
P
os
te
d
on

3
M
ay

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
27
24
58
8.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Communities in Streaming Graphs: Small Space Data Structure,

Benchmark Data Generation, and Linear Algorithm

Shubham Gupta 1 and Suman Kundu 2

1Indian Institute of Technology Jodhpur
2Affiliation not available

October 31, 2023

Abstract

Identifying and preserving community structures in a streaming graph is a very challenging task. However, many applications

require the identification of these communities in very limited space and time. In this paper, we design Community Sketch, a

small space data structure that efficiently preserves communities. On query, it provides communities in constant time. With the

use of community sketch data structure, a linear streaming community detection algorithm is proposed. Experimental results on

the large real-world networks show that our algorithm outperforms other state-of-the-art algorithms in terms of quality metrics

(NMI, F1-score, and WCC). Further, we propose an algorithm to produce benchmark network, namely, Temporal Community

Benchmark Dataset (TCBD) which contains both true community labels and temporal information of edges. These synthetic

networks are used to validate the proposed algorithm
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Abstract—Identifying and preserving community structures in
a streaming graph is a very challenging task. However, many
applications require the identification of these communities in
very limited space and time. In this paper, we design Community
Sketch, a small space data structure that efficiently preserves
communities. On query, it provides communities in constant time.
With the use of community sketch data structure, a linear stream-
ing community detection algorithm is proposed. Experimental
results on the large real-world networks show that our algorithm
outperforms other state-of-the-art algorithms in terms of quality
metrics (NMI, F1-score, and WCC). Further, we propose an
algorithm to produce benchmark network, namely, Temporal
Community Benchmark Dataset (TCBD) which contains both
true community labels and temporal information of edges. These
synthetic networks are used to validate the proposed algorithm.

Index Terms—Streaming community detection, graph stream,
community sketch, benchmark dataset, TCBD.

I. INTRODUCTION

Massive data is being generated by different online services
and this data often contains relationships within them. As
these data are rapidly generated and transferred through the
internet, without secondary storage being used, it is referred
to as streaming data. One of the challenges is to store
them, considering the volume and velocity of the data being
generated. While storing is one part of the challenges, another
part is processing the data really fast and answering queries
about it. If the streaming data is a graph edge, then the stream
is called a graph stream. In the case of graph streams, the
whole graph can only be constructed if the full stream is
stored in the memory. The graph stream is relevant for the
study of ‘Social Network Analysis’, which deals with the
problems related to the collection of relationships and is often
used to explain complex systems [1]. Social networks are
mathematically modeled using graphs where nodes are entities
and edges are relationships among the entities. Community
detection is a widely studied problem in the area of social
networks where a community is a group of nodes that are
densely connected to each other and sparsely connected to the
rest of the network. While a community detection algorithm
identifies communities from a graph, a streaming community
detection algorithm identifies communities from the stream
of edges (Illustration in Figure 1). Further, in the case of
the streaming community detection problems, the stream is

S. Gupta and S. Kundu is with Department of Computer Science and
Engineering, Indian Institute of Technology Jodhpur, India - 342030 .
E-mail: gupta.37@iitj.ac.in, suman@iitj.ac.in

Code: https://github.com/vigilante007/Streming-Community-Detection

considered infinite in length, and a query to get the community
structure will return the community structure seen so far.
A formal definition of streaming community detection is
provided in Section III.

Many algorithms since 2002 [2] have been developed for
detecting communities from graphs but only a few algorithms
are developed for streaming version of the problem. Newman
and Girvan [3] proposed a community detection algorithm
based on modularity which measures the strength of the
community structure. This was modified by Newman [4] in
2006 to use eigenvectors for a particular characteristic matrix,
known as the modularity matrix, for partitioning graphs into
communities. Other community detection algorithms were
later proposed, including random walk [5, 6], spectral clus-
tering [7, 8, 9], and statistical-inference [10] techniques.
Recently, the performance of the modularity function was
further improved with fuzzy maximization [11] and correlation
clustering [12]. However, these algorithms require storing the
entire graph in the form of an adjacency matrix or list, making
them impractical for larger graphs. In addition, when used
with streaming graphs, these methods require recalculating
the community structure from scratch on each query. To
address these issues, Hollocou et al. [13] proposed a streaming
community detection algorithm that identifies communities
in linear time but may not create a good partition of the
graph in terms of quality metrics. Another methodology in
the streaming setting, seed set expansion algorithms [14, 15]
better partition the graph using true communities of seed
nodes but labeling these nodes in graph streams is challenging.
Some community detection algorithms fail to identify small
clusters or create well-structured communities for non-uniform
community sizes.

In this work, we have designed a small space community
sketch data structure which is a combination of a forest and
a sparse triangular matrix. The forest is made of a group of
disjoint trees, where each tree represents a community of a set
of nodes, and a sparse triangular matrix stores the properties
of the community structure. Proposed community sketch data
structure supports four operations viz ‘community’, ‘make-
sketch’, ‘update-sketch’, and ‘merge-community’. It also pro-
vides constant query operation to identify the communities at
any given point in time. Using this data structure, we have
developed a linear time community detection algorithm for
the streaming graph where each edge comes in a sequence
and is checked if it is creating a community or not. It strictly
processes each edge at once to make the computation time
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linear in nature. Two communities are merged based on the
edge density within (inner) a community and with (outside)
other communities. Extensive experiments are performed on
real-world datasets available at SNAP [16]. Our proposed
algorithm performs better or comparable than state-of-the-art
algorithms in terms of WCC, F1-score and NMI (Normal-
ized Mutual Information) while taking less time and space.
However, we observed that publicly available datasets with
ground truth communities don’t have any temporal informa-
tion, and datasets with temporal information don’t have ground
truth communities. This restricts to check the effectiveness
of streaming community detection algorithm. In order to get
around this limitation, We introduce the Temporal Community
Benchmark Dataset (TCBD), which generates benchmark data
with ground truth communities and temporal information.
We use the LFR benchmark algorithm [17] to generate an
initial graph, then iteratively add a new set of edges while
maintaining community labels to create a temporal large graph.
We provide a detailed comparative analysis of these generated
graphs with LFR benchmark graphs. In particular, we sum up
contributions of this study as follows:
• This research proposes a small space community sketch

data structure which gets, creates, updates, and merge
communities in an efficient manner.

• This research delivers a linear community detection al-
gorithm for streaming graphs by storing the communities
in proposed community sketch data structure. Algorithm
returns the communities in a constant query time at any
given point in time.

• To generate the ground truth data for streaming commu-
nity detection algorithm, this research proposes a Tem-
poral Community Benchmark Dataset algorithm which
generates the ground truth communities with temporal
information.

• Extensive experiments are performed to check the effec-
tiveness on proposed streaming community detection al-
gorithm in terms of quality metrics. Change in modularity
and conductance values over time is also derived for the
proposed algorithm in the streaming setting.

The paper is organized as follows: Section II reports the
related work. Section III defines the problem statement for-
mally. Sections IV and V describe our proposed algorithm and
proposed benchmark dataset. Sections VI and VII show the
theoretical and experimental analysis respectively; and finally,
Section VIII concludes the research outcome.

Community
Detection

a) b)

Fig. 1: Community detection in a) graph and b) graph stream.

II. RELATED WORK

In the literature, Community detection techniques can be
found in two different settings 1) non-streaming and 2) stream-

ing. Before discussing the literature for these two categories,
let us first discuss some of the quality metrics used in many
community detection algorithms [18]. One of the popular
metrics is modularity [4, 11, 12], which calculates the dif-
ference between the number of edges observed in each cluster
and those were randomly distributed in the cluster. Another
well known metric is conductance [19, 20], the ratio between
the relationship of edges outside a community and within
a community. Other metrics have been used like weighted
community clustering [21], out-degree fraction [22] etc.

A. Non-streaming

Pioneer work on community detection was done by Girvan
and Newman 2002 [2]. They successively published different
community detection algorithms [3, 4]. The former algorithm
iteratively removes the edges from the network based on edge
centrality and remaining connected components in the network
are referred as communities. In the later algorithms, they
defined modularity and optimized it to get the community
structure. The Louvian algorithm [23] improves modularity by
running each iteration in two phases: first, each node is placed
in its own community, and modularity gain is calculated;
secondly, a new network is created using the communities
discovered in the first phase. Correlation clustering [12] and
fast fuzzy modularity maximization [11] have been used to
enhance classical community detection algorithms using the
modularity function. Random walk-based algorithms [5, 24]
involve using a random surfer to identify the neighbourhood
and tend to become trapped in the densest section of the graph.
Palla et al. [25] proposed Clique Percolation Method which ex-
pands cliques to find dense communities. Classical clustering
techniques are also used to finding communities. SCAN [9]
is one of such algorithms that places the densely connected
adjacent nodes in same clusters by using the geometric mean
of their degrees to determine structural similarity. Some of
the parallel processing based community detection algorithms
[26, 27] are also proposed to expedite the execution of tasks
in the community detection. Raghavan et al. [28] proposed
Label Propagation Algorithm (LPA) which assigns community
based on the majority votes by neighbourhood. In recent years,
randomness and instability problem in LPA was improved with
modularity function [29] and k−core model [30] respectively.
All of the above methods were shown to be effective, however
these are not easily portable for the streaming graphs.

B. Streaming

Only a few community detection algorithms are proposed
for the streaming graphs. Hollocou et al. [13] presented one
of the very first work in streaming community detection. The
algorithm is called SCODA, where it only stores degree per
node and communities are formed based on the same. In the
extension of SCODA, Sabour and Moeini [31] first found out
the maximum clique from the graph and then provide all the
maximal clique to the SCODA as input. Further, SCAOD [32]
was designed which used the concept of node contribution
with the condition of SCODA that the probability of the
coming edge is an edge within a community is much greater
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than that of an edge between communities. On the other hand,
some seed set expansion techniques [14, 15, 33] for streaming
graphs have been proposed. Liakos et al. [14] developed the
COEUS algorithm, which measures the edge quality in relation
to the community. In extension to COEUS, DICES [15] was
proposed to execute COEUS in a distributed fashion in order
to make it computationally light. Further in 2022 [33], authors
improved the performance of the COEUS by introducing one
additional index. These seed set expansion methods need some
kind of guidance or ground truth to identify the communities
from the network. Incremental methods are also proposed
such as incremental k-core based decomposition algorithm
[34] where k-core decomposition is updated in algorithm by
finding a small subgraph. In order to speed up insertion and
deletion operations even further, Sarıyüce et al. [35] updated
the incremental algorithms and proposed auxiliary vertex state
management strategies. Recently, Wu et al. [36] proposed
streaming belief-propagation approach for community detec-
tion that work on the limitations of voting algorithms.
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Fig. 2: Workflow of the proposed algorithm.

III. PROBLEM STATEMENT

Let S be a graph stream defined as S = ⟨et1 , et2 , et3 . . . , ⟩,
where an edge eti = (uti , vti) is a unique unordered pair.
Also, let Gt(Vt, Et) is the undirected unweighted graph
seen till time t. Where Vt = {v|v ∈

⋃
ti<t η(eti)} and

Et = {eti |ti < t}. The function η(eti = (uti , vti)) returns
a set {uti , vti} for a given edge eti . Formally, a streaming
community detection problem on graph stream S is to mine a
set of communities Ct = c1, c2, . . . , ck from graph Gt(Vt, Et)
for any t.

In the literature, there is no universal definition available for
defining what communities are; yet, most of the algorithms
rely on the principle that a community is represented by a
set of nodes of the graph that are closely connected to each
other and have loosely connected with the rest of the network
[3]. There are many quality metrics available in the field
of community detection, but conductance and modularity are
most commonly used to check the quality of the communities.
Formally, conductance φ(C) of a community C and modular-
ity Q of graph G are defined as:

φ(C) =
|e(C, C̄)|

2|e(C,C)|+ |e(C, C̄)|
(1)

where e(C,C) is intra-community edges and e(C, C̄) is inter-
community edges.

Q =
1

2m

∑
ij

[
Aij −

didj

2m

]
δ (ci, cj) (2)

where ci is group to which vertex i belongs, di is degree
of node i, Aij is weight of edge between i and j, δ is the
Kronecker delta function and m is total number of edges.

IV. PROPOSED LINEAR COMMUNITY DETECTION
ALGORITHM

We have proposed a linear streaming community detection
algorithm to find out communities from the stream in an
asynchronous manner. For a streaming community detection
algorithm, communities and their properties must be kept in
some kind of data structure that can provide communities
in constant query time. We have developed a space-efficient
data structure called Community Sketch to store communities
and their properties, allowing for constant query time. Our
proposed streaming community detection algorithm uses the
Community Sketch to store communities. The algorithm pro-
cesses incoming edges one by one, creating a new community
based on each edge’s relationship and updating the Community
Sketch accordingly. The merging of communities occurs based
on the inner and outer density concept. Communities can be
found asynchronously when a query is made. The workflow
of our algorithm is illustrated in Figure 2. A community with
a set of nodes will be merged with another community if
the outer density is much greater than the inner density. The
rationale of this can directly be derived from the definition of
the community which says a community have larger number
of links inside than inter community. Hence, a merge can
only happen when the density of edges increase on merge.
Mathematically, inner density (ρin) and outer density (ρout)
of the communities C1, C2 having edges m1,m2, nodes n1, n2

and cross connecting edges m12, is formulated as below:

ρin(C1) =
Total no. of edges present in the community

Total no. of possible edges in the community = 2×m1

n1.(n1−1) (3)

ρout(C1,C2) =
Total no. of outer edges connecting C1 to C2

Total no. of possible outer edges connecting C1 to C2
= m12

n1.n2

(4)

Figure 3 shows the calculation of the inner and outer density
of two communities C1 and C2 in a network. The follow-
ing subsections define the proposed community sketch and
streaming community detection algorithm in detail along with
the operations it supports.

A. Community Sketch

A community sketch is a small space data structure that
stores communities for a graph stream S without storing the
entire graph G. It comprises a forest and a sparse triangular
matrix, where each tree in the forest represents a community
of nodes n1, n2, . . . , nk, with the root element serving as the
community representative. The sparse triangular matrix stores
node and edge count information within (inner) a community
and with other (outer) communities. The matrix’s diagonal
cells have two counters, and the rest have one counter, with the
diagonal representing within-community edge and node counts
and the others store edge count between communities. The
matrix can be fully populated in the worst case, but in practice,
there will be many 0’s. The community sketch supports four
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operations: Community(·), Make-Sketch(·), Update-Sketch(·),
and Merge-Community(·). The Community(·) function’s cost
may increase due to continuous tree merging, but path com-
pression helps to reduce its amortized cost. Each of these
functions is described below:
Community(node): It returns a community representative of
a community where node belongs. In other words, it returns
the root node of a tree where a node lies.
def community(node):

while node != node.parent:
node.parent, node := node.parent.parent, node.parent

return node

Make-Sketch(): It initializes a community sketch Ck with a
forest f and a sparse matrix mat.
def makeSketch():
Ck = forest f, sparseMatrix mat
return Ck

Update-Sketch(η(e)): The function updates the Community
Sketch with a new edge e arrival. It checks if both nodes
belong to existing communities. If they belong to the same
community, the edge count within the community is increased.
If they belong to different communities, the edge count be-
tween communities is increased. If either node is part of an
existing community, a new single-node community is created
with the remaining node as its representative. If both nodes are
not part of any community, a new community with two nodes
is created, with the node having the lower value assigned as
the community representative and the other node as its child
node. The sparse triangular matrix mat is then updated with
the new community’s node and edge count information.
def updateSketch(η(e = (node1, node2))):

n1, n2 = Ck.community(node1), Ck.community(node2)
# when both nodes exist
if (n1 && n2):
Ck.mat[n1][n2].nedge += 1

# when both nodes do not exist
elif (!n1 && !n2):

n = n1 if node1 < node2 else n2

n1, n2 = Ck.f.add(node1), Ck.f.add(node2)
n1.parent, n2.parent = n
Ck.mat[n][n].nnode, Ck.mat[n][n].nedge= 2, 1

# when one of them exists
else:

n = n1 if !n1 else n2

node = node1 if !node1 else node2
n = Ck.f.add(node)
n.parent = n
Ck.mat[n][n].nnode, Ck.mat[n][n].nedge= 1, 0

Fig. 3: Inner and Outer Density of two communities.

C1

C2

OD(C1,2) ⩾
ID(C1)+ID(C2)

2

Merging

C1

Fig. 4: Merging of two communities.

Merge-Community(Pn1
, Pn2

): This method merges com-
munities represented by Pn1 and Pn2 based on the size of the
communities, and the smaller community is linked to the larger
community representative. The sparse triangular matrix mat is
updated after the merge, and entries of the merged community
are removed and references are updated to the new community.
def mergeCommunity(Pn1

,Pn2
):

Px, Py = Pn1
, Pn2

if Ck.mat[Pn1
][Pn1

].nnode
> Ck.mat[Pn2][Pn2].nnode else Pn2, Pn1

Ck.mat[Px][Px].nnode += Ck.mat[Py][Py].nnode
Ck.mat[Px][Px].nedge += Ck.mat[Py][Py].nedge

+ Ck.mat[Px][Py].nedge
Ck.mat.remove(Py)
Py.parent = Px

Ck.mat.replaceRef(Py) ← Px

B. Algorithm
Algorithm 1 is a streaming community detection algo-

rithm for edge streams. It has three operations: initialization,
onReceive(e), and onQuery(). If there is no community
sketch, the algorithm initializes one using the makeSketch()
function. The onReceive(e) function updates the data structure
using the Update-Sketch(·) function. The Update-Sketch(·)
function identifies the communities of nodes u and v and cal-
culates their outer and inner densities based on edge and node
count information from the community sketch data structure.
If the outer density is greater than the α (user-defined pa-
rameter) times sum of inner density of both communities, the
communities can be merged using the Merge-Community(·)
function, as shown in Figure 4. The onQuery() function
returns all communities seen in the stream till the query is
made. The query function returns all the communities seen in
the stream till the query is made. Algorithm 2 can also be
used for static graphs by initializing a community sketch and
calling onReceive(e) for each edge in the input edge list E,
then returning all communities found. Essentially, Algorithm
2 randomise the edge list and use it as a stream of edges.
Note that because of the randomisation different executions
will yield different community structures. Experimentally, we
found that this different runs will not have much effect on the
quality metrics (e.g., NMI for Amazon varies between 0.163
to 0.170 III) and wherever require we report the best value
out of 10 different executions.

C. Time Complexity
The Algorithm 1 processes each edge only once, i.e., time

complexity is linear to the size of the stream assuming density
calculation and checking merging condition are taking O(1)
time. The complexity of the community(·) function depends
upon the height of the tallest tree in the forest. However, path
compression technique is used while community(·) function
is called. The amortized cost of community(·) function per
operation is O(α(n)) [37], where α(n) is inverse Ackermann
function which grows extremely slow and can be considered
as constant. Thus, the overall time complexity of onReceive(e)
function is O(|E|), where E is edge set in the whole stream.
Complexity of onQuery() function is constant which returns
the pointer to all communities. In non-streaming version,
Algorithm 2 is running till the processing of edge list then
total time complexity is O(|E|).
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D. Space Complexity

We are only using two dictionaries of integer, one with size
n for keeping the forest as parent pointer. Second dictionary
is used to store sparse triangular matrix which will have a size
|C|2
2 . In worst case |C| can be |V |−1 for star graph. However,

even with worst case most of the cells in triangular matrix will
be 0 and we are not blocking any space for those entries. For
the practical scenario, |C| << n. The total space complexity
of the proposed algorithm is O(|V |+ |C|2). The advantage of
the streaming technique is that there is no need to store the
entire graph.

Algorithm 1 Streaming Community Detection
Input: An edge stream, fraction threshold α

// Intialize Community Sketch
CommunitySketch Ck
if Ck == NULL then

Ck = makeSketch()
end if

// Receive Function
def onReceive(e, α):

Ck .updateSketch(η(e = (u, v)))
Cu=Ck .community(u)
Cv=Ck .community(v)
// calculate outer density of communities Cu and Cv

ρout(u, v) = Ck .mat.getOuterDensity(Cu,Cv)
// calculate inner density of community Cu

ρin(u) = Ck .mat.getInnerDensity(Cu)
// calculate inner density of community Cv

ρin(v) = Ck .mat.getInnerDensity(Cv)
if ρout(u, v) ⩾ α× (ρin(u) + ρin(v)) then

Ck .mergeCommunity(Cu, Cv)
end if

//Query Function
def onQuery():

return Ck.f

Algorithm 2 Non-Streaming Community Detection
Input: List of edges E between nodes {1, . . . , n}
Output: A set of communities, Ck.f

// Intialize Community Sketch
CommunitySketch Ck = makeSketch()
for each random(e) in |E| do

onReceive(e)
end for
return onQuery()

V. ALGORITHM: TEMPORAL COMMUNITY BENCHMARK
DATASET (TCBD)

In order to verify the effectiveness of streaming community
detection algorithm, ground truth data is necessary. Although,
there are ground truth data generators (LFR Benchmark dataset
[17]) available for communities in static graph, there is no
algorithm available for generating temporal graph with ground
truth communities. Further, the ground truth must match the
topological changes in the temporal graph for each snapshot.

In the proposed Algorithm 3, a base graph is first generated
using the LFR Benchmark algorithm [17]. In subsequent
iterations, the algorithm allows the graph to grow with addition
of new nodes (say r) with degree generated by power law
distribution. We also add new communities in the graph in each

iterations. The number of communities added in each iteration
is calculated by Nc = r

0.5×(min(r,kmax)+kmin)
. Once Nc is

calculated the size of each community is generated with power
law distribution similar to the first iteration. After that, nodes
are assigned randomly to the new communities with condition
that (1− µ) fraction of links with the same community nodes,
while µ fraction of links with nodes in other new communities.
The communities thus formed may not contain all the newly
added nodes due to two factors (i) degree of the node is larger
than the number of nodes in the communities, (ii) r is greater
than the sum of community size’s. Nodes which are not part
of any newly formed communities are referred as “homeless”
nodes. Homeless nodes are assigned to communities generated
earlier depending on the likelihood determined by preferential
attachment. These homeless nodes form internal links in the
community and external links with newly formed communities
by the rule of mixing parameter µ and play a crucial role of
connecting the existing graph with the newly generated graph.
The detailed algorithm is presented in Algorithm 3.

Algorithm 3 TCBD Generation
Input: List of number of nodes added r, average degree
⟨k⟩, degree power law exponent γ, community power law
exponent β, min and max community size smin and smax,
mixing parameter µ
Output: TCBD Graph, G

1: Generate n nodes from the list and determine the degree of
each by using the three parameters⟨k⟩, kmax, and γ based
on the power law distribution.

2: Generate the communities using smin, smax, and β based
on power law distribution. This step is having two parts.

(a) If no initial graph present then the length of community
sequence will be sum of all sizes must be equal to n.

(b) If graph exits then The length of community sequence
must be equal to r

0.5×(min(r,kmax)+kmin)
which means

sum of all sizes can be equal to r or less than r.
3: Get the number of internal and external linkages for each

node. Every node has (1− µ) linkages with other nodes,
whereas µ links are with nodes outside of that community.

4: Create edges for each node that connect it to randomly
chosen internal and external nodes in communities, match-
ing the number of internal and external links counted in
step 3. This step is having two parts.

(a) Initially if no graph exists, no nodes are assigned to
communities. After that, a community is chosen at
random for each node. A new node is added to the
community if the number of nearby nodes does not al-
ready exceed the community size; otherwise, it remains
outside. The “homeless” node is randomly assigned to
any community in the following iterations.

(b) If graph exists, the first homeless nodes are assigned
to communities based on the probability decided by
preferential attachment. Internal nodes of existing com-
munities are adjusted based on mixing ratio. Next,
assign remaining nodes to new community with the
same condition as discussed in 4(a).
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Remark V.1. Homeless nodes are added to the existing
communities with the condition that (1− µ) links are created
within the community, and µ links are created with newly
nodes of other communities. However in creation of external
links, chances of selecting a homeless node is very less and
it will pick the nodes of newly formed communities. This rule
may disrupt the mixing ratio of nodes in existing communities
that are connected to homeless nodes during this process. As
a result, internal links are increased for that particular com-
munity, which makes the community structure stronger with
denser links. In the proposed algorithm, we reconsider those
nodes and create external links whenever required. However,
probability of an existing node being selected repeatedly by
newly added node is 1

|c| , where c is the community where
a homeless node was added. As already discussed, many
homeless nodes have high degree because that is the reason of
being homeless. These homeless nodes will anyway be added
to a existing large size community. Chances that the remaining
homeless nodes select a larger size community is high by
likelihood of preferential attachment. It implies majority of
homeless nodes will attach to the community having higher
cardinality. Hence the probability of node being selected
repeatedly is very low i.e. α = ( 1

|c| )
#homeless node

. The same
is verified experimentally and results are presented in Table I.

Remark V.2. During community size generation, it is possible
that community size generated by power law distribution will
cover the entire n results in no homeless node. In this situation,
the graph generated in that snapshot will be disconnected,
which is likely to be resolved in the subsequent iterations.
Although this situation is rear but can easily be avoided by
reserving the amount of homeless nodes by configuration.

A. Comparative Analysis
We conducted a comparative study of TCBD and LFR

Benchmark Dataset by generating graphs of size 8000 with
varying mixing parameter µ from 0.1 to 1.0 using both
algorithms. For each value of µ, we generated 16 snapshots
of the graph by adding 500 nodes in each iteration. We
calculated modularity and conductance for the corresponding
graphs and found that TCBD outperformed LFR algorithm
in terms of modularity and conductance evident in Figures 5
and 6 respectively. In Figure 5, TCBD showed an increase
in modularity after adding 500 nodes because generating the
very first graph follows the same rule and converged after some
time as discussed in Remark V.1, while conductance changes
were similar or better than LFR Benchmark algorithm and
converged after some time.

TABLE I: Statistics of homeless node added to existing
communities.

#Homeless node Community size Homeless added (%) α

13 40 .026 (1/40)13

9 52 .018 (1/52)9

8 60 .016 (1/60)8

7 71 .014 (1/71)7

6 64 .012 (1/64)6

5 60 .01 (1/60)5

4 91 .008 (1/91)4

3 101 .006 (1/101)3

VI. THEORETICAL ANALYSIS

Equations 2 and 1 show the modularity of a graph G and the
conductance of a community c. In modularity, if both nodes
exist in the same community then δ (ci, cj) will be equal to 1.
Let us drive the change in Qt and φ(ct) terms while running
the algorithm.

Lemma VI.1. Given a graph stream S, let Qt represents the
modularity of the graph after time t; this implies t edges are
seen so far. For the proposed community detection algorithm,
change in modularity ∆Qt

after adding t edges is
1∑

i
di

[∑
ij Aij .δ (ci, cj)−

∑
ij;i̸=j

di.dj+
∑
i

bi.di+B∑
i

di

]
−

∑t−1
i=0 ∆Qi

.

Proof: Let initial modularity and change be Q0 and
∆Q0

. Therefore, Q0 = 0,∆Q0
= 0

At t = 1, Q1 =
1

2(m + 1)

[
1−

(di + 1)(dj + 1)

2(m + 1)

]
Then change in modularity from Q0 to Q1 is,

∆Q1
= Q1 −Q0

=
1

2(m + 1)

[
1−

(di + 1)(dj + 1)

2(m + 1)

]
−

1

2m

[
0−

didj

2m

]
=

1

2(m + 1)

[
1−

di + dj + didj + 1

2(m + 1)

]
−∆Q0

Without the loss of generality, let us assume the incoming edge is connected to existing
graph. Calculation for disconnected edges will be more involved.

Now,

Q2 =
1

2(m + 2)

[[
1−

(di + 2)(dj + 1)

2(m + 2)

]
+

[
1−

(di + 2)(dk + 1)

2(m + 2)

]
+

[
0−

(dj + 1)(dk + 1)

2(m + 2)

]]
And,

∆Q2
= Q2 −Q1

=
1

2(m + 2)

[[
1−

(di + 2)(dj + 1)

2(m + 2)

]
+

[
1−

(di + 2)(dk + 1)

2(m + 2)

]
+

[
0−

(dj + 1)(dk + 1)

2(m + 2)

]]
−

1

2(m + 1)

[
1−

(di + 1)(dj + 1)

2(m + 1)

]
=

1

2(m + 2)

[[
1−

(di + 2)(dj + 1)

2(m + 2)

]
+

[
1−

(di + 2)(dk + 1)

2(m + 2)

]
+

[
0−

(dj + 1)(dk + 1)

2(m + 2)

]]
−∆Q1

−∆Q0

=
1

2(m + 2)

[
[0 + 1 + 1]−

[
di.dj + di.dk + dj .dk

2(m + 2)

]
−

[
2di + 3dk + 3dj

2(m + 2)

]
−

[
5

2(m + 2)

]]
−∆Q1

−∆Q0

· · ·

∴ ∆Qt =
1

2(m + t)

∑
ij

Aij .δ (ci, cj)−

∑
ij;i̸=j

di.dj +
∑
i
bi.di + B∑

i
di


−

[
∆Qt−1

+ ∆Qt−2 + · · ·+ ∆Q0

]
∆Qt =

1∑
i
di

∑
ij

Aij .δ (ci, cj)−

∑
ij;i̸=j

di.dj +
∑
i
bi.di + B∑

i
di

− t−1∑
i=0

∆Qi

where bi is the coefficient of the multiplicative terms, and B is constant.

Remark VI.1. Considering our community detection algo-
rithm, if both nodes from an incoming edge exist in different
communities then modularity for that component will be 0 as
δ (ci, cj) is 0. If both nodes do not exist in any communities
or exist in same community then modularity of the graph will
be calculated based on the change derived in Lemma VI.1.

Remark VI.2. In the graph, if isolated node communities are
increased then δ (ci, cj) will be 0 and change in modularity
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will move in negative direction. In other words, the modularity
of the whole graph will decrease from the previous point (Fig-
ure 7(a)). Here, it can be seen that modularity is decreasing
when the number of communities are increasing from 0 to 387
communities for 12500 edges.

Fig. 5: Modularity analysis with TCBD and Traditional LFR
Benchmark algorithm.

Fig. 6: Conductance analysis with TCBD and Traditional LFR
Benchmark algorithm.

Fig. 7: (a) Modularity (b) Conductance based analysis of
proposed algorithm on proposed TCBD.

Fig. 8: (a) Modularity (b) Conductance based analysis of
proposed algorithm on TCBD.
Remark VI.3. If ρout of two communities is greater than the
average of ρin of two communities, a merge will occur, and

according to Lemma VI.1, the change in δ (ci, cj) will move
in a positive direction. This means that the modularity of the
whole graph will increase with every merge of communities.
The same is evident in the experiment shown in Figure 7(a),
where the modularity increased as communities were merged
until the number of communities reached 32 from 387.

Lemma VI.2. Given a graph stream S, let φ(ct) represents
the conductance of a community c in the graph after time t.
For the proposed community detection algorithm, if incoming
edge from the stream S is connecting the community c with
another community then change in conductance ∆φt

is
2|e(c,c)|

(2|e(c,c)|+|e(c,c̄)|)(2|e(c,c)|+|e(c,c̄)|+1)
.

Proof: Let an edge e from the stream S is creating
outside link of community c to another community. Let e(c, c̄)
represents the edges going outside the community c, and
e(c, c) represents the edges present in the community c. Then,
conductance for community c will be:

φ(ct) =
|e(c, c̄)|

2|e(c, c)|+ |e(c, c̄)|

φ(ct+1) =
|e(c, c̄)|+ 1

2|e(c, c)|+ |e(c, c̄)|+ 1

∴ ∆φt = φ(ct+1)− φ(ct)

=
|e(c, c̄)|+ 1

2|e(c, c)|+ |e(c, c̄)|+ 1
−

|e(c, c̄)|
2|e(c, c)|+ |e(c, c̄)|

∆φt =
2|e(c, c)|

(2|e(c, c)|+ |e(c, c̄)|)(2|e(c, c)|+ |e(c, c̄)|+ 1)

Remark VI.4. When isolated node communities are increased
in the graph then according to Lemma VI.2, overall conduc-
tance will increase in positive direction (Figure 7(b)). The
same can be validated from Figure 7(b) where conductance is
increasing from 0 to 387 communities.

Lemma VI.3. Given a graph stream S, let φ(ct) represents
the conductance of a community c in the graph after
time t. For the proposed community detection algorithm,
if incoming edge from the stream S is connecting nodes
inside the community c then change in conductance ∆φt is

−2|e(c,c̄)|
(2|e(c,c)|+|e(c,c̄)|+2)(2|e(c,c)|+|e(c,c̄)|) .

Proof: Let an edge e from the stream S is connecting
two nodes within community c. Let e(c, c̄) represents the
edges going outside the community c, and e(c, c) represents
the edges present in the community c. Then, conductance for
community c will be:

φ(ct−1) =
|e(c, c̄)|

2|e(c, c)|+ |e(c, c̄)|
An edge is added inside the community c. Then conductance is,

φ(ct) =
|e(c, c̄)|

2(|e(c, c)|+ 1) + |e(c, c̄)|
∴ ∆φt = φ(ct)− φ(ct−1)

=
|e(c, c̄)|

2(|e(c, c)|+ 1) + |e(c, c̄)|
−

|e(c, c̄)|
2|e(c, c)|+ |e(c, c̄)|

=
|e(c, c̄)|

2|e(c, c)|+ |e(c, c̄)|+ 2
−

|e(c, c̄)|
2|e(c, c)|+ |e(c, c̄)|

∆φt = −
2|e(c, c̄)|

(2|e(c, c)|+ |e(c, c̄)|+ 2)(2|e(c, c)|+ |e(c, c̄)|)

Remark VI.5. If two communities are merged into one
community then merge community will have denser links. As a
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result, change in conductance will move in negative direction
(Lemma VI.3). In other words, conductance of the whole graph
will decrease. From the experimental analysis, it is clear that
when communities are getting merged then conductance is
moving in negative direction from 387 to 32 communities as
shown in Figure 7(b)

A. Comparative Analysis

We compared our proposed TCBD algorithm with state-of-
the-art algorithms SCODA and SAOCD in terms of modularity
and conductance. A temporal graph with 1000 nodes and
21000 edges was constructed for the analysis. Our algorithm
was evaluated in the online setting, and modularity and con-
ductance were calculated after each edge was received in
the stream. Figure 8(a) shows that our algorithm achieved
higher modularity compared to other algorithms, except when
a large number of single-node communities were established.
Similarly, Figure 8(b) shows that our algorithm performed
better in terms of conductance than other algorithms.

VII. EXPERIMENTS AND RESULTS

Experiments were conducted on publicly available networks
from Stanford Social Network Analysis Project (SNAP [16])
to compare the performance of the proposed algorithm with
other state-of-the-art algorithms. The experiments were run
on a DGX server with 128 GB system memory. This section
presents detailed information about the dataset, results, and
corresponding analysis obtained from the experiments.

A. Comparative Algorithms

We checked the performance of our proposed algorithm with
following state-of-the-art algorithms:
• SCODA [13] is a linear streaming community detection

algorithm based on the principle that edges are more
likely to connect nodes within the same community than
nodes in different communities

• SAOCD [32] is an improvement over SCODA that in-
corporates node contribution and considers how a node’s
edges change when it moves from one community to
another, leading to more accurate network partitioning.

We also compared with the following well known community
detection algorithms for static graphs.
• Louvain [38] uses hierarchical clustering and combines

communities in a recursive manner by executing modu-
larity clustering on condensed networks.

• Infomap [6] uses random walk and compresses informa-
tion using community partition as Huffman code.

• Walktrap [5] is also a random walk based community
detection algorithm that estimates node similarity using
random walks and then clusters the network.

B. Dataset Description

There are different categories of the dataset available in
SNAP dataset [16] such as Co-citation Network (DBLP [39]),
Co-purchasing Network (Amazon [40]), and Social Network
(Orkut, LiveJournal, and Youtube [22]). Dataset with ground

truth communities is used in our experiments. Table II lists
the properties of these datasets. Note that these datasets do
not have any temporal information. In order to feed these
data to the proposed and comparing streaming algorithms we
assign uniform random timestamps to each edges. However,
as the ground truth communities are for the whole graph. We
compared the results once all the edges are processed.

While evaluation of the community structure at the end
is important, algorithms for streaming community needs to
be validated for intermediate results. In other words, any
streaming community detection algorithm should provide valid
community details anytime an user queries. Static dataset
discussed above are not suitable for this. Hence, experiments
also performed with data generated with proposed TCBD.

TABLE II: Statistics of real networks from SNAP datasets.
Graph Type Nodes Edges Average

Degree
Ground Truth
Communities

Amazon Co-purchasing 334,863 925,872 2.76 311,782
DBLP Co-citation 317,080 1,049,866 3.31 1,449,666
Youtube Social 1,134,890 2,987,624 2.63 8,455,253
LiveJournal Social 3,997,962 34,681,189 8.67 137,177
Orkut Social 3,072,441 117,185,083 38.14 49,732

C. Evaluation Metrics

Effectiveness of our proposed algorithm is checked by three
metrics viz 1) Average F1 score [41] 2) Normalized Mutual
Information (NMI) [10] 3) Weighted Community Clustering
(WCC) [21]. Further execution time and space are used for
comparing algorithms.

Consider dividing the graph into N communities , C =
{C1, . . . , CN}. The F1-Score and average F1-Score of parti-
tion C̃ =

{
C̃1, . . . , C̃M

}
with respect to C is defined as:

F1(C̃, C) =
1

N

N∑
n=1

max
1≤m≤M

F1
(
C̃m, Cn

)
F1(C̃, C) = (F1(C̃, C) + F1(C, C̃))/2

NMI helps to identify that how much two partitions are similar
to each other whereas WCC ensures that communities are
cohesive, structured, and well defined. Mathematically both
are defined as follows:

Inorm (X : Y )(NMI) =
H(X) +H(Y )−H(X,Y )

(H(X) +H(Y ))/2

Where H(X), H(Y ) is the entropy of the random variable
X,Y associated to the partition C, C̃, whereas H(X,Y ) is the
joint entropy.

WCC(x,C) =

{
t(x,C)
t(x,V )

· vt(x,V )
|C\{x}|+vt(x,V \C)

if t(x, V ) ̸= 0

0 if t(x, V ) = 0

Where vt(x,C) is the number of vertices in C that form at
least one triangle with x and t(x,C) is the number of triangles
that vertex x surrounded with vertices in C. Finally, the WCC
of graph G = {C1, . . . , Cn} such that (C1 ∩ ...∩Cn) = ϕ is:

WCC(G) =
1

|V |

n∑
i=1

(|Ci|.WCC(Ci))

Where WCC(C) is the average of WCC(x,C).
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TABLE III: Comparison with state-of-the-art algorithms in terms of 1) Nomalized Mutual Information (NMI) 2) F1-Score 3)
Weighted Community Clustering (WCC) 4) Execution Time (ET) (in seconds) and 5) Execution Memory (EM) (in GBs).

Graph
/Algorithm

Amazon DBLP Youtube LiveJournal Orkut
NMI F1 WCC ET EM NMI F1 WCC ET EM NMI F1 WCC ET EM NMI F1 WCC ET EM NMI F1 WCC ET EM

Infomap .16 .31 .00 47.6 .56 .00 .09 .01 45.5 .60 .00 .01 .00 191.4 2.02 .01 .04 .00 2908.3 14.51 .00 .04 .00 4165.2 101.59
Louvian .14 .28 .01 93.5 .61 .06 .13 .01 202.9 .67 .00 .00 .00 436.4 2.19 .02 .08 .01 12111.4 15.02 - - - - -
Walktrap .27 .44 .13 1291.5 .42 .10 .29 .16 2747.6 .47 - - - - - - - - - - - - - - -
SCODA .11 .37 .09 3.4 .19 .05 .23 .10 3.8 .21 .07 .22 .01 16.2 .67 .06 .23 .01 190.7 4.96 .17 .37 .00 695.9 14.39
SAOCD .16 .40 .11 8.2 .23 .07 .25 .12 9.3 .27 .04 .15 .00 31.3 .80 .03 .14 .01 350.4 8.23 .10 .30 .00 1677.3 27.19

Proposed .17 .41 .20 3.2 .18 .10 .29 .16 3.67 .20 .05 .20 .02 15.4 .68 .03 .16 .03 183.2 6.34 .30 .45 .03 711.9 17.83

D. Results

We have analyzed the results of proposed algorithm in terms
of evaluation metrics.

1) Detection Score: Table III shows the NMI and F1-
score results of the proposed algorithm and other community
detection algorithms on SNAP datasets. Each algorithm was
run at least 15 times by randomly shuffling the edge list before
each run. The best result from each trial was then reported in
the table. Algorithms took more than 5 hours and produced
no results, indicated by a dash in the table. The proposed
algorithm outperformed all other algorithms in Orkut networks
and except Walktrap in Amazon, produced comparable results
with SCODA in Youtube and LiveJournal, and matched the
result of Walktrap in DBLP.

Table III also shows the WCC results, indicating that the
proposed algorithm outperforms other sota algorithms in terms
of making communities cohesive and well structured.

2) Execution Time and Memory: Table III compares the
execution time and memory used by our proposed algorithm
with other methods. Our algorithm outperforms other methods
in all the graphs except Orkut, taking only 3 seconds for small
graphs and 711 seconds for the largest graph (Orkut) with
billions of edges. In terms of memory, the proposed algorithm
takes lowest peak memory in two datasets while for others it
takes second lowest execution space.

E. Effect of Different Condition of Merge

We varied the fraction threshold α (Algorithm 1: Line
18) from 0.1 to 1.0 and evaluated it on the SNAP datasets.
The results are shown in Figure 9(a) and 9(b), where a 0.6
threshold value gave the highest NMI and F1-score for all
networks except Amazon. In Amazon, the highest NMI was
achieved at a threshold value of 0.1, indicating the possibility
of smaller-sized communities in the Amazon network. These
results suggest that varying the α can improve the NMI and
F1-score of the network when ground truth is available.

F. Correctness for Streaming Queries

We tested our proposed algorithm on a streaming environ-
ment using a TCBD graph with mixing parameter µ values of
0.2 and 0.4. To compare the performance of streaming-based
community detection algorithms, we generated a graph and
added 500 nodes per iteration until it reached 8000 nodes.
Figure 10 illustrates the results, and our proposed algorithm
performed significantly better than the others.

VIII. DISCUSSIONS AND CONCLUSION

In the paper, we developed a small space Community
Sketch to preserve the communities structure in the graph with
O(|V | + |C|2) space requirement, where |C| is the number
of communities in the graph. The community sketch stores
distinct communities with a forest and uses a triangular matrix
of counters to store the number of edges between communities.
The data structure can accommodate any distinct streaming
community detection algorithms by adjusting the counters. The
query time to get the community structure is constant.

We proposed a streaming community detection algorithm
using the community sketch data structure. The running time
of the algorithm is linear to the number of edges, i.e., O(|E|).
It processes each edge only once. We assume that edges in
the stream are distinct. However, in real graph streams, edges
can be repeated; this can be thought of as a future research
problem. We have also analyzed the change in modularity and
conductance during the execution of the algorithm.

The algorithm is shown to work with different social net-
works, including large-scale networks with billions of edges.
A comparative analysis with other state-of-the-art stream-
ing community detection algorithms and well-known static
community detection algorithms is presented. In terms of
evaluation metrics, the proposed algorithm is seen to produce
comparable or higher results. Our algorithm exhibits a signifi-
cant improvement in Weighted Community Clustering (WCC)
compared to other methods, indicating its ability to produce
highly cohesive and well structured communities.

Further, we proposed Temporal Community Benchmark
Dataset (TCBD) algorithm that generates graph with tem-
poral information and ground truth Communities. The graph
generated using TCBD contains several snapshots in differ-
ent times contains incremental community labels. Although,
these snapshots do not truly provide a streaming graph, it
provides dynamic community labels. With modifying certain
parameters, streaming graph can be generated, however in that
case number of communities will be static. Dealing with these
limitations are kept as a future work. Inspite the limitations,
this benchmark algorithm fills the gap in the research on
Community Detection in graph streams and may provide a data
set to verify any dynamic or streaming community detection
algorithms.
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Çatalyürek, “Incremental k-core decomposition: Algorithms and eval-
uation,” The VLDB Journal, vol. 25, no. 3, p. 425–447, jun 2016.

[36] Y. Wu, J. Tardos, M. Bateni, A. Linhares, F. M. Goncalves de Almeida,
A. Montanari, and A. Norouzi-Fard, “Streaming belief propagation
for community detection,” Advances in Neural Information Processing
Systems, vol. 34, pp. 26 976–26 988, 2021.

[37] J. E. Hopcroft and J. D. Ullman, “Set merging algorithms,” SIAM
Journal on Computing, vol. 2, no. 4, pp. 294–303, 1973.

[38] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[39] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: Membership, growth, and evolution,”
in Proc. of the 12th ACM SIGKDD International Conf. on Knowledge
Discovery and Data Mining, ser. KDD ’06. New York, NY, USA:
ACM, 2006, p. 44–54.

[40] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Trans. Web, vol. 1, no. 1, p. 5–es, may 2007.

[41] J. Yang and J. Leskovec, “Overlapping community detection at scale: A
nonnegative matrix factorization approach,” in Proc. of the Sixth ACM
International Conf. on Web Search and Data Mining, ser. WSDM ’13.
New York, NY, USA: ACM, 2013, p. 587–596.


