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Abstract

In recent years, the analysis of movement patterns has increasingly focused on the individuality of movements. After long

speculations about weak individuality, strong individuality is now accepted, and the first situation–dependent fine structures

within it are already identified. Methodologically, however, only signals of same movements have been compared so far. The

goal of this work is to detect cross-movement commonalities of individual walking, running, and handwriting patterns using

data augmentation. 17 healthy adults (35.8 ± 11.1 years, 8 females, 9 males) each performed 627.9 ± 129.0 walking strides,

962.9 ± 182.0 running strides, and 59.25 ± 1.8 handwritings. Using the conditional CycleGAN, conditioned on the participant’s

class, a pairwise transformation between the vertical ground reaction force during walking and running and the vertical pen

pressure during handwriting was learned in the first step. In the second step, the original data of the respective movements

were used to artificially generate the other movement data. In the third step, it was tested whether the artificially generated

data could be correctly assigned to a person via classification using a support vector machine trained with original data of

the movement. The classification F1–score ranged from 46.8% for handwriting data generated from walking data to 98.9%

for walking data generated from running data. Thus, cross–movement individual patterns could be identified. Therefore, the

methodology presented in this study may help to enable cross–movement analysis and the artificial generation of larger amounts

of data.
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Abstract– In recent years, the analysis of movement 
patterns has increasingly focused on the individuality of 
movements. After long speculations about weak 
individuality, strong individuality is now accepted, and the 
first situation–dependent fine structures within it are 
already identified. Methodologically, however, only signals 
of same movements have been compared so far. The goal 
of this work is to detect cross-movement commonalities of 
individual walking, running, and handwriting patterns using 
data augmentation. 17 healthy adults (35.8 ± 11.1 years, 8 
females, 9 males) each performed 627.9 ± 129.0 walking 
strides, 962.9 ± 182.0 running strides, and 59.25 ± 1.8 
handwritings. Using the conditional CycleGAN, conditioned 
on the participant’s class, a pairwise transformation 
between the vertical ground reaction force during walking 
and running and the vertical pen pressure during 
handwriting was learned in the first step. In the second 
step, the original data of the respective movements were 
used to artificially generate the other movement data. In the 
third step, it was tested whether the artificially generated 
data could be correctly assigned to a person via 
classification using a support vector machine trained with 
original data of the movement. The classification F1–score 
ranged from 46.8% for handwriting data generated from 
walking data to 98.9% for walking data generated from 
running data. Thus, cross–movement individual patterns 
could be identified. Therefore, the methodology presented 
in this study may help to enable cross–movement analysis 
and the artificial generation of larger amounts of data. 
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I. INTRODUCTION 

After weak individuality had been used only sporadically for 

quite some time and meanwhile acquired the status of a 

buzzword, especially in connection with learning, training and 

therapy, the investigation of strong individuality had been 

increasingly been asked for [1], [2]. Often a mixture of 

colloquial (weak) and science–oriented (strong) understanding 

can be observed, which is even more confusingly equated with 

“personalized” [3]–[6]. Colloquially, weak individuality often 

serves as an excuse for lack of statistically significant group 

differences [7]–[9] or for not finding commonalities across 

individuals [9]–[12]. In contrast, science on individuality is 

guided by the much stronger criteria of forensics, which must 

withstand legal proof for sentencing purposes. The two 

essential criteria are uniqueness and persistence [13], [14], for 

the proof of which, first, a larger amount of data is necessary 

and, second, a different statistical method than the average 

oriented in social sciences is required. Both conditions explain 

why it is only with the more recent development of appropriate 

methods and techniques that the study of the strong 

individuality of selected forms of movement has increased 

almost inflationary. Originating from the visual perception of 

walking individuals [15]–[17], followed by biomechanical 

analyses of gait movements [18]–[20] and sporadically single 

sports movements [21], [22] meanwhile analyses of a wide 

variety of movements have become increasingly popular. 

Besides walking [20], [23], [24], individuality of movements 

has also been shown in the field of sports in sprinting [25], 

running [26]–[29], javelin [21] and discus throwing [22], and 

horseback riding [30] and in the field of music for playing the 

flute [31]. Similar features could be shown for team behavior in 
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volleyball [32], [33], soccer [34], [35], or basketball [36], [37]. 

Typical parameters investigated are biomechanical data from 

video recordings [38], force plates [39]–[41], pressure insoles 

[42], [43], EMG [44], [45], and brain signals [46], [47]. Besides 

these, wearable sensors are becoming increasingly popular [48]. 

Situated “perturbations” such as emotions [49], fatigue [50], or 

time alone [21], [39]–[41] were not able to move the patterns 

out of the strong individual space. In consequence, robust 

evidence for an important role of individuality is provided in 

short–term adaptive behavior. All studies listed so far have in 

common that they answer questions that could be carried out 

based on the comparison of a single movement technique. From 

this, the problem of individuality in longer–term learning, like 

in training or therapy, must be distinguished, especially with 

respect to the criterion of permanence. Repeating of learning of 

the same movement by the same person never encounters 

comparable conditions again due to cognitive and body 

memory [51]. To solve this problem, finding commonalities of 

the learning of different movements seems an appropriate 

approach, but requires the identification of movement 

independent individuality. In a first proposal, evidence for 

individual characteristics across three throwing techniques of 

the decathlon (final throwing phase of shot put, discus, javelin) 

with similar kinematic structure was provided [51]. The aim of 

this study is to identify individual commonalities of movement 
forms with different kinematic structure.  

The problem with this is that the classification models cannot 

transfer between domains and thus only work on data from one 

domain. Consequently, it is not straightforward to train a 

classification model with walking data and test it on running 

data to identify any common underlying structures. However, 

new methods from the field of deep learning provide potential 

to address this problem. Approaches from image generation 

offer solutions for analogue problems. In image–to–image 

translation or style transfer, it is possible to learn a relationship 

between images from two domains A (e.g., horses) and domain 

B (e.g., zebras), so that realistic images of domain B can then 

be generated from images of domain A. This has been done 

without losing the image content. Images of horses can become 

pictures of zebras, or images of a landscape can become 

pictures of the same landscapes as it might look in summer or 

in winter.  

In the area of data generation, the Generative Adversarial 

Networks (GANs) [52], [53] have proven to be extremely 

successful in generating new, previously unseen data that is 

somewhat similar to a given training data set. In order to solve 

“generative modeling” problems, the goal of a GAN is to learn 

a probability distribution of the data to be generated. Based on 

this probability distribution, the GAN then generates new data 

from this probability distribution. However, a major challenge 

with GANs is that they require a very large database of paired 

data to solve image-to-image translation [54]. This makes the 

GANs difficult to apply in the context of cross–movement 

studies for many problems. First, it is often not possible to 

generate the necessary large data sets, and second, due to the 

continuous change of movement patterns [55], finding 

matching pairs of movements between two movements can be 

problematic.  

A further development of the GAN, that circumvents the 

pairwise data problem respectively offers a possible solution 

and can be successfully applied on relatively small data sets, is 

the cycle–consistent GAN (CycleGAN) [54]. Here, images 

from domain A can be translated into domain B, but the basic 

content from domain A is preserved. A well–known example 

that makes use of this method is the FaceApp (FaceApp 

Technology Limited, Cyprus). Given images of faces, the app 

allows for a transformation that makes someone’s face laugh, 

look older, look younger, or appear in the style of the opposite 

sex.  

While the CycleGANs work quite well on images, it has not 

been applied to movement measurements. Therefore, in this 

work, we will use the CycleGAN to identify common 

individual patterns across different movements. Specifically, 

we aim to find individual commonalities underlying walking, 

running, and handwriting patterns of the same person.  

With the CycleGAN, we generate artificial movement data 

of movement B from the original data of a movement A. 

Specifically, we generate the other two movements from the 

movements walking, running, and handwriting (i.e., walking to 

running, walking to handwriting, running to walking, running 

to handwriting, handwriting to walking, and handwriting to 

running). The movements were chosen from the point of view 

that with walking and running we have two related movements 

and with handwriting one very different from them. Based on 

former studies on individuality [20], [22], [50], [55], [56], [30], 
[31], [37], [39]–[41], [43], [49], we assume that individuals can 

be distinguished by their walking, running, and handwriting 

patterns. From this, we derive the following research questions:  

Can CycleGANs artificially generate pairwise data between 

walking, running, and handwriting movements, and can this 

artificial data be assigned to the correct individuals? 

II. MATERIAL AND METHODS 

A. Participants and Ethics Statement 

The study participants were 17 athletically active, healthy 

adults (8 females, 9 males; 1 left–handed, 16 right–handed) who 

regularly handwrite and run for health reasons (the group 

characteristics are shown in Table 1). Before participating in the 

study, the participants signed informed consent forms. The 

study was conducted according to the guidelines of the 

Declaration of Helsinki and approved by the Ethics Committee 

of the Johannes Gutenberg–University Mainz (2022/05; 

5/23/2022). Each participant visited the biomechanics 

laboratory once, where all measurements took place. 

 
TABLE 1 

Participant Characteristics 

 M SD 

Age (years) 35.8 11.1 

Height (cm) 172.1 6.2 

Body mass (kg) 68.0 9.3 

Preferred walking speed (km/h) 4.2 0.5 

Preferred running speed (km/h) 8.4 1.4 

Data are presented as mean (M) and standard deviation (SD), 

preferred walking and running speed was determined while 

walking/running on the treadmill. 
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B. Experimental Protocol  

At the beginning of the study, the preferred walking speed 

(PWS) and preferred running speed (PRS) on the treadmill were 

determined for each participant [57]. The PWS is a speed that 

the participants prefer in their leisure time, for example when 

going for a walk, and the PRS a speed at which they “feel 

comfortable” and “can keep going for a very long time”. At the 

same time, the determination of PWS and PRS also served as a 

habituation to the treadmill. This was followed by 

familiarization with writing on the digitizing tablet with a 

pressure–sensitive pen, with everyone writing the sentence that 

was also written in the data collection (see below) five times. 

 

 
Fig. 1.  Experimental sequence with chronological sequence of 

the three walking, three running and six handwriting conditions. 

The walking and running conditions were always alternated 

with handwriting. In addition, walking and running were 

always alternated for stress control reasons. The starting 

condition (walking or running) was randomized between 

participants. 

 

As presented in Figure 1, the participants performed 6 sets of 

four minutes running or walking. Each was followed by a four–

minute break during which they performed 10 handwriting 

trials. To achieve greater variation within participants (for more 

robust training of the Deep Learning models, we increased the 

variance), we varied the speed in each of the three walks and 

runs slightly from slow 85% PWS/PRS, to normal: 100% 

PWS/PRS, and fast 115% PWS/PRS. To avoid sequence 

effects, we randomly shuffled the order of the walking and 

running conditions across all participants, with the only 

restriction being that walking and running must always 

alternate due to load control. Between each walk and run, the 

phrase “Wellen folgen den Bewegungen” [English: “waves 

follow the movements”] was handwritten 10 times. The 

sentence was chosen because it was as neutral and as content–

less as possible in terms of meaning. Again, to provoke greater 

variation in the data, a new instruction was given for each 

handwriting set, which was implemented at the discretion of the 

participants. The instructions included writing “normal” or 

“bigger”, “smaller”, “faster”, “slower”, and “more beautiful” as 

usual. Again, we randomized the order of each instruction. 

C. Data Acquisition 

The movements investigated in this study are walking, 

running, and handwriting. Walking and running were 

performed on a treadmill (cos12148, h/p/cosmos, Leipzig, 

Germany) and recorded with pressure soles (pedar, novel, 

Munich, Germany) at a frequency of 100 Hz. The handwriting 

was performed using a pressure sensitive pen (Wacom Pro Pen 

3D, Wacom, Düsseldorf, Germany) with 4096 pressure levels 

on a digitizing tablet on which a paper was adjusted (Wacom 

Intuos Pro Paper Edition L, Wacom, Düsseldorf, Germany) 

with a recording frequency of 200 Hz and recorded with the 

software CSWin (CSWin 2016, MedCom Verlag, Munich, 

Germany).  

D. Data Processing 

For the locomotion tasks, the vertical ground reaction force 

(GRF) was calculated from the pressure data using Pedar 

Mobile Expert software (version 8.2). The stance phase from 

heel strike to toe–off of the left and right foot was determined 

using a vertical GRF threshold of 50N. Each ground contact 

with one foot was time normalized to 128 values. Burdack et al. 

[58] showed that the exact vector length plays a minor role as 

long as the curve shape is preserved. In addition, the data were 

normalized by body weight and scaled to the range [0, 1] [59]–

[61]. After scaling, the step pairs from the left and right ground 

contact were combined into one vector of 256 values (128 data 

points left foot + 128 data points right foot). Each vector begins 

with a left ground contact and ends with the corresponding right 

one. If the data of a ground contact was incorrect during 

recording, this and the corresponding ground contact of the 

other foot were deleted from the recording. 

For handwriting, only the vertical pen pressure data where 

the pressure on the pen was greater than 0 was considered. 

Furthermore, we considered only the first letter W for the 

handwriting analysis. If the W was not written in one piece, the 

test was discarded. In the case that the e was written from the 

W without settling, the point with the least pressure between the 

W and the e determined the end of the W. In addition, the 

handwriting data were filtered with a 1st–order Savitzky–Golay 
filter with a window size of 13 [62], which smoothes on the 

least squares method while maintaining the shape and height of 

the waveform peaks [63]. Data were also time–normalized to 

256 data points, to have the same length as the GRF data, z–

standardized, and scaled to the range [0, 1]. The reduction of 

the entire sentence to the letter W had several reasons. First, 

preliminary measurements showed that compressing the signal 

of the entire sentence to 256 data points meant that the 

handwriting could no longer be generated sufficiently well. 

Derived from this, we wanted to obtain a signal that was 

similarly complicated and on a similar time scale in execution 

as that of the locomotion movements. 
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E. Data Analysis 

1) Data Analysis Procedure 

 
Fig. 2.  Description of the procedure from data generation to 

classification. For the sake of clarity, only the way of generating 

new data from data A is described in the figure. However, the 

way of generation from data B is analogous. For illustration 

purposes, data A corresponds to walking and data B to running. 

(1) Original Data: In each case, the original data was split 90:10. 

(2) The outlined process of the conditional CycleGAN: 90% of 

the data of A and B were used for training the conditional 

CycleGAN. The trained generators were then used to generate 

new data B from the remaining 10% of data A accordingly. (3) 

The outlined procedure of classification using a Support Vector 

Machine (SVM): the SVM was trained with the 10% of data B 

that was not used for training the conditional CycleGAN. In 

each case, the SVM was tested with the newly generated data 

B.  

 

Figure 2 shows a schematic example of the data analysis flow 

for a portion of the data (Data A). It is important to emphasize 

that the conditional CycleGAN training data is separate from 

the generation data and from the SVM training data. While the 

conditional CycleGAN training for data A and B occurs 

simultaneously, the paths of data A and B are strictly separated 

from the time of data generation. The details of data generation 
and classification are described below. 

 

2) Data Generating – Conditional CycleGAN 
The CycleGAN is a deep learning approach originally 

developed for unpaired image–to–image translation [54]. 

Image–to–image translation involves generating a new 

synthetic version of a given image with a specific modification, 

e.g., translating a photograph into a Monet–style painting while 

preserving the original content. Training a model for image–to–

image translation usually requires a large data set of paired data. 

Creating such data sets can be difficult, expensive, or even 

impossible, such as with photographs of paintings by long–dead 

artists, or pairs of walking and running data. The CycleGAN is 

a technique that involves automatic training of image–to–image 

translation models without paired examples. The models are 

trained in an unsupervised manner using a collection of data 

from the source and target domains, which need not be 

connected in any way. 

In our case, we want to translate the movements of walking, 

running and handwriting, keeping individual features in each 

case. Again, an unpaired approach is particularly appropriate 

because we want to translate data from one movement domain 

(e.g., walking) into data from another movement domain (e.g., 

running) without knowing a possible mapping of the different 

movements of each domain to each other. 

In doing so, our approach deviates somewhat from the 

original CycleGAN formulation. Since we want to preserve the 
individual component via the movement data transfer as well, 

we have added a class condition to the conventional CycleGAN 

in the following. 

a) Formulation of the conditional CycleGAN 

The goal of the conditional CycleGAN, conditioned on the 

participant’s class label, is to learn mapping functions between 

two domains X and Y under the condition of the classes Z given 

the training samples {𝑥𝑖}𝑖=1
𝑁  where 𝑥𝑖 ∈ 𝑋 and {𝑦𝑖}𝑖=1

𝑁  where 

𝑦𝑖 ∈ 𝑌, and the class embedding {𝑧𝑖}𝑖=1
𝑁  where 𝑧𝑖 ∈ 𝑍. For 

simplicity, the indices i and j are omitted in the following. The 

data distribution is denoted as 𝑥 ~ 𝑝𝑑𝑎𝑡𝑎(𝑥) and 𝑦 ~ 𝑝𝑑𝑎𝑡𝑎(𝑦), 

for the input of the original data, 𝑧 ~ 𝑝𝑐𝑙𝑎𝑠𝑠(𝑧) for the class 

embedding, and 𝑥, 𝑧 ~ 𝑝𝑑𝑎𝑡𝑎(𝑥, 𝑧) and 𝑦, 𝑧 ~ 𝑝𝑑𝑎𝑡𝑎(𝑦, 𝑧) for 

the data under the class condition. The conditional CycleGAN 

includes two mappings 𝐺: (𝑋, 𝑍) → 𝑌 and 𝐹: (𝑌, 𝑍) → 𝑋. 

Furthermore, there are two adversarial discriminators 𝐷𝑋 and 

𝐷𝑌, where the aim of 𝐷𝑋 is to distinguish between data {𝑥} and 

translated data {𝐹(𝑦, 𝑧)} and correspondingly of 𝐷𝑌 to 

distinguish between {𝑦} and {𝐺(𝑥, 𝑧)}. In the following, the 

terms adversarial loss [52], [53], cycle–consistency loss [54], 

and identity–mapping loss [64], which are elementary for the 

conditional CycleGAN, are described and finally summarized 

in the objective function. 

Adversarial Loss [52], [53]: To both function adversarial 

losses are applied. For the mapping function 𝐺: (𝑋, 𝑍) → 𝑌 and 

its discriminator 𝐷𝑌, the adversarial loss is:  

ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌 , 𝑋, 𝑌, 𝑍)
= 𝔼𝑦,𝑧~𝑝𝑑𝑎𝑡𝑎(𝑦,𝑧)[log 𝐷𝑌(𝑦, 𝑧)]

+ 𝔼𝑥,𝑧~𝑝𝑑𝑎𝑡𝑎(𝑥,𝑧),𝑧~𝑝𝑐𝑙𝑎𝑠𝑠(𝑧)[log(1

− 𝐷𝑌(𝐺(𝑥, 𝑧), 𝑧))]  
Equation 1 
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where G aims to generate data 𝐺(𝑥, 𝑧) that look similar to data 

from domain Y, while 𝐷𝑌 tries to distinguish them from the real 

samples 𝑦. 𝐺 tries to minimize this goal against an adversary 𝐷, 

which in turn tries to maximize it: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑌
ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌 , 𝑋, 𝑌, 𝑍). The adversarial loss for the 

mapping function 𝐹: (𝑌, 𝑍) → 𝑋 and its discriminator 𝐷𝑋 is 

formulated accordingly. 

Cycle–Consistency Loss [54]: In addition, to reduce the 

space of possible mapping functions G and F, the mapping 

functions should be cycle–consistent. For each data 𝑥 from 

domain 𝑋, the data translation cycle should be able to return 𝑥 

to the original data: 𝑥 → 𝐺(𝑥, 𝑧) → 𝐹(𝐺(𝑥, 𝑧), 𝑧) ≈ 𝑥, that is 

called forward cycle consistency. The backwards cycle 

consistency applies accordingly to 𝑦 from domain 𝑌. To achieve 

cycle consistency, the following cycle–consistency loss is 

expressed:  

ℒ𝐶𝑌𝐶(𝐺, 𝐹)
= 𝔼𝑥,𝑧~𝑝𝑑𝑎𝑡𝑎(𝑥,𝑧),𝑧~𝑝𝑑𝑎𝑡𝑎(𝑧),𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[∥ 𝐹(𝐺(𝑥, 𝑧), 𝑧) − 𝑥 ∥1]

+ 𝔼𝑦,𝑧~𝑝𝑑𝑎𝑡𝑎(𝑦,𝑧),𝑧~𝑝𝑑𝑎𝑡𝑎(𝑧),𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[∥ 𝐺(𝐹(𝑦, 𝑧), 𝑧) − 𝑦 ∥1] 

Equation 2 

Identity–mapping Loss [64]: To promote the successful 

reproduction of the input, an identity mapping loss is 

formulated: 

ℒ𝐼𝐷(𝐺, 𝐹) = 𝔼𝑦,𝑧~𝑝𝑑𝑎𝑡𝑎(𝑦,𝑧),𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[∥ 𝐺(𝑦, 𝑧) − 𝑦 ∥1]

+ 𝔼𝑥,𝑧~𝑝𝑑𝑎𝑡𝑎(𝑥,𝑧),𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[∥ 𝐹(𝑥, 𝑧) − 𝑥 ∥1] 

Equation 3 

Full Objective: To summarize, the complete objective is: 

ℒ𝐶𝑌𝐶(𝐺, 𝐹, 𝐷𝑋 , 𝐷𝑌)
= ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌 , 𝑋, 𝑌) + ℒ𝐺𝐴𝑁(𝐹, 𝐷𝑋 , 𝑌, 𝑋)
+ 𝜆𝐶𝑌𝐶ℒ𝐶𝑌𝐶(𝐺, 𝐹) + 𝜆𝐼𝐷ℒ𝐼𝐷(𝐺, 𝐹) 

Equation 4 

where 𝜆𝐶𝑌𝐶  and 𝜆𝐼𝐷  control the relative importance of the two 

objectives, respectively. 

The goal is to solve the following equation: 

𝐺∗, 𝐹∗ = 𝑎𝑟𝑔 min
𝐺,𝐹

max
𝐷𝑋,𝐷𝑌

ℒ(𝐺, 𝐹, 𝐷𝑋 , 𝐷𝑌) 

Equation 5 

b) Architecture and Training Details 

The basic architecture and training details are based on the 

CycleGAN architecture of [54] and its implementation on 

GitHub (https://github.com/junyanz/CycleGAN). Thereby, the 

generator architecture is in turn based on the GAN architecture 

of Johnson et al. [65] and the discriminator architecture is based 

on PatchGANs [66]–[68]. We implemented the class 

conditioning according to the conditional GAN model of Isola 

and colleagues [66]. To implement the code, we used 

Tensorflow 2.9.2 [69]. In the following, we point out all 

differences to specifications from the originally proposed 

constructs and training parameters.  

The specific layers used for the generator and discriminator 

models, including their filter and kernel sizes, are shown in 

Figure 3. We fitted all layers to a 1–dimensional input. 

Moreover, for the convolutional layers shown, we initialized 

the model weights with a random Gaussian with a mean of 0.00 

and a standard deviation of 0.02. In addition, we used same 

padding.  

Other specific settings not shown in Figure 3 for the 

discriminator and generator are noted below. For the 

discriminator, we used 70x1 PatchGANs according to Isola et 

[66]. The convolutional layers had a stride of 2 for all layers 

except the output layer, where the stride is 1. In addition, the 

slope of the leaky ReLU layers was set to α = 0.2. The generator 

model according to Johnson et al. [65] consists of an encoder, 

nine consecutive residual networks (ResNet) for 

transformation, and a decoder. The stride of the first and last 

convolutional layers and ResNet convolutions is 1, while it is 2 

in every other convolutional layer. For all parameters of the 

discriminator and generator not mentioned, we used the default 

values of Tensorflow (version 2.9.2).  

Furthermore, 200 epochs were trained with a batch size of 

64. The discriminator used the Adam solver with a constant 

learning rate of 0.0002. While for the generator, we adjusted the 

learning rates according to the pair of data. For the conditional 

CycleGAN between walking and running data, as suggested in 

the study by Zhu et al. [54], the learning rate was set to 0.0002 

for the first 100 epochs and then linearly decreased to 0 for the 

next 100 epochs. For the conditional CycleGAN between 

walking and handwriting data or running and handwriting data, 

in the first 50 epochs the learning rate was 0.0128 (= 0.0002 * 
64 (batch size)) in the next 50 epochs it was 0.0016 (0.0002 * 8 

(square root of the batch size)) and in the last 100 epochs it was 

linearly decreasing to 0. In addition, λCYC were set to 10 and λID 

to 5 in Equation 4. The trained generator with the lowest loss 

value over each of the 200 epochs was selected for data 

generation. 

 

https://github.com/junyanz/CycleGAN
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Fig. 3.  Schematic structure of the conditional CycleGAN, the 

generator and the discriminator model. (1) The conditional 

CycleGAN with walking exemplary for Data A and running for 

Data B: In 1.1 the path is shown starting from Data A and in 1.2 

starting from Data B. It is important to emphasize that the 

identically named generators and discriminators are the same in 

each case and are trained from both directions. Furthermore, the 

basic generator and discriminator models are the same. (2) 

Generator model: presented are the layers including filter and 

kernel size (e.g., 64 x 7 Conv = convolutional Layer with 64 

filters and a kernel size of 7. (3) PatchGAN discriminator 

model: presented are the layers including filter and kernel size. 

c) Data Classification 

We collected 10,661 walking strides (627.9 ± 129.0 per 

person), 16,358 running strides (962.9 ± 182.0 per person), and 

1,067 handwritings (59.25 ± 1.8 per person). Each vector of a 

walking or running stride and handwriting included 256 data 

points (walking/ running: 256 data points = 128 data points of 

left food contact + 128 data points of the right food contact). 

Participant classifications were based on support vector 

machine (SVM) [70]–[73] with an extensive hyperparameter 

search in terms of kernel (linear, radial basis function, sigmoid, 

and polynomial) and cost parameter (C = 2–5, 2–4.75,..., 215).  

We examined the performance to discriminate walking, 

running, and handwriting patterns between participants using a 

multi-class classification with 17 classes. As shown in Table 2 

for the original data (and in more detail for the generated data 

in the appendix in Table A1), the matrices used for the 

classifications varied in size due to the different data sets. 

Therefore, prediction accuracy, F1–score, precision, and recall 

were calculated using 5–fold cross–validation. In addition, to 

relate the results of the person classification based on the 

original data, we exactly matched the training and test splits of 

the walking and running classification to those of the writing 

classification. As a baseline reference, we also calculated the 

zero–rule baseline (ZRB) for the respective classification 

problem. The ZRB reflects the theoretical accuracy obtained 

when the classifier always predicts the most frequent class in 

the training set. 

The classification was performed within Python version 

3.9.12 (Python Software Foundation, Wilmington, DE, United 

States) using the scikit–learn toolbox version 1.1.3 [74]. 

 
TABLE 2 

Description of the Data of the Baseline Participant 

Classification by Means of SVM Based on the Original 

Walking, Running, and Handwriting Data. 

Original 

Data 

SVM 

Number of Training 

Data 

Number of Test 

Data 

Walking 

9,594 

(565.1 ± 110.7) 

[905 (53.3 ± 1.5)] 

1,067 

(62.9 ± 12.3) 

[101 (5.9 ± 0.3)] 

Running 

14,722 

(866.6 ± 163.9) 

[905 (53.3 ± 1.5)] 

1,636 

(96.3 ± 18.1) 

[101 (5.9 ± 0.3)] 

Writing 
905 

(53.3 ± 1.5) 

101 

(5.9 ± 0.3) 

A SVM with 5–fold cross–validation was applied. The table 

presents the total number of trials for both training and test 

sets across 17 participants, with the mean and standard 

deviation values shown in round parentheses. In square 

brackets are additionally the number of trials of the walking 

and running data adjusted to the number of trials of the writing 

data. 

III. RESULTS 

A. Participant Classification on Original Data 

The basic assumption of this study is the existence of the 

distinguishability of the individual movement patterns between 

the persons. To test this assumption, a SVM was used to classify 

individuals based on walking, running, or handwriting data. As 

presented in Table 3, it is possible to distinguish the participants 

from each other in both the walking– and running data, and the 

handwriting data with more than 98.0% classification F1–score 

each.  

TABLE 3 

Classification Scores of Person Recognition Using SVM 

Based on Original Data. 

Classification 

Problem 

Classification Score [%] 
Number of 

Trials 

Acc F1 Prec Rec ZRB Train Test 

Walking 99.7 99.7 99.7 99.7 7.5 9,594 1,067 
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[98.0] [98.0] [98.4] [98.0] [6.0] [905] [101] 

Running 
99.6 

[99.0] 

99.6 

[99.0] 

99.6 

[99.1] 

99.6 

[99.0] 

6.7 

[6.0] 

14,722 

[905] 

1,636 

[101] 

Writing 99.0 99.0 99.2 99.0 6.0 905 101 

In squared parentheses are the results of the original walking 

and running classification, where the number of trials was 

exactly matched to that of the writing classification. ZRB = 

Zero–Rule Baseline, Acc = Accuracy, F1 = F1–Score, Prec = 

Precision, Rec = Recall. 

 

B. Qualitative Analysis of Generated Data 

 
Fig. 4.  Original and CycleGAN generated Data. Exemplary 

shown are the test set data of participant 3 (1) and participant 5 

(2). Panels 1.1 and 2.1 show the original walking data and the 

genRunning and genHandwriting data generated from them. 

Accordingly, panels 1.2 and 2.2 refer to the original running 

data, and panels 1.3 and 2.3 to the original handwriting data 

each with the data generated from them. The mean values and 

standard deviation over the respective curves are shown in each 

case. On the x–axis, the respective courses over the 256 time 

points are shown. The y–axis shows the vertical force scaled to 

the interval [0, 1]. For the walking and running data, the values 

1 to 128 represent the ground contact of the left foot and the 

values 129 to 256 of the right foot. genRunning = generated 

running data, genWalking = generated walking data, 

genWriting = generated handwriting data. 

 

Figure 4 shows an example of the data of the participants p3 

(Fig 4.1) and p5 (Fig 4.2). Looking at the shape of the curves, 

it is noticeable that the generated running (genRunning), 

generated walking (genWalking) and generated handwriting 

(genWriting) data correspond to the curve of the respective 

original data. However, based on the examples, it is noticeable 

that genWalking and genRunning data generated from walking 

or running data show a distribution with lower variance. In 

addition, the examples of genRunning data from walking data 

show a small wave at the end of the left and right ground 

contact, which does not occur in the original running data. In 

the genWalking and genRunning data, which are based on the 

handwritten data, it can also be seen that there are sections 

within the curves that vary noticeably in variance (e.g., Fig 

4.1.3: the right ground contact in each case for genWalking and 

genRunning). A more detailed look at the genWriting data 

shows that they deviate somewhat more from the original data 

than genRunning data and genWalking data. In addition, for 

example, there are also less smooth curve components (Fig 

4.1.2). Furthermore, it is noticeable that the first value of the 

generated data tends to be too small (i.e., by 0.0) and does not 

match the original data (i.e., by 0.2). 

Looking at the data at the individual participant level, we see 

that individual characteristics of the original walking, running, 

and handwriting data were carried over into the genWalking, 

genRunning, and genWriting data, respectively. For example, 

in both p3 and p5, the somewhat stronger impact peak of the 

right ground contact during running is also transferred 

accordingly in the respective genRunning data. In addition, in 

the genWalking data at p3 (Fig 4.1.2), the left ground contact 

shows a higher loading peak than the terminal stance peak, 

which is exactly the opposite in the right ground contact but 

corresponds to the original data in both cases. Also, in 

handwriting, for example, it can be seen that the pattern of p5 

(Fig 4.2.3) is somewhat wavier than that of p3 (Fig 4.1.3), 

which is also reflected in the corresponding genWriting data. 

C. Classification with Generated Test Data 

 

TABLE 4  

Classification Results of Person Recognition Using SVM with 

Generated Test Data. 

Classification Problem Classification Score [%] 
Number of 

Trials 

Test Data 
Generated 

from 
Acc F1 Prec Rec ZRB Train Test 

genRunning ←Walking 93.6 92.5 95.9 93.6 6.7 1,636 1,067 

genWriting ←Walking 52.2 46.8 49.7 52.2 6.0 101 1,067 

genWalking ←Running 98.9 98.9 98.9 98.9 7.5 1,067 1,636 

genWriting ←Running 53.9 50.0 50.1 53.9 6.0 101 1,636 

genRunning ←Writing 71.3 78.7 75.5 86.7 6.7 1,636 101 

genWalking ←Writing 73.3 78.4 73.4 88.1 7.5 1,067 101 

ZRB = Zero–Rule Baseline, Acc = Accuracy, F1 = F1–score, 

Prec = Precision, Rec = Recall, genWalking = Generated 

walking data, genRunning = Generated running data, 

genWriting = Generated handwriting data. 

 
Table 4 presents the results of the person classifications with 

generated test data. The classification F1–score of the 

genRunnings generated from walking data and the 

genWalkings from running data was 92.5% and 98.9%, 

respectively. The classification F1–score of the genRunnings 

and genWalkings from handwriting data was 78.7% and 78.4%, 

respectively. For the genWriting data generated from the 

walking and running data, the F1–score was 46.8% and 50.0%, 

respectively. Thus, the results are 7.7 to 14.0 times better than 

the ZRB guess probability. 

IV. DISCUSSION 

A. Person classification Based on Original Data 

To test the underlying assumption of individuality of the 

collected walking, running, and handwriting patterns in the 
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present study, person classifications were performed. The 

results of the person classifications based on the original data 

confirm our assumption that both vertical GRF in walking or 

running and vertical pen pressure in handwriting clearly differ 

between participants in each case (F1–score: running 99.6%, 

walking 99.7%, writing 99.0%). These results are therefore 

within the range of previous studies on individuality of 

movement patterns [20], [22], [50], [55], [56], [30], [31], [37], 

[39]–[41], [43], [49]. 

In order to be able to relate the results of the person 

classifications between the movements based on the original 

data, the data sets of the walking and running data were adjusted 

to the size of the data set of the writing data. Due to the 

reduction of the data set, the classification results of the original 

walking (99.7% to 98.0% F1–score) and running (99.6% to 

99.0% F1–score) data slightly decreased. When comparing the 

classification results between the vertical GRF of walking and 

running and the vertical pen pressure patterns in handwriting, 

no differences were shown between the signals of running and 

those of writing. However, there is a difference, albeit very 

slight, between the results based on the signals of walking and 

those of walking or writing. A possible explanation for the 

somewhat more individual patterns in running compared to 

walking could be due to, for example, a different frequency 

spectrum or higher applied forces [50]. Similar to the study by 
Schöllhorn et al. [20], where the most extreme heel heights of 

shoes resulted in the highest recognition rate, running can be 

seen as a more extreme movement that forces the participants 

to show their individuality. Whereas in walking speed there are 

many more possibilities for compensation. However, for larger 

data sets, the above points seem to play a minor role in 

influencing person classification. One approach to explain the 

slightly better handwriting results compared to those of walking 

could be the different localization of the movement control in 

the central nervous system. The time normalization and 

accompanying possible interpolation of the vectors should have 

only a subordinate influence on the results of the classification 

[58]. 

 

B. Data Generation and Person Classification Based on 
Generated Data 

In the first step of data analysis, transformations between the 

vertical GRF data of walking and running movements and the 

vertical pen pressure of handwriting were learned using the 

deep learning method CycleGAN [54] with a participant’s class 

conditioning. Then, based on the learned transformations, the 

data of each of the other two movements was artificially 

generated from the third movement. This generated data was 

then tested in a person classification trained with the original 

data.  

The results ranged from 46.8% to 98.9% F1–score, 

correspond to almost 8 times and up to 14 times the guess 

probability, respectively. Consequently, this provided first 

evidence that it is possible to learn pairwise transformations 

between the respective movement data on the one hand, and 

preservation of individual structures on the other hand. 

 

The generation of the genRunning (92.5% F1–score) and 

genWalking (98.9% F1–score) data from the original walking 

and running data worked particularly well. This impression can 

be confirmed by looking at the figures (Figure 4) of the 

generated data. The generated genWalking and genRunning 

data from the original walking and running data are not only 

very similar in their general shape to the original data, but also 

reflect the respective individual characteristics such as impact 

peak or time course features in their curves. However, the 

figures also show differences between generated and original 

data. For example, the variance of the generated data was shown 

to be significantly lower than that of the original data. This 

observation could be attributed to the fact that GANs aim to 

learn probability distributions that accurately represent the 

underlying data generation process [52], [53]. Thus, the 

generator might have tried to stay as close as possible to the 

learned probability distribution. In addition, curve features were 

also uncovered that did not appear to have a substantial effect 

on classification but did not match the original data. On the one 

hand, this provides a reason for caution for the use of the 

generated data, and on the other hand, it reveals optimization 

potential that should be addressed in future research. 

To be able to explain the approximated 6% difference in the 

classification results of the genRunning and genWalking data, 

several explanatory approaches come into question. One 

possible approach could be due to the highly non–convex 

optimization process of the conditional CycleGAN, so that the 
generator was stuck in a local minimum, for example, or the 

initially learned weights negatively influenced the learning 

process of the genRunnings. Alternatively, it could be that the 

running data contains more or different information than the 

walking data, and it is therefore easier for the conditional 

CycleGAN to generate genWalking data from the running data 

than genRunning data from the walking data. However, if we 

put the classifications in relation to the guess probability, we 

notice that the results with 13.2 and 13.8 times the ZRB roughly 

correspond. 

  

The results of the genRunning and genWalking data from 

handwriting data are with 78.7% and 78.4% F1–score and the 

genWriting data from running (50.0% F1–score) and walking 

(46.1% F1–score) data also each at least 7.7 times better than 

the guess probability. Thus, the results are worse than those of 

the genRunning and genWriting data from the walking and 

running data. The figures provide a first explanation in this 

respect. At first glance, the genRunning and genWalking data 

from the handwriting data and the genWriting data from the 

running and walking data correspond quite closely to the 

original data, including the adoption of curve–specific 

individual characteristics. The genRunning and genWalking 

data from the handwriting data, for example, show a relatively 

strong unequal distribution of the variance in certain curve 

segments, which does not occur in the original data. However, 

this could also be due to the relatively small amount of 

handwriting data generated, so that individual trials with a 

greater deviation from the mean are more significant and are 

shown relatively overrepresented. The genWriting data also 

shows a lower variance than the original handwriting data and 

represents the original curve in part only in rough form. A 

further potential explanation for the lower classification results 

compared to the data generated between walking and running, 

as well as the discrepancy between the genRunning and 
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genWalking data and the genWriting data derived from walking 

and running data, could be attributed to the quantity of 

handwriting data. The limited training data available for the 

conditional CycleGAN could result in the generator learning a 

probability distribution that does not accurately represent the 

original data. One more possible explanation is that generating 

handwriting is inherently more challenging than generating 

walking or running. Additionally, the bipedal nature of walking 

and running may provide additional information about the 

relationship between the left and right steps, which could 

facilitate generation, but is not present in the case of 

handwriting. To what extent the different central nerves control 

locomotion movements such as walking or running and arm or 

wrist movements such as writing influences the identification 

of individual patterns remains a subject of future research. A 

further possible explanation could lie in the architecture and 

training parameters of the conditional CycleGAN, so that 

parameter tuning or optimization of the architecture of the 

generator or discriminator (details in chapter IV.D) can achieve 

domain–specific improvements. 

C. Identification of Individual Commonalities Across 
Movements  

The results provide further evidence for the possibility of 

automatic recognition of movement patterns across 

movements. So far, this could only be done for very similar 
movements using the joint angle curves in shot put, discus and 

javelin throwing, taking into account all kinematic variables 

except that of the throwing arm [51]. With the proposed 

method, we can extend this approach considerably. As shown 

in this work, transferable individual movement features can also 

be found in movement data that differ significantly in their time 

course and originate from very different movements. 

Other previous studies on the automatic identification of 

individual movement patterns investigated these in each case 

only based on single movement signals [20], [22], [50], [55], 

[56], [30], [31], [37], [39]–[41], [43], [49].  

Even though we can provide the first cross–movement 

approaches in this work, we are only at the beginning of cross–

movement research. We were able to provide first evidence in 

this study, using vertical forces and pressure data respectively, 

that it is possible to learn transformations between these data to 

generate artificial data that still preserve latent patterns of the 

original data. Thus, we provide a "proof of concept" of the 

presented method, which has the potential to represent a starting 

point for further research in this context. 

In this respect, an extension of the study to other data signals 

as well as other biological data would be useful. While a 

transfer from kinematic data to GRF data during walking could 

be shown using GANs [75], there is still great potential to be 

exploited cross–movement wise. Whether there are also 

connections to other signals such as audio (e.g. voice), ECG or 

EEG [76] remains the subject of future research. 

Furthermore, while we have found individual cross–

movement commonalities, what these explicitly look like and 

what characteristics they exhibit should be addressed in future 

research. In addition to the individual movement component, it 

might also be possible to find further latent patterns or 

subcomponents across movements. Other movement 

components could be the movement technique or situational 

adaptations to fatigue, emotions, environment, or the like. 

The individual patterns across movements also suggest that 

there might be characteristic features of a person that are at least 

reflected in several movements. Whether a link can be 

established between movement and psychological 

characteristics of a person could also be the subject of future 

work. In addition, it remains to be investigated whether 

individual movement patterns behave similarly and are 

consistent with patterns found in behavioral research [77]–[80]. 

This could be of specific interest for economizing training or 

therapy. Whether changing the gait by training or therapy, 

which is sometimes observed after psychotherapy, and whether 

this has an effect on the handwriting or vice versa could be one 

area of a more holistic approach to future practical applications. 

D. Data Generation and Cross–Movement Analysis by 
Conditional CycleGANs 

The methodology presented in this paper has overcome the 

problem of mapping two biomechanical time series signals to 

each other while transferring the individual component. It was 

thus possible to learn the transfer of movement A to movement 

B while obtaining latent patterns of movement A. This could 

provide fundamental new opportunities in future experiments 

where one is looking for latent structures between movements 

or movement–signals. In the following, we discuss optimization 
potentials and application possibilities of conditional 

CycleGANs.  

First, it must be emphasized restrictively, that in the context 

of this study, the person condition of the CycleGAN was 

necessary to learn the transformation including the preservation 

of the individual component from movement A to movement B. 

Specifically, this means that it was not possible, for example, to 

generate a person's individual handwriting data from the 

walking data without prior knowledge of that person's 

handwriting. 

For the conditional CycleGANs, the amount of walking 

(approximately 10,000 steps), running (approximately 14,000 

steps), and handwriting data (approximately 900 trials) appears 

to be sufficient to learn transformations between movements 

based on vertical ground reaction forces or vertical pen 

pressure. However, the results suggest that the quality of the 

learned transformation depends largely on the amount of data. 

Such that possibly the 900 handwritten trials were too few to 

produce deceptively real trials. While the amount of walking 

and running data provided a good basis to perform person 

classification with very high recognition rates, the generated 

curves also showed “errors”. In order to use data for generation, 

domain–specific optimizations would need to be made [81] so 

that the generated data are not only indistinguishable using a 

classifier but make biological sense and are indistinguishable 

from original data by experts. Apart from a larger data set, we 

see the greatest optimization potential in adjusting the learning 

rate of the generator's optimizer (especially in relation to the 

learning rate of the discriminator). In addition, the number of 

epochs, or the selected batch size also seem to provide potential 

for domain–specific optimization. 

Particular potential of the conditional CycleGAN lies in the 

possibility cross–movement analysis due to the learnability of 

transformations from one movement signal to another 
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movement signal. In addition, as in the setting of the present 

work, the conditional CycleGAN could be used to identify 

further latent patterns across movements. In doing so, it would 

also be possible to search for cross–person abstract patterns of 

for example fatigue, emotion, or illness. Another potential of 

the conditional CycleGAN could be especially in an area where 

it is difficult to collect large amounts of data. There, artificial 

augmentation of small data sets could open up the possibility of 

using data–intensive methods (e.g., deep learning approaches, 

machine–learning classification). The advantage of the 

conditional CycleGAN in this context is that this algorithm 

requires relatively little data, and that the training data need not 

be paired, or the construction of artificial pairs is obsolete. 

V. CONCLUSION 

In recent years, the analysis of movement patterns has 

increasingly focused on the individuality of movements, 

revealing individual patterns with situation–dependent fine 

structures. However, previous research methods only allowed 

the comparison of very similar movement signals. In this study, 

we were able to identify similarities between individual 

walking, running, and handwriting patterns across different 

movements through data augmentation, revealing individual 

patterns across movements. This further extends the 

understanding of strong individuality. 

Based on the results of movement science studies that use 
machine learning methods to investigate the uniqueness of 

individual movement patterns, and the findings presented in this 

study, it can be inferred that our understanding of the 

individuality of human movement and the influence of 

individuality on targeted development, improvement, or 

recovery is still in its beginning stages. Understanding 

individual cross–movement commonalities in movement may 

offer insights into the underlying more general individuality of 

central nervous system physiology and structure. Future 

applications of this approach have the potential to investigate 

the extent to which the central nervous system or muscle 

physiology can be altered beyond the individual domain. 

In addition, this study provides proof of concept that it is 

possible to use the conditional CycleGAN to artificially 

generate cross–movement data with latent movement 

characteristics of the original movement without relying on 

paired data. In summary, the methodology presented in this 

study helps to enable cross–movement analysis and artificially 

generate larger data sets. 

APPENDIX 

TABLE A1 

Description of the Data Sizes in the Whole Analysis Process 

Depending on the Different Classification Tasks. 
Classification Problem Cond. CycleGAN SVM 

Generated 
Test Data 

Generated 

from 
Original 

Data 

Number of 
Training Data 

Number of Trials 

Train 
(Original 

Data) 

Test 
(Generated 

Data) 

genWalking Running 

Walking 9,594 1,067 

(62.9 ± 
12.3) 

1,636 

 (96.3 ± 
18.1) Running 14,722 

genRunning Walking 

Running 14,722 1,636 
(96.3 ± 

18.1) 

1,067 
 (62.9 ± 

12.3) Walking 9,594 

genWalking Writing 

Walking 9,594 1,067 
(62.9 ± 

12.3) 

101 
(5.9 ± 

0.25) Writing 905 

genWriting Walking 

Writing 905 101 
 (5.9 ± 

0.25) 

1067 
(62.9 ± 

12.3) Walking 9594 

genRunning Writing 

Running 14,722 1,636 

(96.3 ± 

18.1) 

101 

(5.9 ± 

0.25) Writing 905 

genWriting Running 

Writing 905 101 
(5.9 ± 

0.25) 

1,636 
(96.3 ± 

18.1) Running 14,722 

A SVM with 10–fold Cross–Validation for original walking 

and running data and 5–fold for original writing data was 

applied. The table presents the total number of trials for both 

the conditional CycleGAN training and the SVM training and 

test sets across 17 participants, with the mean and standard 

deviation values shown in parentheses. 

genRunning = generated running data, genWalking = 

generated walking data, genWriting = generated handwriting 

data. 
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