition. This result is in accordance with the existing
works from the literature and suggests that models tested on
data that has been collected at time instants relatively close
to the ones used for training independently from their type,
achieve high generalization capabilities. This is because no
variations occur in the environment or, in other words, the data
used for training already contains samples of all variations that
are to be detected by the system.

However, emulating a real-world environment, test (3) (i.e.,
iteratively use 1 day to train and 2 days to test) and test
(4) (i.e., iteratively use one 3-hour slot to train and the other
slots to test) suggest that CML and DL models cannot easily
generalize over changes in the environment from one day to
another or even in the same day.

Such accuracy reduction is related to the mentioned
explicit/evident and implicit/subtle changes in the
environment. As discussed previously, to prevent the
impact of explicit changes, the existing CSI-based activity
recognition approaches exclusively work in specific areas of
an environment, where users perform constrained activities,
typically between the WiFi sender and receiver, and following
well-defined motion patterns. This way, it can be guaranteed
that samples of all CSI variations to be expected are present
in the training data. However, as our results demonstrate,
implicit/subtle changes – like small objects being moved,
etc. – already suffice to introduce variations that confuse the
system and cause a bad performance.

Tests 5-9: The results of tests (5)-(9) emphasize that im-
plicit/subtle changes represent a consistent source of “noise”
in real-world environments such as those described by this

dataset. In particular, in tests (5)-(9), we concentrate on CSI
data capture over night (i.e., 8:00 p.m. - 7:00 a.m.) where the
environment is empty, so no explicit changes take place and
the multipath propagation remains clearly stable during the
same night.

As shown in test (5), we can precisely recognize the night ID
(F1-Score 100 %), meaning that the CSI data perceived during
the three different nights is very dissimilar from each other.
This dissimilarity is mainly related to the implicit changes in
the environment. Two possible types of implicit changes can
induce such accuracy, a) objects in the environment left at a
different position from the previous workday, and b) variations
of the environmental conditions (i.e., humidity, temperature,
etc.). The effect of implicit changes of type (a), as shown also
in Figure 3, represents the main reason why the CSI-based
models manage to distinguish between the different nights
with such a high accuracy.

On the other hand, to the best of our knowledge, the effect
of implicit changes of type (b) has not been significantly
investigated. Test (6) is one first attempt towards this and
presents the average recognition capabilities of the tested
models by using data from every single night to recognize
the specific hour (i.e., 11 possible classes, 8:00 p.m, 9:00
p.m, ...., 6:00 a.m). As it can be observed, the models achieve
good results (F1-Score 86.8 %) in this 11-class problem. This
means that within nights, where radio signal patterns are not
affected by changes in the position of object, such relatively
good accuracy can also be related to changes in environmental
parameters such as temperature and humidity.

Test (7) presents the results obtained iteratively using two
nights to train the model and one night to test it. These results
show a complete inability (F1-Score 9.7 %) of the models to
disambiguate among the different hours on nights not seen
in the training test. This suggests that the impact of implicit
changes of type (a) is much more consistent than that of type
(b), which also matches our intuition in this regard.

TABLE VIII
CSI-BASED HOUR ID RECOGNITION

Test (6): k-fold intra nights Test (7): leave-out inter nights
Model Pre Rec Spe F1 Acc Pre Rec Spe F1 Acc
SVM 86.9 86.8 98.7 86.8 86.8 7.7 9.1 90.9 8.4 9.1
k-NN 79.2 78.6 97.9 78.9 78.6 10.7 8.9 90.9 9.7 8.9

Wk-NN 79.3 78.8 97.9 79.0 78.8 9.9 9.3 90.9 9.6 9.3
RF 80.7 80.5 98.1 80.6 80.5 8.9 10.6 91.1 9.7 10.6
DT 53.0 52.7 95.3 52.9 52.8 9.3 9.7 91.0 9.5 9.7

CNN 86.4 86.5 98.1 86.4 86.5 12.3 10.3 91.0 7.6 10.3

Finally, in tests (8) and (9), we present the capabilities of
the compared models to estimate temperature and humidity.
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The temperature ranged from 18.38 to 31.60 ◦C during the
three nights, and humidity ranged from 20 % to 48 %. In
test (8), using each night separately, we achieved an average
RMSE of 0.4 ◦C and 1.75 % in estimating temperature and
humidity, respectively. Instead, in test (9), using iteratively two
nights to train and one night to test the models, we achieved
an average RMSE of 1.08 ◦C and 5.2 %. Test (8) shows
that our CSI-based regression algorithm presents a low-error
correlation with temperature and humidity in the absence of
explicit and implicit changes of type (a). In test (9), the error
triplicates, where instead the environment is affected foremost
by implicit changes of type (a). This is consistent with the
results of tests (5), (6), and (7), which we discussed before.
Note, however, that the results do not allow any conclusions
about whether the low-error correlation (w.r.t., test (8)) is
related to implicit changes of type (b) such as temperature,
humidity, or other undetermined changes such as could be the
device overheating, in particular, at the Raspberry Pi extracting
CSI data.

TABLE IX
CSI-BASED TEMPERATURE AND HUMIDITY ESTIMATION

Test (8): k-fold intra nights Test (9): leave-out inter nights
Temperature Humidity Temperature Humidity

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Gradient 0.63 0.40 1.83 1.43 1.14 1.01 5.20 5.95

RF 0.60 0.44 1.81 1.40 1.08 0.85 5.86 5.52
Linear 0.40 0.30 1.75 1.35 1.17 0.95 6.07 5.77

Ridge, Bayesian and Linear regression algorithms present equal results.

V. CONCLUSIONS AND TAKEAWAYS

CSI-based activity recognition systems are becoming pop-
ular motivated by their low-cost and ubiquitousness, among
others. In this paper, however, we noted difficulties when
extending such systems to real-world settings, i.e., considering
multiple participants at the same time, unrestricted activities,
larger distances between WiFi transmitter and receiver, etc.

We hence investigated possible causes by collecting a large
amount of CSI data over several days, including environmental
data (such as temperature, humidity, etc.). After a first analysis
of the collected data, we remark the following challenges of
CSI-based activity recognition:

i) typical classification models (based on machine learning)
lack generalization, when trained and tested on data from
different time windows (i.e., train data collected on one
day, test data on another day),

ii) implicit or subtle changes in a real-world environment
(e.g., objects such as chairs being moved, new objects
such as coffee mugs being introduced, etc.) considerably
impact how WiFi signals propagate and, hence, alter CSI
data,

iii) the impact of temperature and humidity could not be
totally excluded as a possible cause of variation in the
distribution pattern of WiFi signals/CSI data, and

iv) the existence of other possible implicit changes (i.e.,
overheating at WiFi transmitter or receiver, etc.) should
be further investigated.

To the best of our knowledge, the presented is first, fully
annotated dataset (≈ 70 GB) of its kind, which we now make

freely available to the entire community. It contains CSI and
environmental data, annotated with the activities performed
by six different participants during four days of unrestricted
office work, i.e., participants performed their activities without
any constraints/instructions as it is often the case with other
datasets from the literature.

We hope that the provided dataset motivates further research
work in this area and helps identify potential solutions to
the above challenges. Moreover, our dataset provides the
capabilities to study the following CSI-based scenarios in
increasing order of difficulty in unconstrained environments
(contemplating a single person as well as multiple persons
in the environment): i) occupancy detection, ii) occupancy
estimation (i.e., counting persons), iii) identity recognition
(i.e., who is a particular environment), and iv) human activity
recognition (i.e., what activities are being performed by indi-
viduals). Finally, our dataset can be used as a starting point
for CSI-based temperature and humidity estimation in indoor
environments, which again requires further attention and work.
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