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Abstract

Machine learning (ML) methods have been used to model complex dynamical systems, such as heating, ventilation, and air

conditioning (HVAC) systems, to overcome the difficulty and high cost of modeling these systems using physical principles.

However, ML-based methods often require large amounts of data, have poor generalization performance, and lack physical

consistency. Physics-informed machine learning (PIML) has recently been introduced to overcome these drawbacks by incorpo-

rating physical laws into learning. There is, however, an unmet need to evaluate commonly used PIML methods to demonstrate

their benefits and compare their performance in practical applications. In this comparative study, we evaluated various PIML

methods and physical properties for modeling HVAC systems using real data. We considered physics-informed neural network

methods and constrained Gaussian process methods, as well as physical properties that can be easily obtained in practice, such

as smoothness, boundedness, and monotonicity. Our results showed the substantial benefits of PIML in improving model accu-

racy and data efficiency, and allowed us to compare the different PIML methods and physical properties to provide meaningful

conclusions and recommendations for applying PIML in practice.
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Abstract— Machine learning (ML) methods have been used to
model complex dynamical systems, such as heating, ventilation,
and air conditioning (HVAC) systems, to overcome the difficulty
and high cost of modeling these systems using physical principles.
However, ML-based methods often require large amounts of
data, have poor generalization performance, and lack physical
consistency. Physics-informed machine learning (PIML) has
recently been introduced to overcome these drawbacks by
incorporating physical laws into learning. There is, however,
an unmet need to evaluate commonly used PIML methods to
demonstrate their benefits and compare their performance in
practical applications. In this comparative study, we evaluated
various PIML methods and physical properties for modeling
HVAC systems using real data. We considered physics-informed
neural network methods and constrained Gaussian process
methods, as well as physical properties that can be easily
obtained in practice, such as smoothness, boundedness, and
monotonicity. Our results showed the substantial benefits of
PIML in improving model accuracy and data efficiency, and
allowed us to compare the different PIML methods and
physical properties to provide meaningful conclusions and
recommendations for applying PIML in practice.

I. INTRODUCTION

Modeling a complex system, such as a heating, ventilation,
and air conditioning (HVAC) system, using physical princi-
ples, also known as mechanistic modeling or first-principle
modeling, requires extraordinary effort, time, and domain
knowledge [1]. Modeling methods based on machine learning
(ML) have been developed to overcome these challenges
for buildings and other complex systems [2]. However,
while having found great success in certain applications,
purely data-driven modeling methods often require large
amounts of data, have poor generalization performance and
physical consistency, and have difficulty handling low quality
data, due to their lack of physical insights [3]. To address
these limitations, physics-informed machine learning (PIML)
methods have recently emerged to incorporate known physical
laws governing a system into the learning process [3]. It is
an important step towards interpretable, robust, accurate, and
physically consistent ML models of physical systems, by
merging ML with physics-based modeling. PIML models are
useful for prediction, simulation, control, and optimization,
with often higher confidence of their performance and safety
compared to non-physics-informed ML models.

This material is based upon work supported by the National Science
Foundation under Grant No. 2138388 and Grant No. 2238296.

Several PIML approaches have been developed in recent
years for different combinations of physical properties and
ML models in various applications, such as constrained
neural networks [4]–[6], lattice networks [7], and constrained
Gaussian processes (GPs) [8, 9]. While ML methods have
long been applied to HVAC system modeling and control,
using e.g., conventional neural networks (NNs) [10, 11],
regression trees and random forests [12, 13], and GPs [14,
15], PIML methods have only recently been applied to HVAC
systems, mainly using NNs [4, 16]. Previous studies have
compared a wide range of conventional ML methods, from
simple nonlinear regressions to NNs, for HVAC applications
[2, 17]. However, to our knowledge, no study has compared
different PIML methods for modeling HVAC systems to yield
insightful comparisons in terms of accuracy, data efficiency,
and computation. Such a study can demonstrate the benefits
of PIML methods for practical applications and provide
guidance on selecting appropriate PIML methods and physical
constraints to incorporate into models.

This paper presents a comparative study that evaluated
and compared several PIML methods, ranging from NNs to
GPs, for modeling HVAC systems using real data, which
are representative of complex dynamical systems that can
significantly benefit from data-driven modeling methods. Our
study aimed to provide valuable insights into the use of
PIML methods to improve the accuracy and data efficiency
of learning in practical applications. Our main contributions
are:

1) We evaluated and compared various PIML methods,
including popular physics-informed neural network
methods and constrained Gaussian process methods
from the research literature.

2) We examined several physical properties that can be eas-
ily obtained in practice, e.g., smoothness, boundedness,
and monotonicity, for integration into ML.

3) We used data from real HVAC systems for the study.
4) Our study rigorously compared the considered PIML

methods and physical properties, resulting in insightful
conclusions and practical recommendations. Further
details can be found in Sec. III-E.

The remainder of the paper is organized as follows. Sec. II
briefly reviews the physical properties and PIML methods
investigated in our study. Sec. III presents the experiments,



results, and a comprehensive discussion in subsection III-E.
The paper is concluded by Sec. IV.

II. PHYSICS-INFORMED MACHINE LEARNING METHODS
FOR HVAC SYSTEMS

As mentioned earlier, PIML refers to methods for seam-
lessly integrating known physical properties of a system,
e.g., conservation of energy and mass, monotonicity, and
boundedness, into ML-based modeling of the system for
enhancing the model’s fidelity, data efficiency, interpretability,
robustness, and reliability [3]. This section reviews the
PIML methods and the physical properties relevant to HVAC
systems that were examined in our study.

A HVAC system is a mechanical dynamical system that
must adhere to the laws of physics. Our study considered a
variable-air-volume (VAV) HVAC system at the zone level,
illustrated in Fig. 3, which includes a room, a thermostat
for regulating the room temperature, and a reheat coil
for reheating the supply air into the room. The system
and its variables will be detailed in Sec. III. While many
physical properties can be inferred from the first principles
applicable to the system, we focused on intuitive properties
that can be obtained easily from a high-level understanding
of the operation and physics of the system. In particular,
three properties were considered for integration into ML:
smoothness, boundedness, and monotonicity. In the following,
f : Rn → R denotes the function of a model that takes an
input vector x ∈ Rn to produce a scalar output f(x) ∈ R,
and x(d) denotes the d-th element of vector x.

• Smoothness: This property refers to the fact that
the physical variables of the system, e.g., the room
temperature or the reheated supply air temperature, do
not change abruptly. This means that the absolute change
in the outputs at two consecutive steps in a time series
is fairly small, i.e., |f(xi+1)− f(xi)| is small (or, in
some cases, limited by a known bound).

• Boundedness: The output f(x) has known upper-bound
and/or lower-bound. For instance, the damper position
and the reheat valve position must be between 0% and
100%, or the mass flow rate of the supply air has known
minimum value (due to ventilation requirement) and
maximum value (due to mechanical limit).

• Monotonicity: The function f is increasing (or decreas-
ing) monotonic w.r.t. input dimension d ∈ {1, . . . , n} if
for any two input vectors x1 and x2 such that x(d)

1 ≤ x
(d)
2

and x
(i)
1 = x

(i)
2 for all i ̸= d we have f(x1) ≤ f(x2)

(or f(x1) ≥ f(x2)). For instance, the room temperature
is increasing monotonic w.r.t. the supply air temperature
since increasing the supply air temperature will increase
the room temperature.

Using these properties for constraining a ML model can help it
avoid behaviors that violate physics, improve its accuracy, and
increase its data efficiency and robustness. Other properties
have been examined in the literature, such as stability [4, 5];
however, we do not consider them in this work.

The rest of this section will review several PIML methods
for integrating the above properties into NNs and GPs. It is

assumed that a time-series dataset is given and is denoted
by D = {xi, yi}Ni=1, which consists of inputs or features
xi ∈ Rn and the corresponding outputs or observations yi ∈
R. Our goal is to learn, from the dataset D, a model y =
f(x) of the underlying process of D, using different ML
models. Furthermore, we will describe various methods for
incorporating each physical property into the model.

A. Physics-Informed Neural Networks

NNs are a class of ML models inspired by the biological
structure of the human brain. There have been numerous
excellent references that detail NNs, such as [18]. We will use
Nθ(x) to denote a NN with input x and network parameters
θ. Generally, methods for incorporating physics directly into
NNs, yielding physics-informed neural networks (PINNs), can
be categorized into (1) methods that tailor the NN architecture
to guarantee implicit satisfaction of given physical laws (i.e.,
using inductive biases) and (2) methods that use appropriate
loss functions and constraints for model training to explicitly
enforce or favor certain physical laws in the resulting model
(i.e., using learning biases) [3]. We will now summarize
several methods belonging to these two classes for integrating
smoothness, boundedness, and monotonicity into NNs.

1) Smoothness: Promoting smoothness in a NN model Nθ

can be achieved by adding a penalty term to the loss function
that penalizes the output change, resulting in a loss-based
method [4, 5]. This method directly follows from the earlier
definition of smoothness. Specifically, the ordinary mean
squared error (MSE) loss is augmented with a smoothness
penalty term as LMSE(Nθ;D) = 1

N

∑N
i=1 ∥Nθ(xi)− yi∥2 +

α 1
N−1

∑N−1
i=1 ∥Nθ(xi+1)−Nθ(xi)∥2, where α is the (typi-

cally small) penalty weight.
2) Boundedness: If the function f has known upper-bound

u and/or lower-bound l, i.e., l ≤ f(x) ≤ u for all x, its
boundedness can be incorporated using both loss-based and
architecture-based methods. The first method penalizes the
model for violating the bounds by adding a penalty term for
each bound as LMSE(Nθ;D) = 1

N

∑N
i=1 ∥Nθ(xi)− yi∥2 +

α 1
N

∑N
i=1 (ReLU(Nθ(xi)− u) + ReLU(l −Nθ(xi))),

where ReLU(z) = max(0, z) is the standard ReLU
function and α is the penalty weight. We will refer to
this method as “soft-bound NN.” The second method
enforces the bounds on the output directly in the model
architecture by using the following activation function for
the output layer to saturate out-of-bounds output values:
fout(z) = ReLU(u − l − ReLU(u − z)) + l. We will refer
to this method as “hard-bound NN.”

3) Monotonicity: Several methods have been proposed
in the literature for enforcing a monotonic NN. A minimax
network uses a special architecture that combines the min
and max operators in the output layer, illustrated in Fig. 1,
and also constrains certain weights in the network to be
positive or negative during training [6]. Another method uses
a lattice network [7], which has three types of layers: a linear
embedding layer, a calibration layer, and a lattice layer. The
architecture of a lattice network is depicted in Fig. 2. A
linear embedding layer is a function li(x) = x⊤W where
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Fig. 1. Example of a minimax monotonic neural network. The input layer
(bottom) has 3 inputs and the network is monotonic w.r.t. input x3. The
corresponding weights of x3 are constrained to be positive if the network is
increasing and negative if the network is decreasing w.r.t x3.
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Fig. 2. Example of a monotonic lattice network w.r.t. input x1. All the
weights related to x1 are positive if the network is increasing w.r.t x1.

x ∈ Rm is the input and W ∈ Rm×n are the parameters.
If the network is increasing w.r.t. to x then Wi,j ≥ 0 ∀i, j;
conversely for decreasing monotonicity. A calibration layer
is a piece-wise linear function c(x) : R → R for calibrating
and normalizing an input feature. Finally, a lattice layer is a
function la(x) : Rn → R, which has the same mechanism as
a calibration layer but in a higher dimension. More details
can be found in [7].

B. Physics-Informed Gaussian Processes

Gaussian process regression (GPR) is a non-parametric,
Bayesian approach to regression in ML. Readers are referred
to [19] for a comprehensive treatment of GPs.

The kernel of a GP implicitly determines the smoothness
of the learned function. For example, using the squared
exponential (SE) kernel will result in functions that are smooth
across many lengthscales [19]. Therefore, the smoothness
property is incorporated into a GP by choosing an appropriate
kernel.

Integrating boundedness and monotonicity into a GP can be
achieved by linearly constrained GPs, which model processes
that are constrained by certain linear inequalities. There are
two prominent methods for constrained GPs: the authors
of [8] developed finite-dimensional Gaussian approximation
with linear inequality constraints, and Gaussian processes
with linear operator inequality constraints were proposed in
[9]. These methods are briefly described below.

1) Finite-Dimensional Gaussian Approximation with Lin-
ear Inequality Constraints [8]: This method approximates

the target function by a linear combination of certain basic
functions, e.g., f(x) ≈

∑n
i=1 f(ti)ϕi(x) where {ti}ni=1 is a

set of pre-designed equidistant knots, i.e., ti+1− ti = ∆m ∀i,
and {ϕi(x)}ni=1 is a set of hat functions, defined as

ϕi(x) =

{
1− |x−ti

∆m | if |x−ti
∆m | ≤ 1

0 otherwise.

The values at the knots ζi = f(ti) are parameters of the model,
with an assumed prior ζ ∼ N (0,Γ) where Γ is a known co-
variance matrix. Given the training dataset D = {xi, yi}Ni=1 =
(X,Y ), the parameters ζ = [ζ1, . . . , ζn]

⊤ are estimated to fit
the approximate function f̂(x) =

∑n
i=1 ζiϕi(x) to the data,

that is Y ∼ Φζ . To enforce boundedness and/or monotonicity
of the learned model, appropriate constraints are imposed
on the parameter vector ζ, e.g., l ≤ ζi ≤ u ∀i = 1,. . . , n
for boundedness and ζi ≤ ζi+1 ∀i = 1,. . . , n − 1 for
increasing monotonicity. The posterior distribution of ζ is then
estimated subject to the above constraints, by using truncated
multivariate Gaussian sampling [20], then the distribution of
the approximate function f̂(·) is obtained. We call this method
“approx-PIGP” for approximate physics-informed GP.

2) Gaussian Processes with Linear Operator Inequality
Constraints [9]: This method enforces boundedness or mono-
tonicity constraints on a set of pre-selected inducing points
or virtual observation locations, Xv = {xv

i }ni=1, during
learning. In particular, to incorporate increasing monotonicity
into the model, we can constrain f ′(x) > 0 ∀x ∈ Xv. To
bound the model output in the closed interval [l, u], we can
enforce l ≤ f(x) ≤ u ∀x ∈ Xv. This approach does not
guarantee constraint satisfaction on the entire domain but
only at the finite set of locations Xv. However, if Xv is
dense enough, the constraints will hold everywhere with
high probability. The learning goal is to find the distribution
of f |X,Y,Xv, C(Xv), where C(Xv) represents the event
that the constraint is satisfied for all points in Xv. Various
methods can be used to sample the distribution of C(Xv),
such as the minimax tilting sampling method used in [9]
or the probit likelihood used in [21]. We call this method
“inducing-PIGP”.

III. EXPERIMENTS AND DISCUSSION

This section details the experiments of our study, discusses
the results, and compares the considered PIML methods.

A. System and Data

Our study used actual data from the HVAC system of
the building of the School of Informatics, Computing, and
Cyber Systems at Northern Arizona University. Data from
two different rooms was collected during the heating season
in November 2022 for the study. The first room, room 102,
is a classroom in the middle of the building’s first floor,
with no windows nor walls to the outside of the building,
hence the outside weather has no direct impact on the room’s
environment. The second room, room 106, is a laboratory at
a corner of the building’s first floor, with two large adjacent
walls and windows to the outside, hence the outside weather
can directly impact the room’s environment.



Room

Thermostat

Reheat

Fig. 3. Block diagram of the HVAC system used in the study.

A block diagram of the HVAC system for one room is
depicted in Fig. 3. The thermostat block takes the current
room temperature measurement T t

z and the set-point T t
sp to

compute the control signals for the reheat (valve position
qtrh) and the damper (resulting in the airflow rate ṁt

sa). The
reheat block, under the controlled valve position qtrh and the
conditioned air temperature T t

ca from the air handling unit
(AHU), produces the supply air temperature T t

sa. The room
block represents the room’s air thermal dynamics which, given
the supply air at rate ṁt

sa and temperature T t
sa, and under

the disturbance of the ambient air temperature T t
o , changes

the room’s air temperature to T k+1
z at the next time step.

For each room, an experiment was conducted for 11 days
to obtain data for model training and validation by uniformly
and randomly changing the thermostat set-point of the room
between 68 °F to 74 °F every 30 minutes. The set-points
were changed programmatically using Python and a BACnet
(building automation and control network) interface. The
acquired dataset for each room was a set of time series data,
which included the room temperature Tz , thermostat set-point
temperature Tsp, supply air temperature Tsa, conditioned
air temperature Tca, reheat coil valve position qrh, supply
airflow rate ṁsa, and outside temperature To, measured at
5-minute intervals. Each dataset contained 3121 data points of
the form {T t

z , T
t
sp, T

t
sa, T

t
ca, q

t
rh, ṁ

t
sa, T

t
o}3121t=1 . In the study,

each dataset was split into a training set of N data points
and a validation set of 3121−N data points. We varied the
size N of the training set and used small values for N to
investigate the impact of the amount of training data on a
model’s performance and the data efficiency of each method.

B. Results for Room Models

Different ML methods, both physics-informed and non-
physics-informed, were used to learn from the data a model
of the room block for each room. To represent the thermal
dynamics, an autoregressive model was used to predict the
room temperature T t+1

z at the next time step from a set
of inputs, which include T t

sa, ṁt
sa, and T t

o , as T t+1
z =

fz(T
t
z , T

t
sa, ṁ

t
sa, T

t
o). For room 102, the input T t

o is omitted
because it does not affect the room’s air temperature.

The following ML methods were evaluated:
• Non-physics-informed methods: Vanilla deep NNs were

trained with different numbers of hidden layers (from
1 to 3) and different numbers of neurons (either 4, 8,
12, 16, or 32 neurons for each hidden layer), then the
most accurate model on the validation set was selected.

We also trained standard GPs with the SE kernel. In the
result tables, these models are marked as NN and GP
respectively.

• Physics-informed methods: From the physical laws
of the room’s thermal dynamics, the room model is
increasing monotonic w.r.t. ṁsa and Tsa. We therefore
trained the following PIML models described in Sec. II:
Minimax NN, Lattice NN, approx-PIGP, and
inducing-PIGP. Furthermore, since the room’s tem-
perature should never change abruptly, we also trained a
Smooth NN to promote smoothness of the model’s
output. The NN models were trained with different
numbers of hidden layers (from 1 to 3) and different
numbers of neurons (either 4, 8, 12, 16, or 32 neurons
for each hidden layer). The GPs all used the SE kernel.
The approx-PIGP models were trained with 8, 16, 32,
64, and 128 equidistant knots. The inducing-PIGP
models were trained with 5, 10, 20, 40, and 80 inducing
points. For each model type, the most accurate model
on the validation set was selected.

For each room, these models were trained on different
small training data sizes: N ∈ {16, 32, 64, 128}. For each N ,
the models were validated on the same validation set and two
model performance metrics were calculated: the R2 score and
the root mean square error (RMSE). The results are reported
in Table I and will be discussed in Sec. III-E.

C. Results for Reheat Models

Similarly, different ML methods were evaluated for pre-
dicting the supply air temperature produced by the reheat
block from a set of inputs, which include qtrh and T t

ca. Due
to the reheat coil’s dynamics, an autoregressive model was
used: T t+1

sa = frh(T
t
sa, q

t
rh, T

t
ca). From the physical laws,

this function is increasing monotonic w.r.t. T t
ca and qtrh.

Therefore, the same types of ML models as for the room
block were trained and tested for different training data sizes
N ∈ {32, 64, 128}, whose performance metrics are reported
in Table II, which will be discussed in Sec. III-E. Because
the reheat coil is not affected by the outside temperature
disturbance To, the results are similar for both rooms and
hence only the results for room 102 are reported.

D. Results for Thermostat Models

The thermostat model predicts the reheat valve position
qtrh and the supply airflow rate ṁt

sa from the room tem-
perature T t

z and the set-point temperature T t
sp. Because

the thermostat’s control algorithm is unknown, the only
applicable physical properties of it are that qrh is bounded
between 0% and 100% and ṁsa is bounded between a
minimum flow rate and a maximum flow rate, which vary
from room to room but known in advance. Therefore, besides
the non-physics-informed ML models NN and GP, we also
trained the following PIML models described in Sec. II
for the thermostat: Soft-bound NN, Hard-bound NN,
approx-PIGP, and inducing-PIGP. The NNs were
trained with different numbers of hidden layers (from 1 to
4) and different numbers of neurons (either 8, 16, 32, or 64



TABLE I
PERFORMANCE METRICS OF THE ROOM MODELS FOR ROOM 102 AND ROOM 106.

Room 102

N
NN Smooth NN Minimax NN Lattice NN GP approx-PIGP inducing-PIGP

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
16 -1.0114 4.8531 0.6762 1.0523 0.8562 0.7021 0.8819 0.6356 -3.3482 3.6193 0.8346 0.7521 0.8237 0.7751
32 -1.3318 5.3292 0.8829 0.6435 0.9642 0.3492 0.9978 0.0916 0.8975 0.5900 0.9972 0.0922 0.9974 0.0933
64 0.9983 0.0922 0.9983 0.0924 0.9982 0.0924 0.9982 0.0924 0.9984 0.0911 0.9982 0.0921 0.9981 0.0924

128 0.9897 0.1911 0.9904 0.1512 0.9982 0.0923 0.9985 0.0918 0.9982 0.0901 0.9983 0.0921 0.9981 0.0914
Room 106

N
NN Smooth NN Minimax NN Lattice NN GP approx-PIGP inducing-PIGP

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
32 -3.3482 7.2491 -1.1222 9.2167 -1.0312 6.1491 0.3642 1.4721 -2.8769 5.2164 -7.3889 5.3282 -8.9656 5.3322
64 0.7642 0.8980 0.7644 0.8982 0.9961 0.1022 0.8370 0.7642 -3.9984 3.2142 0.8511 0.7134 0.6551 1.0861

128 0.9241 0.5112 0.9243 0.5094 0.9967 0.0963 0.9804 0.2611 0.7798 0.8671 0.9835 0.2425 0.9912 0.0956

TABLE II
PERFORMANCE METRICS OF THE REHEAT MODELS FOR ROOM 102.

N
NN Smooth NN Minimax NN Lattice NN GP approx-PIGP inducing-PIGP

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
32 0.9100 0.5551 0.9338 0.4754 0.9529 0.4034 0.9498 0.4351 0.9389 0.4742 0.8216 0.7823 0.7547 0.9162
64 0.9302 0.4913 0.9427 0.4432 0.9826 0.2442 0.9799 0.1642 0.9881 0.2012 0.9831 0.2431 0.9887 0.1943

128 0.9241 0.5094 0.9278 0.5131 0.9816 0.2512 0.9809 0.2522 0.9888 0.1942 0.9819 0.2451 0.9897 0.1931

TABLE III
PERFORMANCE METRICS OF THE qrh OUTPUT OF THE THERMOSTAT MODELS FOR ROOM 102.

N
NN Soft-bound NN Hard-bound NN GP approx-PIGP inducing-PIGP

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
32 0.8418 15.0153 0.8498 14.6674 0.8395 15.1281 0.9031 11.7532 -1.1241 55.4782 -2.2192 54.6400
64 0.9721 5.3962 0.9732 5.3644 0.9703 6.4572 0.9765 4.9512 0.9784 4.8245 0.9695 6.5462
128 0.9563 7.8663 0.9699 6.5022 0.9736 5.3214 0.9748 5.2145 0.9796 4.5193 0.9517 8.2741

TABLE IV
PERFORMANCE METRICS OF THE ṁsa OUTPUT OF THE THERMOSTAT MODELS FOR ROOM 102.

N
NN Soft-bound NN Hard-bound NN GP approx-PIGP inducing-PIGP

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
32 0.8543 14.9123 0.8572 14.7755 0.8395 15.5895 0.9087 11.4033 -1.3426 54.1934 -2.2183 54.0392
64 0.9828 4.3953 0.9839 4.1253 0.9695 6.5463 0.9863 4.0292 0.9852 4.2221 0.9713 6.2493
128 0.9815 4.9512 0.9820 4.8552 0.9517 8.2744 0.9881 3.9411 0.9818 4.8941 0.9611 7.4164

neurons for each hidden layer). The GPs all used the SE
kernel. The approx-PIGP models were trained with 8, 16,
32, 64, and 128 equidistant knots. The inducing-PIGP
models were trained with 5, 10, 20, 40, and 80 inducing
points. For each model type, the most accurate model on the
validation set was selected.

Different training data sizes were also considered for
N ∈ {32, 64, 128}. The results for room 102 are reported
in Table III (for qrh) and Table IV (for ṁsa) and will be
discussed in Sec. III-E. Because the thermostat is not directly
affected by the outside temperature disturbance, the results
are similar for both rooms and hence only the results for
room 102 are reported.

E. Discussion

1) Benefits of physics-informed ML models: In general,
integrating physical constraints into a ML model helps
improve the model accuracy, especially for limited training
data (i.e., small values of N ). This is obvious from the results
in the tables.

Take the room model results in Table I. For room 102,
we can easily see that the integration of physical properties,
particularly monotonicity in the Minimax NN, Lattice
NN, approx-PIGP, and inducing-PIGP models, helped
improve their accuracy compared with non-physics-informed
models (NN and GP). For example, with just N = 16 training
points, the performance metrics of Smooth NN (R2 =
0.6762, RMSE = 1.052), Minimax NN (R2 = 0.8562,
RMSE = 0.702), Lattice NN (R2 = 0.8819, RMSE =
0.635), approx-PIGP (R2 = 0.8346, RMSE = 0.7521),
and inducing-PIGP (R2 = 0.8237, RMSE = 0.7751)
are much better than those of the ordinary NN (R2 < 0,
RMSE = 4.853) and GP (R2 < 0, RMSE = 3.6193). A
similar observation can be made in the case of N = 32
training data points. However, the performance benefit of
PIML diminishes for larger training data sizes. When there
are more training data points (N = 64 and N = 128),
integrating the physical properties into the models did not
improve the accuracy remarkably.

For a more complex system, that is the room model of



room 106 which is directly affected by the outdoor weather,
we found that integrating physical properties into the models
boosted their accuracy significantly. Even with N = 128
training points, the performance metrics of Minimax NN
(R2 = 0.9967, RMSE = 0.096), Lattice NN (R2 =
0.9804, RMSE = 0.261), approx-PIGP (R2 = 0.9835,
RMSE = 0.2425), and inducing-PIGP (R2 = 0.9912,
RMSE = 0.0956) are substantially better than ordinary NN
(R2 = 0.9241, RMSE = 0.511) and GP (R2 = 0.7798,
RMSE = 0.867). At a smaller training data size of N = 64
points, the Minimax NN model achieved R2 score of 0.9961
on the validation dataset, which is significantly better than
other models, especially non-physics-informed models. At
even smaller training data sizes of N = 16 and N = 32, no
models worked well due to the system’s complexity and the
influence of the outside weather disturbance.

Similar performance benefits of PIML methods over non-
physics-informed methods can also be found in the reheat
models (Table II) and the thermostat models (Tables III
and IV). However, for the thermostat models, the accuracy
improvements of PIML are less pronounced.

Our study clearly demonstrates that PIML methods can
improve both the data efficiency of learning and the
model accuracy, especially with limited training data and
for complex systems, compared with non-physics-informed
methods.

2) Comparison of the benefits of different physical prop-
erties: Different physical properties provide different ben-
efits when incorporated into ML models. Our study exam-
ined various physical properties, in particular smoothness,
boundedness, and monotonicity. Although the models with
smoothness (Smooth NN in Tables I and II) and the models
with boundedness (Soft-bound NN, Hard-bound NN,
approx-PIGP, and inducing-PIGP in Tables III and
IV) had better accuracy than non-physics-informed mod-
els, the differences were much less significant than the
improvements achieved by the models with monotonicity.
We can conclude that not all physical properties are
equally beneficial for PIML, and integrating certain physical
properties into ML can result in better model improvements
than other properties. In our case, monotonicity is more
beneficial than boundedness and smoothness.

3) Comparison of different model types: We observe that in
many cases, the accuracy of physics-informed NN models was
similar to or better than the accuracy of physics-informed GP
models, especially when there was enough training data. One
can conclude that, at least for our HVAC system, NN models
are more favorable for PIML than GP models. However, given
data from a system to be modeled, it is recommended that
different PIML models and methods are evaluated on the
same dataset to select the most suitable one.

4) Computational complexities of PIML methods: A direct
quantitative comparison of the computational complexities of
the ML methods studied in our work is not possible because
of differences in their implementations. In particular, NN
methods, both non-physics-informed and physics-informed,
were implemented using PyTorch and were optimized for

computational performance, whereas GP methods were imple-
mented in standard Python and not optimized for performance.
However, based on our experience implementing the methods
and executing the experiments, we can make a qualitative
comparison of their computational complexities.

Of the methods that we considered, in most cases, lattice
NNs and minimax NNs provide better and more stable
performance than the others. All NN-based methods are
simpler to implement and much faster to train than GP-based
methods. Physics-informed GP methods have the highest
complexity and the longest training times. In addition, they are
not as numerically stable as physics-informed NN methods.
Therefore, for pragmatic reasons, in a real application, one
should implement and evaluate NN-based PIML methods
before more complex methods such as GP-based methods.

IV. CONCLUSION

We studied several physics-informed machine learning
(PIML) methods for modeling HVAC systems using real
experimental data and compared them in terms of model
accuracy, data efficiency, integrated physical properties, and
computational complexities. The considered methods include
both NN-based methods and GP-based methods, in addition
to ordinary non-physics-informed ML methods. Our study
shows that, in general, integrating physical properties into ML
models can improve significantly the accuracy, reliability, and
data efficiency of ML, compared with non-physics-informed
methods. The benefits, however, vary between different model
types, physical properties, and system complexities. The
results of this study will open more future work where
physical constraints are relevant and model reliability and
data efficiency are crucial factors. We plan to extend the
current work to more PIML methods and physical properties,
especially variants of neural networks such as recurrent neural
networks and graph neural networks.
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