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Abstract

Dental disease is largely preventable and closely linked to poor toothbrushing behaviors. Motion-sensors, such as accelerometers,

gyroscopes, and magnetometers, allow for mon- itoring of toothbrushing behaviors. Researchers have attempted to infer tooth

surface coverage using sensors attached to the toothbrush handle or embedded in smartwatches. However, the inferences may be

deficient because the datasets were collected under structured toothbrushing assumptions performed in con- trolled laboratory

settings and not the free-form and irregular brushing patterns observed in real-world settings. To address the aforementioned

problem, we collected a dataset of 187 brush- ing sessions, including free-form brushing. We present, to our knowledge, the

first motion-sensor dataset obtained during free- form brushing. Using our experiences, we discuss the challenges of studying

toothbrushing behaviors in naturalistic settings. We also propose a three-stage method (i.e. pre-processing, brush transition

time detection, and time-series classification) to detect the teeth surfaces brushed during a session. Our findings are two-fold:

(a) the classification of teeth surfaces during free- form toothbrushing is more challenging than during brushing in controlled

settings; (b) high classification accuracy can be achieved using random train-test split of the data (i.e. k-fold cross-validation);

however, generalization beyond the participants in the training set poses difficulties. Beyond publishing the first dataset of

free-form toothbrushing, we validate our findings by applying our proposed method to our provided dataset, as well as the

datasets of toothbrushing in controlled settings.
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Monitoring Brushing behaviors using Toothbrush
Embedded Motion-Sensors

Mahmoud Essalat, Oscar Hernan Madrid Padilla, Vivek Shetty, Gregory Pottie

Abstract—Dental disease is largely preventable and closely
linked to poor toothbrushing behaviors. Motion-sensors, such
as accelerometers, gyroscopes, and magnetometers, allow for
monitoring of toothbrushing behaviors. Researchers have at-
tempted to infer tooth surface coverage using sensors attached to
the toothbrush handle or embedded in smartwatches. However,
the inferences may be deficient because the datasets were col-
lected under structured toothbrushing assumptions performed
in controlled laboratory settings and not the free-form and
irregular brushing patterns observed in real-world settings. To
address the aforementioned problem, we collected a dataset
of 187 brushing sessions, including free-form brushing. We
present, to our knowledge, the first motion-sensor dataset ob-
tained during free-form brushing. Using our experiences, we
discuss the challenges of studying toothbrushing behaviors in
naturalistic settings. We introduce a meticulous labeling method
to ensure the high accuracy in our data annotation process.
We also propose a three-stage method (i.e. pre-processing, brush
transition time detection, and time-series classification) to detect
the teeth surfaces brushed during a session. Our findings are
two-fold: (a) the classification of teeth surfaces during free-
form toothbrushing is more challenging than during brushing
in controlled settings; (b) high classification accuracy can be
achieved using random train-test split of the data (i.e. k-fold
cross-validation); however, generalization beyond the participants
in the training set poses difficulties. Beyond publishing the first
dataset of free-form toothbrushing, we validate our findings by
applying our proposed method to our provided dataset, as well
as the datasets of toothbrushing in controlled settings.

Index Terms—classification, motion-sensors, change point de-
tection, brushing behavior, smart toothbrush

G IVEN the ubiquity of dental disease and its conse-
quences, dental care providers emphasize preventive oral

self-care that can maintain oral health in the home setting [2].
A particular focus is the removal of dental plaque, a sticky
film of bacteria and food debris that covers the teeth, and
causes periodontal (gum) disease and caries [3]. If not removed
regularly and adequately, plaque produces acids that break
down tooth enamel and irritate the gums, leading to tooth and

The research was funded by National Institute of Dental and Craniofacial
Research grant numbers R01DE025244 and 1UG3DE028723. O.H.M.P. was
partially funded by NSF grant DMS-2015489. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of the NIH or NSF.

M.E. (email: mahmoudessalat@ucla.edu) and G.P. (pottie@ee.ucla.edu)
are with the Department of Electrical and Computer Engineering, O.H.M.P
(oscar.madrid@stat.ucla.edu) is with the Department of Statistics, and V.S.
(vshetty@ucla.edu) is with the School of Dentistry; all at the University of
California, Los Angeles (UCLA).

Our provided dataset as well as the code to generate the results are
publicly available at the GitHub repository in [1].

gum disease and eventual loss of teeth [4], [5].
Brushing one’s teeth regularly is the primary means of re-

moving plaque from the tooth surfaces; the brushing technique
needs to be consistent and thorough to ensure that plaque is
removed from all tooth surfaces [6], [7]. Yet, oral self-care
behaviors are rarely performed proficiently as recommended
by care providers; individuals frequently skip sessions entirely
or devote most of the time to brushing the outer teeth sur-
faces rather than the inner surfaces [8]. Thus, monitoring the
frequency and quality of toothbrushing in the home setting is
important for providing corrective feedback on actual brushing
behaviors and eventually, decreasing the incidence and impact
of dental disease.

The hyper-connectivity presented by the now ubiquitous
mobile devices and a growing confluence with behavioral sci-
ence have stimulated the use of digital approaches to reinforce
healthy behaviors and self-care (digital health interventions or
DHIs) on a large scale [9]. In many applications, low-cost
sensors allow unobtrusive monitoring to provide a realistic
picture of a patient’s behavior in real-world settings [10], [11].

Researchers have proposed a wide variety of models to
monitor activities of daily living (ADL) that include hand
washing [12], flossing [13], walking, eating or drinking, cell-
phone use, and functional transfers, such as standing up from
a chair, and lying down on bed [14], [15], [16]. These activity
recognition systems can be used to deliver timely interventions
for behavioral changes such as smoking cessation [17], [18],
[19] or control of overeating [20]. However, these monitoring
systems are specific to the given application; methods specific
for a certain ADL are not generalizable to other areas of
activity recognition. This issue is manifest in the large diversity
of approaches for different activity recognition.

Monitoring toothbrushing behaviors differs significantly
from other activity recognitions that depend on macro-motion
patterns that are large and easily observable (e.g. walk-
ing, standing, and running). Toothbrushing activities, such as
brushing adjoining tooth surfaces, comprise of micro-motions
and the subtle differences in acceleration patterns captured by
toothbrush sensors pose significant challenges for accurately
inferring toothbrushing patterns [21].

Several researchers have attempted to study toothbrushing
behaviors by solving the brushing region detection problem,
namely, to infer the dental regions being brushed during a
brushing session. Some have used motion-sensors that are
embedded in the smartwatches worn by the users. In 2016,
Huang et al. [22] proposed a cloud-based system for de-
tecting the brushing region using a wrist-watch embedded
with accelerometer, gyroscope and magnetometer. They used
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a manual toothbrush and modified it by attaching a couple of
small magnets to its handle to help with the detection of the
rotations of the toothbrush. Their 3-week study involving 12
participants, was conducted in two phases: In the first phase,
they trained the participants to perform the structured Bass
brushing technique [23] for a specific period of time. In the
second phase, they asked the participants to brush using the
learned Bass brushing technique. They proposed a machine
learning algorithm based on the Naive Bayes classifier. They
used both time and frequency domain hand-tailored features
from the accelerometer and magnetometer signals to achieve
an accuracy of 85.6% in detecting 15 brushing regions. They
later showed that by using a two-layer shallow neural network,
they could achieve an accuracy of 91.2% [24]. However, their
work is not generalizable to real-world brushing scenarios
because the structured Bass brushing technique performed
in controlled settings does not replicate the free-form and
irregular brushing patterns performed in naturalistic settings
(e.g. at home). Their algorithm selects only brushing sessions
that are performed using the Bass brushing technique; it cannot
detect brushing regions for non-conforming brushing sessions.
Also, they used the probability matrix of transitions between
consecutive brushing regions for each of the 12 participants.
This uses each individual’s brushing habits with manual tooth-
brushes and may not be generalizable to a larger population
given that they did not report the leave-one-subject-out cross-
validation accuracy. Furthermore, since the participants in their
study used manual toothbrushes only, it is unclear if their
proposed method can be extrapolated to electronic brushes.

Luo et al. [21] used both manual and electronic toothbrushes
in a month-long study involving 10 participants wearing wrist-
worn accelerometers. They used low-pass filtering to elimi-
nate the differences between the accelerometer signals during
manual and electronic toothbrushing. Using an attention-based
LSTM network [25], they achieved an accuracy of 97.3%
in detecting 15 brushing regions. Here again, the data was
collected after teaching the participants to brush according to
the structured Bass brushing technique. Also, their results are
based on a random train-test split of all the data collected and
do not show the generalization power of their model beyond
the participants in their study.

Others have tackled the brushing region detection prob-
lem by attaching motion-sensors to the brush handle. Lee
et al. [26] conducted a study with 15 participants using
manual toothbrushes equipped with motion-sensors (including
accelerometer, gyroscope and magnetometer) to detect 16
brushing regions. Participants brushed their teeth for three
minutes in a prescribed sequence, brushing each dental region
for five seconds before transitioning to the next region. They
proposed a two-stage algorithm wherein the first stage used
the rolling angle of the brush to classify the brush orientation
into four categories; up, down, left, and right. In the second
stage, they used a K-means classifier based on accelerometer,
magnetometer and Euler Angles (EAs) values. The authors
reported difficulties in brushing region detection when it came
to detecting right versus left brushing regions in their initial
studies [26], [27]. However, in a later study [28], they claimed
that using the heading angle of the mirror used by the partic-

ipants helped them to solve the challenge. Despite a reported
classification accuracy of 97.1% in detecting 15 brushing
regions, the studies [26], [27], [28] had some limitations: first,
the dataset of three minutes of brushing per participant is
limited; second, they assumed knowledge of the heading angle
of the mirror in front of the participants; third, participants
were asked to keep their head and body fixed while brushing;
and fourth, participants were prescribed the Bass brushing
technique and had to follow a predefined, structured brushing
sequence. All these limit the applicability of their methods to
real-life settings.

Recently, Hussain et al. [29], [30] published a dataset
collected from accelerometer and gyroscope sensors attached
to the brush handle during toothbrushing. They used 17
participants in their study, each brushing their teeth for one
to five brushing sessions for a total of 64 brushing sessions.
Three participants used electronic toothbrushes while the rest
used manual brushes. They instructed the participants to brush
each dental region for about seven seconds according to the
Bass brushing technique and tackle the teeth surfaces in a
prescribed order. They calculated pitch and roll angles using a
complementary filter [31] and used a random forest classifier
to detect the brushing regions.

To address the problem of monitoring naturalistic brushing,
we:

1) Provide the first publicly available dataset of 9-axis
motion-sensor (including accelerometer, gyroscope, and
magnetometer) attached to the handle of the tooth-
brush. This dataset is unique because it includes both
manual and electronic toothbrushes and involves free-
form brushing sessions. Also, we include two different
facing direction during brushing in our dataset; a factor
not considered in the previous studies or bypassed by
modifying the brush as in [24].

2) We mention the challenges associated with labeling the
brushing dataset and propose a relabeling procedure to
enhance the quality of dataset annotation.

3) Propose a three-stage framework (i.e., pre-processing,
brush transition times estimation, and time-series clas-
sification) to tackle the toothbrushing region detection
problem. By applying our algorithm, both to our dataset
as well as the dataset collected under the structured
brushing assumption [29], we show that region detection
during free-form brushing is more challenging than
detection in controlled settings .

4) Show that a high classification accuracy can be achieved
using a random train-test split (i.e. k-fold cross valida-
tion), but generalization beyond the participants in the
training set (i.e. leave-one-subject-out cross-validation)
poses difficulties. Our observation should guide other
researchers in reporting the results of their brushing
detection studies.

5) Compare different classification methods based on fea-
ture engineering and deep learning techniques. We apply
Transformer Encoder model to our dataset and show
that additional customization can be done for different
types of brushes (i.e. manual and electronic) and the
attributes of the user (i.e. left-handed and right-handed)
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by introducing feature embedding technique used in
natural language processing applications (NLP). We
show that our proposed classifier can achieve a higher
accuracy compared to the method proposed in [30] under
all evaluation settings.

The rest of this paper is structured as follows: 1) Section
I defines the brushing regions and describes ways to estimate
orientation of an object using motion-sensors. We will ex-
plain our experimental setup for data collection in Section
III. Section II discusses the challenges of our problem and
why machine learning is a reasonable approach to tackle the
brushing region detection problem. Section V discusses our
proposed method. We start with data pre-processing in Sub-
section V-A, continue with proposing a method for estimating
the times that the brush transitions between different regions
of the mouth in Subsection V-B, and finally in Subsection V-C,
we introduce the machine learning methods that we utilized
in our work. We present the results in Section VI, discuss and
propose potential directions for future work, in Section VII,
and provide conclusions in Section VIII.

I. TOOTHBRUSHING REGIONS

Summarized by Figure 1, we use the standard convention
of dividing the dental arches into 16 regions [26].

Fig. 1. Defined 16 brushing regions of mouth

II. CHALLENGES OF BRUSHING REGION DETECTION

Detecting the regions that are being brushed would be sim-
ple if we could accurately track the position of the toothbrush
head in the mouth. However, motion-sensors are not able to
do that because of the following limitations:

1) Hardware limitations: Considering the micro-motions
and rapid transitions of the toothbrush head during

brushing, accurate estimation of toothbrush head posi-
tion needs very accurate sensors and a sampling rate
that greatly exceeds the capabilities of the existing
motion-sensors. Moreover, transmitting data –typically
via Bluetooth– at a high rate, is not possible due to
communications limitations.

2) Size of mouth: For position estimation purposes, the
mouth is a small cavity. Further dividing it into 16
brushing regions makes position tracking very difficult.
In particular, to estimate the position of the toothbrush
in mouth, we should do a double discrete integration of
the gravity compensated accelerometer vector defined as
follows:

AGC = RW
B ×A−

00
g

 . (1)

Here, g is the gravitational acceleration which is ap-
proximately 9.8 m/s2, A is the three-dimensional ac-
celeration vector measured by the accelerometer, and
RW

B is the rotation matrix representing the orientation
of the brush with respect to the world reference frame.
The world reference frame is a coordinate frame with
its X-axis in the direction of the north magnetic pole,
its Z-axis in the opposite direction of the gravity, and
its Y -axis in the direction of the outer product Z ×X .
The double integration of AGC can amplify any mea-
surement errors in the accelerometer values. Also, the
errors that exist in estimating the rotation matrix RW

B

can introduce too much error in location estimation. This
makes location estimation using motion-sensors not a
suitable approach in our application.

Therefore, most studies just focus on detecting the regions
that are being brushed using the orientation of the brush head.

There are numerous methods for orientation estimation,
from Kalman based methods [32], [33], [34], to other comple-
mentary filters [35], [36]. Kalman based methods are complex,
require a lot of parameter hand-tuning, and they usually need
a very high sampling rate on the order of kHz [37]. In 2010,
Madgwick [37] proposed a method for orientation estimation
that could be used for both IMU (i.e. accelerometer plus
gyroscope) and MARG (IMU plus magnetometer) sensors.
Their method is computationally light and is suitable for low
sampling rate scenarios (on the order of a few dozen hertz).
We have used this filter in our study.

However, there are some challenges in using orientation of
the toothbrush head to detect the brushing regions:

1) Similar brush-head orientation during brushing different
regions: Several brushing regions manifest as similar
brush orientations. An example can be seen in Figure
2 between ManLO and ManRO regions. In Figure 3,
we show EAs of 16 brushing regions that were brushed
with manual toothbrush during a brushing session. Many
regions show overlapping EAs and convey similar ori-
entations.

2) Intra-subject variation of brushing styles: Even within a
particular subject, there are considerable variations in the
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Fig. 2. Two brushing regions which manifest similar brush
orientations

Fig. 3. Euler Angles of the 16 brushing regions of
participant #1 during brushing session #1

orientation of the brush-head between multiple brushing
sessions. Figure 4 shows EAs of the brush obtained from
the same subject in Figure 3 during another brushing
session with a manual toothbrush. Another factor that
can make this problem even more challenging is the
variation in brushing styles over time.

Fig. 4. Euler Angles of the 16 brushing regions of
participant #1 during brushing session #27

3) Inter-subject variation in brushing styles: Individuals
differ in their brushing styles. In Figure 5, we show
the EAs of the brush orientation during a brushing
session of a different individual than Figures 4 and
3. Clearly, the brush orientations are different among
different individuals brushing the same regions.

Fig. 5. Euler Angles of the 16 brushing regions of
participant #2 during brushing session #2

4) Head movements: To accurately detect the region being
brushed, the toothbrush-head orientation with respect
to the user’s head orientation is needed. Hence, a
user’s head movements/rotations, typical for a free-form
brushing session, can generate artifacts in detecting the
brushing regions.

Because of these challenges, determining the boundaries of
EAs associated with different brushing regions is not straight
forward. Thus, machine learning techniques can be a suitable
approach for this application. Also, our premise is that there
should exist some time or frequency domain features that can
be extracted from the brushing data on the population level as
well as the personal level to classify the brushing regions. In
fact, some studies have found promising results. For instance,
by collecting motion-sensor data from during brushing, the
authors in [38] found that the frequency of brushing is higher
on the left side of the mouth compared to the right side
among right-handed individuals. Also, [39] showed that some
statistical features are different in brushing ManLL/MaxLL
regions compared to ManAB/MaxAB regions.

III. DATA COLLECTION AND EXPERIMENTAL SETUP

Despite numerous studies on monitoring toothbrushing be-
havior using motion-sensor data, there is no publicly available
dataset that includes free-form brushing. Hence, we designed
a study that collected brushing data of 12 participants (2
left-handed and 10 right-handed) over 187 brushing sessions.
All participants provided written informed consent and the
study protocol was reviewed and approved by the Institutional
Review Board of the University of California, Los Angeles
(IRB#18-000874).
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Our experimental setup is shown in Figure 6. Each brushing
session included a random choice of the following factors:

Fig. 6. Our experimental setup

1) Brush type: Because of the differences associated with
brushing styles, we included both manual and electric
toothbrushes in our study. Brushing with an electric
toothbrush entails slower and smoother brushing strokes
whereas brushing with a manual toothbrush entails faster
and agitated brushing strokes. Also, transitions of the
electric brush head from one region to another involves
more gliding motions across the teeth surfaces, com-
pared to erratic shuffles of a manual brush head. Previous
studies mainly focused on manual toothbrushes. [22],
[24], [28], [26]

2) Direction: Our study participants were brushing before
two mirrors positioned at 90 degrees angle (heading
angle) to each other. Considering the effect of direction
on magnetometer [22], our dataset examines robustness
to face direction during brushing. A factor that happens
naturally because of the users having different face
directions in different locations during brushing. Lee et
al. [26] did not experiment with different face directions
during brushing. Huang et al. [22] proposed a method
that was robust to different face directions at the expense
of modifying the toothbrush by attaching a couple of
strong magnets to the brush handle.

3) Brushing Method: During free-form toothbrushing, in-
dividuals often switch frequently from one region to
another. These frequent transitions of the brush-head
between different regions makes the process of labeling
the regions brushed during a session, challenging and
time-consuming. Moreover, some brushing sessions can
be too short for machine learning purposes which favor
having a large amount of labeled data. Hence, in our
data collection process, we provided two toothbrushing
methods:

a) Scripted: in which the participants followed a ran-
dom sequence of brushing regions (without rep-
etition). We created a slide deck in which each
slide contained a figure of the mouth with an arrow

indicating the region to be brushed at a given
time. This sequence was projected on a screen
adjacent to the mirror that participants used for
brushing. Each slide lasted for 10 seconds. The last
3 seconds of each slide displayed a small pictogram
of the next brushing region in order to prepare
the participants for the switch to the next brushing
region.

b) Free-form: in which the participants were allowed
to brush freely as they do normally. The datasets
from previous studies were collected under several
constraints, including restrained head and body
movements or scripted brushing sequences [21],
[22], [26], [29]. Including freestyle brushing in
our dataset was essential for developing a brushing
region detection algorithm appropriate for real-
world brushing scenarios.

We used two 9-axis MARG sensors to collect motion-
sense data in each brushing session. One sensor was attached
to each participant’s toothbrush handle the other one was
embedded in a wristband that the participants wore during
toothbrushing. All motion-sensors (accelerometer, gyroscope,
and magnetometer) collected data at a 25Hz sampling rate.
The data was transmitted to a nearby phone via Bluetooth and
then stored. We attached the sensors to the same location on
all the brushes. The coordinates of the sensors on the brushes
as well as the wristband are shown in Figure 7. The mounting
orientation of the sensors on the brush and wrist served to
avoid the gimbal lock problem [40].

Fig. 7. Sensors used in our study. (a) manual toothbrush, (b)
electronic toothbrush, and (c) wristband. The sensors’

coordinates are shown in red.

In order to obtain the ground truth labels of the dental
regions being brushed during a session, we used two cameras
to record the participants’ faces from the bottom and top angle.

In order to sync the motion-sensor signals with the videos,
we did a pre-processing method described in Subsection V-A1.
This paper focuses on brushing region detection using the
motion-sensor attached to the toothbrush; the wristband sensor
data will be studied in our future work.

IV. LABELING

Labeling toothbrushing regions can be a challenging task
due to the fast and frequent transitions of the toothbrush,
obscured brushing regions in the video, and brushing of
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Fig. 8. Relabeling Procedure. Flowchart of our proposed
method to enhance the annotation accuracy.

neighboring dental regions together. Due to these challenge,
the resulting labels may contain noise and cannot be entirely
relied upon. Therefore, we implemented a two-step procedure
to enhance the labeling as illustrated in Figure 8, which
involved:

1) In the first step, we diligently endeavored to label our
dataset using the video data and subsequently applied
our proposed algorithm, as described in Section V, to
train a classifier based on these initial ”crude labels”. To
accomplish the primary labeling step, after synchroniz-
ing the videos with the motion-sensor signals, we labeled
the starting and ending samples for each brushing region
within the brushing session, excluding the periods when
the brush was transitioning between brushing regions or
when the user was not actively brushing any region.

2) In the second step, we employed our trained classifier to
predict the brushing regions and identified regions that
did not rank among the top three predictions made by
the classifier. Subsequently, we rectified these regions
using the brushing video.

Through this method, we were able to correct roughly 10%
of the ”crude labels” produced in the first labeling step.

V. PROPOSED METHOD

In this section, we propose a three-stage method for the
brushing region detection problem which consists of: 1) pre-
processing; 2) brush transition time estimation: to find the
times that the toothbrush transitions between the brushing re-
gions; and 3) time-series classification: to classify the samples
in between consecutive brush transition times into brushing
regions.

A. Pre-processing

We performed three pre-processing steps:
1) Interpolation: Bluetooth packets have non-uniform de-

lays during transmission. To deal with this issue, we fit a re-
gression line to the timestamps of the received data packets on
the phone. This will adjust for any delays during transmission
and results in timestamps with uniform intervals.

Also, the motion-sense signals have missing values due to
Bluetooth transmission having missing packets. To overcome

this issue, we interpolated the motion-sense signals using
spline interpolation. This will yield signals with a true 25Hz
sampling rate. To do this interpolation, we dedicated a counter
as part of the Bluetooth packets to keep track of the packet
number.

2) Low-Pass filtering: We low-pass filtered accelerometer
and magentometer signals before feeding them to the orien-
tation filter to estimate the EAs. The reason for doing so is
that the orientation filters use accelerometer and magnetometer
signals as a feedback signal with low dynamic response to
compensate for the erroneous high frequency components in
the estimated orientation generated by integrating the gyro-
scope values. Specifically, the accelerometer and magnetome-
ter measurements are affected by the brushing strokes which
appear as high frequency components of their spectrum. There-
fore, low-pass filtering only keeps the low-pass components
of accelerometer and magnetometer signals that relate to the
orientation of the brush. We used a Butterworth low-pass filter
of order 5 with a cutoff frequency of 2Hz.

3) Magnetometer Calibration: Magnetometer measure-
ments are affected by the geomagnetic field as well as the
ferromagnetic sources that are present in the vicinity of
the magnetometer. These ferromagnetic sources, which cause
distortion in the magnetometer measurements, can be divided
into two categories:

1) Hard-iron distortions: hard-iron sources are the ferro-
magnetic components that are present on the printed cir-
cuit board (PCB) of the sensor [39]. These components
are fixed and will reside with the magnetometer after it is
manufactured. Hard-Iron sources create a constant bias
in the magnetometer measurements and can be modeled
by a constant vector added to the magnetometer values.

2) Soft-iron distortions: soft-iron sources are the magnetic
components that are present in the environment that the
magnetometer is located. Soft-iron sources, include elec-
trical appliances, metal furniture and metal structures
within a building’s construction [37] which can affect the
magnetometer measurements not only directly but also
by inducing a temporary magnetic field into normally
unmagnetized ferromagnetic components, such as steel
shields and batteries that exist on the PCB [39]. The
effect of the soft-iron sources can be modeled by a 3*3
matrix multiplied by the magnetometer values.

Hence, magnetometer measurements can be modeled as
follows:

Bmeasured = Wsoft−iron ×Bsensor +Bhard−iron. (2)

Where Bmeasured is the distorted magnetometer measure-
ment and Bsensor is the ideal magnetometer measurement in
the absence of distortions. Of note, any distortion factor that
can be modeled as matrix multiplication, such as accelerometer
and magnetometer axes misalignment or non-orthogonality
of magnetometer axes, can be included in Wsoft−iron. In a
similar way, Bhard−iron includes any non-zero field offset
added during factory calibration of the magnetometer .

During magnetometer calibration, the purpose is to find
Bhard−iron and Wsoft−iron so that the magnetic distortions
can be compensated in order for the Bsensor to be estimated.
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It can be easily shown as in [39] that the distorted mag-
netometer measurements (Bmeasured) form the locus of an
ellipsoid when rotated enough under arbitrary orientations. To
fit an ellipsoid to the magnetometer measurements, we used
the method proposed in [41] based on least squares fitting.

By fitting an ellipsoid to the distorted magnetometer
measurements (Bmeasured), we can find Bhard−iron and
Wsoft−iron. To find Bsensor, W−1

soft−iron is needed which can
be found uniquely under the constraint of symmetric W matrix
[39]. By calibration, Bsensor is determined which forms the
locus of a zero-centered sphere.

B. Brush Transition Times Estimation

In the second stage of our proposed method, the transition
times corresponding to the transitions of the brush between
different brushing regions are estimated. As it can be seen
in Figure 9, at the brush transition times, often a change
in the values of one/multiple channels of accelerometer and
magnetometer signals can be observed, which is because of the
change in the brush orientation. Generally, detecting a change
in signal is referred to as change point detection (CPD) in
the literature [42]. Also, we call the signal samples that lie in
between two consecutive change points, a segment.

Fig. 9. Motion-sense signals during a brushing session. (a)
accelerometer signals and (b) magnetometer signals. Times

corresponding to the transition of the brush between
consecutive brushing regions are shown with red vertical

lines.

While there are many change point detection methods (see
the review paper [43]), most of these methods - to the extent
that we examined - either have high computational costs or are
designed for specific applications. This limits their usability
in our application. As an alternate, we propose a simple and
computationally light window-based CPD method, which we
call window-CPD.

In window-CPD, a sliding window of length L with a stride
of P percent of the window length, runs over the motion-sense
signals and detects a change in the signals’ means between

consecutive windows. Particularly, to detect a change in the
signals, we use the following criterion:∥∥S̄i − S̄i−1

∥∥
2
> ∥σi−1∥2 × α+ β. (3)

This compares the Euclidean norm of the change in S̄
(signals’ temporal mean in a window) between the current
and the previous window, to an affine function of σi−1 (the
Euclidean norm of the signals’ temporal standard deviation in
the previous window). Here, signal S represents the 6-channel
signal resulted from the concatenation of accelerometer and
magnetometer signals.

Including the standard deviation in the threshold causes the
threshold to be adapted to the recent range of variations in
the signals. From our observations, this adaptive threshold
results in better change point estimations compared to having
a constant value as the threshold.

We used α = 0.05, β = 0.2, L = 20, and P = 50
heuristically in our study.

C. Time-series Classification

There are many machine learning algorithms to classify
time-series data, ranging from classical methods such as
feature engineering, in which features are hand-tailored, to
more recent methods which use deep learning to automatically
extract features. In this section, we explain the methods that
we used to classify motion-sensor data and compare their
performances in Section VI.

1) Feature Engineering Method: In this method, we ex-
tracted time and frequency domain features from the segments
in our training set. Features extracted in our work were the
features that were frequently used in the area of activity
recognition using motion-sensors.

The features we extracted from a segment of motion-
sense signals included mean and variance of the signals,
coefficients of Auto-Regressive (AR) model of the signals,
mean and variance of EAs, mean-frequencies of the motion-
sense signals’ spectra extracted using the Yule-Walker [44]
spectrum estimation method (after filtering the signals with a
band-pass Butterworth filter of order 5 and cutoff frequencies
of 0.1Hz and 2Hz), cross correlation of the motion-sense
signals, and mean and variance of the gravity compensated
linear acceleration of the brush (AGC in Equation 1).

Out of 120 features extracted in this stage, we selected the
best 20 features using the Fisher score [45] based on finding
the optimum projection matrix Φ to maximize the Rayleigh
quotient defined as follows:

J (Φ) =

∣∣∣ΦT Σ̂bΦ
∣∣∣∣∣∣ΦT Σ̂wΦ
∣∣∣ . (4)

This is the ratio of between-class variance to within-class
variance and hence Σ̂b and Σ̂w are called between-class and
within-class scattering matrix, respectively. It can be shown
that the solution to the above optimization problem can
be obtained by solving the following generalized eigenvalue
problem:

Σ̂bΦ = λΣ̂wΦ. (5)
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After finding Φ and selecting the best features for classi-
fication, a classifier can be used to detect the region that is
being brushed during the segment. We tried different classifiers
such as Naive Bayes, Random Forest, Support Vector Machine
(SVM). These classifiers performed similarly and hence we
just showcase the result of the Naive Bayes classifier in Section
VI.

2) Long Short-Term Memory (LSTM) Networks: LSTM
networks [46] are specific types of Recurrent Neural Networks
(RNNs) that can overcome the exploding and vanishing gra-
dient problems happening during training of the Neural Net-
works. They are being used for classifying time-series data and
are powerful at remembering the long term dependencies in
time-series data. By using the LSTM networks, we intended to
capture not only the features related to the specific orientations
of the brush but also any motion patterns that exist during
brushing a particular region.

We concatenated the accelerometer, magnetometer, and EAs
to obtain 9-dimensional feature vectors and then fed them
to our LSTM model. We used two layers of bidirectional
LSTM networks, with 64 hidden units and a drop-out layer
with a drop-out probability of 0.1 after each layer. At the
end, we connected the LSTM output to a fully-connected
layer and then calculated the Softmax probabilities of the
brushing regions. Our model hyper-parameters were selected
heuristically by a coarse-to-fine approach.

For training, we used multi-class cross entropy loss and
Adam [47] optimizer with a learning rate of 1e-3. Our network
was trained for 10 epochs with a batch-size of 1024. The
number of epochs was chosen based on the training and
evaluation accuracy to avoid overfitting.

We further describe our training process in Subsection V-C4.
3) Transformer Encoder: Transformers made a revolution

in natural language processing (NLP). These models that were
initially used in language translation tasks, consist of two parts:
an encoder and a decoder. These models use the attention
mechanism [48] to learn the long-term dependencies in a
corpus and are shown to outperform the RNN models in almost
all NLP tasks.

However both the encoder and decoder parts of the Trans-
formers are needed for language translation tasks, the Trans-
former Encoder can be used by itself to learn a vector
representation of the time-series data for classification tasks.
This is accomplished by adding a classification token to the
beginning of the time-series segment.

In this paper, we used the Transformer Encoder model
to classify the segments of motion-sense signals during a
brushing session. The architecture of our model is shown in
Figure 10. Similar to the Subsection V-C2, we concatenated
the accelerometer, magnetometer, and EAs as 9-dimensional
feature vectors and then fed them into our Transformer En-
coder model. We first used a fully-connected layer of size
32 to project our feature vectors into a feature space with
higher dimensions. Then we added a positional embedding
vector as well as brush-type and left-handedness embedding
vectors of size 32 to the feature vectors. The addition of the
latter embedding vectors will allow further personalization to
be possible via Transformer Encoder models.

Then we used a stack of four attention layers each contain-
ing a feed-forward (fully-connected) layer with 256 hidden
units. Each attention layer has two attention heads with a size
of 128 for key, query and value vectors. We chose a drop-out
probability of 0.1 for both the attention scores as well as the
feed-forward layer inside each attention layer. We used Gelu
activation function for the feed forward layers. Here again,
our model hyper-parameters were selected heuristically by a
coarse-to-fine approach.

Our training configuration was similar to the LSTM network
discussed in Subsection V-C2, with the exception of using the
BERT-Adam optimizer instead of the Adam optimizer.

Fig. 10. Our Transformer Encoder model configuration

4) Majority voting technique: Since we know that each
segment of the motion-sense data which lies in between two
consecutive brush transition times corresponds to only one
brushing region, any subsegment of each segment should
also corresponds to the same brushing region. Therefore, we
can split each segment into multiple subsegments using a
sliding window of size l with a stride of p percent of the
window length. At the training time, splitting our segments
into multiple subsegments is useful due to the increase in the
training set size which helps with reducing the generalization
error of our classifiers. At the test time, to predict the class
that each segment belongs to, we can split the segment into
multiple subsegments and perform majority voting over the
class predictions of the subsegments. For majority voting, we
treated the subsegments as independent measurements. There-
fore, we summed the log probabilities of the subsegments’
distributions over the classes (i.e. brushing regions) to find
the class with the highest probability as the final prediction.
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We applied this technique to predict segments using both the
LSTM and the Transformer Encoder models and observed a
performance improvement of approximately 10% in accuracy
compared to not using the technique. We set the values of
l = 32 and p = 0.25 heuristically.

VI. RESULTS

In this section, we present the performance of our proposed
algorithm using various segment classification algorithms de-
scribed in Subsection V-C. First, we describe the evaluation
metrics employed in our study, followed by a comparison of
the performance of different classifiers based on these metrics.

A. Evaluation metrics

We report three cross-validation accuracy metrics defined as
follows:

• One-subject-out accuracy: To calculate this metric, we
train our model on brushing data from all participants
except for one and evaluate its performance on the left-
out participant. We repeat this process for each participant
and then average the results. This metric evaluates the
model’s generalization power to new participants outside
the training set and measures how well it can perform at
the population level.

• One-session-out accuracy: For this cross-validation met-
ric, we train our model on all brushing sessions of a
participant except for one, which we use as the validation
set. We repeat this process for all sessions of the partic-
ipant and all participants, and then average the results.
This method evaluates the personalization power of the
models for each individual since the training set includes
data from one participant.

• K-fold accuracy: For k-fold (we set k=5), cross-validation
[49] all brushing sessions of all participants are used. We
used this metric since it is conventionally used to evaluate
the performance of the machine learning models.

B. Classification results

To evaluate the performance of our proposed algorithm, we
report micro-F1 score [50] for sample-based and segment-
based classification methods in Table 1. In the sample-based
classification method, we classify each sample of motion-sense
signals based on the method proposed in [30]. The Random
Forest classifier is applied to the feature vectors generated by
concatenation of accelerometer, magnetometer, and roll and
pitch angles for each time-sample. The roll and pitch angles
are estimated using the proposed complimentary filter in [30].
In contrast to classifying feature vectors of each time-sample
in sample-based methods, in the segment-based classification
methods, we classify the segments that lie in between the
consecutive brush transition times. In segment-based methods,
we ultimately assign the predicted class of each segment to
all samples in the corresponding segment. Hence, the reported
accuracy of segment-based methods is calculated based on the
correct predictions of the samples. This makes the comparison
of the performance of the segment-based and the sample-based
methods valid.

For classification, since some regions are brushed together
or the accurate location of the brush is not clear in the videos,
we merged some regions which were often ambiguous during
labeling following the convention proposed in [51]. Hence, we
ended up with 9 brushing regions as follows:

R = {ManRO/ManRL,ManLO/ManLL,

MaxLO/MaxLL,MaxRO/MaxRL,

MaxRB/ManRB,MaxLB/ManLB,

MaxAB/ManAB,ManAL,MaxAL}.

Table 1. F1 score of our proposed classification methods

Our
Dataset

Dataset in
[29], [30]

Sample-Based (method
in [29], [30])

K-fold 81.5 91.2
Subject-out 52.4 61.5
Session-out 60.7 67.3

Segment-
Based

Feature
Engineering

K-fold 80.3 89.5
Subject-out 50.7 58.1
Session-out 60.4 66.5

LSTM
K-fold 89.5 93.3
Subject-out 53.4 63.7
Session-out 65.3 70.5

Transformer
Encoder

K-fold 95.3 97.2
Subject-out 58.6 67.9
Session-out 67.3 74.7

As it can be seen in Table 1, our proposed segment-based
methods outperform the sample-based method proposed in
[30] when applied on both their published dataset as well
as our provided dataset. The difference in the performances
of our model when applied on our dataset versus the dataset
in [29], shows the challenging nature of brushing region
detection when performed free-form versus under constraints
(such as prescribed sequence of brushing, structured Bass
brushing technique, etc.). While our models can achieve high
k-fold cross-validation accuracy, one-subject-out classification
accuracy is much more challenging. This large gap in the
models’ performances, manifest the vast variation in brushing
styles and the other challenges discussed in Section II. Hence,
it is important to assess models’ performances based on
one-subject-out evaluation metric. This should guide other
researchers in the field when reporting their models’ perfor-
mance metrics.

Furthermore, it can be observed that one-session-out ac-
curacy is partially higher than the one-subject-out accuracy.
This may be because of the fact that the individuals’ brushing
habits might differ from each other and hence a personalized
model would perform better than a general model for the
whole population.

Overall, the Transformer Encoder model performed slightly
better than the other segment-based models. The one-subject-
out and one-session-out accuracy metrics for the Transformer
Encoder model are shown in Figures 12 and 13, respectively.
In the one-subject-out histogram, each bar represents the
accuracy of the model when the data from that participant
constituted the validation set. In the one-session-out histogram,
each bar represents the accuracy result of the corresponding
participant averaged over cases where each session of that
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participant constituted the validation set and the rest of that
participant’s sessions constituted the training set. Figure 11
displays the confusion matrix of the Transformer Encoder
model applied to our provided dataset, with the one-subject-
out accuracy calculated for the case where participant #1 is left
out. Our model performed well in distinguishing regions with
different brush-head orientations (e.g., ManRO and MaxRO).
However, it had some difficulties discerning regions with sim-
ilar brush orientations, such as ManRO and ManLO regions.

Fig. 11. Confusion matrix of the Transformer Encoder model
applied to our provided dataset, with the one-subject-out

accuracy calculated for the case where participant #1 is left
out.

Fig. 12. F1 score of one-subject-out evaluation metric using
the Transformer Encoder model

VII. DISCUSSION AND FUTURE WORK

A. Hyper-parameter Tuning
The outcomes, as presented in Section VI, were achieved

via a hyperparameter tuning process. To optimize the hyper-
parameters of our classifiers, we employed a coarse-to-fine
approach consisting of two steps:

1) Initially, a coarse grid of values was selected to evaluate
the overall performance of the classifiers over a wide
range of hyperparameter values.

Fig. 13. F1 score of one-session-out evaluation metric using
the Transformer Encoder model

2) Subsequently, in the second step, a finer grid of values
was explored around the range of values that yielded
the best results on the desired metric, particularly one-
subject-out cross-validation accuracy.

In addition, in the case of neural network classifiers, we
did not allow the time-consuming training process to run for
multiple epochs. Instead, we terminated the training process
after the first few epochs. This approach is in line with the
concept of the critical learning period in deep learning [52],
where the initial phase of training neural networks is shown to
be critical in achieving the final performance of the network.

In general, we observed that for neural networks, regardless
of the type of the three cross-validation metrics mentioned
in Section VI, increasing model complexity enables attaining
high training accuracy. However, this usually results in a
decline in validation accuracy, commonly known as overfitting
in machine learning. Below are the ranges of hyperparameters
that we found to be effective for the classifiers we employed.
Hyperparameter values falling outside these ranges may cause
underfitting or overfitting for the classifiers we utilized:

• Transformer Encoder:
– Hidden size for the key, query, and value: [128, 256]
– number of stacked-attention layers: [3, 5]
– number of hidden units in the attention layer: [128,

512]
– number of attention heads: [2, 4]
– dropout probabilities: [0.1, 0.4]

• LSTM:
– hidden size: [64, 128]
– dropout probability: [0.1, 0.4]

• Random-Forrest (for the method proposed in [30]):
– number of trees: [70, 120]
– trees’ depths: [12, 18]

Regarding the optimization process, we discovered the sub-
sequent range of values that prevent underfitting or overfitting:

• learning rate: [5e-4, 5e-3]
• number of epochs: [5, 10] for one-subject- and one-

session- out cross-validation, and [20, 30] for k-fold
cross-validation

• batch size: [256, 2048]
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For the majority-voting technique:
• segment length: [0.4, 1.5] × sampling rate
• stride length: [0.1, 0.4] × sampling rate
Nevertheless, although we attempted to find the optimal val-

ues within the aforementioned ranges, additional experiments
within these ranges may yield further optimization.

B. Labeling

Regarding the labeling process, we implemented a two-
step algorithm that involves relabeling some of the inaccurate
labels using the trained classifiers’ predictions. However, the
literature provides various methods to handle partially accurate
labels, commonly referred to as noisy labels [53]. Some
methods tackle this problem by modifying the loss function,
such as Bootstrapping, Forward/Backward Loss Correction,
and Mixup, while others rely on relabeling the data based
on the trained classifiers’ predictions. However, in our study,
we proposed a relabeling approach that uses the classifiers’
predictions in conjunction with the video recordings of the
brushing sessions as the ground truth. Our approach is par-
ticularly suitable for our work due to the relatively small
size of our dataset and the lack of brushing datasets in the
field. Moreover, for regions that can be brushed together (e.g.,
ManAB, MaxAB), we could label them as ManAB/MaxAB,
which could pave the way for multi-label classification [54].

C. Classification Accuracy

Our results signifies that generalization to specific mani-
folds of data (e.g. one-subject-out cross-validation), is a more
challenging problem in cases such as toothbrushing region
prediction which involves significant between- and with- sub-
ject variability. Considering the complexity and the variations
included in our problem, we think that a bigger dataset (our
speculation is at least 20 times bigger) is needed for the
models to be able to generalize to the subjects outside our
datasets’ participants. In small data scenarios such as our case,
we also hypothesize that other avenues of machine learning
which are suitable for out-of-distribution genralization, such as
transfer learning [55], can possibly be effective. This may need
training models on other datasets that involve IMU sensors for
detection of other activities other than toothbrushing.

VIII. CONCLUSION

In this paper, we provided a dataset for detecting the dental
regions that are being brushed during a brushing session.
Our dataset consists of toothbrushing motion-sense signals
collected from accelerometer, gyroscope, and magnetometer
sensors attached to the brush. We collected 187 brushing
sessions from 12 participants. Unlike previous studies with
constrained brushing conditions (e.g. structured Bass brush-
ing technique, prescribed brushing transition sequence, fixed
head/body position), our data collection includes free-form
brushing that is representative of naturalistic settings. We
discussed the challenges of labeling the brushing data and
proposed a two-stage relabeling algorithm aimed at enhancing
the accuracy of data annotation.

We discussed the difficulty of accurate position tracking of
the toothbrush during brushing. We also proposed a three-stage
algorithm (i.e. pre-processing, brush transition times detection,
and time-series classification) to predict nine brushing regions.
Our algorithm finds the times when the brush transitions
between dental regions and classifies the segments that lie
between consecutive brush transition times. We observed
that free-style brushing is more challenging compared to the
dataset in [29], which is collected under structured brushing
assumptions. We also showed that classifiers can achieve
high classification accuracy using a random train-test split
(i.e. k-fold cross-validation); however, generalization to new
toothbrush users (i.e. leave-one-subject-out cross-validation)
poses significant challenges due to variations in brushing styles
and other factors such as head movement during brushing. We
believe that expanding the brushing dataset to include more
participants and increasing the number of sessions for each
participant can be effective in generating better models.
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