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Abstract

In this note, we shed light on the physical meaning for the backpropagated error used by the backpropagation training algorithm.
Essentially, for a given scalar output of the neural network, its backpropagated error is a linear apportionment of the error at
it, in proportion to the linear gain between the outputs of neurons and the output according to a linearised-systems-view of the
network. For multiple outputs, superposition provides the total/nett backpropagated error at the outputs of neurons.

Subsequently, we present some elementary statistical analysis for backpropagated errors in the network.
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Abstract 
 

In this note, we shed light on the physical meaning for the backpropagated error used by the 

backpropagation training algorithm.  Essentially, for a given scalar output of the neural network, its 

backpropagated error is a linear apportionment of the error at it, in proportion to the linear gain between 

the outputs of neurons and the output according to a linearised-systems-view of the network.  For 

multiple outputs, superposition provides the total/nett backpropagated error at the outputs of neurons.   

 

Subsequently, we present some elementary statistical analysis for backpropagated errors in the network. 

 

 

1. Introduction 
 

A given input 𝒙 from the input-output training set applied to a feedforward neural network (FNN) with 

some preassigned weights 𝑾, result in an network output error 𝑒(𝒙,𝑾).  Then, the immediate challenge 

faced is, how much (sign and magnitude of the increment) each (scalar) weight needs to be adjusted in 

order to reduce the output error and optimise the accuracy of the network.  For a linear feedforward 

network with a fixed (i.e., time invariant) training set, the appropriate weights can be determined in a 

single step.  Unfortunately, for a non-linear feedforward network, this is not achievable and the best we 

can do is to adjust the weights incrementally towards a possibly local optimal setting.  Moreover, due 

to the non-linear, layered structure of such a network, it is apparent that the weights of the outermost 

function of the function composition in (1) (below) describing the network must be updated first, 

followed by the next function in the composition, etc.  This is precisely the modus operandi of the 

backpropagation algorithm which is based on the backpropagated error. 

 

For a particular weight, to determine quantitatively an increment that will improve the network’s 

performance, its influence on the output (and hence the output error) must first be quantified.  

Determining the precise amount by which a weight influences the output in a non-linear network is 

impossible either due to non-invertibility of certain activation functions or the tedium it entails 

particularly for a large network.  However, linear approximation allows one to estimate a weight’s 

contribution to the output error by summing the linearised gains of all the shortest paths in the network 

that contain it.  Appropriate normalisation then reveals that such a linear approximation essentially turns 

out to be linear apportionment of the output error among some selection of neurons over which the 

normalisation is performed.  Furthermore, for sufficient redundancy built into a network, one expect 

that the output error can be made arbitrarily small, and by implication the actual errors at each neuron’s 

output, resulting in the backpropagated errors to becoming accurate estimates.  

 

Section 1 provides the context and terminology needed for the rest of the note, while Section 2 derives 

the expression for the backpropagated error, followed by its interpretation in Section 3.  There, different 

normalisations provide different apportionments and hence interpretations.  Section 4 uses the results 

of earlier sections to characterise the backpropagated error in terms correlations among apportioned 

errors for certain collections of neurons. 
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2. Context and Terminology 
 

Here, we consider feedforward neural networks (FNNs) consisting of 𝐿 ≥ 2 layers, including the input 

layer of nodes.1  To reduce the number of indexed quantities in the presentation, we will assume all 

neurons in the network to use the same activation function, namely 𝑓(⋅).  This limitation is easily 

overcome by the introduction of indices, one index if uniqueness per layer or per track is required or 

two if uniqueness per neuron is required.  Conventionally, layers are organised horizontally and 

numbered from left to right, starting with the input layer with network input 𝒙 as ‘layer 0’ containing 

source/input nodes instead of neurons.  Within each layer, neurons are organised vertically and then 

numbered from top to bottom, starting with the topmost neuron labelled as neuron (with coordinates) 
(ℓ, 1) followed by (ℓ, 2), etc., for the ℓth layer.  Initially, before training commences, each layer is 

assumed to have exactly 𝑁 neurons (bias node included), while in the fully trained network, redundant 

neurons would have been culled by the learning process, resulting in each layer containing at most 𝑁 

neurons.  The assumption of all layers having 𝑁 neurons, enables us to collectively represent all weights 

of the neural network in an orderly manner, using a single matrix 𝑾. 

 

Each weight in the network has three indices (i.e., subscripts) which are assigned according to the 

following convention:  the first index of a weight specifies the layer, say layer ℓ, that it feeds into, the 

second index specifies which particular neuron, say 𝑚, in that layer it feeds into, with the third index 

specifying which neuron in the previous layer (implicitly, layer ℓ − 1) it feeds from, say 𝑛.  For 

example, 𝑤10,27,3 identifies the weight that scales the output of (source) neuron 3 of (source) layer 9 

and feeds this result into (destination) neuron 27 of (destination) layer 10.  This notation makes the 

implicit assumption that the source layer is always located directly to the left of the destination layer.  

However, if this is not the case, then a fourth index would be required to uniquely identify weights. 

 

Inside neuron (ℓ, 𝑗) there is linear combiner with output �̃�ℓ,𝑗 ≔ ∑ 𝑤ℓ,𝑗𝑢ℓ−1,𝑗𝑗  (also referred to as the 

neuron’s accumulated linear output) to which the neuron’s activation function is applied to yield its 

output, 𝑢ℓ,𝑗 ≔ 𝑓(�̃�ℓ,𝑗).  For simplicity of presentation and without loss of generality, we will focus on 

scalar-output FNNs (i.e., single-output FNNs).  This, together with the naming convention adopted here, 

means that the last layer, layer 𝐿, contains a single neuron.  The expression describing the network 

output in terms of the network input and network weights takes the form 
 

𝑢𝐿,1(𝒙,𝑾) = 𝑤𝐿+1,1𝑓 (∑ 𝑤𝐿,1,𝑗𝐿𝑓 ( ∑ 𝑤𝐿−1,𝑗𝐿,𝑗𝐿−1𝑓 ( ∑ 𝑤𝐿−2,𝑗𝐿−1 ,𝑗𝐿−2𝑓 (⋯𝑓(∑ 𝑤1,𝑗2 ,𝑗1𝑥𝑗1

𝑁

𝑗1=1

))

𝑁

𝑗𝐿−2=1

)

𝑁

𝑗𝐿−1=1

)

𝑁

𝑗𝐿=1

) 

…(1)ss 
 

where, to simplify the expression, we introduced redundancies.2,
.

3  Some thought reveals that this 

composition must be trained from the outside to the inside, i.e., backward from the output to the input.4   

 

 

3. Derivation of the Backpropagated Error 
 

For our discussion here, we consider the ‘stochastic’ quadratic cost function, 
 

𝐽𝒙 ≡ 𝐽(𝒙) =
1

2
(𝑢𝐿,1(𝒙) − 𝑑(𝒙))

2
, 

 

 
1 A general convention in the literature is to use the term ‘neuron’ for either a neuron or a node. 
2 For each layer, we introduced fictitious weights that ‘feed into’ its bias node, fictitiously; furthermore, this bias 

node is then also written as 𝑓(⋅). 
3 The network output scaling 𝑤𝐿+1,1 is required to account for training data not appropriately normalised.  

However, in this note, we will set 𝑤𝐿+1,1 = 1. 
4 To simplify notation, for the single-output NN, the network output will be denoted 𝑢(𝒙), instead of 𝑢𝐿,1(𝒙).  The 

same simplification will be used for the output error too. 
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where, 𝑑(𝒙) is the desired network output as a function of the network input 𝒙, thus resulting in the 

error at the network output given by 𝑒𝐿,1(𝒙,𝑾) ≔ 𝑢𝐿,1(𝒙) − 𝑑(𝒙).
5  For this particular choice of cost 

function, the output error can be expressed as the derivative of 𝐽𝒙 with respect to the output of the output 

neuron, namely 

𝑒𝐿,1(𝒙) =
𝜕𝐽𝒙
𝜕𝑢𝐿,1

 . 

 

When calculating this partial derivative, both 𝒙 and 𝑾 are implicitly held constant. 

 

Generalisation:  The latter expression enables us to define a kind of ‘error’ at the output of an arbitrary 

neuron in the network by simply differentiating the cost function 𝐽𝒙 with respect to the output of the 

neuron in question.  As such, this ‘error’ at the output of neuron (ℓ, 𝑘) is given by 
 

𝑒ℓ,𝑘(𝒙) =
𝜕𝐽𝒙
𝜕𝑢ℓ,𝑘

 . 

 

We will term this error 𝑒ℓ,𝑘(𝒙) the backpropagated error at the output of neuron (ℓ, 𝑘).  Using the chain 

rule, this expression becomes 
 

𝑒ℓ,𝑘(𝒙) =
𝜕𝐽𝒙
𝜕𝑢ℓ,𝑘

 =
𝜕𝐽𝒙
𝜕𝑢𝐿,1⏟  
𝑒𝐿,1(𝒙)

 
𝜕𝑢𝐿,1
𝜕𝑢ℓ,𝑘⏟  

𝐺(ℓ,𝑘)→(𝐿,1)

 
…(2) 

 

where 𝐺(ℓ,𝑘)→(𝐿,1) is the linearised gain of the portion of the (linearised) FNN that connects neuron 

(ℓ, 𝑘) to the network output.  This amounts to simply identifying and linearising all paths connecting 

neuron (ℓ, 𝑘) to the output neuron and then summing these linearised path gains to obtain 𝐺(ℓ,𝑘)→(𝐿,1).  

Equation (2) can be interpreted as the linear system with input 𝑒𝐿,1(𝒙), output 𝑒ℓ,𝑘(𝒙) and input-

dependent and weight-dependent linear gain 𝐺(ℓ,𝑘)→(𝐿,1) ≡ 𝐺(ℓ,𝑘)→(𝐿,1)(𝒙,𝑾).
6 which means that the 

output is related to the input and gain according to 
 

𝑒ℓ,𝑘(𝒙) = 𝐺(ℓ,𝑘)→(𝐿,1) 𝑒𝐿,1(𝒙) = 𝐺(ℓ,𝑘)→(𝐿,1) 𝑒(𝒙). …(3) 
 

This shows that the backpropagated error at the output of any neuron (or even a node) is proportional 

to the error at the output of the FNN.  From linear systems theory, it follows immediately that  
 

𝑒ℓ,𝑘(𝒙) =∑𝐺(ℓ,𝑘)→(ℓ+1,𝑗) 𝑒ℓ+1,𝑗(𝒙)

𝑁

𝑗=1

 

 

where 𝐺(ℓ,𝑘)→(ℓ+1,𝑗) ≡ 𝐺(ℓ,𝑘)→(ℓ+1,𝑗)(𝒙,𝑾) which, with the aid of the chain rule, gives 
 

𝐺(ℓ,𝑘)→(ℓ+1,𝑗) =
𝜕𝑢ℓ+1,𝑗 

𝜕𝑢ℓ,𝑘
=
𝜕𝑢ℓ+1,𝑗 

𝜕�̃�ℓ+1,𝑗

𝜕�̃�ℓ+1,𝑗 

𝜕𝑢ℓ,𝑘
= 𝑓′(�̃�ℓ+1,𝑗)𝑤ℓ+1,𝑗,𝑘 =: �̌�ℓ+1,𝑗,𝑘  , 

 

where �̌�ℓ+1,𝑗,𝑘 simply absorbs the activation function’s derivative and consequently, 
 

𝑒ℓ,𝑘(𝒙) =∑𝑓′(�̃�ℓ+1,𝑗)𝑤ℓ+1,𝑗,𝑘  𝑒ℓ+1,𝑗(𝒙)

𝑁

𝑗=1

≡∑�̌�ℓ+1,𝑗,𝑘  𝑒ℓ+1,𝑗(𝒙)

𝑁

𝑗=1

 , …(4) 

 

which expresses the backpropagated error 𝑒ℓ,𝑘(𝒙) as a linear combination of the backpropagated errors 

{𝑒ℓ+1,𝑗(𝒙)}𝑗=1
𝑁

, one layer to the right.  Equation (4) describes how the backpropagated error propagates 

 
5 Strictly speaking, both the backpropagated errors and neuron outputs depend on both the applied inputs and the 

prevailing weight settings of the NN, expressed as 𝑒ℓ,𝑘(𝒙,𝑾) and 𝑢ℓ,𝑘(𝒙,𝑾).  However, to reduce clutter we 

usually only indicate dependence on the applied inputs. 
6 Here, we resist the temptation to simplify our notation to 𝐺(ℓ,𝑘) to signify the gain from neuron (ℓ, 𝑘) all the way 

to the network output. 
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from one layer to the next, moving from the output layer towards the input layer.  From (4), we now 

distil the following error backpropagation rule: 
 

The backpropagated error at the output of a(n originating) neuron/node of some layer, is the 

backpropagated error from a(n affected) neuron, one layer to the right (so called affected 

layer), multiplied by the activation function’s derivative evaluated at the affected neuron’s 

accumulated linear output, multiplied by the weight feeding from the originating neuron to 

the affected neuron, then summing this for all affected neurons in the affected layer. 

 
 

Example:  To demonstrate the above essentials, consider the three-layer FNN shown below in        

Figure 1.7  Starting from the left, we will label the input layer as layer 0, the hidden layer as layer 1 and 

the output layer as layer 2.  Within each layer, starting from the top and proceeding downward, we label 

the first neuron as 1, the next below it as 2.  The input to the network, is denoted 𝒙 ≔ [𝑥1, 𝑥2]
𝑇. 

 

For the input 𝒙 and all weights considered fixed, the network output error 𝑒(𝒙) ≡ 𝑒2,1(𝒙) follows as 
 

𝜕𝐽𝒙
𝜕𝑢2,1

= 𝑢2,1(𝒙) − 𝑑(𝒙) = 𝑒(𝒙) . 

 

We now move to the hidden layer, i.e., the layer feeding the output later, namely layer 1.  The 

backpropagated error at 𝑢1,1, the output of neuron 1 of layer 1 for fixed network input 𝒙, is given by 

𝑒1,1(𝒙) =
𝜕𝐽𝒙
𝜕𝑢1,1

=
𝜕𝐽𝒙
𝜕𝑢2,1⏟  
𝑒2,1(𝒙)

𝜕𝑢2,1
𝜕�̃�2,1⏟  
𝑓′(�̃�2,1)

𝜕�̃�2,1
𝜕𝑢1,1⏟  
𝑤2,1,1

= 𝑒(𝒙)𝑓′(�̃�2,1)𝑤2,1,1 , 

 

 

 
Figure 1. 

 

since by the conventions chosen here, 𝑢 ≡ 𝑢2,1 ≔ 𝑓(�̃�2,1) and �̃�2,1 ≔ ∑ 𝑤2,1,𝑖𝑢1,𝑖𝑖 .  Similarly, the back 

propagated error 𝑒1,2(𝒙) at 𝑢1,2(𝒙), the output of neuron 2 of layer 1, for fixed input 𝒙, is given by 
 

𝑒1,2(𝒙) =
𝜕𝐽𝒙
𝜕𝑢1,2

=
𝜕𝐽𝒙
𝜕𝑢2,1⏟  
𝑒2,1(𝒙)

𝜕𝑢2,1
𝜕�̃�2,1⏟  
𝑓′(�̃�2,1)

𝜕�̃�2,1
𝜕𝑢1,2⏟  
𝑤2,1,2

= 𝑒(𝒙)𝑓′(�̃�2,1)𝑤2,1,2 . 

 

To demonstrate that the backpropagated error can also be written for the input layer, we now advance 

to the layer 0.  The backpropagated error 𝑒0,1(𝒙) at 𝑢0,1(𝒙), the output of neuron 1 of layer 0 for fixed 

input 𝒙, is given by 

 
7 To reduce visual complexity, we omitted bias nodes for the output and hidden layers. 

𝑥2 

𝑥1 

𝑢2,1(𝒙) 

𝑤2,1,1 

𝑤2,1,2 

𝑢1,2 

𝑢1,1 

𝑤1,2,1 

𝑤1,2,2 

𝑤1,1,2 

𝑢0,2 

𝑤1,1,1 

𝑢0,1  

Layer 1 Layer 0 Layer 2 

1 1 

1 

2 2 
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𝑒0,1(𝒙) =
𝜕𝐽𝒙
𝜕𝑢0,1

=
𝜕𝐽𝒙
𝜕𝑢1,1

𝑓′(�̃�1,1)𝑤1,1,1 +
𝜕𝐽𝒙
𝜕𝑢1,2

𝑓′(�̃�1,2)𝑤1,2,1                                                                 

= 𝑒1,1(𝒙)𝑓
′(�̃�1,1)𝑤1,1,1 + 𝑒1,2(𝒙)𝑓

′(�̃�1,2)𝑤1,2,1                                                             

= {𝑒2,1(𝒙)𝑓
′(�̃�2,1)𝑤2,1,1} 𝑓

′(�̃�1,1)𝑤1,1,1 + {𝑒2,1(𝒙)𝑓
′(�̃�2,1)𝑤2,1,2}𝑓

′(�̃�1,2)𝑤1,2,1 

= {𝑓′(�̃�1,1)𝑓
′(�̃�2,1)𝑤1,1,1𝑤2,1,1 + 𝑓

′(�̃�1,2)𝑓
′(�̃�2,1)𝑤1,2,1𝑤2,1,2}𝑒(𝒙) .                 

 

Similarly, the backpropagated error 𝑒0,2(𝒙) at output 𝑢0,2(𝒙), for fixed input 𝒙, is given by 
 

𝑒0,2(𝒙) =
𝜕𝐽𝒙
𝜕𝑢0,2

=
𝜕𝐽𝒙
𝜕𝑢1,1

𝑓′(�̃�1,1)𝑤1,1,2 +
𝜕𝐽𝒙
𝜕𝑢1,2

𝑓′(�̃�1,2)𝑤1,2,2                                                                

= 𝑒1,1(𝒙)𝑓
′(�̃�1,1)𝑤1,1,2 + 𝑒1,2(𝒙)𝑓

′(�̃�1,2)𝑤1,2,2                                                             

= {𝑒2,1(𝒙)𝑓
′(�̃�2,1)𝑤2,1,1} 𝑓

′(�̃�1,1)𝑤1,1,2 + {𝑒2,1(𝒙)𝑓
′(�̃�2,1)𝑤2,1,2}𝑓

′(�̃�1,2)𝑤1,2,2 

= {𝑓′(�̃�1,1)𝑓
′(�̃�2,1)𝑤1,1,2𝑤2,1,1 + 𝑓

′(�̃�1,2)𝑓
′(�̃�2,1)𝑤1,2,2𝑤2,1,2}𝑒(𝒙) .                 

 

Note that the last two backpropagation errors were presented merely to demonstrate the process of back 

propagating the linearise error; these would not come into play during the use of gradient descent to 

adapt the network weights.  Finally, note that these last two expressions could have been written down 

by inspection, using the above distilled backpropagation error rule.  This concludes the example. 

 

 

4. Interpretation of the Backpropagated Error 
 

For the network inputs and weight settings kept fixed, the output error is fixed and to now interpret the 

backpropagated error, requires us to compare backpropagated errors of different neurons in the network.  

This reveals that the greater the linearised gain of the portion of the network between the neuron of 

interest and the output neuron, the greater the value of its backpropagated error.  Thus, the 

backpropagated error represents the linearised contribution of the particular neuron to the error at the 

output.  Consequently, if the linear gain between the neuron and the output is zero, then this neuron 

does not contribute to the output error for the prevailing situation (i.e., current input and network weight 

values).  This naturally leads to the conclusion that the backpropagated error is simply just a linear8 

apportionment of the resulting network output error, among neurons.  However, this apportionment is 

generally not normalised and hence summing over all backpropagated errors will generally be 

proportional but not be equal to the error at the output.  Normalisation can be applied in several ways, 

three of which are discussed below.  As we will see, however, even though these processes of 

normalisation are helpful with providing physically tangible interpretations of the backpropagated error, 

with some exceptions, often they are superfluous. 

 

We conclude this discussion with the observation that the backpropagated error is merely an apparent 

linear measure of the error contributed by each neuron in the network towards the network output error.  

With sufficient redundancy in each layer of the network and sufficiently large training data set, as the 

learning process converges, the true error at the output of each neuron can be made sufficiently small 

for the backpropagated error there to approximate the true error there sufficiently good. 

 

 

In-Layer Normalisation 

Equation (3) can be interpreted as an ‘unnormalised’ (linear) apportionment of the output error among 

the neurons of a given (internal) layer, say layer ℓ ≥ 1, in accordance with the (linear) gains connecting 

its neurons to the output neuron.  Normalising within a layer, yields the in-layer or ‘vertically’ 

normalised version of (3), namely 
 

𝑒ℓ,𝑘(𝒙) = 𝐺(ℓ,𝑘)→(𝐿,1) 𝑒𝐿,1(𝒙), …(5) 

 
8 Unfortunately, it is usually either impossible or computationally too expensive to non-linearly apportion              

the contributions of internal neuron (ℓ, 𝑘)’s true output error 𝜀ℓ,𝑘(𝒙) towards the network output error,               

𝜀𝐿,1(𝒙) ≡ 𝒆𝐿,1(𝑥). 
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where  

𝑒ℓ,𝑘(𝒙) ≔
𝑒ℓ,𝑘(𝒙)

Γℓ
,     𝐺(ℓ,𝑘)→(𝐿,1) ≔

𝐺(ℓ,𝑘)→(𝐿,1)

Γℓ
    and     Γℓ(𝒙,𝑾) ≔ ∑𝐺(ℓ,𝑘)→(𝐿,1)(𝒙,𝑾)

𝑁

𝑘=1

, 

 

as long as Γℓ ≠ 0 which is quite possible since these path gains are signed real values.  Now, 
  

𝑒(𝒙) = ∑𝑒ℓ,𝑘(𝒙)

𝑁

𝑘=1

, 

 

and now the output error is fully accounted for among the neurons within the ℓ th layer and hence we 

can now summarise all normalised backpropagated errors in the FNN within an 𝑁 × 𝐿 matrix,9 namely 
 

𝑬(𝒙) ≔ [

𝑒1,1(𝒙) ⋯ 𝑒𝐿,1(𝒙)

⋮ ⋱ ⋮
𝑒1,𝑁(𝒙) ⋯ 𝑒𝐿,𝑁(𝒙)

], 

 

with each column summing to 𝑒(𝒙) and all elements summed together yielding 𝑁 ⋅ 𝑒(𝒙). 
 

Network-Wide Normalisation 

Equation (3) can also be interpreted as an ‘unnormalised’ (linear) apportionment of the output error 

among all the internal neurons in the FNN.  As before, the greater the (linear) gain is between a given 

internal neuron and the output neuron, the greater this internal neuron’s (linear) contribution is to the 

output error.  The normalised version of (3) now becomes 
 

�̿�ℓ,𝑘(𝒙) = 𝐺.̿(ℓ,𝑘)→(𝐿,1) 𝑒(𝒙), …(6) 

where  

�̿�ℓ,𝑘(𝒙) ≔
𝑒ℓ,𝑘(𝒙)

Γ
,     𝐺.̿(ℓ,𝑘)→(𝐿,1) ≔

𝐺(ℓ,𝑘)→(𝐿,1)

Γ
    and     Γ(𝒙,𝑾) ≔∑Γℓ(𝒙,𝑾)

𝐿

ℓ=1

, 

 

as long as Γ ≠ 0.  An alternative expanded expression for Γ is 
 

Γ(𝒙,𝑾) ≔∑∑𝐺(ℓ,𝑘)→(𝐿,1)(𝒙,𝑾).

𝑁

𝑗=1

𝐿

ℓ=1

 

 

We could now summarise the normalised backpropagated errors in an 𝑁 × 𝐿 matrix, namely 
 

�̿�(𝒙) ≔ [

�̿�1,1(𝒙) ⋯ �̿�𝐿,1(𝒙)

⋮ ⋱ ⋮
�̿�1,𝑁(𝒙) ⋯ �̿�𝐿,𝑁(𝒙)

], 

 

with the property that the elements of this matrix sum to 𝑒(𝒙).  This type of normalisation depicts 

weighted voting where mutual influences among neurons are neglected just as is done with mutual 

influences among human voters during political elections. 

 

In-Track Normalisation 

Here, normalisation is performed horizontally across layers a long a track, i.e., where the layer varies 

but the neuron position is held constant.  Strictly speaking, the term ‘track’ is a misnomer but merely 

used for its geometric utility.  For obvious reasons, both the input and output layers are omitted.  For 

reasons of economy, we will omit the mathematical details here. 

 

 

 
9 Even though the backpropagated errors for input nodes can be calculated, these do not contribute to the 

backpropagation-based training and hence we exclude these from the normalisation processes discussed here. 
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5. Statistical Aspects of Backpropagated Error 
 

In signal processing, measurable characteristics of errors are of cardinal importance for analysis and 

design.  One such characteristic is the correlation between errors determined at different parts of a 

system, here an FNN.   
 

Now, from (3) we have 

𝑒ℓ1,𝑘1(𝒙)𝑒ℓ2,𝑘2(𝒙) = 𝐺(ℓ1,𝑘1)→(𝐿,1) 𝐺(ℓ2,𝑘2)→(𝐿,1) |𝑒(𝒙)|
2. 

 

Averaging over the training set, we obtain the correlation relation, 
 

𝑅(ℓ1,𝑘1),(ℓ2,𝑘2) ≔ 〈𝑒ℓ1,𝑘1(𝒙)𝑒ℓ2,𝑘2(𝒙)〉 = 𝐺(ℓ1,𝑘1)→(𝐿,1) 𝐺(ℓ2,𝑘2)→(𝐿,1)𝑅𝑒 , …(7) 
 

where 𝑅𝑒 ≔ 〈|𝑒(𝒙)|
2〉𝒙 and 〈⋅〉𝒙 denotes the empirical average over the training set.  Note that the 

correlation of these two backpropagated errors is only zero when either the mean square output error 

𝑅𝑒 or at least one of the two path gains involved is zero.  Next, we consider the correlation between two 

backpropagated errors at two neurons in adjacent layers in the network.  Using (4), we obtain 
 

𝑅(ℓ,𝑘),(ℓ+1,𝑚) = 〈𝑒ℓ,𝑘(𝒙)𝑒ℓ+1,𝑚(𝒙)〉                                                         

=∑�̌�ℓ+1,𝑗,𝑘  〈𝑒ℓ+1,𝑗(𝒙)𝑒ℓ+1,𝑚(𝒙)〉

𝑁

𝑗=1

      

=∑�̌�ℓ+1,𝑗,𝑘  𝑅(ℓ+1,𝑘),(ℓ+1,𝑚)

𝑁

𝑗=1

 . …(8) 

 

From the correlation appearing on the right side of the last result, we observe that we also need  
 

𝑅(ℓ,𝑘),(ℓ,𝑚) = 〈𝑒ℓ,𝑘(𝒙)𝑒ℓ,𝑚(𝒙)〉                                                                         

= 〈∑�̌�ℓ+1,𝑖,𝑘  𝑒ℓ+1,𝑖(𝒙)

𝑁

𝑖=1

∑�̌�ℓ+1,𝑗,𝑚 𝑒ℓ+1,𝑗(𝒙)

𝑁

𝑗=1

〉 

= ∑ �̌�ℓ+1,𝑖,𝑘 �̌�ℓ+1,𝑗,𝑚 〈𝑒ℓ+1,𝑖(𝒙)𝑒ℓ+1,𝑗(𝒙)〉

𝑁

𝑖,𝑗=1

      

= ∑ �̌�ℓ+1,𝑖,𝑘  �̌�ℓ+1,𝑗,𝑚 𝑅(ℓ+1,𝑖),(ℓ+1,𝑗)

𝑁

𝑖,𝑗=1

 . …(9) 

 

Since the backpropagated errors associated with any two neurons in the network are correlated, 

according to (7), we compelled to move towards jointly considering the backpropagation errors of 

groups of neurons.  In order to have sufficient structure to perform meaningful analyses, we consider 

structured vectors of errors, i.e., not vectors with arbitrary chosen errors.  To this end, we define two 

types of backpropagated error vectors, namely 
 

𝒆ℓ,⋅ ≔ [

𝑒ℓ,1(𝒙)

⋮
𝑒ℓ,𝑁(𝒙)

] ∈ ℝ𝑁×1    and    𝒆⋅,𝑡
𝑇 ≔ [𝑒1,𝑡(𝒙) ⋯ 𝑒𝐿−1,𝑡(𝒙)] ∈ ℝ

1×(𝐿−1) 

 

where 𝒆ℓ,∶ is called the ℓth layer error vector and 𝒆:,𝑡 is called the 𝑡th track error vector.  Notice that, 

here we have deliberately neglected normalisation since it cancels on either side of the equations below. 

 

Since (4) applied layer-wise can be expressed as,  
 

𝒆ℓ,⋅ ≔ 𝑽ℓ+1
𝑇 𝒆ℓ+1,⋅ , 

 

we can write the following inner and outer products, 
 

𝒆ℓ,⋅
𝑇 𝒆ℓ+1,⋅ ≔ 𝒆ℓ+1,⋅

𝑇 𝑽ℓ+1
𝑇 𝒆ℓ+1,⋅ , 
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and 

𝒆ℓ,⋅𝒆ℓ+1,⋅
𝑇 ≔ 𝑽ℓ+1

𝑇 𝒆ℓ+1,⋅𝒆ℓ+1,⋅
𝑇     and    𝒆ℓ,⋅𝒆ℓ,⋅

𝑇 ≔ 𝑽ℓ+1
𝑇 𝒆ℓ+1,⋅𝒆ℓ+1,⋅

𝑇 𝑽ℓ+1 , 
 

for ℓ = 𝐿 − 2, 𝐿 − 1,… , 2, with these equations’ initial conditions given by 
 

𝒆𝐿−1,⋅ = �̌�𝐿ʘ𝑒𝐿,1(𝒙)      where       �̌�𝐿 ≔ [�̌�𝐿,1,1   �̌�𝐿,1,2    ⋯   �̌�𝐿,1,1]
𝑇
, 

 

and ʘ represents the component-wise product of two vectors of the same dimension.  Averaging over 

the training set, then yields 

〈𝒆ℓ,⋅
𝑇 𝒆ℓ+1,⋅〉𝒙 ≔ 〈𝒆ℓ+1,⋅

𝑇 𝑽ℓ+1
𝑇 𝒆ℓ+1,⋅〉𝒙 , (10) 

 

𝑹ℓ,ℓ+1 ≔ 〈𝒆ℓ,⋅𝒆ℓ+1,⋅
𝑇 〉𝒙 ≔ 𝑽ℓ+1

𝑇 〈𝒆ℓ+1,⋅𝒆ℓ+1,⋅
𝑇 〉𝒙 = 𝑽ℓ+1

𝑇 𝑹ℓ+1,ℓ+1 , (11) 

and 

𝑹ℓ,ℓ ≔ 〈𝒆ℓ,⋅𝒆ℓ,⋅
𝑇 〉𝒙 ≔ 𝑽ℓ+1

𝑇 〈𝒆ℓ+1,⋅𝒆ℓ+1,⋅
𝑇 〉𝒙 = 𝑽ℓ+1

𝑇 𝑹ℓ+1,ℓ+1𝑉ℓ+1 . (12) 
 

The latter two equations also follow from (8) and (9), respectively.  Here 𝑹ℓ,ℓ+1 represents the cross-

correlation matrix describing the cross-correlation between the ℓth and (ℓ + 1)th layer (backpropagated) 

error vectors and 𝑹ℓ,ℓ is the correlation matrix for 𝒆ℓ,⋅, the ℓth layer (backpropagated) error vector.  In 

general, 𝑹ℓ,ℓ is symmetric but not Toeplitz since it is a correlation matrix and not an autocorrelation 

matrix. 

 

Taking a closer look at these equations from the perspective of the properties of the backpropagated 

error embodied in (7), and assuming that neuron/node outputs and corresponding backpropagated errors 

are uncorrelated, then (10) assumes the form, 
 

〈𝒆ℓ,⋅
𝑇 𝒆ℓ+1,⋅〉𝒙 ≡ 〈𝒲ℓ〉𝒙𝑅𝑒 ,             𝑅𝑒 ≔ 〈|𝑒(𝒙)|

2〉𝒙 
 

which is just the output error power scaled by 𝒲ℓ a scalar function of only the network inputs 𝒙 and 

weights 𝑾ℓ located between the ℓth layer and the network output, i.e., 𝒲ℓ ≡ 𝒲ℓ(𝒙,𝑾ℓ).  Since, due to 

averaging over 𝒙, 〈𝒲ℓ〉𝒙 only depends on the weight settings 𝑾ℓ , then so does the above inner product.  

It immediately follows that the backpropagated error vectors 𝒆ℓ and 𝒆ℓ+1,⋅ generally are orthogonal only 

if 〈𝒲ℓ〉𝒙 = 0 for the specific weight settings, 𝑾ℓ. 

 

If all neuron/node outputs and corresponding backpropagated errors are uncorrelated, then (12) takes 

the form, 

𝑹ℓ,ℓ ≔ 〈𝒆ℓ,⋅𝒆ℓ+1,⋅
𝑇 〉𝒙 = 𝑽ℓ+1

𝑇 〈𝒆ℓ+1,⋅
𝑇 〉𝒙 = 〈𝓥ℓ+1〉𝒙𝑅𝑒 , 

 

where 𝓥ℓ+1 ≡ 𝓥ℓ+1(𝒙,𝑾ℓ) is a real symmetric matrix depending only on inputs 𝒙 in the training set 

and the weight settings, 𝑾ℓ.  The symmetric matrix 〈𝓥ℓ+1〉𝒙 depends only on the weight settings 𝑾ℓ.  

Therefore, 𝑹ℓ,ℓ turns out to merely be a matrix scaling of the output error power, 𝑅𝑒.   
 

 

[This section is still under construction.] 

 

 

__________________________ 

 

 

 


