
P
os
te
d
on

25
A
p
r
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
26
56
38
5
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Encrypted Data Caching and Learning Framework for Robust

Federated Learning-based Mobile Edge Computing

Hieu Nguyen 1, Yuris Mulya Saputra 2, Dinh Hoang 2, Diep Nguyen 2, Van-Dinh Nguyen 2,
Yong Xiao 2, and Eryk Dutkiewicz 2

1School of Electrical and Data Engineering
2Affiliation not available

October 30, 2023

Abstract

Federated Learning (FL) plays a pivotal role in enabling artificial intelligence (AI)-based mobile applications in mobile edge

computing (MEC). However, due to the resource heterogeneity among participating mobile users (MUs), delayed updates from

slow MUs may deteriorate the learning speed of the MEC-based FL system, commonly referred to as the straggling problem.

To tackle the problem, this work proposes a novel privacy-preserving FL framework that utilizes homomorphic encryption (HE)

based solutions to enable MUs, particularly resource-constrained MUs, to securely offload part of their training tasks to the

cloud server (CS) and mobile edge nodes (MENs). Our framework first develops an efficient method for packing batches of

training data into HE ciphertexts to reduce the complexity of HE-encrypted training at the MENs/CS. On that basis, the

mobile service provider (MSP) can incentivize straggling MUs to encrypt part of their local datasets that are uploaded to

certain MENs or the CS for caching and remote training. However, caching a large amount of encrypted data at the MENs

and CS for FL may not only overburden those nodes but also incur a prohibitive cost of remote training, which ultimately

reduces the MSP’s overall profit. To optimize the portion of MUs’ data to be encrypted, cached, and trained at the MENs/CS,

we formulate an MSP’s profit maximization problem, considering all MUs’ and MENs’ resource capabilities and data handling

costs (including encryption, caching, and training) as well as the MSP’s incentive budget. We then show that the problem

is convex and can be efficiently solved using an interior point method. Extensive simulations on a real-world human activity

recognition dataset show that our proposed framework can achieve much higher model accuracy (improving up to 24.29%) and

faster convergence rate (by 2.86 times) than those of the conventional FedAvg approach when the straggling probability varies

between 20% and 80%. Moreover, the proposed framework can improve the MSP’s profit up to 2.84 times compared with other

baseline FL approaches without MEN-assisted training.

1

1

Encrypted Data Caching and Learning Framework
for Robust Federated Learning-based Mobile Edge

Computing
Chi-Hieu Nguyen, Yuris Mulya Saputra, Dinh Thai Hoang, Diep N. Nguyen,

Van-Dinh Nguyen, Yong Xiao, and Eryk Dutkiewicz

Abstract—Federated Learning (FL) plays a pivotal role in
enabling artificial intelligence (AI)-based mobile applications in
mobile edge computing (MEC). However, due to the resource
heterogeneity among participating mobile users (MUs), delayed
updates from slow MUs may deteriorate the learning speed of the
MEC-based FL system, commonly referred to as the straggling
problem. To tackle the problem, this work proposes a novel
privacy-preserving FL framework that utilizes homomorphic
encryption (HE) based solutions to enable MUs, particularly
resource-constrained MUs, to securely offload part of their
training tasks to the cloud server (CS) and mobile edge nodes
(MENs). Our framework first develops an efficient method for
packing batches of training data into HE ciphertexts to reduce
the complexity of HE-encrypted training at the MENs/CS. On
that basis, the mobile service provider (MSP) can incentivize
straggling MUs to encrypt part of their local datasets that are
uploaded to certain MENs or the CS for caching and remote
training. However, caching a large amount of encrypted data
at the MENs and CS for FL may not only overburden those
nodes but also incur a prohibitive cost of remote training, which
ultimately reduces the MSP’s overall profit. To optimize the
portion of MUs’ data to be encrypted, cached, and trained
at the MENs/CS, we formulate an MSP’s profit maximization
problem, considering all MUs’ and MENs’ resource capabilities
and data handling costs (including encryption, caching, and
training) as well as the MSP’s incentive budget. We then
show that the problem is convex and can be efficiently solved
using an interior point method. Extensive simulations on a
real-world human activity recognition dataset show that our
proposed framework can achieve much higher model accuracy
(improving up to 24.29%) and faster convergence rate (by 2.86
times) than those of the conventional FedAvg approach when the
straggling probability varies between 20% and 80%. Moreover,
the proposed framework can improve the MSP’s profit up to
2.84 times compared with other baseline FL approaches without
MEN-assisted training.

I. INTRODUCTION

Along with the ever-growing number of connected Internet
of Things (IoT) devices, machine learning (ML) has been

Chi-Hieu Nguyen, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz are with
the School of Electrical and Data Engineering, University of Technology Syd-
ney, Sydney, NSW 2007, Australia (e-mail: hieu.c.nguyen@student.uts.edu.au,
{hoang.dinh, diep.nguyen, eryk.dutkiewicz}@uts.edu.au).

Y. M. Saputra is with Department of Electrical Engineering and Informatics,
Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(e-mail: ym.saputra@ugm.ac.id).

Van-Dinh Nguyen is with the College of Engineering and Computer
Science, VinUniversity, Vinhomes Ocean Park, Hanoi 100000, Vietnam (e-
mail: dinh.nv2@vinuni.edu.vn).

Y. Xiao is with the School of Electronic Information and Communications
at the Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: yongxiao@hust.edu.cn).

playing a critical role in learning and extracting knowledge
from distributed data sources, e.g., from digital healthcare [1]–
[3], Industry 4.0 [4]–[6], and the emerging Metaverse [7],
[8]. Among various distributed learning frameworks, federated
learning (FL) has been considered as the most potential one
for the mobile edge computing (MEC) networks to reduce
communication overhead and address the users’ privacy is-
sues [9], [10]. In this approach, each participating mobile user
(MU) can first locally train an ML model by using its own
dataset. Then, a central aggregator (e.g., a cloud server (CS))
will aggregate the local models (i.e., trained parameters) from
the involved MUs to iteratively update the global model. At
each iteration, the global model is first broadcast to all MUs for
the local model update. This procedure is executed repeatedly
until a certain level of accuracy of the global model is reached.
By exchanging only the model parameters during the training
process, the privacy of the user’s data is preserved while saving
the required bandwidth for raw local data sharing (otherwise).

Like all other distributed learning frameworks, FL also faces
fundamental challenges due to the unreliable connectivity
from the MUs to the server (particularly for the wireless
connections), the inherent limitation of MUs’ local comput-
ing resources [11]–[15], and the high-dimensional statistical
characterization of non-i.i.d. local datasets [16], [17]. These
lead to the well-known challenge, the straggling problem [15],
in which the centralized global model aggregation is delayed
or even stalled by the delayed update from one or several
MUs (referred to as stragglers). The straggling problem can
be caused by the insufficient computational capability of MUs
to train their local models, in addition to unreliable wireless
communication links to upload the local model parameters to
the aggregator during each learning round. As a result, the FL
may experience a substantial latency as the aggregator has to
defer the aggregation process until it receives the local models
from all involved MUs in every learning round.

To address the above issues, several solutions focusing on
data caching and computing capabilities using mobile edge
nodes (MENs) in the vicinity of MUs have been investi-
gated. One possible solution is to allow the MUs with low
computation and communication resources to offload their
local data to an MEN, thereby reducing the workload on
those MUs. In particular, the works in [18]–[20] suggested
local data offloading from MUs to a cloud or edge servers
where the FL model training is carried out. However, these
works assume that each MU needs to upload its whole dataset

2

Cloud Server (CS)

MEN-1 MEN-2 MEN-

Mobile Egde Node (MEN)

Mobile User (MU)

Local training data

Encrypted training data

Backhaul link MEN - CS

Link MU - MEN

Link MU - CS

Storage

Cloud Server (CS)

Local model from MUs

Aggregated model form MENs

Global model from CS

MEN-1 MEN-2 MEN-

(a) Pre-training phase (b) Iterative training phase

Fig. 1: The proposed privacy-preserving FL framework with the additional MEN-assisted training: (a) pre-training phase and
(b) iterative training phase.

to an MEN or the CS. Such a data-sharing approach not
only raises MUs’ data privacy concerns but also is infeasible
to deploy due to the limited communications resources of
MUs (e.g., the local dataset is too large to be uploaded).
To address the privacy concern, encryption-based techniques,
e.g., homomorphic encryption (HE), can be used to secure
offloaded data as proposed in [21] and [22]. HE in [23] is a
form of public-key encryption that permits certain computa-
tions, such as additions and multiplications, to be conducted
directly on ciphertexts without requiring the private key. When
two ciphertexts are computed with HE, the result is another
ciphertext, and its decryption produces the outcome of the
corresponding operations on the original data. Hence, users
only need to upload their encrypted data to the untrusted server
for secure storage and processing. Nevertheless, most existing
works based on HE approach, e.g., [21], [22], are restricted
to using a single learning node, such as a CS or MEN, to
assist the MUs in training the ML model over the encrypted
dataset. As a result, an MEN may face challenges in handling a
massive amount of data from several MUs due to its inherent
resources limitation. At the same time, some MUs can also
experience high communication costs if all their encrypted
data is directly offloaded to the CS [24].

In this work, we propose a novel MEC-assisted FL frame-
work that incorporates HE-based training executions at all
available MENs and the CS to address the straggling problem
while preserving the MU’s privacy. More specifically, given
a pre-determined deadline for each learning round and the
resource capabilities of the participating MUs, the mobile
service provider (MSP) can decide the percentage of data to
be used for local training at each MU without causing an
excessive delay. The remaining local data is encrypted by the
MUs using HE and then shared with the MSP for remote
training. As illustrated in Fig. 1(a), all encrypted data are
uploaded and cached at the destined MENs and the CS prior
to the FL training. Subsequently, in each learning round, all
the MENs and the CS perform additional training on their
encrypted datasets and produce the encrypted models. All the
trained models from the MUs and MENs are then uploaded
to the CS for updating the global model (as illustrated in

Fig. 1(b)). The MUs then receive incentives (e.g., monetary
rewards) from the MSP in return for sharing their local data
and performing local model training.

The advantage of our proposed FL framework is multi-
fold. First, through monetary rewards to the participants, the
MSP can incentivize the MUs to devote their computation
and data resources to the FL process, thereby improving the
accuracy of the whole system. Second, it can relieve the
computational burden on resource-constrained MUs and re-
solve the straggling problem thanks to the MEN-aided training
processes. Third, by collecting encrypted data of different
distributions from multiple MUs to train models at the MENs
and CS, the framework can counteract the bias that arises from
non-i.i.d. data in practical settings. This leads to significant
improvements in learning performance and resilience of the
FL framework.

Nonetheless, a major challenge in implementing such de-
sired HE-based FL framework is the computational overhead
caused by HE operations, which may significantly retard the
model training at the MENs/CS. To overcome this barrier, we
develop an efficient HE ciphertext packing method together
with the single instruction multiple data (SIMD) techniques
to accelerate the neural network processing with encrypted
data. We then formulate an optimization problem to evaluate
the proper percentage of data to be encrypted and cached at
MENs. The objective is to maximize the total profit of the
MSP throughout the FL training process, while considering the
duration of each learning round, the MSP’s incentive budget,
the available resources at MUs and MENs, as well as the data
handling costs caused by encryption, caching, and training.
We then prove that the resulting optimization problem is
convex and can be solved using an interior point method. The
experimental results demonstrate that our privacy-preserving
FL framework accelerates convergence speed by 2.86 times
and enhances accuracy levels up to 24.29% in non-i.i.d.
data scenarios compared to the conventional FL approach.
Additionally, the proposed framework can enhance the profit
of the MSP by 2.84 times in comparison with other baseline
approaches. Our main contributions can be summarized as
follows:

3

• Propose a novel privacy-preserving FL framework for
MEC networks that incorporates encrypted training pro-
cesses at both the CS and MENs to mitigate the straggling
problem. Here, a tunable amount of the MUs’ raw data
is encrypted using HE before caching to the MENs/CS
to allow further processing without exposing sensitive
information. Additionally, the local training updates from
the MUs are encrypted to prevent the FL framework from
being vulnerable to the gradient leakage attack.

• Develop an efficient ciphertext packing based on the
CKKS encryption scheme to enable SIMD parallel com-
putation at the MENs and CS. The proposed technique
facilitates the acceleration of additional training processes
over encrypted data.

• Formulate an encrypted data caching optimization prob-
lem for the MEC-enabled FL to obtain the optimal
portions of MUs’ data to be encrypted and cached at
MENs/CS. The objective is to maximize the MSP’s profit
while considering the restricted processing capabilities of
MUs and MENs, duration of each learning round, the
limited incentive budget of the MSP, and all data handling
costs. The resulting optimization function is proven to
be convex and hence can be effectively solved with the
interior point method.

• Conduct extensive experiments on a real-world human
activity recognition dataset [25]. These results provide
insightful information to help the MSP in designing the
effective privacy-preserving FL framework in the MEC
networks.

The rest of this paper is organized as follows. Section II
presents the related works. Sections III and IV introduce the
proposed system model and the detailed implementation of
the proposed FL framework. The problem formulation and
our approach to obtain the optimal encrypted data caching
and learning solution are presented in Section V. Section VI
demonstrates the experimental results. Finally, Section VII
presents the conclusion and future directions of the work.

II. RELATED WORK AND MAIN CONTRIBUTIONS

A. Straggling Mitigation in Federated Learning

The heterogeneity of communication and computation capa-
bility among participating devices poses a significant challenge
when FL framework is implemented in real-world wireless
networks, referred to as the straggling problem. To mitigate
that problem, three appealing approaches are often considered
in the literature: (i) asynchronous updating, (ii) computation
offloading, and (iii) coded computing.

1) Asynchronous updating: In the asynchronous updating
approach, the CS only needs to wait until a certain number
of participants have finished uploading the model updates
before starting the aggregating operation [16], [17], [26],
[27]. By utilizing this updating strategy, the straggling clients
no longer hinder the aggregation process, thereby reducing
delay of the system. For example, the authors in [28] provided
empirical findings that an asynchronous strategy is resilient
to clients participating partway during a training round as
well as when the FL includes clients with diverse processing

capabilities. In [12], the authors proposed a tier-based FL
method where the clients are split into several tiers based
on their response delays. The global model is then updated
across tiers asynchronously, while the model update within
a tier is performed in a synchronous fashion. However, this
mechanism may result in high-bandwidth utilization as they
require frequent model exchanges between the aggregating
servers and FL clients. Another challenge in applying the
asynchronous updating approach is that the uploaded clients’
models might be calculated from different versions of the
global model, which can deteriorate the convergence of the
global model [17]. The FedAsync algorithm in [26] suggested
to limit such adverse effect by utilizing the client’s staleness
measurement to determine the weight that should be given
to the recently uploaded local model in the aggregation step.
Nonetheless, it is shown that when the input is non-i.i.d.
and imbalanced, the asynchronous approach may significantly
deteriorate the model’s convergence due to the unequal con-
tribution of FL clients to the training process [13], [28].
Furthermore, all of the aforementioned studies have neglected
the potential of using the computational power of MENs to
support the FL training of mobile users.

2) Computation offloading: Several works in [14], [18]–
[20] have explored the effectiveness of local data offloading
from MUs to a cloud or edge server to mitigate the straggling
effect. In [14], the authors proposed an effective edge-assisted
FL scheme, called EAFL, where the optimal data size for
offloading at each FL client is determined by solving a
non-convex optimization problem. However, since the EAFL
scheme requires MUs to share their raw data with remote
servers, it violates a fundamental benefit of the FL framework,
i.e., privacy conservation. The authors in [29] developed
FedAdapt, a comprehensive framework that accelerates the
FL training process through allowing FL stragglers to offload
specific layers of their local neural network to a remote server
for training. FedAdapt employs a reinforcement learning algo-
rithm to identify optimal neural network offloading partitions
for each client. However, this framework may lead to a
significant increase in bandwidth utilization due to the frequent
exchange of gradients and labels between remote servers and
FL clients. Furthermore, transmitting local gradients without
proper protection or encryption can potentially leak sensitive
information from the users’ raw data.

3) Coded computing: Coded computing is another poten-
tial approach to mitigate the straggling problem in FL by
introducing redundancy in the calculations [15], [30], [31].
Particularly, this approach aims to obtain the overall result of
the desired computation task from a subset of participating
workers by establishing additional allocation and computation
over distributed data [30], [31], thereby reducing the waiting
time and improving the reliability. For example, a coded
computing-based FL framework was proposed in [15] to
deal with heterogeneous FL clients and unreliable wireless
links, as well as enhance learning performance over non-i.i.d.
data. In particular, each FL client locally produces masked
parity data from its own dataset by applying a random linear
encoding strategy, where the encoding matrix is generated and
stored privately at the client. Then, the CS can calculate the

4

coded gradient using the aggregated global parity dataset to
update the global model. The combination of local and coded
gradients can mitigate the slow convergence speed problem
caused by missing updates from stragglers and the non-i.i.d.
nature of the clients’ datasets. However, the privacy protection
in [15] is limited because it requires the client to share its
parity dataset, which is a Gaussian random projection of
the original dataset. In [32], the authors proposed a method
to enhance the privacy protection of the parity dataset by
adding Gaussian noise to the coded data. Unfortunately, this
approach requires sacrificing the convergence performance of
the global model to achieve better privacy protection, making
it inefficient to use in practice.

B. Neural Network (NN) for Training Encrypted Data

Most of the existing works (i.e., [21], [33]–[38]) investigate
the training of NNs on encrypted data rely on homomorphic
encryption (HE). An example of HE implementation is the
CKKS scheme [39], which can support approximate compu-
tation with floating-point numbers. Additionally, the CKKS
scheme employs SIMD techniques for parallel computation
by packing multiple plaintexts into a single ciphertext [39]. As
such, CKKS is considered the most favorable HE scheme for
securing neural network processing [40]. The authors in [33]
presented the first attempt at training NNs on encrypted data
at a remote server by using HE. In their proposed scheme, a
user can encrypt its data using the public key and then send
the encrypted data to the MSP to perform the training task.
Throughout the whole process, the MSP cannot extract any
knowledge about the underlying data and the final model can
only be decrypted by the data owner who has access to the
private key. This method is beneficial for data owners who
want to collaborate with a proficient third party to perform
the learning task. To make the machine learning model com-
patible with the HE scheme, the authors in [35] redesign the
conventional NNs to be HE-compatible by replacing nonlinear
activation functions with low-degree polynomials that only
include addition and multiplication calculations. However,
all the works in [21], [33]–[38] considered outsourcing the
training task to a single central server (e.g., the CS), which
limits the capacity to handle a massive amount of data in large-
scale FL systems.

To the best of our knowledge, no prior research has explored
the deployment of encrypted training processes at MENs to
address the straggling problem in MEC-enabled FL systems.
Therefore, our study aims to fill this gap in the literature and
explore the feasibility and effectiveness of this approach.

III. SYSTEM MODEL

A. Overview of the Proposed Privacy-Preserving FL Frame-
work

We consider an MEC-based FL system as illustrated in
Fig. 1 where a CS and multiple MENs are controlled by
an MSP to deliver services to various MUs. Let K =
{1, . . . , k, . . . ,K} denote the set of MENs with MEN-K
being considered as the CS. Typically, the CS is integrated
with a macrocell base station and has abundant computational

TABLE I: Summary of Notations

Notation Description
N Set of MUs
K Set of MENs
Ωn Local dataset at MU-n
bn Size of local dataset at MU-n
xn,k Portion of the dataset at MU-n to be cached

and trained at MEN-k
xn,0 Portion of the dataset at MU-n to be trained

locally
Bn,k Bandwith between MU-n - MEN-k
Bn,K Bandwith between MU-n - CS
Bk,K Bandwith between MEN-k - CS
cn Maximum size of dataset can be trained by

MU-n
ck Maximum size of dataset can be trained by

MEN-k
T cmp
n Computation time required for training the

local dataset at MU-n
T cmp
k Computation time required for training the

encrypted dataset at MEN-k
sΓ̄(r) Size of the global model at learning round r
Tmax Deadline time for all MENs to start uploading

the aggregated models
T com−u
K Time delay for uploading an MEN-aggregated

model to the CS from an MEN
Pn MSP’s profit for the local training process at

MU-n
Pk MSP’s profit for the encrypted training process

at MEN-k

and storage resources. The other MENs, numbered from 1
to K − 1, are assumed to have limited computational power
and constrained storage capacity [20], [24]. Additionally, we
define N = {1, . . . , n, . . . , N} as the set of MUs participating
in the network’s FL process. An MU is in the serving area
of MEN-k if they are connected directly via a wireless link
(e.g., Wi-Fi). It is important to note that an MU can be
concurrently connected to several MENs. Meanwhile, some
MUs may establish direct communication with the CS directly
through cellular networks, e.g., 4G or 5G.

Before starting the FL training processes, each participating
MU is allowed to upload its local dataset (a portion or all) to
the available MENs or CS for caching and remote training (as
illustrated in Fig. 1(a)) so as to relax its computation burden
and accelerate the learning process. In order to maintain data
privacy, the CKKS homomorphic encryption scheme [39] is
used to encrypt the local data. Such an encryption technique
enables a third party (e.g., MEN/CS) to train a conventional
deep learning model over the data in an encrypted format with-
out having to decrypt it [33]. Specifically, the CKKS scheme
implemented at an MU includes the key generation, encryp-
tion/decryption, and homomorphic evaluation algorithms as
follows:

• SKGen(n) to randomly generate the secret key gskn for
MU-n.

5

• PKGen(gskn) to create the public key gpkn for MU-n
based on the secret key gskn .

• Enc(gpkn , π) to encrypt a plain vector π into a ciphertext
π̃ using the public key gpkn .

• Dec(gskn , π̃) to retrieve original vector π from the cipher-
text π̃ using the secret key gskn .

• Add(π̃1, π̃2), Sub(π̃1, π̃2) and Mul(π̃1, π̃2) to, respec-
tively, perform addition, subtraction, and multiplication
between two ciphertexts π̃1 and π̃2. The respective out-
puts π̃add, π̃sub, and π̃mul are also ciphertexts.

Suppose that each MU-n has a private local dataset Ωn =(
Fn,yn

)
consisting of |Ωn| data samples, where Fn and yn

are respectively the collections of training samples and labels.
In particular, we have

Fn =

f1n
...
f jn
...

f
|Ωn|
n

 , yn =

y1n
...
yjn
...

y
|Ωn|
n

 , (1)

where f jn, j ∈ {1, . . . , |Ωn|} is a feature vector that is
associated with a label yjn. Based on the aforementioned
cryptographic algorithms, each MU-n can generate the secret
key gskn = SKGen(n) and public key gpkn = PKGen(gskn)
at the beginning of the learning process. The secret key gskn
is stored privately at the MU-n, while the public key gpkn
of MU-n is broadcasted to other MUs and the MENs/CS.
After that, each MU-n splits its local dataset Ωn into multiple
subdatasets Ωn,k =

(
Fn,k,yn,k

)
containing |Ωn,k| samples,

where k ∈ {0, . . . ,K}, such that

|Ωn,0|+ . . .+ |Ωn,K | = |Ωn|, (2)

and

Fn,k =

 fΦk
n
...

f
Φk+|Ωn,k|
n

 , yn,k =

 yΦk
n
...

y
Φk+|Ωn,k|
n

, ∀k ∈ {0, . . . ,K}.

(3)

Here, we define Φ0 = 1 and Φk = Φk−1+|Ωn,k−1|+1, ∀k ∈
{1, . . . ,K}. An MU-n then utilizes its public key gpkn to
generate K encrypted subdatasets Ω̃n,k, where k = 1, . . . ,K,
by performing encryption on each data sample and label
in Ωn,k individually. The encrypted dataset Ω̃n,k is then
uploaded to the MEN-k for the accumulation process prior
to the iterative training execution. The aforementioned data
encryption and caching process is regarded as the initial pre-
training phase.

Once the pre-training phase completes, the iterative FL
training phase is carried out as illustrated in Fig. 1(b). Partic-
ularly, each MEN acts as an intermediate aggregator to collect
the local model updates from its associated MUs and sends
the aggregated results to the CS for updating the global model.
As such, the CS can be regarded as a master coordinator
that will aggregate the trained models from all participating
entities in the FL system, i.e., MENs and MUs. The CS

and MENs also perform their assigned model training tasks
using the encrypted datasets received from the pre-training
phase. Additionally, during a learning round, each MU locally
trains its current model over the unencrypted data (i.e., the
dataset portion that is not offloaded to an external node) before
uploading the model update directly to the CS or through an
intermediate MEN. The model training time at an MU or MEN
in each learning round is limited by a predefined system’s
threshold. Then, each MEN can collect the MUs’ trained
models within its serving area and combine them together
with its own trained model to produce an MEN-aggregated
model. All MEN-aggregated models are then uploaded to the
CS to perform the final aggregation step, which produces a
new global model. It is noteworthy that the CS and the MENs
are set up to only aggregate local model updates from MUs
collected within a predetermined training time threshold.

We assume that a sample in each local dataset Ωn has
a fixed size of ξ bits; thus the total size of a dataset Ωn

is defined as bn = ξ|Ωn| (bits). A continuous variable
xn,k, where 0 ≤ xn,k ≤ 1, is used to determine the
portion of the local dataset at MU-n to be encrypted and
cached at MEN-k (with MEN-K referred to as the CS).
The portion of dataset that would be trained locally at MU-
n is denoted as xn,0, where xn,0 =

(
1 −

∑K
k=1 xn,k

)
.

Let x denote the vector containing all variables xn,k, i.e.,
x = [x1,1, . . . , x1,k, . . . , x1,K , x2,1 . . . , xn,k, . . . , xN,K]. We
also define the bandwidth between MU-n and MEN-k, the
bandwidth between MU-n and the CS, and the bandwidth
between MEN-k and the CS as Bn,k, Bn,K , and Bk,K ,
respectively. Due to the limited computing resources, each
participating MU-n is only able to perform local training over
a dataset of size up to cn during the whole FL process [11],
[15]. As a result, the MU-n must cache a portion of its private
dataset Ωn to the selected MENs or CS if bn > cn. Similarly,
the computing resources of an MEN-k (1 ≤ k < K) are only
sufficient to train an encrypted dataset up to size ck that is
gathered from all the MUs.

B. Computation and Communication Model
In the proposed FL system, each MU-n can utilize its own

processor with processing frequency of fn (Hz) to train a
portion of dataset with size xn,0bn bits. Let ηn be the number
of CPU cycles needed for training 1-bit of data at MU-n, and
thus the computation time required for training the local model
at MU-n at a learning round can be calculated as follows:

T cmp
n =

ηnxn,0bn
fn

. (4)

Likewise, the encrypted training process carried out at an
MEN-k is achieved using its processor’s frequency fk (Hz)
which requires ηm (cycles/bit) for 1-bit data training. Since
the total encrypted dataset collected at MUs has size of∑N

n=1 xn,kbn (bits), the computation time of an MEN-k can
be obtained by

T cmp
k =

ηk

N∑
n=1

xn,kbn

fk
.

(5)

6

Regarding the communication model, let sΓ̄(r) , sΓ(r)
n

, and
s
Γ

(r)
k

denote the sizes in bits of the global model, the local
trained model at MU-n, and the MEN-aggregated model at
MEN-k, respectively, in which sΓ̄(r) = s

Γ
(r)
n

= s
Γ

(r)
k

[15],
[41]. The number of successful transmissions for the up-
link and downlink communication between the CS, MEN-k,
and MU-n are, respectively, defined as νupk,K , ν

up
n,K , ν

up
n,k, and

νdown
k,K , νdown

n,K , νdown
n,k . As a result, the time to download the

global model Γ̄(r) from the CS to MEN-k, from the CS to
MU-n and from MEN-k to MU-n at the rth learning round
can be respectively calculated as follows:

T com−d
k,K = νdown

k,K

sΓ̄(r)

Bk,K
, T com−d

n,K = νdown
n,K

sΓ̄(r)

Bn,K
, and

T com−d
n,k = νdown

n,k

sΓ̄(r)

Bn,k
, k < K. (6)

Next, the time required for successfully uploading a new
trained model Γ

(r)
n from MU-n to MEN-k/the CS, and for

uploading an MEN-aggregated model Γ
(r)
k from MEN-k to

the CS is given as follows

T com−u
n,k = νupn,k

s
Γ

(r)
n

Bn,k
, T com−u

n,K = νupn,K

s
Γ

(r)
n

Bn,K
, and

T com−u
k,K = νupk,K

s
Γ

(r)
k

Bk,K
, k < K.

(7)

Here, we assume that the time required to aggregate the MUs’
trained models at an MEN-k is significantly less than the
model training time, and thus it can be negligible [15].

From (4) to (7), if an MU-n connects indirectly with the
CS through an intermediate MEN-k, then the total time span
from the distribution of the global model to the successful
uploading of the local model from MU-n to MEN-k can be
calculated as

T k,†
n = T com−d

k,K + T com−d
n,k + T cmp

n + T com−u
n,k . (8)

Nevertheless, every MEN-k (k < K) has a fixed deadline
Tmax
k for starting to upload its aggregated model to the CS

in order to avoid the straggling problem [42]. In this case,
we suppose that the MSP assigns the same deadline for each
MEN, i.e., Tmax

1 = . . . = Tmax
k = . . . = Tmax

K−1 = Tmax.
During each learning round, an MEN-k must finish collecting
the local models from its associated MUs and send the
aggregated model to the CS before the deadline Tmax

k . In
this case, we can state the aforementioned requirement as
0 ≤ T k,†

n ≤ Tmax,∀1 ≤ n ≤ N, ∀1 ≤ k < K.
Consequently, the overall time span for one learning round is
Tmax+T com−u

K . Here, we assume that the MSP uses the same
setting of νupm,M and Bk,K for all its MENs, thus the time delay
for uploading an MEN-aggregated model to the CS from all
MENs are the same, which is depicted by T com−u

k,K = T com−u
K ,

where 1 ≤ k < K. Lastly, the total time span at MEN-k
from the global model distribution to the completion of MEN-
aggregated model uploading to the CS (from MEN-k) can be
derived as

T k
n = T k,†

n + T com−u
k,K ,∀n ∈ N , (9)

where 0 ≤ T k
n ≤ Tmax + T com−u

K ,∀n ∈ N ,∀1 ≤ k < K.

If an MU-n is connected directly to the CS, then the total
time span from the global model distribution to the completion
of local model uploading to the CS (from MU-n) can be given
as follows

TK
n = T com−d

n,K + T cmp
n + T com−u

n,K . (10)

Here, the value of TK
n is upper-bounded by the threshold

Tmax + T com−u
M in a learning round, i.e., 0 ≤ TK

n ≤
Tmax + T com−u

K ,∀n ∈ N . Moreover, we can obtain the time
required for the additional training over encrypted data at
MEN-k, 1 ≤ k < K and the CS respectively as follows:

T ∗
k =

 T com−d
k,K + T cmp

k + T com−u
k,K ,

if k < K,
T cmp
K , otherwise,

(11)

where T ∗
k ≤ Tmax + T com−u

K . It is worth noting that the size
of the raw (unencrypted) and encrypted datasets that will be
used for training at MUs and the MENs, respectively, may vary
depending on how the deadline Tmax is selected. Intuitively,
if the value of Tmax is small, then large portions of the local
datasets from the MUs will be cached at the MENs and CS for
remote training as they have superior processing capabilities
to compensate for many straggling MUs in the system.

IV. IMPLEMENTATION OF MEC-BASED FL WITH
ENCRYPTED TRAINING FOR STRAGGLING MITIGATION

A. Efficient NN Training with Encrypted Data

As mentioned in Section III, the generation of encrypted
datasets at the MUs involves encrypting individual raw data
samples into a single ciphertext. However, it is worth noting
that traditional HE schemes, such as CKKS, can facilitate
parallel computation in an SIMD fashion by packing multiple
plaintext instances into a ciphertext value. This approach
significantly reduces the expansion rate, leading to better
amortized space and time complexity [43]. Specifically, CKKS
can encode and encrypt a plaintext vector comprising S slots
into a ciphertext, thus enabling element-wise arithmetic oper-
ations to be performed on the plaintext slots simultaneously.
To handle calculations across inputs located in different slots,
CKKS employs the rotation operation, denoted as Rot(π̃, ℓ).
This operation transforms a ciphertext representation π̃ of a
plaintext vector π = (v1, . . . , vS) ∈ RS into a ciphertext of
σ(π, ℓ) := (vℓ, . . . , vS , v1, . . . , vℓ−1). In this context, the value
of ℓ can be either positive or negative, and a rotation by (−ℓ)
is equivalent to a rotation by (S − ℓ).

By exploiting the SIMD property of the CKKS scheme, we
develop an effective ciphertext packing method to parallelize
the encrypted NN training at the MEN side. Since the number
of slots S in a ciphertext is typically greater than the number of
features F of a training sample, we can speed up the training
process by packing multiple training samples into a single
ciphertext. To achieve this, we divide a plaintext vector into
several blocks. Each block contains F + Q slots, where Q
denotes the number of neurons in the first layer of the NN.
Within each block, the first F slots are used to store the
values of a training sample, while the last Q slots are padded
with zeros. The use of the zero-slot in the encoding simplifies

7

Fig. 2: An illustration of training samples packing. A plaintext vector of S slots is divided into blocks, each containing F +Q
slots, where F is the input size and Q is the number of units in the first NN’s layer. Within each block, the first F slots store
the values of an input vector (i.e., a training sample), while the remaining Q slots are filled with zeroes as padding.

the computation of the encrypted vector-matrix product in the
gradient calculations. By putting each training sample into one
block separately, we can encrypt a batch of

⌊
S

F+Q

⌋
training

samples in a single ciphertext, as illustrated in Fig. 2. With
this packing technique, an MEN can simultaneously calculate
the gradients of

⌊
S

F+Q

⌋
training samples by performing only

one execution of the NN’s forward and backward propagation
over an input ciphertext.

Moreover, we adopt the diagonal encoding scheme in [44]
to encode the weight matrix of a specific NN’s layer. We
define the j-th “extended diagonal” (1 ≤ j ≤ v) of a
weight matrix Wu×v as Λj

(
W) = (Wi,(i+j) mod v

)
1≤i≤u

,
where u and v are the layer input and output dimensions,
respectively. Then, we pack each diagonal vector into an S-
slots plaintext by replicating its value per each block of size
F +Q. The encryption of W results in v separate ciphertexts,
each corresponding to a diagonal of W. An illustration of
the packing and diagonal encoding techniques is shown in
Fig. 3. By using this weight encryption scheme, the product
of an encrypted input batch f from the previous layer with
the encrypted weight matrix W of the current layer can
be calculated by applying a sequence of multiplication and
rotation operations as follows:

z =

⌈u/v⌉∑
i=1

Rot

(
v∑

j=1

Mul
(
Λj(W), Rot(f , j − 1)

)
, v(i− 1)

)
,

(12)
where Rot(.) and Mul(.) represent the ciphertext rotation and
multiplication operators, respectively, as previously defined.

We illustrate the complete process of forward propagation
at an NN layer based on the implemented ciphertext packing
and matrix product computation in Appendix A (Fig. 10).

B. FL Implementaion

By solving the encrypted data caching problem described in
the next section, we can obtain the vector x that determines
the optimal fraction of data to be encrypted and cached at
the MENs/CS. Afterward, the entire privacy-preserving FL
process can be executed at the MUs, MENs and CS. Let Ω̃k =
(F̃k, ỹk) denote the whole encrypted dataset collected from all
MUs in N at the MEN-k which has size of

∑
n∈N xn,kbn,

where F̃k and ỹk are the encrypted data feature matrix and
data label vector at MEN-k, respectively. Additionally, we
define Ωn,0 = (Fn,0,yn,0) as the dataset to be trained locally
at MU-n, which has size of xn,0bn. Here, Fn,0 is the training
feature matrix, and yn,0 is the label vector of local dataset
at MU-n. Furthermore, the goal of the learning process is

to minimize a pre-determined loss function L by gradually
updating the global models’ parameters Γ̄ (i.e., the set of
models’ weights and biases).

Here, we consider the implementation of a DNN model for
a general classification task. Note that the proposed framework
is also applicable to solve other deep learning tasks (e.g.,
regression) or extended for other neural network models (e.g.,
convolutional NN). The gradient descent algorithm is used to
train the NN. Let L = {0, 1, . . . , l, . . . , L} be the set of NNs’
layers, where layer 0 and layer L are the input and output
layer, respectively. As such, the output at layer l + 1 of the
local model at MU-n, denoted by a

(l+1)
n , can be calculated as

a(l+1)
n = αl

(
alnW

l
n + bl

n

)
, (13)

in which Wl
n and bl

n are respectively the weight matrix
and bias vector at layer l, and αl(.) represents the activation
function such as tanh function f(z) = ez−e−z

ez+e−z or sigmoid
function f(z) = 1

1+e−z [45]. To overcome the over-fitting
problem and reduce the generalization error, a dropout layer
ldrop (ldrop < L) can be implemented after the last hidden
layer, which will randomly sets the elements of a

(l+1)
n to 0

with a certain frequency of rate.

For an encrypted model at MEN-k, the output vector ã(l+1)
k

at layer l + 1 can be computed as

ã
(l+1)
k = α̃l

(
ãlk ⊗ W̃l

k ⊕ b̃l
k

)
, (14)

where W̃l
k and b̃l

k are the encrypted weight and bias at
layer l, respectively, while ⊕ and ⊗ are, respectively, the
encrypted version of arithmetic addition and multiplication
operators (i.e., the Add(.) and Mul(.) operators defined in
Section III-A). Specifically, we have π̃1 ⊕ π̃2 = Add(π̃1, π̃2)
and π̃1 ⊗ π̃2 = Mul(π̃1, π̃2) with π̃1 and π̃2 are two
ciphertexts. The output of

(
ãlk ⊗ W̃l

k ⊕ b̃l
k

)
is then also

a vector in encrypted form. In addition, α̃l represents the
polynomial approximation of the activation function αl us-
ing the Taylor series [39]. For example, the sigmoid func-
tion f(z) = 1

1+e−z can be polynomially approximated by
f(z) = 0.5 + 0.25z + 0.02z3. As the approximated function
comprises only homomorphic operations (i.e. addition and
multiplication), it can be calculated over an encrypted input
value, as shown in (14).

Upon reaching the last layer L, the final output vector aLn
at MU-n and ã

(l+1)
k at MEN-k can be respectively expressed

by
aLn = α(L−1)

(
a(L−1)
n W(L−1)

n + b(L−1)
n

)
, (15)

8

Fig. 3: An illustration of packing of a 5× 3 weight matrix W. Each extended diagonal of W is encoded into a plaintext of
S slots by replicating its values within each block of F +Q slots. These plaintexts are then encrypted by HE, resulting in a
total of three ciphertexts.

and
ãLk = α(L−1)

(
ã
(L−1)
k ⊗ W̃

(L−1)
k ⊕ b̃l

k

)
, (16)

where α(L−1) denotes the softmax activation function em-
ployed to generate a probability distribution of all possible
classes [45]. It should be noted that the softmax function
involves the calculation of exponential and inverse functions
that are non-homomorphic. Therefore, direct calculation of
the softmax function using encrypted values as inputs is
not feasible. For that, we adopt the approximation technique
in [37] which is based on the Goldschmidt division method
and Gumbel softmax function to calculate the output vector at
the last layer of an MEN’s encrypted model.

Given yn,0, ỹk, aLn , and ãLk , the loss functions of each
MU-n, n ∈ N and MEN-k, k ∈ K , at r-th learning round
can be acquired through utilizing the squared Frobenius norm,
that is,

Ln

(
Υ(r)

)
=

1

2xn,0bn

∥∥∥aLn − yn,0

∥∥∥2
F
,

=
1

2xn,0bn

xn,0bn∑
j=1

(aLn,j − yn,j)
2,

(17)

and

Lk

(
Υ̃(r)

)
=

1

2
∑

n∈N xn,kbn

∥∥∥ãLk − ỹk

∥∥∥2
F
,

=
1

2
∑

n∈N xn,kbn

∑
n∈N xn,kbn∑

j=1

(ãLk,j − ỹk,j)
2,

(18)
in which Υ

(r)
n and Υ̃

(r)
k are the plain global model at MU-n

and the encrypted global model at MEN-k (such that Υ(r)
n =

Dec(gsk, Υ̃
(r)
k)), respectively, yn,j and ỹk,j are the sample

points of the plain and encrypted ground-truth label vector
yn,0 and ỹk, respectively, while aLn,j and ãLk,j are the elements
of predicted label vector aLn and ãLk , respectively.

From (17) and (18), the local gradient at MU-n and the
encrypted gradient at MEN-k can be respectively calculated
as follows

∇Υ(r)
n =

∂Ln

(
Υ(r)

)
∂Υ(r)

, and ∇Υ̃
(r)
k =

∂Lk

(
Υ̃(r)

)
∂Υ̃(r)

. (19)

Suppose that the local gradient calculated at MU-n can be

simplified as

∇Υ(r)
n =

∂Ln

(
Υ(r)

)
∂Υ

(r)
n

=

∂

[
1

2xn,0bn

∥∥∥aLn − yn,0

∥∥∥2
F

]
∂Υ

(r)
n

,

=
1

2xn,0bn
FT

n

(
Fn,0Υ

(r) − yn,0

)
,

(20)

where Fn,0, yn,0, and yn,0 are respectively the matrix of
training features, vector of true labels, and vector of predicted
labels at MU-n. Accordingly, we can derive the encrypted
gradient at the MEN-k in (19) from its encrypted dataset as
follows

∇Υ̃
(r)
k =

1∑
n∈N xn,kbn

(Fo
i)

T
(
Fo

i Υ̃
(r) − ỹk

)
. (21)

Using (19), each MU-n can encrypt ∇Υ
(r)
n into ∇Υ̃

(r)
n =

Enc
(
gpk,∇Υ

(r)
n

)
and upload ∇Υ̃

(r)
n to a selected MEN

for model aggregation. Let Nk denote the set of MUs who
forwards its local gradient update to the MEN-k. Thus, the
total received gradient at the MEN-k is expressed by

∇Υ̃
(r)
Nk

=
∑
n∈Nk

xn,0bn∇Υ̃(r)
n . (22)

Since the MEN-k also produces its own gradient ∇Υ̃
(r)
k from

the encrypted training process, MEN-k then uploads the total
gradient ∇Υ̃

(r)
Nk

+ ∇Υ̃
(r)
k to the CS. Therefore, the global

encrypted gradient at learning round r can be derived as

∇Υ̃(r) =
∑
k∈K

(
∇Υ̃

(r)
Nk

+∇Υ̃
(r)
k∑

n∈Nk
xn,0bn +

∑
n∈N xn,kbn

)
. (23)

Consequently, the CS can update the encrypted global model
Υ̃(r+1) for the subsequent learning round by using the gradient
descent algorithm. Specifically,

Υ̃(r+1) = Υ̃(r) − λ∇Υ̃(r), (24)

where λ is the learning rate. Additionally, the global loss
function at the (r + 1)-th learning round can be evaluated
as follows:

L
(
Υ̃(r+1)

)
=

1

N +K

(∑
n∈N

Ln

(
Υ(r)

)
+
∑
k∈K

Lk

(
Υ̃(r)

))
.

(25)

9

The learning process continues until either the global loss
reaches convergence or the number of learning rounds exceeds
the predetermined threshold rth. Upon completion, the final
global loss L∗(Υ̃∗) and the final encrypted global model Υ̃∗

are generated. The summary of the entire proposed MEC-
based privacy-preserving FL process is presented in Algo-
rithm 1.

Algorithm 1 Proposed FL Framework with MEC-assisted
Encrypted Training

1: Set rth, Υ̃(0), and r = 0
2: Solve problem (Px) to obtain the vector x of optimal fraction

of data to be encrypted
3: for ∀n ∈ N do
4: Split the entire dataset Ωn into K + 1 subdataset

Ωn,0,Ωn,1, . . . ,Ωn,K where |Ωn,k| = xn,kbn
5: Create a secret key and a public key: gskn = SKGen(n);

gpkn = PKGen(gskn)
6: for ∀k ∈ K do
7: Generate the encrypted subdataset Ω̃n,k from Ωn,k

8: Send the encrypted subdataset Ω̃n,k to the MEN-k
9: end for

10: Set Fn,0 and yn,0 from Ωn,0

11: end for
12: for ∀k ∈ K do
13: Combine the received encrypted datasets into Ω̃k

14: Set F̃k and ỹk from Ω̃k

15: end for
16: while r ≤ rth and L

(
Υ̃(r)

)
is not converged do

17: for ∀n ∈ N do
18: Compute aL

n using Fn,0 and Υ(r)

19: Decrypt ∇Υ̃(r) using the secret key: ∇Υ(r) =

Dec
(
gskn ,∇Υ̃(r)

)
20: Calculate Ln

(
Υ(r)

)
and ∇Υ

(r)
n

21: Send the encrypted value ∇Υ̃
(r)
n = Enc

(
gpkn ,∇Υ

(r)
n

)
and

to a selected MEN
22: end for
23: for ∀k ∈ K do
24: Compute ãL

k using F̃n and Υ̃(r)

25: Find Lk

(
Υ̃(r)

)
and ∇Υ̃

(r)
k

26: Aggregate ∇Υ̃
(r)
Nk

, ∀n ∈ Nk using (22)

27: Send Lk

(
Υ̃(r)

)
and ∇Υ̃

(r)
Nk

+∇Υ̃
(r)
k to the CS

28: end for
29: The CS obtains Lk

(
Υ̃(r)

)
and ∇Υ̃

(r)
Nk

+ ∇Υ̃
(r)
k from all

MENs
30: Calculate the encrypted global gradient ∇Υ̃(r) using (23)
31: Update the encrypted global model Υ̃(r+1) using (24)
32: Evaluate the global loss L

(
Υ̃(r+1)

)
using (25)

33: r = r + 1
34: end while
35: Return the final global loss L∗(Υ̃∗) and the final encrypted

global model Υ̃∗

V. ENCRYPTED DATA CACHING OPTIMIZATION PROBLEM
IN MEC-BASED FL

A. Problem Formulation

Our proposed FL framework aims to maximize the profit
of the MSP while simultaneously minimizing the straggling
problem under the limited incentive budget for encrypted data

caching and training at the MENs and CS. In particular, we
define the profit of the MSP, which is composed of the gain
and cost functions, respectively, for the local model training
execution at MU-n and the encryption-based model training
execution at MEN-k as follows:

Pk = λk

√√√√ N∑
n=1

xn,kbn︸ ︷︷ ︸
Gain function

− (ζkµkf
2
kψk + βk)

N∑
n=1

xn,kbn︸ ︷︷ ︸
Cost function

,
(26)

and

Pn = λn

√√√√(1− K∑
k=1

xn,k

)
bn︸ ︷︷ ︸

Gain function

− ρn

(
1−

K∑
k=1

xn,k

)
bn︸ ︷︷ ︸

Cost function

,

(27)
where the conversion parameters λk and λn indicate the
monetary value of utilizing the encrypted dataset cached at
MEN-k and the raw local dataset at MU-n, respectively,
according to the current data market prices [46]. Here, ζk is
the processor’s effective capacitance constant for MEN-k, ψk

is the unit cost of energy usage to train a data sample in
the encrypted format, and βk represents the incentive unit for
each encrypted data sample of MU-n in the remote training
process at the MEN or CS. Additionally, the constant ρn is the
incentive unit for MU-n to be involved in the local training
process. As the square root function is utilized inside the gain
functions of both Pk and Pn, those gain values grow when
more data is used in the FL training. However, the MSP may
not be motivated to increase the size of the training dataset
if a substantial increase results in a reduced overall gain in
the model’s accuracy [47]. In light of this, we consider the
optimization problem to maximize the MSP’s profit as follows:

(Px) max
x

N∑
n=1

Pn +

K∑
k=1

Pk, (28a)

s.t. 1−
K∑

k=1

xn,k ≥ 0,∀n ∈ N , (28b)(
1−

K∑
k=1

xn,k

)
bn ≤ cn,∀n ∈ N , (28c)

N∑
n=1

xn,kbn ≤ ck,∀1 ≤ k < K, (28d)

0 ≤ Tm
n ≤ Tmax + T com−u

K ,∀n ∈ N ,∀k ∈ K, (28e)

0 ≤ T ∗
k ≤ Tmax + T com−u

K ,∀k ∈ K, (28f)
N∑

n=1

ρn

(
1−

K∑
k=1

xn,k

)
bn +

K∑
k=1

(
βk

N∑
n=1

xn,kbn

)
≤ I,

(28g)
0 ≤ xn,k ≤ 1,∀n ∈ N ,∀k ∈ K, (28h)

where constraints (28b) indicate the total portion of encrypted
data at each MU-n must not be exceed 1. Constraints (28c)

10

and (28d) guarantee that the size of the raw dataset for training
at MU-n must not exceed the maximum threshold cn, and the
size of the encrypted dataset aggregated at an MEN-k must not
exceed its training capacity, for k < K, owing to its limited
computational resources. Subsequently, constraints (28e) and
(28f) imply that in order to prevent the straggling effect, the
training duration for each communication round must be less
than or equal to the deadline time Tmax + T com−u

K . Finally,
constraint (28g) indicates that the MSP’s incentive budget,
which is denoted by I , must be larger than the total incentives
offered to all participating MUs.

B. Optimal Solution

To find the optimal solution in the proposed optimization
problem (Px), we prove that the problem is convex. This can
be achieved by showing that the objective function outlined
in (28a) is concave, since all the constraints (28b) - (28h) are
linear.

THEOREM 1. The function represented by (28a), i.e.,[∑N
n=1 Pn +

∑K
k=1 Pk

]
, is concave w.r.t. all xn,k,∀n ∈

N ,∀k ∈ K, given that constraints (28b)-(28h) are satisfied.

Proof. See Appendix B

Since (Px) is a convex optimization problem, it can be
solved using the well-known tools introduced in [48]. In
this work, we utilize the interior point method, which has
been proven effective in solving large-scale, sparse non-linear
optimization problems [49].

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed FL framework in mitigating the straggling problem and
maximizing the profit of the MSP. Specifically, we simulate
an MEC network in MATLAB and solve the optimization
problem outlined in Section V to find the optimal amount of
data to be encrypted and cached at MENs/CS. Using the de-
rived optimal solution, we create and distribute the encrypted
datasets to the corresponding MENs and CS for training a
practical ML model. The goal is to demonstrate the model
accuracy and convergence rate of the proposed FL framework.
Next, the MSP’s profit will be evaluated and compared with
other baseline solutions. To this end, we begin this section
by presenting the parameters used in the simulations and then
provide a detailed description of the ML dataset and model
architecture in the next subsection.

A. Dataset and NN Architecture Setup

In our experiments, we evaluate the performance of the
proposed FL framework using a dataset from real-world hu-
man activity recognition (HAR) collected in 2019 [25]. The
dataset includes 15 million raw samples of gyroscope and
accelerometer sensors’ data extracted from the smartphones
and smartwatches of multiple users. From the total of 18 ac-
tivity labels, we select seven hand-oriented activities, including
dribbling a basketball, playing catch, typing, writing, clapping,
brushing teeth, and folding clothes, numbered from 1 to 7,

TABLE II: Neural network architecture.

Layer Number of Neurons Activation Function
Input 91 -

Hidden Layer 1 60 Sigmoid
Hidden Layer 2 30 None

Output 7 None

respectively. The extracted dataset is then randomly divided
into training set (80%) and testing set (20%). Additionally, all
the samples are normalized through subtracting the average
and dividing by the standard deviation of the training samples.
We consider two data distribution scenarios for the FL training:
i.i.d. and non-i.i.d.. For i.i.d. setting, each MU is randomly
assigned a uniform distribution over all seven classes. In the
non-i.i.d. setting, the data is sorted by class and divided to
create an extreme case in which the data samples from two
different MUs have no common labels. The NN architecture
used in the experiments is shown in TABLE II, consisting of
a simple three-layer fully connected network with a sigmoid
activation function in the first hidden layer.

B. System Parameters

To evaluate the MSP’s profit, we use MATLAB to simulate
an MEC network with 1 CS, 4 MENs, and 100 participating
MUs. The dataset size of each participating MU-n is randomly
chosen from 100,000 to 1,000,000 samples. According to the
HAR dataset, each training sample has 91 features, resulting in
a total size of 2,912 bits (assuming that each feature is a 32-bit
floating point number). The communication rates between CS-
MEN, MEN-MU, and CS-MU are set at rKk = 200Mbps,∀k ∈
K, k ̸= K, rkn = 30Mbps,∀k ∈ K, k ̸= K,∀n ∈ N ,
and rKn = 20Mbps,∀n ∈ N , respectively, regarding the
actual rates of 5G and Wi-Fi connections [50], [51]. The
monetary benefits of using encrypted datasets at the MENs/CS
and raw datasets at the MUs are respectively specified as
λk = 0.5,∀k ∈ K and λn = 0.1,∀n ∈ N , owing to
the non-i.i.d. nature of local datasets at individual MUs. As
a result, the training updates obtained from the combined
datasets at the MENs/CS are more valuable for the MSP in
terms of improving the global model accuracy. We utilize
ζk = 0.5 × 10−26 [52], and the CPU frequencies of MENs
and MUs are respectively fk = 2GHz, and fn = 1.18GHz
with respect to specifications of prevalent devices [53], [54].
We also set βk = 0.0001,∀k ∈ K, k ̸= K, and βK = 0.0008
to reflect that the cost of caching the encrypted data at the
CS is higher than that at the MENs. The other parameters are
µk = 0.01, ρn = 0.001, and Tmax = 1 second. The proposed
FL framework, denoted as FLEET (Federated Learning with
Edge-assisted Encrypted Training), is compared to two other
scenarios: (i) FLEET-CS, where the data from an MU can only
be encrypted and uploaded to the CS, and (ii) the traditional
FL approach using FedAvg method [55], where the training is
only performed locally using the raw datasets at the MUs.

C. Performance on FL Accuracy

1) Accuracy with different numbers of MUs: In this sub-
section, we examine the FL accuracy and convergence rate

11

0 100 200 300 400 500
Communication round

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
Communication round

20

40

60

80

Ac
cu

ra
cy

 (%
)

0 100 200 300 400 500
Communication round

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

MU
-1

MU
-2

MU
-3

ME
N-

1
ME

N-
2 CS

0

5

Sa
m

pl
es

×103

Non-IID Data Distribution
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7

MU
-1

MU
-2

MU
-3

MU
-4

MU
-5

ME
N-

1
ME

N-
2 CS

0.0

2.5

Sa

m
pl

es

×103

Non-IID Data Distribution
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7

MU
-1

MU
-2

MU
-3

MU
-4

MU
-5

MU
-6

MU
-7

ME
N-

1
ME

N-
2 CS

0.0

2.5

Sa

m
pl

es

×103

Non-IID Data Distribution
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7

FLEET w. iid data FedAvg w. iid data FLEET w. non-iid data FedAvg w. non-iid data Centralized

(a) 3 MUs (b) 5 MUs (c) 7 MUs

Fig. 4: The accuracy performance under i.i.d. and non-i.i.d. data settings as the number of participating MUs increases.

Dribbling
(Basketball)

Playing
Catch

Typing Writing Clapping Brushing
Teeth

Folding
Clothes

Predicted Label

D
rib

bl
in

g
(B

as
ke

tb
al

l)
Pl

ay
in

g
C

at
ch

Ty
pi

ng
W

rit
in

g
C

la
pp

in
g

Br
us

hi
ng

Te
et

h
Fo

ld
in

g
C

lo
th

es

Tr
ue

 L
ab

el

0.89 0.02 0.00 0.01 0.03 0.02 0.03

0.02 0.88 0.00 0.02 0.02 0.03 0.03

0.00 0.00 0.86 0.09 0.00 0.00 0.05

0.00 0.01 0.08 0.87 0.00 0.01 0.03

0.03 0.02 0.02 0.02 0.85 0.03 0.02

0.01 0.03 0.01 0.01 0.02 0.91 0.01

0.00 0.02 0.05 0.05 0.01 0.02 0.85

0.0

0.2

0.4

0.6

0.8
Sc

al
e

Fig. 5: Confusion matrix of FLEET with 7 participating MUs.

of our proposed framework in various scenarios. Here, we
consider a simple MEC network consisting of 1 CS, and 2
MENs, and the number of participating MUs is increased
from 3 to 7. Fig. 4 demonstrates the training process of the
conventional FL (FedAvg [55]) and the proposed FL (FLEET)
with different numbers of MUs, where both i.i.d. and non-
i.i.d. data distribution scenarios are taken into account. The
figure also includes the training process of centralized deep
learning for comparison. Here, it is worth mentioning that
one communication round in the FL approach is equiva-
lent to one epoch in the centralized method. According to
Fig. 4, the FLEET framework can generally preserve an
identical accuracy performance in both i.i.d. and non-i.i.d.
data scenarios, regardless the number of participating MUs.
Considering the i.i.d. scenario, the FLEET achieves higher
accuracy with an improvement up to 1.24% over the FedAvg.
Notably, in the case of 3 participating MUs, the accuracy of
the FLEET is nearly equivalent to that of centralized learning,
with a performance deviation of only 0.28%. Moreover, the
FLEET demonstrates greater stability in terms of accuracy
performance at each learning round and reaches an accuracy

level of 86%, which is 1.56 to 2.86 times faster than the
FedAvg in case of 5 and 7 participating MUs, respectively.
The reason is that the FedAvg uses a lower number of training
samples to update the global model in each learning round
due to the limited size of the dataset that can be handled at
the MUs. Meanwhile, it can be observed from Fig. 4 that the
convergence speed of the FLEET slightly reduces when the
number of MUs increases from 3 to 7. This is because when
more MUs participate in the FL process, the local datasets
at the MUs become smaller, leading to an imbalance in the
number of training samples at the MENs and CS, thereby
degrading the training performance [11].

When the local datasets at participating MUs are in a non-
i.i.d. setting, which is more reflective of practical conditions,
the conventional FL approach experiences accuracy reduction.
This is influenced by the biased model updates from non-i.i.d.
data and the insufficient number of training samples, which
hinders the improvement of accuracy levels. Typically, in the
case of 7 participating MUs, the final accuracy in FedAvg drops
to only 62.11% (as depicted in Fig. 4(c)), as the entire dataset
at an MU now consists solely of data from a single class,
leading to a substantial bias. In contrast, FLEET is capable
of maintaining the same accuracy level as in the i.i.d. data
scenario, and thus produces an accuracy gap with FedAvg of
10.48%, 11.99%, and 24.29% when using 3 MUs, 5 MUs,
and 7 MUs, respectively. Later, the confusion matrix in Fig. 5
demonstrates the prediction performance of the proposed FL
framework for each activity label with 7 participating MUs.
From the above results, it can be inferred that incorporating
the additional encrypted caching and training process at MENs
generally accelerates the convergence rate, enhances the global
model accuracy, and results in more consistent performance,
particularly in a practical non-i.i.d. data distribution environ-
ment.

2) Accuracy under different straggling probabilities: To
further demonstrate the superiority of the FLEET, we evaluate
its performance under various straggling probabilities, i.e., the
the probability that participating MUs face straggling problems
such as low computation resources or poor communication
links (which prevent them from sending local updates to the
corresponding MENs/CS at a given learning round for model

12

0 100 200 300 400 500
Communication round

20

30

40

50

60

70

80

90
Ac

cu
ra

cy
 (%

)

FLEET
FedAvg

(a) 20% straggling probability

0 100 200 300 400 500
Communication round

20

40

60

80

Ac
cu

ra
cy

 (%
)

FLEET
FedAvg

(b) 50% straggling probability

0 100 200 300 400 500
Communication round

20

40

60

80

Ac
cu

ra
cy

 (%
)

FLEET
FedAvg

(c) 80% straggling probability

Fig. 6: The accuracy performance of FLEET and FedAvg under various straggling probabilities.

aggregation). Using a system consisting of 5 MUs for training,
we consider three different straggling probabilities of 20%,
50%, and 80% so that when the straggling probability rises,
fewer MUs are able to upload aggregated local models at
each round. As shown in Fig. 6, the FLEET maintains an
accuracy of approximately 86.8% for all straggling probability
scenarios, while the FedAvg fails to retain its accuracy when
the straggling probability gets higher. As a result, the final
training accuracy of FLEET surpasses that of FedAvg by
9.70%, 10.66%, and 25.96%, respectively, for 20%, 50%, and
80% straggling probabilities. The results also highlight that our
proposed framework can fully maintain its level of accuracy, as
well as steady convergence speed in the presence of unreliable
communication links and unstable processing capability of
participating devices. This is owing to the additional secure
training process at MENs which compensates for the strag-
gling problems.

D. Performance on The MSP’s Profit

We first examine the MSP’s profit obtained using the FLEET
when the computation resources across all MENs increase
from 0 to 50Gbit. To emphasize the straggling issue in the FL
process, we will keep the computation resources at the MUs
at a low setting of 0.1Gbit. As observed in Fig. 7, the FLEET
can outperform FLEET-CS and FedAvg by, respectively, 2.84
and 5.07 times in terms of the MSP’s total profit on account
of the additional profit gains from training process at MENs.
Furthermore, training the encrypted datasets at MENs located
near the MUs helps to minimize the costs induced by caching
and computing processes at the CS. This is aligned with the
highest profit returns by training process at the MENs, as
shown in Fig. 7. There exists a certain threshold, which is
identified as 35Gbit, beyond which further enhancement of
computation resources at the MENs does not improve the
profit of the MSP. Starting from this threshold, the majority of
data samples from a single MU are encrypted and uploaded to
the MENs for additional training process in order to optimize
profits, as depicted in Fig. 8. Nevertheless, an MU is still able
to train around 10.19% of its entire dataset by utilizing local
computation resources without encountering the straggling
problem, so as to reduce the need for encrypted training with
higher costs at the remote servers.

FedAvg
FLEET-CS 10 15 20 25 30 35 40 45

Computing resources of MENs in Gbit

0

100

200

300

400

500

Pr
of

it
of

 th
e

M
SP

Profit from MUs
Profit from MENs
Profit from CS

Fig. 7: The MSP’s profit when MENs’ computation resources
increase.

10 15 20 25 30 35 40 45
Computing resources of MENs in Gbit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

En
cr

yp
te

d
da

ta
 p

or
tio

n
of

 a
n

M
U

MEN #1
MEN #2

MEN #3
MEN #4

CS

Fig. 8: The average portion of encrypted data at an MU when
MENs’ computation resources increase.

Next, we examine the improvement in the performance of
FLEET as the MUs’ computation resources vary between
0.1Gb and 10Gb while the MENs’ computation resources
remain constant. As illustrated in Fig. 9(a), the MSP’s profit
obtained by using FedAvg gradually increases as the MUs
are complemented with more computation resources, so as to
mitigate the straggling problem. This aligns with the results
presented in TABLE III which indicate a higher percentage
of local datasets that can be used to train local models at
MUs without incurring the straggling problem. However, the
MSP’s profit from FedAvg reaches its maximum when the
MU can train its entire local dataset locally, specifically when

13

the computation resources of the MU exceed 3Gbits. In this
experiment, the FLEET can still attain the maximum MSP’s
profit (regardless the MUs’ computation resources) with an
increase of at least 1.56 times and 1.42 times compared to
FedAvg and FLEET-CS, respectively. In particular, despite the
decrease in the total portion of encrypted data cached at the
MENs/CS as the MUs’ computation resources increase (as
shown in TABLE III), the FLEET can still slightly enhance
the MSP’s profit through training a larger amount of data at
the MENs and CS, thereby contributing the additional profit.
Once the portions of encrypted data at MENs reach optimal
levels, the MSP’s profit of FLEET will no longer increase, and
this trend can also be observed with a lower profit in the case
of FLEET-CS.

TABLE III: The average portions of local and encrypted data
at an MU when MUs’ computation resources increase.

cn (Gb) FedAvg FLEET-CS FLEET
Local Local Encrypted Local Encrypted

0.1 0.0626 0.0626 0.9374 0.0611 0.9389
0.5 0.3063 0.3057 0.6943 0.3047 0.6953
1 0.5592 0.5485 0.4515 0.4284 0.5716
2 0.8943 0.8741 0.1259 0.4485 0.5515
3 1.0000 0.8741 0.1259 0.4485 0.5515
4 1.0000 0.8741 0.1259 0.4485 0.5515
5 1.0000 0.8741 0.1259 0.4485 0.5515

0 1 2 3 4 5
Computing resources of MUs in Gbit

100

200

300

400

500

Pr
of

it
of

 th
e

M
SP

FedAvg
FLEET-CS
FLEET

(a) Varying MUs’ computation resources

10 20 30 40 50
Incentive budget of the MSP

300

350

400

450

500

550

Pr
of

it
of

 th
e

M
SP

FedAvg
FLEET-CS
FLEET

(b) Varying the MSP’s budget

Fig. 9: The MSP’s profit when computation resources of MUs
and MSP’s incentive budget increase.

TABLE IV: The average portions of local and encrypted data
at an MU as the MSP’s incentive budget changes.

I
FedAvg FLEET-CS FLEET
Local Local Encrypted Local Encrypted

10 0.5592 0.5592 0.0083 0.3489 0.6511
20 0.5592 0.5592 0.0865 0.4507 0.5493
30 0.5592 0.5592 0.1647 0.4389 0.5611
40 0.5592 0.5592 0.2435 0.4401 0.5599
50 0.5592 0.5592 0.3211 0.4482 0.5518

Fig. 9(b) demonstrates how the MSP’s profit changes when
the MSP’s incentive budget varies between 10 and 50 mone-
tary units. At a small budget of 10 monetary units, the FLEET
has the lowest MSP’s profit due to the insufficient budget
for incentivizing MUs to cache data at MENs and the CS,
resulting in the smallest portion of encrypted data at the MU
(as observed in TABLE IV). As the incentive budget increases
beyond 20 monetary units, both the MSP’s profit and the
portion of the encrypted data at the MU remain relatively
constant. In this case, the FLEET can yield a profit 1.99
and 1.58 times larger than those of FedAvg and FLEET-CS,
respectively. The profit for the FedAvg shown in TABLE IV
remains unchanged in this experiment since the budget of 10
units is sufficient to incentivize the MUs to train 55.92% of
their datasets (note that the percentage is less than 100% due to
the limited MUs’ computation resources). On the other hand,
the profit for the MSP in FLEET-CS grows gradually from 10
to 50 monetary units. This is thanks to a higher profit gain
from the training process at the CS when providing additional
incentives to the MUs for encrypting and caching data. These
results suggest that with an adequate budget for incentives
and sufficient computational resources, the MSP can enhance
its profits by encrypting and caching larger portions of local
data at the MENs, which then incurs minimal costs for data
encryption and caching.

VII. CONCLUSION

In this paper, we have proposed a novel privacy-preserving
FL framework to mitigate the straggling problem in the MEC
network. Specifically, we have utilized the homomorphic en-
cryption method that enables the participating MUs to encrypt
their raw data prior to uploading them to the CS or nearby
MENs for caching and remote training processes. In order
to facilitate encrypted training at the MENs/CS, we have
developed an efficient HE-based ciphertext packing method
that exploits the single instruction multiple data technique.
Building upon this approach, we then formulated an opti-
mization problem aimed at identifying the optimal portions
of encrypted data that can be cached and trained at the
MENs/CS. The objective of this optimization problem is to
maximize the MSP’s profit, while taking into account various
constraints such as available computation resources at the MUs
and MENs, the MSP’s budget for caching and training, and the
deadline for each learning round. We also have proved that the
optimization problem is convex, and thus the optimal solution
can be efficiently obtained by using the interior point method.
Through the experimental results, we have shown that our pro-
posed framework can significantly enhance the MSP’s profit

14

and achieve the superior model accuracy and convergence
speed compared with other baseline FL methods. Future works
include the implementation of FL in dynamic environments, in
which the MUs receive new data classes in an online fashion.
Here, the proposed framework can be extended to continuously
learn and cache the data of new classes to enhance the model’s
convergence speed and maintain system stability. Additionally,
the training performance with the encrypted datasets can be
further improved by using more sophisticated ML techniques,
e.g., dataset pruning or few-shot learning.

APPENDICES

APPENDIX A

Fig. 10 illustrates the batch forwarding process of an NN
layer using the implemented ciphertext packing method. In this
example, the input and output sizes are 5 and 3, respectively,
and the input batch contains 3 training samples. First, the
encrypted extended diagonals are multiplied by the encrypted
input batch. Then, these encryptions are re-aligned using the
rotation operator and added together. The resulting ciphertext
includes multiple 3-slot chunks, each containing partial sums
of the vector-matrix product. All these chunks are accumulated
using the rotation operator to obtain the ciphertext z, which
represents the linear transformation of the input batch f .
Finally, the HE-approximated activation function is applied
over the ciphertext z to obtain the output batch a of the layer.

APPENDIX B
PROOF OF THEOREM 1

First, we introduce that γk = ζkηkf
2
kαk + βk. Next, we

respectively transform (26) and (27) into

Pk = λk

[
N∑

n=1

xn,kbn

] 1
2

− γk

N∑
n=1

xn,kbn, and (29)

Pn = λn

[(
1−

K∑
k=1

xn,k

)
bn

] 1
2

− ρn

(
1−

K∑
k=1

xn,k

)
bn.

(30)
Then, we can calculate the first order partial derivatives of Pk

and Pn with respect to x as follows::

∇Pk =

[
∂Pk

∂x1,1
, . . . ,

∂Pk

∂x1,M
, . . . ,

∂Pk

∂xn,k
, . . . ,

∂Pk

∂xJ,M

]

=

[
0, . . . ,

∂Pk

∂xn,k
, . . . , 0

]
, and

(31)

∇Pn =

[
∂Pn

∂x1,1
, . . . ,

∂Pn

∂x1,M
, . . . ,

∂Pn

∂xn,k
, . . . ,

∂Pn

∂xJ,M

]

=

[
0, . . . ,

∂Pn

∂xn,k
, . . . , 0

]
,

(32)

where

∂Pk

∂xn,k
=

1

2
λkbn

[
N∑

n=1

xn,kbn

]− 1
2

− γkbn, (33)

∂Pn

∂xn,k
= −1

2
λnbn

[(
1−

K∑
k=1

xn,k

)
bn

]− 1
2

+ ρnbn. (34)

Also, we can calculate the second partial derivative of Pk,
i.e., Hk = ∇2Pk. Subsequently, we can obtain the general
expressions for the second derivative components by.

∂2Pk

∂2xn,k
= −1

4
λkb

2
n

[
N∑

n=1

xn,kbn

]− 3
2

, (35)

∂2Pk

∂xn,k∂xn†,m

= −1

4
λkbnbn†

[
N∑

n=1

xn,kbn

]− 3
2

,∀n† ̸= n,

(36)
∂2Pk

∂xn,k∂xj,k†
=

∂2Pk

∂xn,k∂xn†,k†
= 0,∀n† ̸= n, ∀k† ̸= k. (37)

Similarly, we can write Hn = ∇2Pn, and derive that

∂2Pn

∂2xn,k
=

∂2Pk

∂xn,k∂xj,k†
(38)

= −1

4
λnb

2
n

[(
1−

K∑
k=1

xn,k

)
bn

]− 3
2

,∀k† ̸= k,

∂2Pk

∂xn,k∂xn†,m

=
∂2Pk

∂xn,k∂xn†,k†
= 0,∀n† ̸= n, ∀k† ̸= k.

(39)
Given a real vector x ∈ R(N∗K)×1 with 0 ≤ xn,k ≤
1,∀n ∈ N ,∀k ∈ K, it can be concluded that xTHkx ≤ 0
and xTHnx ≤ 0, where Hk,Hn,∀n ∈ N ,∀k ∈ K are
negative semi-definite matrices. As a result, Pk,∀k ∈ K and
Pn,∀n ∈ N are concave functions with respect to vector x.
To this end, the objective function, which is calculated by[∑N

n=1 Pn +
∑K

k=1 Pk

]
, is also a concave function [48].

REFERENCES

[1] N. Rieke et al., “The future of digital health with federated learning,”
NPJ digital medicine, vol. 3, no. 1, p. 119, Sep. 2020.

[2] H. Elayan, M. Aloqaily, and M. Guizani, “Digital twin for intelligent
context-aware iot healthcare systems,” IEEE Internet Things J., vol. 8,
no. 23, pp. 16749–16757, Dec. 2021.

[3] Y. Tian et al., “Robust and privacy-preserving decentralized deep fed-
erated learning training: Focusing on digital healthcare applications,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
pp. 1–12, Mar. 2023.

[4] J. P. Usuga Cadavid et al., “Machine learning applied in production
planning and control: a state-of-the-art in the era of industry 4.0,”
Journal of Intell. Manuf., vol. 31, pp. 1531–1558, Jan. 2020.

[5] W. Sun et al., “Adaptive federated learning and digital twin for industrial
internet of things,” IEEE Trans. Ind. Informat., vol. 17, no. 8, pp. 5605–
5614, Oct. 2020.

[6] K. Gu, Y. Zhang, and J. Qiao, “Ensemble meta-learning for few-shot
soot density recognition,” IEEE Trans. Ind. Informat., vol. 17, no. 3, pp.
2261–2270, Apr. 2020.

[7] M. Xu et al., “Wireless edge-empowered metaverse: A learning-based
incentive mechanism for virtual reality,” in Proc. IEEE Int. Conf.
Commun. (ICC). IEEE, May 2022, pp. 5220–5225.

[8] J. Kang et al., “Blockchain-based federated learning for industrial meta-
verses: Incentive scheme with optimal aoi,” in 2022 IEEE International
Conference on Blockchain. IEEE, Aug. 2022, pp. 71–78.

[9] J. Konečný et al., “Federated learning: Strategies for improving com-
munication efficiency,” arxiv:1610.05492, 2017.

[10] O. A. Wahab et al., “Federated machine learning: Survey, multi-level
classification, desirable criteria and future directions in communication
and networking systems,” IEEE Commun. Surveys Tuts., vol. 23, no. 2,
pp. 1342–1397, Feb. 2021.

15

[11] W. Y. B. Lim et al., “Federated learning in mobile edge networks: A
comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, Apr. 2020.

[12] Z. Chai et al., “FedAT: A high-performance and communication-efficient
federated learning system with asynchronous tiers,” arxiv:2010.05958,
2021.

[13] Z. Xu et al., “Helios: Heterogeneity-aware federated learning with
dynamically balanced collaboration,” arxiv:1912.01684, 2021.

[14] Z. Ji et al., “Computation offloading for edge-assisted federated learn-
ing,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 9330–9344, Sep.
2021.

[15] S. Prakash et al., “Coded computing for low-latency federated learning
over wireless edge networks,” IEEE J. Sel. Areas Commun., vol. 39,
no. 1, pp. 233–250, Jan. 2021.

[16] Y. Chen et al., “Asynchronous online federated learning for edge devices
with non-IID data,” in 2020 IEEE International Conference on Big Data
(Big Data), Dec. 2020, pp. 15–24.

[17] M. Chen, B. Mao, and T. Ma, “FedSA: A staleness-aware asynchronous
federated learning algorithm with non-IID data,” Future Generation
Computer Systems, vol. 120, pp. 1–12, Jul. 2021.

[18] N. Yoshida et al., “Hybrid-FL for wireless networks: Cooperative
learning mechanism using non-IID data,” in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2020, pp. 1–7.

[19] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning
for wireless edge intelligence in IoT,” IEEE Internet Things J., vol. 7,
no. 7, pp. 5986–5994, Nov. 2019.

[20] L. U. Khan et al., “Federated learning for edge networks: Resource
optimization and incentive mechanism,” IEEE Commun. Mag., vol. 58,
no. 10, pp. 88–93, Oct. 2020.

[21] N. J. H. Marcano et al., “On fully homomorphic encryption for privacy-
preserving deep learning,” in 2019 IEEE Globecom Workshops, Dec.
2019, pp. 1–6.

[22] Z. Yue et al., “Privacy-preserving time-series medical images analysis
using a hybrid deep learning framework,” ACM Trans. Internet Technol.,
vol. 21, no. 3, pp. 1–21, Jun. 2021.

[23] M. Albrecht et al., Homomorphic Encryption Standard. Springer
International Publishing, Jan. 2021, pp. 31–62.

[24] Y. Mao et al., “A survey on mobile edge computing: The communication
perspective,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–
2358, Aug. 2017.

[25] G. M. Weiss, K. Yoneda, and T. Hayajneh, “Smartphone and
smartwatch-based biometrics using activities of daily living,” IEEE
Access, vol. 7, pp. 133190–133202, Sep. 2019.

[26] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arxiv:1903.03934, 2019.

[27] V.-D. Nguyen et al., “Fedfog: Network-aware optimization of federated
learning over wireless fog-cloud systems,” IEEE Transactions on Wire-
less Communications, vol. 21, no. 10, pp. 8581–8599, Oct. 2022.

[28] M. R. Sprague et al., “Asynchronous federated learning for geospatial
applications,” in ECML PKDD 2018 Workshops, Mar. 2019, pp. 21–28.

[29] D. Wu et al., “FedAdapt: Adaptive offloading for IoT devices in
federated learning,” arxiv:2107.04271, 2022.

[30] K. Lee et al., “Speeding up distributed machine learning using codes,”
IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[31] R. Tandon et al., “Gradient coding: Avoiding stragglers in distributed
learning,” in Proc. Int. Conf. Mach. Learn., Aug. 2017, pp. 3368–3376.

[32] Y. Sun et al., “Stochastic coded federated learning with convergence and
privacy guarantees,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aug.
2022, pp. 2028–2033.

[33] K. Nandakumar et al., “Towards deep neural network training on en-
crypted data,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops, Jun. 2019, pp. 40–48.

[34] E. Hesamifard et al., “Privacy-preserving machine learning as a service,”
Proc. Priv. Enhancing Technol., vol. 2018, no. 3, pp. 123–142, Mar.
2018.

[35] E. Hesamifard, H. Takabi, and M. Ghasemi, “Deep neural networks
classification over encrypted data,” in Proceedings of the Ninth ACM
Conference on Data and Application Security and Privacy, Mar. 2019,
pp. 97–108.

[36] S. Meftah et al., “DOReN: toward efficient deep convolutional neural
networks with fully homomorphic encryption,” IEEE Trans. Inf. Foren-
sics Security, vol. 16, pp. 3740–3752, Jun. 2021.

[37] J.-W. Lee et al., “Privacy-preserving machine learning with fully homo-
morphic encryption for deep neural network,” IEEE Access, vol. 10, pp.
30039–30054, Mar. 2022.

[38] M. Kim et al., “Secure human action recognition by encrypted neural
network inference,” Nat. Commun., vol. 13, no. 1, p. 4799, Aug. 2022.

[39] J. H. Cheon et al., “Homomorphic encryption for arithmetic of approx-
imate numbers,” in Advances in Cryptology – ASIACRYPT 2017, Nov.
2017, pp. 409–437.

[40] P.-E. Clet, O. Stan, and M. Zuber, “BFV, CKKS, TFHE: Which one is
the best for a secure neural network evaluation in the cloud?” in Applied
Cryptography and Network Security Workshops, Jul. 2021, pp. 279–300.

[41] J. Kang et al., “Incentive mechanism for reliable federated learning:
A joint optimization approach to combining reputation and contract
theory,” IEEE Internet Things J., vol. 6, no. 6, pp. 10700–10714, Dec.
2019.

[42] N. Ferdinand et al., “Anytime minibatch: Exploiting stragglers in online
distributed optimization,” arXiv:2006.05752, 2020.

[43] X. Jiang et al., “Secure outsourced matrix computation and application
to neural networks,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2018, pp. 1209–1222.

[44] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
low latency framework for secure neural network inference,” in 27th
USENIX Security Symposium, Aug. 2018, pp. 1651–1669.

[45] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 3, pp. 2224–2287, Mar. 2019.

[46] L. Xu et al., “Privacy or utility in data collection? A contract theoretic
approach,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 7, pp. 1256–
1269, Oct. 2015.

[47] P. A. Samuelson and W. D. Nordhaus, Microeconomics. Boston, MA,
USA: McGraw-Hill Education, 2005.

[48] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.

[49] R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm
for large-scale nonlinear programming,” SIAM J. Optim., vol. 9, no. 4,
pp. 877–900, Apr. 1999.

[50] B. Halvarsson et al., “5g NR testbed 3.5 GHz coverage results,” in Proc.
IEEE 87th Veh. Technol. Conf. (VTC Spring), Jun. 2018, pp. 1–5.

[51] Z. Wang et al., “A WiFi-direct based local communication system,” in
Proc. IEEE/ACM 26th Int. Symp. Qual. Service (IWQoS), Jun. 2018, pp.
1–6.

[52] N. Kim et al., “Incentive-based coded distributed computing manage-
ment for latency reduction in iot services—a game theoretic approach,”
IEEE Internet Things J., vol. 8, no. 10, pp. 8259–8278, May 2020.

[53] Lenovo ThinkSystem SE350 Edge Server, Lenovo, accessed: 08-Mar-
2023. [Online]. Available: https://lenovopress.lenovo.com/LP1168

[54] “Exynos w920: Wearable processor,” Samsung Semiconductor Global,
accessed: 08-Mar-2023. [Online]. Available: https://semiconductor.
samsung.com/processor/wearable-processor/exynos-w920/

[55] B. McMahan et al., “Communication-efficient learning of deep networks
from decentralized data,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS),
Apr. 2017, pp. 1273–1282.

https://lenovopress.lenovo.com/LP1168
https://semiconductor.samsung.com/processor/wearable-processor/exynos-w920/
https://semiconductor.samsung.com/processor/wearable-processor/exynos-w920/

16

Fig. 10: Illustration of the batch forwarding process of a NN layer using the implemented ciphertext packing method.

