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Abstract

The development of quantum computers represents a breakthrough in the evolution of computing. Their graceful processing

capacity will help to solve some problems impossible until now because the algorithms that calculate their solution require too

much amount of memory or processing time. In portfolio theory, the investment portfolio optimization problem is one of those

problems whose complexity grows exponentially with the number of assets. In this work we analyze the Variational Quantum

Eigensolver algorithm, applied to solve the portfolio optimization problem, running on simulators and real quantum computers

from IBM. We compare the results with three other classical algorithms for the same problem, running one equivalent condition.

By backtesting classical and quantum computing algorithms, we can get a sense of how these algorithms might perform in the

real world. This work explores the backtesting of quantum and classical computing algorithms for portfolio optimization and

compares the results. The benefits and drawbacks of backtesting are discussed, as well as some of the challenges involved in

using real quantum computers of more than 100 qubits. Results show quantum algorithms can be competitive with classical

ones, with the advantage of being able to handle a large number of assets in a reasonable time on a future larger quantum

computer.
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ABSTRACT The development of quantum computers represents a breakthrough in the evolution of
computing. Their graceful processing capacity will help to solve some problems impossible until now
because the algorithms that calculate their solution require too much amount of memory or processing
time. In portfolio theory, the investment portfolio optimization problem is one of those problems whose
complexity grows exponentially with the number of assets. In this work we analyze the Variational Quantum
Eigensolver algorithm, applied to solve the portfolio optimization problem, running on simulators and real
quantum computers from IBM. We compare the results with three other classical algorithms for the same
problem, running one equivalent condition. By backtesting classical and quantum computing algorithms, we
can get a sense of how these algorithms might perform in the real world. This work explores the backtesting
of quantum and classical computing algorithms for portfolio optimization and compares the results. The
benefits and drawbacks of backtesting are discussed, as well as some of the challenges involved in using
real quantum computers of more than 100 qubits. Results show quantum algorithms can be competitive with
classical ones, with the advantage of being able to handle a large number of assets in a reasonable time on
a future larger quantum computer.

INDEX TERMS Backtesting, CVaR VQE, Portfolio Optimization, Quantum Computing, VQE

I. INTRODUCTION

TTHROUGHOUT history, humans have used tools to
solve complex problems. As the complexity of problems

has increased, so has the processing capacity of computers.
However, there are still many problems that current comput-
ers cannot solve. Gordon Moore’s prediction that the number
of transistors in a microprocessor would double every two
years has held true and has helped increase the processing
capacity of computers. However, this trend is expected to end
in the near future due to limits on the size of transistors [1].

The new generation of computers, quantum computers,
still under development, promises a drastic advance in com-
puting development as quantum computing has the potential
to drastically decrease computational cost and execution time
[2]. For this reason, the study of this new generation of
computers is currently of great interest.

One of these complex problems is portfolio optimization.
It is the process of selecting the best mix of investments
to maximize return and minimize risk. This can be done

by using a variety of techniques, including mathematical
modeling, statistical analysis, and machine learning.

One approach to solving complex financial services prob-
lems is to use quantum computing algorithms [3]. These
algorithms can help identify patterns and relationships that
would be difficult to find with traditional methods [4]. By
backtesting these algorithms, it is possible to see how they
would have performed in different market conditions. This
information can then be used to make better investment
decisions in the future.

Traditional portfolio optimization methods are based on
classical algorithms that are not well suited to handle the
large amounts of data involved in modern financial portfo-
lios [5]. Quantum computers, with their ability to perform
massively parallel computations, offer the promise of more
efficient and effective portfolio optimization.

The Variational Quantum Eigensolver (VQE) is one quan-
tum algorithm that has been proposed for use in portfolio
optimization. VQE is a hybrid quantum-classical algorithm
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that uses a quantum computer to find the lowest energy state
of a system, which in this case would be the optimal portfolio
[6]. To test whether VQE can outperform classical algorithms
for optimization, researchers at IBM conducted a series of
experiments on IBM Quantum devices [7]. They found that
VQE was able to find the global minimum in most cases and
theoretically can outperform classical algorithms when the
number of assets in the portfolio was large. While further
research is needed to determine if VQE can be successfully
applied to real-world financial portfolios, these results sug-
gest that quantum computers may one day play an important
role in helping us make better investment decisions.

Backtesting is crucial in evaluating the performance of a
portfolio optimization algorithm. It involves using historical
data or Monte Carlo simulations to determine the algorithm’s
ability to find the optimal portfolio and assess its robustness.
When backtesting, one should consider using a large enough
dataset, paying attention to results from different tests, and
including a risk analysis to understand potential downsides.
However, past performance does not guarantee future results.

This work explores the backtesting of quantum and clas-
sical computing algorithms for portfolio optimization and
compares the results. We address the challenges involved in
using current real quantum computers of 27 and 127 qubits,
especially the definition of an ansatz with low length and the
search for a suitable path in the real chip to map the circuit,
in terms of quality and connectivity, to avoid a bigger circuit
in the transpilation phase. Results show quantum algorithms
can be competitive with classical ones, with the advantage of
being able to handle a large number of assets in a reasonable
time on a future bigger quantum computer.

This paper is organized as follows: Section II introduces
the idea of portfolio optimization. Section III explains the
implications of quadratic programming. Section IV describes
the possibilities of using quantum computing for portfolio
optimization. Section V introduces backtesting as well as
its benefits and drawbacks. Sections VI lists the various
traditional methods that are used to solve this problem, and
Section VII describes the quantum algorithms that can be an
alternative. Section VIII describes our methodology based on
backtesting comparison of different classical and quantum
algorithms for portfolio optimization. Section IX details the
implementation of the different algorithms to be comparable,
and the considerations we take with real quantum comput-
ers. Section X presents the results. Section XI contains our
conclusions.

II. PORTFOLIO OPTIMIZATION
Portfolio optimization is the process of selecting the best
mix of investments. To identify assets with low correlations
and determine the optimal allocation of assets to maximize
return on investment while minimizing risk. This selection
must be made according to the client’s characteristics and risk
aversion [8].

The goal of portfolio optimization is to find the optimal
balance between risk and return. This can be a difficult task,

as there are many factors that need to be considered, such
as investment objectives, constraints, market conditions, and
individual preferences. This typically involves analyzing the
potential risks and returns of different assets, such as stocks,
bonds, and real estate, and then creating a balanced portfolio
that aligns with the investor’s risk tolerance and financial
goals.

The process of portfolio optimization involves several
key steps. First, the investor must define their investment
objectives, including their desired level of risk and return.
This will help to determine the overall mix of assets that
should be included in the portfolio. Next, the investor must
identify the various assets that are available for inclusion in
the portfolio and analyze their potential risks and returns.
Then, the investor must determine the optimal mix of assets
that will form the portfolio. This typically involves using
mathematical optimization techniques to find the combina-
tion of assets that are expected to provide the best return for
a given level of risk. Finally, the investor must implement
the chosen portfolio and monitor it regularly to ensure that it
is still meeting the investment objectives. This may involve
adjusting the portfolio, such as buying or selling assets, in
order to maintain the desired level of risk and return.

While mathematical optimization can be a powerful tool
for portfolio optimization, there are several limitations to be
aware of. One major limitation is that optimization models
are based on assumptions and historical data, and they may
not accurately predict future market conditions [9]. In other
words, the optimization process can only provide a best
guess as to how a portfolio is likely to perform, and there
is no guarantee that it will actually provide the expected
return. Another limitation is that those optimization models
are typically based on a static view of the market, which
means that they do not consider any changes that may occur
over time [10]. This can make it difficult for investors to adapt
to changing market conditions and to respond to unexpected
events.

III. QUADRATIC PROGRAMMING
Quadratic programming is a mathematical optimization tech-
nique that is often used in portfolio optimization. It is a
type of nonlinear optimization that involves minimizing or
maximizing an objective function subject to constraints. It is
an NP problem [11].

In the context of portfolio optimization, the objective func-
tion is typically a measure of portfolio performance, such
as expected return or risk-adjusted return. The constraints
typically include limits on the amount of each asset that can
be included in the portfolio, as well as other factors such as
the overall level of risk or the level of exposure to specific
assets or sectors.

To solve a quadratic programming problem, an optimiza-
tion algorithm is used to find the values of the variables
(in this case, the amounts of each asset in the portfolio)
that minimize or maximize the objective function, subject
to the constraints. The resulting portfolio is then expected
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to provide the best possible performance, given the specified
constraints. Quadratic programming has been widely used in
portfolio optimization because it can handle a large number
of variables and constraints, and it can provide solutions that
are efficient and easy to interpret. It is also relatively fast
and scalable, which makes it well-suited to the demands
of modern investment management [12]. However, it has
several limitations. It only works for differentiable objective
functions and constraints. Besides, it assumes that they are
convex (i.e., have only one global minimum or maximum).
This means that it may not be suitable for solving problems
with discontinuous or non-differentiable functions, or non-
convex problems. It is important for users to be aware of these
limitations and use quadratic programming appropriately.

The number of assets that can be included in portfolio
optimization using quadratic programming is limited by the
computational power of the computer and the complexity of
the problem. The exact number of assets that can be consid-
ered will depend on the specific implementation and avail-
able computing resources, but some quadratic programming
solvers can handle problems with thousands of variables [13].

Quadratic programming algorithms may get stuck at a
local minimum or maximum, rather than finding the global
optimum. A local minimum (or maximum) is a point in the
search space where the objective function has a lower (or
higher) value than in the immediate surrounding area, but is
not the global minimum (or maximum) of the function. This
limitation can arise due to the specific optimization algorithm
being used, as well as the nature of the objective function
and the constraints. To try to avoid getting stuck at local
optima, quadratic programming algorithms may use heuristic
techniques such as random restarts or simulated annealing,
but these techniques do not guarantee finding the global
optimum. It is important for users to be aware of this potential
limitation and use appropriate algorithms and heuristics to try
to avoid it.

IV. QUANTUM COMPUTING FOR PORTFOLIO
OPTIMIZATION
Quantum computing is a new field that uses the principles of
quantum mechanics to perform calculations that are beyond
the reach of classical computers. It has the potential to solve
complex problems, including some problems in finance and
investment management. In the context of portfolio optimiza-
tion, quantum computing could be used to solve large or
complex optimization problems, allowing for more accurate
and sophisticated portfolio models and more informed asset
allocation and risk management decisions. It could also be
used to develop new optimization algorithms and techniques
that take advantage of the unique properties of quantum
systems, potentially providing more accurate and efficient
solutions to portfolio optimization problems. While quantum
computing is still in the early stages of development, it has
the potential to significantly improve portfolio optimization.

The Variational Quantum Eigensolver (VQE) is an algo-
rithm for quantum computing that is often used to solve op-

timization problems. It is based on the principle of quantum
mechanics, which allows for the representation of complex
mathematical functions as quantum states [14].

The VQE algorithm works by representing the objective
function and the constraints of the optimization problem as
parameterized quantum states, and then using a classical
optimizer to find the values of the variables (in this case,
the amounts of each asset in the portfolio) that minimize or
maximize the objective function, subject to the constraints.

A quadratic program (QP) is a type of mathematical opti-
mization problem that involves minimizing or maximizing a
quadratic objective function subject to linear constraints. A
quadratic binary optimization (QUBO) problem is a similar
type of optimization problem, but it involves binary variables
(i.e., variables that can take on only two values, such as 0 or
1) and quadratic objectives without constraint functions.

Our problem is: VQE can solve a QUBO, not a QP.
In some cases, it is possible to transform a quadratic

program into a quadratic binary optimization (QUBO) prob-
lem by replacing the continuous variables in the QP with
binary variables. This can be done by defining a set of
binary variables that represent the possible values of the
continuous variables, and then using these binary variables
in the objective and constraint functions of the QP.

For example, suppose we have a quadratic program with a
continuous variable x that can take on any real value. We can
define binary variables, x0...xN , that represent the possible
values of x (i.e., x0...xN can be the binary representation of
x real value with certain precision). We can then rewrite the
objective and constraint functions of the QP using the binary
variables x0...xN , to create a QUBO problem.

As a general rule, the process of transforming a quadratic
program into a QUBO problem can be complex, but it can
provide valuable insights and more efficient solutions to the
optimization problem. By leveraging the unique properties of
binary variables and quadratic functions, QUBO optimiza-
tion can provide more accurate and efficient solutions to
a wide range of optimization problems, including those in
finance and investment management.

V. BACKTESTING: AN ESSENTIAL TOOL FOR
VALIDATION
Backtesting is a method of evaluating the performance of
a trading strategy or investment portfolio by simulating its
performance on historical data. It allows traders and investors
to see how the strategy or portfolio would have performed
under different market conditions and can be used to validate
the effectiveness of the strategy or portfolio and to identify
any potential weaknesses. To conduct a backtest, a trader or
investor specifies the parameters of the strategy or portfolio
and simulates its performance over a specific time period
using historical data. Many authors use backtesting to show
the benefits of their proposed algorithms or strategies [15],
[16].

While backtesting can be a useful tool for evaluating and
optimizing strategies or portfolios, it is important to note
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that past performance is not necessarily indicative of future
results and that backtesting can be subject to biases that can
affect the accuracy of the results.

Survivorship bias is a type of bias that occurs when a sam-
ple of data used in a backtest only includes assets that have
survived until the present time and excludes assets that have
been removed from the market or are no longer being traded.
This can lead to an overestimation of the performance of the
trading strategy or investment portfolio being tested, as it
does not take into account the performance of assets that did
not survive. To avoid survivorship bias, it is important to use
a representative sample of data that includes both surviving
and non-surviving assets when conducting a backtest. This
can help to provide a more accurate representation of the
performance of the strategy or portfolio being tested [17].

Look-ahead bias, also known as peeking or snooping bias,
is a type of bias that occurs when a trading strategy or
investment portfolio is evaluated using data that was not
available at the time the decisions were made. In the context
of backtesting, look-ahead bias can occur when the backtest
includes data that were not available to the trader or investor
at the time the trades or investments were made. This can
lead again to an overestimation of the performance of the
strategy or portfolio being tested, as it does not accurately
reflect the information and resources that were available to
the trader or investor at the time the decisions were made.
To avoid look-ahead bias, it is important to use only data that
was available at the time the trades or investments were made
when conducting a backtest. This can help to provide a more
accurate representation of the performance of the strategy or
portfolio being tested [18].

As a result, backtesting can be a useful tool for evaluating
and optimizing trading strategies and investment portfolios,
but it is important to keep in mind its limitations and to use it
in conjunction with other tools and analyses. Although there
is a work from Owhadi-Kareshk and Boulanger [19] describ-
ing a tool for backtesting classical and quantum annealing
algorithms for portfolio optimization, they make an example
of use for their software and not an actual analysis of the
algorithms. To the best of our knowledge, this is the first
work that performs a systematic backtesting comparison of
classical and quantum portfolio optimization algorithms.

VI. CLASSICAL ALGORITHMS FOR PORTFOLIO
OPTIMIZATION
Next, we will explain three classical algorithms used to solve
the portfolio problem.

A. MOVING AVERAGE STRATEGY
A moving average [20] is a technical analysis tool that is
used to smooth out price data by calculating the average
price over a specified period of time. It is often used to help
identify trends, spot trend reversals, and smooth out price
fluctuations.

The concept of moving averages or Moving Average (MA)
refers to the calculation of the average in a time window of

a time series. That is, for a time series, such as the closing
prices of an asset, which we will denote xt on each day t, the
MA with a time window τ , is calculated as

MAt(X) =
1

τ

s=t∑
s=t−τ+1

xs.

For example, a 50-day SMA would be calculated by
adding up the closing prices for the past 50 days and then
dividing the sum by 50.

For the implementation of the Simple Moving Average
Strategy (SMAS) algorithm, the MA of each of the assets
considered at the present moment is calculated. We will
randomly choose the agreed number (budget) of assets from
among those that are above their MA. These assets will be
the ones that make up our investment portfolio, which we
consider to have the same weight in the portfolio.

The SMAS algorithm is widely used in the financial world
due to its easy understanding [21]. Moving averages can be
used in various ways in technical analysis, such as identifying
trends, spotting trend reversals, and identifying support and
resistance levels. However, it is important to keep in mind
that moving averages are a lagging indicator, meaning that
they are based on past price data and may not always accu-
rately predict future price movements.

B. RISK-RETURN OPTIMIZATION (MARKOWITZ MODEL)
The main theory on which portfolio optimization models
are based is known as modern portfolio theory. This new
approach was introduced by Markowitz who suggested ana-
lyzing both profitability and risk as a whole for the first time,
which caused a revolution in the financial world, giving rise
to the new theory of portfolio optimization [22], [23].

This type of algorithm optimizes the risk-return ratio
(MVO, Mean-Variance optimization). Risk should be min-
imized and profitability should be maximized at the same
time.

Profitability is defined as a financial ratio that measures the
ability to generate profits, the measure of profitability will
be the expected return of portfolio prices. The criterion that
Markowitz’s theory uses to choose the assets that make up
the portfolio is their performance in relation to others. These
must have low correlation between them and be diversified.
This asset diversification process consists of dividing the
investment among different stocks to reduce their overall
exposure to risk without reducing the expected return.

Mathematically, a Markowitz model can be defined as
follows:

max Rp − qσ2
p

s.t.
xi ≥ 0, i = 1, ..., n∑n

i=1 xi = 1,

(1)

where q is a risk aversion factor, Rp is the total return and
σ2
p is the variance of the portfolio. Besides, xi are the amount
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invested in each asset, subject to budget and non-negativity
restrictions.

Prior to Markowitz’s model, portfolio selection focused
primarily on returns generated by investment opportunities.
Markowitz maintains the emphasis on these, at the same time
begins to consider risk as an important factor and the variance
of a portfolio as a way of measuring risk.

Markowitz was the first to demonstrate how the variance
of a portfolio can be reduced through the impact of diver-
sification. It is proposed that investors focus on selecting
portfolios based on their overall risk-reward rather than se-
lecting portfolios that individually have attractive risk-return
characteristics.

Markowitz’s model accommodates the choice between risk
and return of the investor. Regardless of the preference of the
inverter, all these are under what is called the Markowitz effi-
cient boundary. It is defined as the set of efficient portfolios,
that is, those that offer a higher expected return according to
the different levels of risk that can be assumed.

This relates volatility and profitability of a portfolio, that
is, the benefits that the investor can obtain and the risks he
must face to have it. This relationship must be positive, the
higher the profitability, the larger the risk. At the border,
risk-free assets are portfolios of minimum variance and are
located to the left of the border (Fig. 1).

FIGURE 1. Graphical representation of the efficient frontier.

In the context of portfolio management, each investor must
decide where to position. An investor with a conservative
profile will opt for a maximum return and a minimum risk,
however, someone riskier is positioned to the right of the
border to obtain a higher return but with the possibility of
suffering more losses.

C. SHARPE RATIO OPTIMIZATION
The Sharpe Ratio is a measure that allows the profitability
of an investment portfolio to be related to its risk [24]. The
Sharpe Ratio is calculated by dividing the portfolio’s excess
return (the difference between its return and the risk-free rate
of return) by its standard deviation, which is a measure of its
volatility. It is calculated as

SR =
µ−Rf
σ

,

where µ represents the return of the portfolio made up of
assets with strictly positive risk, Rf is the return of the asset
without risk and σ the volatility of the portfolio.

A higher Sharpe ratio indicates a higher risk-adjusted
return, meaning that the portfolio has generated a higher
return per unit of risk.

The Sharpe Ratio Optimization (SRO) algorithm is based
on maximizing the Sharpe Ratio to improve the return-risk
ratio of our investment. The resulting portfolio is known as
the market portfolio (optimal risky portfolio) [25].

This can be achieved through a variety of methods, such
as diversifying the portfolio across a range of assets, using
risk management techniques, or selecting assets with lower
volatility.

It is important to note that while maximizing the Sharpe
ratio may be a useful goal in some cases, it is not always
the best approach to portfolio optimization. For example, an
investor who is seeking to maximize the expected return of
their portfolio may be willing to accept a higher level of risk
in order to achieve higher returns. In these cases, maximizing
the Sharpe ratio may not be the most appropriate goal [26].

VII. QUANTUM ALGORITHMS FOR PORTFOLIO
OPTIMIZATION
The routines presented here are hybrid quantum-classical and
compatible with each other.

A. VARIATIONAL QUANTUM EIGENSOLVER (VQE)
The Variational Quantum Eigensolver (VQE) algorithm is
an algorithm used to calculate the smallest eigenvalue of a
Hamiltonian, that is, its ground state.

Some of the properties of these matrices are the following:
• The eigenvalues are always real.
• The eigenvectors associated with distinct eigenvalues

are orthogonal.
If H is a Hamiltonian (i.e Hermitian matrix), and λi and

|ψi⟩ with i = 1, ..., n are their eigenvalues and correspond-
ing unit eigenvectors, it is possible to represent the matrix as

H =

n∑
i=1

λi|ψi⟩⟨ψi|. (2)

The expected value of a matrix of H and a vector |ϕ⟩ is
defined as the value

⟨H⟩ϕ = ⟨ϕ|H|ϕ⟩ =
n∑
i=1

λi|⟨ψi|ϕ⟩|2. (3)

It is evident, therefore, that for all ϕ, ⟨H⟩ϕ ≥ λmin
where λmin is the smallest of the eigenvalues of H , since
|⟨ψi|ϕ⟩|2 ≥ 0. Therefore, ⟨H⟩ϕ are upper bounds of λmin
and also, if the eigenvalue λmin is not double in the matrix,
there will exist a unique eigenvector ψmin that verifies

⟨H⟩ψmin
= λmin.

To find this eigenvector, the VQE algorithm uses what is
known as a variational form or ansatz. It is a circuit that is
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used to go iteratively from one estimate of ψmin to another,
seeking that in each assessment the expected value of the
eigenvector is lower. There are different variational forms,
but all depend on a series of parameters that grow with the
number of qubits. Adjusting these parameters to the specific
problem is done with a classical optimizer, hence the VQE is
a hybrid algorithm.

Given a Hamiltonian H , of dimension 2N ×2N , which we
can write in quantum form as a function of Pauli matrices
(σx, σy, σz) as in (4) where i, j = 1, ..., N ; α, β ∈ {x, y, z};
hi, hi,j ∈ R. On one hand, σiα refers to the tensor product
of N − 1 identity matrices of size 2 × 2 (σ1) and the Pauli
matrix σα at position i. On other hand, σiαα

j
β refers to the

tensor product of N − 2 matrices (σ1) and σα at position i
and σβ at position j. For example, for N = 3, σ1

z = σ1σzσ1,
and σ0

zσ
2
x = σzσ1σx. We can rewrite H as a sum of K

‘elementary’ Hamiltonians Hk, k = 1, ...,K formed by a
matrix of the type σiα or σiασ

j
β multiplied by a real value.

H =
∑
i,α

hiσ
i
α +

∑
i,j,α,β

hi,jσ
i
ασ

j
β (4)

The VQE for this Hamiltonian H works by minimizing
(with a classical optimizer) the value of the function (5)
where the calculation of ⟨ϕ(θ)|Hk|ϕ(θ)⟩ is performed by
the quantum computer each time the function (5) is to be
evaluated.

f(θ) =
1

K
⟨ϕ(θ)|H|ϕ(θ)⟩ = 1

K

K∑
k=1

⟨ϕ(θ)|Hk|ϕ(θ)⟩

(5)

B. CONDITIONAL VALUE AT RISK - VARIATIONAL
QUANTUM EIGENSOLVER (CVARVQE)
The VQE explained above seeks to reduce the mean (5). This
would be the original approach of the algorithm, however, it
is possible to consider other criteria when forming our asset
portfolio.

Barkoutsos et al. [7] argue that an algorithm that seeks
a good approximation to the optimum we are looking for
is better than an algorithm that tries to reach the optimum
and ends up giving a very poor approximation. Since the
result that an optimization algorithm gives is usually not
the optimal one, but rather the best result found, instead of
choosing an objective function that tries to find the optimum,
it is proposed to consider an objective function that allows us
to find a better result.

With this idea, a better objective function for the optimiza-
tion problem would be to find the minimum of a set of ob-
servations, min{x1(θ), ..., xK(θ)}. However, this objective
function is not adequate, since it is very poorly conditioned.
It is proposed to minimize Conditional Value at Risk (CVaR)
instead.

Formally, the Value at Risk (VaR) of a variable X for a
value α ∈ {0, 1} is defined as the smallest value x that
verifies FX(x) ≥ α where FX is the distribution function of

the variable. And the CVaR is defined as the expected value,
among the observations below the VaR. That is,

CVaRα(X) = E[X|X ≤ F−1
X (α)].

When we measure the qubits in a quantum circuit, the
result is not a string of bits, but several strings accompanied
by a probability. If we assume that x1(θ), ..., xr(θ) are the
observations obtained in a measurement with probabilities
p0, ..., pr, ordered in such a way that pi ≤ pi+1, our objective
function for a fixed α will be

CVaRα(θ) =
1

⌊rα⌋

⌊rα⌋∑
i=0

xi(θ),

where ⌊.⌋ is the integer part function.
Using the CVaR as the objective function in our prob-

lem becomes a generalization between the objective func-
tion f(θ) of the previous VQE and min{x1(θ), ..., xK(θ)},
since when α = 1, CVaR1(θ) = E[f(θ)] and
limα→0+ CVaRα(θ) = min{x1(θ), ..., xK(θ)}.

VIII. PROPOSED METHODOLOGY
To compare and analyze the algorithms, we have performed
several tests. The first test group analyzes the execution times
of quantum and classical algorithms. The most important
factor to consider is scalability. We examine the possibilities
of current large real quantum computers from IBM, identi-
fying the strengths and the limiting factors. In the second
set of tests, we check which algorithm provides the best
results, based on backtesting. To obtain statistically signif-
icant results, we make hundreds of backtesting comparison
experiments with different random subsets of stocks from
IBEX35 (benchmark stock market index of the Bolsa de
Madrid, Spain’s principal stock exchange.) [27]

Currently, quantum computers work with a queuing sys-
tem in which users send their jobs to a quantum computer
and wait for the computer to finish executing all the previous
circuits, and then receive the results. Unfortunately, this
way of working, when coupled with an iterative algorithm
such as VQE, which sends a new request to a computer at
each iteration, means that the execution of the program is
prolonged. Not only because we have to wait in line, but
because although the execution of the quantum circuit is fast,
the communication times between the quantum computer and
our own computer are not. For this reason, it has been decided
to execute a VQE on real quantum computers only for
validation and illustrative purposes and make the backtesting
using simulators.

IX. IMPLEMENTATION OF PORTFOLIO ALGORITHMS
The algorithms mentioned in VI and VII have been imple-
mented in Python using the Qiskit [28] library with different
sets of historical adjusted closing price data from the IBEX35
stock market. These data have been taken from Yahoo! Fi-
nance [29] using the Python library bt [30].

Given a set of assets, we can build a portfolio by associat-
ing each asset with a (non-negative) weight that will represent
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the proportion of total capital that has been invested in the
aforementioned asset. Associated with a portfolio, there are
the concepts of profitability and risk (sometimes we will
refer to it as volatility) [22]. If we represent by µ the vector
of expected returns of the considered assets and by Σ the
matrix of variances and covariances between the assets, the
return of the portfolio C with weights w will be given by the
expression

µC = µTw,

and its risk for
σC = wTΣw.

In this study, we are going to work exclusively with
portfolios whose assets all have the same weight. In other
words, the decision that interests us is to choose which assets
are interesting to invest in and which are not. We will also
impose the restriction that you can only invest in a maximum
number of assets (budget). One way of expressing this in a
matrix is to replace the vector of weightsw by a binary vector
x that verifies

1Tx = B, (6)

where B is the budget. Another approach is to use the vector
of weights w and then pick a number B of assets randomly
from among those with positive weight. We are indirectly
assuming that all assets have the same cost and that with the
value B together with (6), we have capital that we want to
fully invest.

The classical algorithms used to solve this problem, gener-
ally are not comparable. It is not possible to asevere com-
pletely that one gives better results than others. However,
all of these algorithms become inefficient since they require
a large computational cost that grows exponentially with
the number of assets considered for the construction of the
portfolio.

A. CLASSICAL ALGORITHMS
1) Moving Average Strategy
Following this strategy, the MA of the data is calculated and
the assets whose closing price is higher than their moving
average are considered. Finally, the desired amount of assets
is chosen randomly among them to form the investment
portfolio, weighted with equal weights.

The SMAS algorithm has been implemented with a time
window of 50 days since most of the tests carried out have
been done using similar timeframes.

2) Risk-rentability Optimization
To calculate the efficient frontier, we must solve for each
value of R the problem (7).

min
w∈Rn

wTΣw

s.t.
1Tw = 1,
wi ≥ 0 ∀i,
wµ = R.

(7)

The previous problem has a solution for each expected
return of the portfolio, R, fixed. We obtain for each valid R a
point of the efficient frontier. Any efficient portfolio is a good
solution for this type of optimization algorithm. There are
multiple criteria for choosing the most convenient efficient
portfolio for the investor, and there are lines of study focused
exclusively on this aspect.

Following the MVO algorithm, some efficient frontier
portfolios are calculated and one of them is chosen using the
cvxopt solver [31].

3) Sharpe Ratio Optimization
The problem of maximizing the Sharpe Ratio is given by

max
w∈Rn

µTw −R√
wTΣw

s.a
1Tw = 1,
wi ≥ 0 ∀i.

(8)

To solve the Sharpe Ratio maximization problem, the SRO
has been implemented using function calc_mean_var_weights
from package ffn (complement of the bt Python library).

B. QUANTUM ALGORITHMS
The formulation of the portfolio problem that we solve with
the VQE algorithm is (9), where x will represent the binary
vector of assets chosen to build our portfolio, µ and Σ the
return vector and the matrix of variances and covariances of
the n assets considered, B the number of assets in which one
wants to invest (budget) and q a positive term that measures
the risk aversion of the investor.

min
x∈{0,1}n

qxTΣx− µTx

s.a
1Tx = B.

(9)

The expression 1Tx = B is transformed into (1Tx− B)2

and subtracted from the objective function of (9) multiplied
by a penalty term. It must be taken into account that by
performing this transformation we accept that the solution
found chooses a number of assets different from the budget.
The penalty term is the one that will measure how much it is
acceptable to relax this restriction. For example, if it is very
detrimental to our interests when solving the problem, the
penalty term will have to be greatly increased. By operating,
we transform the expression in (9) into a quadratic form (10),
for certain A and b.

xTAx+ bTx, x ∈ {0, 1}n (10)

Performing the change of variable xi = (1 − zi)/2, for
zi ∈ {−1, 1} in (10), we transform our problem into a new
problem, which will consist of minimizing the expression
(11), which coincides with the expression of the energy of
the Hamiltonian of the Ising model. That is, our problem is
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FIGURE 2. Example of full entangled ansatz VQE Quantum Circuit for three assets.

equivalent to finding the lowest energy level of a Hamilto-
nian, which is possible using the VQE, where C and d are
the coefficients in the new domain.

zTCz + dT z, z ∈ {1,−1}n (11)

The Hamiltonian of the Ising model is constructed by
substituting in (11) the terms zi by σiz and the terms zizj
by σizσ

j
z , obtaining a decomposition of the Hamiltonian as

shown (4). Using Qiskit functions, we transform our problem
into this new formulation in terms of Pauli Z-matrices. This
formulation is common to both VQE and CVaRVQE.

The VQE algorithm has a quantum part and a classical
part. The classical optimizer performs several iterations to
calculate the parameters that optimize the problem and exe-
cutes a circuit on a quantum computer in each iteration. Fur-
thermore, for our type of problem, the use of the COBYLA
optimizer [6] is recommended. An example of a quantum
circuit that VQE uses for three assets can be seen in Fig. 2.

The execution time of a job in a quantum computer can
be divided into communication time (between the classical
computer and the quantum computer), validation time (veri-
fication of the sent job), queue time, and execution time. This
last time comprises the time it takes to execute the circuit in
the quantum chip and the measurements and post-processing
that are made to transform the values of the qubits into bits
understandable by a classical computer. It must be taken into
account that this execution time includes several executions
of the quantum circuit and the corresponding measurements
of the qubits after each execution of the circuit, in order to
obtain the probabilities of the possible solutions.

In general, the validation time is negligible, being only a
few milliseconds. In addition, the running time of a quantum
circuit is also extremely short, so the running time is mainly
the measurement time of the qubits. Finally, we comment
that after carrying out various tests with real backends with
different job numbers in the queue, it has been observed
that communication times do not significantly affect the total
execution time of the job. As such, queue time is by far
the most time-consuming, but the analysis we are really
interested in this section is execution time.

The stability of the current qubits does not reach the
second [32], so the execution time of a quantum circuit (each
shot) must not exceed that time in any case. With this in mind,
we run the following tests to assess the possibilities of using
this quantum portfolio optimization strategy on the largest
available IBM real quantum computers.

During the preparation of this work (December 2022), we
utilized the most stable and proven 27 qubit machines from
the Falcon family and the bigger experimental 127 qubit
machines from the Eagle family.

C. CONSIDERATIONS FOR 27 QUBIT MACHINES
Falcon quantum computers have a heavy hexagonal layout.
This has to be taken into account to define a hardware
viable ansatz. For this experiment, we selected ibm_cairo as
a 27 qubit machine (December 2022). The processor type
is Falcon r5.11 (Multi-chip stack: The qubit chip is bump-
bonded to an "interposer" chip that provides readout and
signal delivery wiring). It has a Quantum Volume (QV) of 64
and can perform 2.4K Circuit Layer Operations Per Second
(CLOPS).

The system has the following native basis gates: CX, ID,
IF_ELSE, RZ, SX, X.

Its median errors are:
• Median CNOT Error: 1.049e−2
• Median Readout Error: 1.180e−2
• Median T1: 106.81 µs
• Median T2: 102.88 µs
The chip has the individual error distribution shown in Fig.

3. Observe that not all the qubits and connections are equally
reliable, with bigger error rates on lighter-colored ones.

FIGURE 3. Layout and individual error distribution on ibm_cairo" real quantum
computer.

Before executing the quantum circuits we have to map the
circuit qubits to the real hardware one, and also translate the
original gates to the equivalent native ones.

To get the best results in the hardware we need to consider
two important aspects: first, we need to use the qubits and
links with better quality, and second, we need to select the
mapping of the qubits to maximize the CNOT gates between
real qubits with actual connection. If we need to perform
CNOT gates between non-conected qubits, we will need to
add swap gates to move the needed qubits to a position in the
chip with actual connection, generating a larger circuit.
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We need to maintain the depth of the circuit to the mini-
mum to avoid errors and to maintain our execution within the
chip coherence time. If the errors grow up, the expectation
values calculated became nearly random, and the classical
optimizer would be unable to converge.

Avoiding qubits and CNOT links with bigger errors, we
can find a linear path with a good performance of 19 qubits,
as shown in Fig. 4.

FIGURE 4. Optimum linear path with 19 qubits on ”ibm_cairo” real
quantum computer.

We can create a VQE algorithm to select the best 5 out of
19 assets using this quantum computer. Randomly selecting
19 stocks from IBEX35 we get:

ELE.MC, ITX.MC, FER.MC, CLNX.MC,
ANA.MC, ENG.MC, IBE.MC, BBVA.MC,

ACS.MC, VIS.MC, MTS.MC, GRF.MC,
COL.MC, MEL.MC, ACX.MC, NTGY.MC,

TEF.MC, SGRE.MC, SAN.MC.

From Yahoo! Finance, we obtain the closing stock price for
two months, from 2022-10-1 to 2022-12-1. The evolution of
the stock prices can be seen in Fig. 5.

FIGURE 5. Evolution of closing price for the selected 19 stocks from IBEX35.

To make the optimization we create an ansatz with linear
entanglement that fits on the selected linear path and uses one
qubit for each of the 19 stocks (Fig. 6).

FIGURE 6. Linear entangled ansatz VQE Quantum Circuit for 19 assets.

D. CONSIDERATIONS FOR 127 QUBIT MACHINES
Eagle quantum computers have also a heavy hexagonal
layout. This has to be taken into account to define a
hardware viable ansatz. For this experiment, we selected
ibm_washington" as a 127 qubit machine (December 2022).
The processor type is Eagle r1 (increased scalability through
novel packaging techniques). It has a QV of 64 and can
perform 850 CLOPS.

The system has the following Basis gates: CX, ID,
IF_ELSE, RZ, SX, X.

Its median errors are:
• Median CNOT Error: 1.378e−2
• Median Readout Error: 1.080e−2
• Median T1: 99.55 µs
• Median T2: 93.66 µs
The chip has the individual error distribution shown in Fig.

7.

FIGURE 7. Layout and individual error distribution on ibm_washington" real
quantum computer.

Avoiding qubits and CNOT links with bigger errors, we
can find a circular path with an optimum performance of 28
qubits, as shown in Fig. 8. It is possible to find longer paths,
but currently, this one will avoid an ansatz with depth near
the coherence time of the chip.
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FIGURE 8. Optimum circular path with 28 qubits on ”ibm_washington”
real quantum computer.

We can create a VQE algorithm to select the best 5 out of
19 assets using this quantum computer. In order to do this,
we create an ansatz with circular entanglement (Fig. 9).

FIGURE 9. Linear entangled ansatz VQE Quantum Circuit for 19 assets.

X. RESULTS
A. BASIC EXECUTION 3 ASSETS ON REAL QUANTUM
COMPUTER VS CLASICAL
Figure 10 represents the obtained probabilities after execut-
ing a VQE with the data of three random assets from October
2020. For the execution of this instance, the 5-qubit real
backend ibmq_athens has been used, simply because it was
the quantum computer with fewer tasks in the queue among
those that meet the minimum requirements for the problem
at that moment. In addition, the number of iterations of the
VQE has been limited to 20.

Table 1 shows the exact values of the objective function
for each possible choice of assets chosen. As can be seen,
the result obtained with the algorithm is different from the

FIGURE 10. Probabilities obtained with VQE after 20 iterations on a real
quantum computer (ibmq_athens).

optimal one, this is because 20 iterations are too few for
the optimizer to find the desired minimum in this case and
configuration

TABLE 1. Results obtained with the three asset example using
NumPyMinimumEigensolver.

Choice [111] [011] [101] [001]
Values 4.0006 16.0000 16.0005 36.0000
Choice [110] [010] [100] [000]
Values 16.0001 35.9996 36.0004 64.0000

B. EXECUTION TIME ON REAL QUANTUM COMPUTER
VS CLASICAL
In this example, the approximate average time that each
iteration has taken is 2 hours (including communication and
queue times), however, these data is not really relevant, as
it depends on many factors unrelated to the algorithm. As
a comment and by way of illustration, it must be said that
on other occasions, circuits with twice as many qubits have
taken around 44 seconds for each iteration. The big difference
is due to the waiting time in the queue. In this case, the
execution time in each iteration of the algorithm has been
around 9 seconds.

Although this time may seem quite long, the advantages of
quantum computers over classical ones are that, presumably,
this execution time does not increase exponentially with the
number of assets (qubits), which is the case with classical
computers. To verify experimentally that this statement is
correct, a VQE has been executed with data sets with between
2 and 15 random assets and the average execution time has
been calculated in each case. These executions were carried
out on the backend ibmq_16_melbourne (real quantum com-
puter with only 15 qubits. Despite its name, it had only 15
usable qubits due to error rate of the qubit 16). The results
are shown in Fig. 11.

To compare with the behavior of classical algorithms, the
same experiment could be carried out as with the quantum,
however, working with 35 assets (Fig. 12). In the case of the
SMAS, its computational cost is effectively linear, since the
calculation of the MA is of np sums and p products, where
p is the number of periods considered and n the number of
assets with those who work. As for SRO and MVO, both al-
gorithms involve solving a quadratic programming problem,
which is difficult to solve when real data is used together with
extra constraints [33]. Both algoritms show an exponential
trend. As the numbers grow larger, the exponential nature
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FIGURE 11. Execution time for Quantum Algorithms depending on the
number of assets on ibmq_16_melbourne (December 2022).

of the algorithms becomes more apparent (not shown in
the figure to maintain the scale of quantum and classical
experiment results).

FIGURE 12. Execution time of classical algorithms depending on the number
of assets.

An alternative to using a real quantum computer is the
use of a simulator. These simulators mimic the behavior
of a quantum computer, making them very inefficient, but
with the advantage of not having to wait in line or have
the problem of communication times. In the previous ex-
ample, we saw that the time for each iteration was huge,
so the same problem has been solved with the simulator
ibmq_qasm_simulator by allowing the optimizer to perform
100 iterations. The results are seen in Fig. 13. In this case,
the desired optimum has been reached.

C. EXECUTING ON 27 QUBIT MACHINES
Fig. 14 shows the previously defined ansatz circuit transpiled
to the system’s available gates and mapped to the selected
19 qubits, having a depth of 27 Circuit Layer Operations on
the real hardware. This takes a time of approximately 1125
µs on the quantum chip for each shot. The actual execution
for 100000 shots takes an average of 35.3 s in the quantum
system (including quantum compute and near-time classical
pre- and post-processing. The queue time is not included.)

The CVaR VQE algorithm converges very quickly and

FIGURE 13. Probabilities obtained with VQE after 100 iterations on a
simulator.

FIGURE 14. Linear entangled ansatz VQE Quantum Circuit for 19 assets
transpiled for ”ibm_cairo” real quantum computer.

after 10 iterations (Fig. 16) we obtain the following proposed
optimal portfolio:

ITX.MC, BBVA.MC, ACS.MC, ACX.MC, SAN.MC

As an example, Fig. 15 shows the probabilities measured
in the real quantum computer for one VQE iteration executed
on ibm_cairo with 100000 shots.

We can now use the operator we built above regardless
the specifics of how it was created. We set the algorithm for
the NumPyMinimumEigensolver so we can have a classical
reference. A backend is not required since this is computed
classically not using quantum computation. It took 126.57s
to obtain the following results:

ITX.MC, BBVA.MC, ACS.MC, MTS.MC, SAN.MC

As can be observed, it differs from the quantum result only
in one of the selected stocks.

D. EXECUTING ON 127 QUBIT MACHINES
As shown in Fig. 17, this circuit transpiled to the system
available gates and mapped to the selected 28 qubits has a
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FIGURE 15. Example of probabilities measured on ibm_cairo", 27 qubit real quantum computer.

FIGURE 16. Convergence of CVaR VQE on ibm_cairo", 27 qubit real
quantum computer.

depth of 37 Circuit Layer Operations on the real hardware.
This will take an estimated time of 4352 µs on the quantum
chip. The actual execution for 100000 shots takes 48.6 s in
the quantum system. The result is too big to be displayed as
a histogram.

FIGURE 17. Linear entangled ansatz VQE Quantum Circuit for 19 assets
transpiled for ”ibm_washington” real quantum computer.

E. BACKTESTING
To analyze the performance of the algorithms, we prepare
an experimental set with IBEX35 historical data from 2016
to 2020. As many algorithms rely on historical data, we left
2016 data for historical calculations, and start investing in
2017. Each strategy is permitted to calculate and rebalance
the portfolio once a month. To be able to compare the results,
the five tested algorithms (SMA, MVO, SRO, VQE, and VaR-
VQE) were configured under the same conditions of risk
aversion factor and avoided selecting 2 out of 5 available
stocks. Then the portfolio is rebalanced with the selected
stocks equally weighted.

A suite of 210 backtesting experiments has been carried
out with 5 different random assets from IBEX35. Each exper-
iment provides a backtesting comparison of the performance
of the different algorithms with the same data. An example
of the results obtained on each experiment can be shown in
Fig. 18.

The statistics of the results have been collected in tables
2 and 3 where we can observe the mean and variance of
the results of each algorithm among the 210 simulations, as
well as the number of times that each algorithm has given a
better solution than the others. The high variance reflects the
unpredictability of the stock market, where past events do not
guarantee future outcomes.

TABLE 2. Main statistics obtains after the execution of 210 simulations with
six random assets.

SMAS SRO MVO VQE CVaRVQE
Mean 0.263693 0.336095 0.388857 0.320283 0.311016

Var. 0.343655 0.320120 0.312191 0.299983 0.337807

TABLE 3. Number of times that the algorithm gets the best strategy (210
simulations with six random assets).

SMAS SRO MVO VQE CVaRVQE Total
Times Best 29 46 50 40 45 210

SMAS performed poorly as expected, since it is a naive
approach. We included SMAS as a baseline to compare the
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FIGURE 18. Example of one iteration of backtesting comparison of portfolio optimization with 5 random assets from IBEX35.

other algorithms, both quantum and classic. Given that the
rest of the algorithms have a very similar mean and a very
large variance, it has been decided to filter the 210 executions
based on the mean and variance of each execution.

We want to find out which algorithm performs better for
a given set of assets. To do this, we need to compare the
results of each algorithm for each record. A record is a set
of stocks that we run the algorithms on. We use the intra-
record variance to quantify how much the results differ from
each other for each record. A higher variance means that the
results are more spread out and less similar. We are interested
in the records that have a high variance, because they show
us which algorithm stands out from the others. To filter out
the low-variance records, we calculate the average of all the
variances for all the records. Then we only keep the records
that have a variance higher than this average. These are the
records that we use to compare the algorithms and find out
which one is better. We check again how many times each
algorithm has provided the best of the strategies. The results
are collected in table 4.

TABLE 4. Number of times that the algorithm gets the best strategy (filtered
simulations).

SMAS SRO MVO VQE CVaRVQE Total
Times Best 11 12 14 14 21 72

As can be seen, although initially, the MVO seemed to give
better results on more occasions than the other algorithms,
in particular the quantum ones, after filtering we verified that
the results of the quantum algorithms are much better than the
others on more occasions, highlighting especially the VQE-
CVaR. In any case, all the algorithms (both before and after
filtering) always result in a better strategy than the others
between 20% and 30% of the time, it is challenging to deter-
mine with complete certainty which algorithm outperforms
the others.

The results shown in tables 3 and 4, suggest that both the

VQE and the CVaRVQE are useful algorithms and to some
extent competitive with the classical algorithms.

But the real advantage of using quantum computers for the
portfolio optimization problem is not that the algorithm pro-
vides better or worse results, but that for a tremendously large
number of assets, the classical algorithms become unfeasible.
However, quantum algorithms would not have that problem.
As long as there is a quantum computer with sufficient spec-
ifications, the VQE, and VQE-CVaR algorithms will allow
us to calculate a good solution to the portfolio optimization
problem in a reasonable time.

XI. CONCLUSION
This work addresses a backtesting methodology of classical
and quantum computing algorithms for portfolio optimiza-
tion. Results from backtesting the VQE and CVaR-VQE
algorithms suggest that they are useful and competitive with
classical algorithms to some extent.

The scalability of current quantum computers from IBM
is analyzed by testing their execution times. A second set of
tests checks which algorithm provides the best results based
on backtesting using historical data from the IBEX35 stock
market in Spain. The algorithms were implemented using
Python and the Qiskit library.

For running on real quantum computers, we take into
account the hardware design and qubit error distribution to
find the best qubit mappings and gates to use. We also aim
to keep the depth of the quantum circuits to a minimum to
minimize errors and maintain execution within the coherence
time of the chip. It has been used IBM backends of 27 and
127 qubits.

The backtesting results showed that, after filtering the
experiments, both VQE and CVaR-VQE algorithms were
competitive with the classical algorithms, with the advantage
of being able to handle a large number of assets in a reason-
able time on a future quantum computer.
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Our models are still limited by the assumptions and simpli-
fications that we have made to represent the stock market as
a quantum system. Therefore, as future work, we plan to de-
velop more realistic models that can capture the complexity
and uncertainty of the real stock market conditions. The main
problem to solve is how to select a portfolio of securities
that maximizes the expected return and minimizes the risk,
while taking into account the transaction costs and the integer
constraints on the quantities of securities. Transaction costs
are the fees that investors have to pay when buying or selling
securities, such as commissions, taxes, or bid-ask spreads.
Integer constraints are the restrictions that some securities
can only be bought or sold in fixed units, such as shares or
bonds. These factors make the portfolio selection problem
more realistic but also more challenging to solve. We also
plan to implement error mitigation techniques to reduce the
noise and errors that affect the quantum algorithms. More-
over, we plan to test our models on larger and more diverse
data sets to validate their scalability and robustness.
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