
P
os
te
d
on

4
M
ay

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
27
47
28
6.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

A novel fit-flexible fluorescence imager: Tri-sensing of intensity,

fall-time, and life profile

Ali Taimori 1, Bethany Mills 2, Erin Gaughan 2, Aysha Ali 2, Kevin Dhaliwal 2, Gareth
Williams 2, Neil Finlayson 2, and James Hopgood 2

1The Institute for Digital Communications
2Affiliation not available

October 31, 2023

Abstract
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A novel fit-flexible fluorescence imager: Tri-sensing
of intensity, fall-time, and life profile

Ali Taimori, Bethany Mills, Erin Gaughan, Aysha Ali, Kevin Dhaliwal, Gareth Williams, Neil Finlayson, and
James Hopgood, Senior Member, IEEE

Abstract—Time-resolved fluorescence imaging techniques, like
fluorescence lifetime imaging microscopy, are powerful optical
instrumentation tools of modern science with important appli-
cations, including: biology, medicine, and chemistry. However,
these systems possess complexities both at device and specimen
levels due to their quantum-based nature, causing difficulties in
quantifying biomarkers. To address the problem, we first aim
to understand the underlying phenomena of fluorescence decay
curves observed in our confocal imaging systems by deriving a
flexible electrical model, paralleling similar approaches in the
literature. A white-box model is presented for explaining the
whole process as ‘life circuits’. Components of excitation laser,
specimen, and fluorescence-emission signal as the histogram of
photon counts are modelled by a current source, network of RLC
circuitry, and voltmetre, respectively. Solving the differential
equation behind a life circuit results in a parametric ‘life model’
fitted with the real recordings. Then, we design a novel pixel-level
temporal classification algorithm, called a ‘fit-flexible approach’,
where qualities of ‘intensity’, ‘fall-time’, and ‘life profile’ are
identified for each point. We provide a set of life models to select
the best representative of the photon-counting histogram based
on a new Misfit-percent criterion. Two-dimensional arrangement
of the quantified information detects some kind of structural
information. We improved 7% the Misfit error of recovering
histograms on real samples than the best competitor. Our
approach showed a potential of separating microbeads from the
lung tissue, distinguishing the tri-sensing from conventional ones.

Index Terms—Fluorescence lifetime imaging microscopy, life-
time estimation, modelling, system identification.

I. INTRODUCTION

A. Time-resolved fluorescence imaging

FLUORESCENCE imaging techniques are a remarkable
quantum-based piece of equipment with numerous ap-

plications across biology, chemistry, medicine, materials and
environmental sciences [1]. In life sciences, the time-resolved
technique of optical Fluorescence Lifetime Imaging Mi-
croscopy (FLIM) [2] or spectroscopy [3] are widely employed
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for microscopy or nanoscopy of biological substances. In
FLIM, a specimen is first excited via a light source such
as a laser. The reactional response to this excitation leads to
photon absorption and emission. Then, the time of the first
emitted photon is recorded by a sensitive detector, such as
a single-photon avalanche diode sensor and related electronic
equipment [4]. The cycle continues for a given number of
excitation. At the end of process, a temporal histogram from
counting photons in different time bins is produced. The mean
lifetime, as a biomarker/chemomarker characteristic of the
transient response, is estimated and utilised to bring a contrast
among diverse locations in the sensed specimen [5–13].

B. Background investigation

In the fluorescence techniques literature, the function repre-
senting time-resolved measurements from a photon counting
process is considered as one of the decaying models of mono-
, bi-, tri-, or generally multi-exponential [14]. For the most
general infinite exponentials, the fluorescence decay curve is:

vptq “
8
ÿ

i“1

Aie
´ t
τi “ A

8
ÿ

i“1

αie
´ t
τi , (1)

which Ai P R` and τi P R`, @i, denote the amplitude and
the lifetime of ith term, respectively. The symbol R` denotes
the set of all positive real numbers. There exist A fi

ř8

i“1Ai,
αi fi

Ai
A , 0 ă αi ă 1, @i, and

ř8

i“1 αi “ 1. In conventional
FLIM, the center of mass of the histogram of photon counts
is determined as the fluorescence lifetime [3]. In (1), this is:

τmean “

ř8

i“1 αiτ
2
i

ř8

i“1 αiτi
. (2)

Its derivation is provided in Section S2 of Supplementary
Materials (SMs). The histogram of photon counts is usually
modelled by a mono-exponential due to its simplicity and
applicability [6, 13]. A bi- or tri-exponential may be applied
for complex materials [9, 15].

The time-resolved fluorescence signal in (1) is analysed as a
black-box time series system modelling, where inputs are not
observed and only the measured outputs as the histogram of
photon counts are available [16]. This means a user is aware of
the result of molecular reactions, but unaware of their detailed
origin. This issue brings a profound gap to understanding
physical concepts. Finding the origin differential equation
satisfying (1), as a practice of grey-box modelling, reduces
the opacity of the model. For mono-exponential, interpreta-
tions in terms of Jablonski diagram [17] and the 1st-order
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TABLE I: Terminology and definitions used in the paper

Terminology Definition

Growth phase The duration in a time series starting from the time zero to reaching the maximum intensity
Decay phase The duration in a time series starting from the maximum intensity to the asymptotic dissipation

Life cycle The sum of the growth phase and the decay phase
Life profile The shape or envelope of a time series regardless of any growth or decay local fluctuations

Life model-set A set of mathematical functions describing different time series
Life pattern map An image arrangement of different life profiles in a 2D space visualised by distinct colours

Fall-time The time at which a representative life profile falls 1
e

its maximum intensity

Ordinary Differential Equation (ODE)1 exist. However, there
is a lack of research on interpretations for high-order models.
Rare studies also exist beyond exponential. For example, the
lack of a function other than the exponential for describing
environments containing complex materials is identified in
[18]. They modelled the decay as a gamma distribution for
better experimental data fitting. Lukichev in [19] proposed
the stretched exponential Kohlrausch-Williams-Watts (KWW)
function fptq “ Ae´p

t
τ q
γ

, 0 ă γ ď 1. This brings fitting
closer to the physical decaying phenomena with time-varying
ODEs than the mono-exponential with the integer exponent
γ “ 1 resulting from an ODE with constant coefficients [13].
That author suggested four circuits including resistor, capaci-
tor, diode, and transistor to obtain some degree of flexibility.
It is important to note that the fractional KWW system itself
can be expanded via (1), aka Prony series expansion [20].

To estimate τmean, the unknown parameters of (2) should
be estimated. Lifetime estimation methods can be categorised
into three main groups: fitting-, non-fitting-based, and fit-free
approaches. In fitting-based procedures, a decaying function
is first hypothesised for modelling the distribution of the
temporal signal. Then, its unknown parameters are estimated
by approaches such as Least Squares (LS) curve fitting [21]
or Maximum Likelihood Estimation (MLE) [5]. Non-fitting-
based approaches usually suggest an explicit closed-form
formulation for obtaining the fluorescence lifetime [6–9]. For
example, Rapid Lifetime Determination (RLD) [6], RLD with
Overlapping Windows (RLD-OW) [7], Robust RLD [13], Cen-
ter of Mass Method (CMM) [8], and Fluorescence Lifetime
Estimation via Rotational Invariance Techniques (FLERIT) [9]
belong to this family. Fit-free methodologies rely on infor-
mation visualisation [10] and learning [11, 15]. For instance,
Digman et al. in [10] proposed a 2D graphical representation
of mono- or bi-exponential lifetime distribution from FLIM
pixels. This works based on a Fourier-domain-connected cal-
culations called the “phasor approach”. The method requires
observer’s interpretation. Also, fit-free machine learning-based
techniques [11, 15] employ the inherent function approxima-
tion capability in neural networks to estimate parameters of a
decay model by pre-training from massive synthetic data.

C. Problem statement

Let fptq “ A
řn

i“1 αie
´ t
τi be a truncated representation

of (1). Here, we aim to highlight the function fptq is the
homogeneous solution of a nth-order linear non-homogeneous
ODE with constant coefficients [22]. Assume the input-output
functions eptq and fptq represent the processes of excitation

1http://www.fluortools.com/software/decayfit/documentation/models
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Fig. 1: (a) Modelling the whole process of time-resolved flu-
orescence imaging; and, (b) scheme of our fit-flexible imager.

and fluorescence-emission, respectively. An equivalency be-
tween the radiation source and the rate of changes of the
fluorescence emission exist, which describes a balanced input-
output energy with the ODE of:

dnfptq

dtn
`a1

dn´1fptq

dtn´1
`¨ ¨ ¨`an´1

dfptq

dt
`anfptq “ eptq, (3)

in which ai,@i “ 1, . . . , n, denotes a constant coefficient.
The solution fptq is valid for a homogeneous ODE with
eptq “ 0, where its corresponding characteristic function as
rn ` a1r

n´1 ` ¨ ¨ ¨ ` an´1r ` an “ 0 contains n distinct real
roots of r1, r2, . . . , rn. So, the n-exponential would be able to
articulate a decay function by combining linearly n segments.
However, it should be noted that the roots can be generally
of distinct real, repeated real and complex conjugate forms
[18–20], resulting in different homogeneous solutions to be
taken into account. A best practice in (3) would be to convert
the ODE-based grey box to a transparent white box with fully
identifiable components like an electrical circuit. Hence, the
first question addressed in this research is: “Q1: How can we
represent the fluorescence phenomenon using white-box
modelling?”

Secondly, another problem with the methods developed
in the literature is that they act based on only a presumed
model; e.g., a fixed single model chosen from a small set
such as mono- and bi-exponential is considered for describing
the fluorescence phenomenon throughout a specimen [23].
However, different locations from a sample may not obey a
given parametric model due to diversity of type, dynamics, and
environment of biological substances present in the sample.
This introduces modelling error. Therefore, the second ques-
tion is: “Q2: What model minimises curve fitting error on
the real time-resolved measurements?”

Thirdly, it is assumed that the intensity is maximum at the
time t “ 0 in both mono- and bi-exponential decay. This
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Fig. 2: A representation of the proposed fit-flexible fluorescence sensing for the application of time-resolved imaging of
microscopic biological samples. On the right side, the histograms of photon counts at four distinct pixels are visualised. The
table attached to each histogram shows the Misfit-percent for different models.

means an impulsive rise-time. However, because of natural
lag in the physical systems, the response shape may not com-
pletely follow from a strictly monotonically decreasing trend.
Although very small, it takes a time to the response reaches its
maximum strength. In the literature, this behaviour is justified
by convolution of the decay with an instrument response func-
tion [5, 11, 13]. Physically, the temporal response of fluores-
cence first follows a rise (called a “growth phase”) and then a
fall (called a “decay phase”) trend similar to any charging and
discharging events. We define a fluorescence “life cycle” as the
sum of growth and decay phases. Nevertheless, if the tunable
parameter of time bin width is selected sufficiently large, a
strictly monotonically decreasing curve may be observed due
to combining photons of neighbouring bins [4], preserving the
importance of the models. The problem is in connection with
the technological limitation on temporal resolution of sensing
electronic devices (about few picoseconds in time-correlated
single photon counting-based technique [24]). It prevents high
resolution details of the rise-time or natural fluctuations of the
time series. We define a fluorescence “life profile” as the shape
or envelope of a time series regardless of any growth or decay
local fluctuations. Our third research question is: “Q3: If a
set of life models is available, what criterion is the best for
selecting the optimal descriptor?”

D. Our approach and contributions

To tackle the problems of limited and rigid life model
[18, 19, 23], we introduce a novel, fourth family of estimators
termed a fit-flexible approach. This process is similar to
model selection techniques used in statistical modelling and
parameter estimation [25], but is extended to consider further
physical constraints. To help motivate the models, we first

build on the work in [19] and scale down the whole complex
quantum process of time-resolved fluorescence imaging as an
electric circuit by leveraging their analogy as will be discussed
in Section II. Specimen’s microorganisms are modelled as a
network of parallel RLC circuits as shown in Fig. 1 (a). To
detect matched profiles in connection to circuits’ responses, we
design a fluorescence “life model-set”. We have considered
1st- and 2nd-order dynamical systems [26]. The benefits of
these models are the low-order simplicity and the appropriate
coverage of systems dynamics. We specifically derive life
circuits where their responses lead to a few well-behaved sta-
tistical distributions that can fit different shapes of histogram of
photo counts in practice. In a search mechanism, we select the
optimal life model order and model type describing a spot of
the specimen [25]. Each point selects its optimal representative
model in an automatic and adaptive fashion. Once an optimal
life model was selected, other markers can be estimated, e.g.,
a fluorescence “fall-time” to measuring the time at which
a representative life profile falls 1

e its maximum intensity.
This fall-time is equal to the lifetime of mono-exponential
decay. We have proposed a generic Fall-time Determination
Procedure (FDP). Figure 1 (b) visualises our scheme for tri-
sensing of intensity, fall-time, and life profile. The flexible
modelling results in definition of a novel concept called a
fluorescence “life pattern map”, which extracts a third map, in
addition to intensity and fall-time/lifetime maps, by a pixel-
level temporal classification algorithm. A life pattern map
is generated by arranging extracted temporal profiles on the
plane as a multi-colour visualisation. Table I summarises the
terminology, and Fig. 2 represents the proposed imager.

Our experiments on the lung demonstrate quantifying both
the fall-time as a stacked histogram in terms of models’
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distribution and the life pattern map expose informative con-
trast among points. These act as complementary information
about behaviour of a sample. It may be useful in discovering
molecular and cellular structural information towards diseases
treatment. Our contributions and novelties are:
‚ white-box modelling of the quantum-based imaging tech-

nique as an understandable electrical network, which may
influence beyond the application of this paper;

‚ deriving a set of life circuits describing interactions between
fluorophores and their environment;

‚ extracting life profile from time-resolved imaging;
‚ proposing a new Misfit-percent criterion for minimising

modelling error in determination of life characteristics; and,
‚ applying our fit-flexible approach to real data for separating

microbeads from human lung tissue.
In the remainder of paper, Section II electrically models

the process of time-resolved imaging. Section III designs an
algorithm for the proposed fit-flexible imager. In Section IV,
we prepare both synthesised and actual experiments to validate
our approach. The paper is finally concluded in Section V.

II. ELECTRICAL MODELLING

A. Excitation-emission modelling

When a specimen is excited, electrons of its excited
molecules move from a ground state to an excited state and
may or may not release photons of visible light and then
come back to the base state [17]. Similarly, in a RLC circuit,
after flowing periodic current, electrons in the circuit move
to establish the fast events of charging and discharging. With
this analogy, we desire to model the whole process electrically
to give a physical interpretation for the theoretical models
of photon counting. We use the pair of the current iptq and
voltage vptq functions as representatives of the excitation eptq
and fluorescence-emission fptq functions, respectively. It is
also possible to equivalently describe the whole process as
a mechanical system containing mass-spring-damper compo-
nents or by bond graph theory [26]. However, electrical circuits
have been chosen simply to reflect both the nature of electron
movement and convenient means for physical interpretation of
relaxation phenomena by inspiration from [19].

B. Specimen modelling

Modelling biological systems tries to understand real bio-
chemical processes for goals such as synthesising artificial
biological systems with similar functions. To model a spec-
imen such as the lung tissue, we discretise the surface of the
continuous sample into infinite extremely small units, each
modelled by a RLC circuit excitable by an external laser. The
light flow passes through the sample, introducing light reaction
as photon emission, and heat and gas propagation as negligible
absorption events. To electrically translate this, a spot of the
specimen should contain both storage and load elements. A
storing element, whether the capacitor C or the inductor L, is
first charged by the incoming light and then discharged via an
Ohmic load like a light bulb model as a representative of the
resistor R [19]. Therefore, each unit of the sample is modelled
by a linear, parallel RLC circuit.

C. Laser modelling

A pulsed laser, as an illumination source [27], generates
short-duration focused light pulses [14]. It can be generally
modelled by a current impulse train plus a DC shifter as:

iptq “ c1

K´1
ÿ

k“0

δpt´ kT q

looooooooomooooooooon

fii1ptq

` c2uptq
loomoon

fii2ptq

. (4)

Currents i1ptq and i2ptq model pure periodic laser impulses
and a residual average power spread in-between the pulses
as an imperfection, respectively. Operators δp¨q, up¨q, and T
denote the Dirac delta, Heaviside step function, and laser
repetition rate, respectively. The arbitrary constants c1 and c2,
and K respectively represent the amplitude of the impulse,
the DC shift, and the number of excitation pulses per spot. In
current lasers, the repetition rate is between nano- and micro-
second range with thousands femtosecond pulse width [2].

D. Analogue electronic measurements modelling

The measurement equipment in time-resolved imaging can
be modelled by an AC voltmetre recording a circuit’s response.
Figure 1 (a) embodies our modelling. We consider the capac-
itance of the capacitor as C “ 1 F to meets the standard
convention in (3) that the coefficient corresponding to the
highest derivative order is unity [31]. A passive analogue RLC
circuit is in nature a 2nd-order system. Three possible over-
(equivalent to bi-exponential), critically-, and under-damped
responses exist based on the position of the roots of the
characteristic equation [22]. We derive 2nd-order circuits that
solving their ODEs results in the definition of three proposed
bi-exponential, critically-, and under-damped life models.

The real model of an inductor consists of its winding
equivalent resistor of the resistance Rw series with the ideal
inductor of the inductance L, as shown in Fig. 1 (a). So, if an
inductor model inside a specimen’s unit tend to Rw Ñ 8,
then, the RLC circuit reduces to a 1st-order RC circuit.
In this transition, we derive the most general Linear Time-
Variant (LTV) RC circuit that its response lead to Weibull
distribution as a flexible model considering both the growth
and decay behaviours. Mono-exponential and Rayleigh models
can be considered as special cases of Weibull’s function with
the integer time exponents b “ 1 and b “ 2 in Table
II, respectively. Hence, they have established independently.
Consequently, three models are derived from the 1st-order
modelling. Finally, 6 comprehensive 1st- and 2nd-order models
constitute our life model-set. Table II summarises our devel-
oped life circuits, and Fig. 3 illustrates synthesised life profiles.
Their corresponding functions can approximate well different
shapes from histogram of photon-counts. We have motivated
the choice of a set of life models are physically meaningful
rather than an arbitrary choice of waveforms, as often seen
in model selection problems. We have also spotted potential
applications of life circuits for further follow-up among other
fields. Section S3 from SMs provides proofs of life models.
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TABLE II: A summary of our developed fluorescence life circuits

Model Equivalent circuit Components Input/output equations Specifications Potential application areas

Mo-xp ‚ R “ τ
‚ C “ 1

‚ iptq “ A
K

řK´1
k“0 δpt´ kT q

‚ vptq “ Ae´
1
τ
tuptq

‚ 1st-order mono-exponential
‚ Linear, time-invariant ODE
‚ A pole at s “ ´ 1

τ
‚ Equivalency among time constant,

lifetime, and fall-time
‚ A LTI translation of Weibull life

model with b “ 1
‚ Parameters: θp1q “ rA, τ sT

‚ Biomedicine
(fluorescence [13, 28])

‚ Chemistry (spectroscopy)
‚ Nuclear science (radioac-

tive decay)

Rayl.
‚ r1ptq “

τ
2t

‚ r2ptq “ ´t
‚ C “ 1

‚ iptq “ A
K

řK´1
k“0 δpt´ kT q

‚ vptq “ Ate´
1
τ
t2uptq

‚ 1st-order Rayleigh
‚ Linear, time-variant ODE [29]
‚ A special Weibull circuit with b “ 2
‚ Parameters: θp2q “ rA, τ sT

‚ Medicine (MRI)
‚ Life sciences
‚ Wireless communications

(fading modelling)

Weib.
‚ r1ptq “

τ
btb´1

‚ r2ptq “
t

1´b
‚ C “ 1

‚ iptq “ A
K

řK´1
k“0 δpt´ kT q

‚ vptq “ Atb´1e´
1
τ
tbuptq

‚ 1st-order Weibull
‚ Linear, time-variant ODE [29]
‚ Flexibility
‚ Parameters: θp3q “ rA, b, τ sT

‚ Biomedicine [28]
‚ Life sciences
‚ Fading channels [30]
‚ Reliability engineering

Bi-xp
‚ R1 “ τ1
‚ R2 “ τ2
‚ L “ τ1τ2
‚ C “ 1

‚ iptq “ A
K

řK´1
k“0 δpt ´ kT q `

A
”

α
τ2
`
p1´αq
τ1

ı

uptq

‚ vptq “

A

„

αe
´ 1
τ1
t
` p1´ αqe

´ 1
τ2
t


uptq

‚ 2nd-order bi-exponential
‚ Linear, time-invariant ODE
‚ Real poles at s1 “ ´ 1

τ1
and s2 “

´ 1
τ2

‚ Parameters: θp4q “ rA,α, τ1, τ2sT

‚ Biomedicine
(fluorescence imaging
[28])

‚ Biochemistry [22]
‚ Bioengineering

C-dmp
‚ R “ τ

2
‚ L “ τ2

‚ C “ 1

‚ iptq “ Auptq

‚ vptq “ Ate´
1
τ
tuptq

‚ 2nd-order critically-damped
‚ Linear, time-invariant ODE
‚ Double pole at s1,2 “ ´ 1

τ

‚ Parameters: θp5q “ rA, τ sT

‚ Biomedicine
(fluorescence imaging
[28])

‚ Biochemistry [22]
‚ Bioengineering

U-dmp
‚ R “ τ

2
‚ L1 “ τ2

‚ L2 “
1
ω2

‚ C “ 1

‚ iptq “ Aωuptq

‚ vptq “ Ae´
1
τ
t sin pωtquptq

‚ 2nd-order under-damped
‚ Linear, time-invariant ODE
‚ Complex conjugate poles at s1,2 “
´ 1
τ
˘ jω

‚ Needs rectifying vptq as (5)
‚ Parameters: θp6q “ rA,ω, τ sT

‚ Biomedicine
(fluorescence imaging
[28])

‚ Biochemistry [22]
‚ Bioengineering
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Fig. 3: An illustration of synthesised fluorescence life profiles.

III. ALGORITHMIC IMPLEMENTATION

A. Real-world digital measurements

In actual measurements, the number of counted photons
at each time bin of histogram of photon counts is a non-
negative value [13]. This means that unquantised amplitudes
of a circuit voltage response should satisfy the real constraint
vptq P R`. If any deviations exist, the negative parts of the
signal model should be treated by rectification. Specifically,
the situation is seen for the sinusoidal response of under-
damped model in Table II (See also Fig. 3 in [19].). This
can be electrically interpreted as passing the response through
a representative full-wave rectifier implementable by schemes
two or four perfect diodes. Generally, the rectified response
can be mathematically modelled by:

vptq Ð |vptq|, (5)

which | ¨ | means absolute function. Hence, for under-damped
model, the new assigned version of vptq is applied for pa-
rameters estimation. Additionally, photon counting is done in

Algorithm 1 The proposed fit-flexible fluorescence imager

1: Inputs: The ZhˆwˆN fluorescence tensor data including a
time-resolved histogram ṽ “ rṽ0, ṽ1, . . . , ṽN´1s

T at each
pixel pr, cq,@r “ 0, 1, . . . , h´ 1, c “ 0, 1, . . . , w´ 1, and
the M -element life model-set M.

2: Outputs: Maps of intensity Λ “ rλr,cs P Zhˆw, fall-time
Ψ “ rψr,cs P Rhˆw, life pattern Φ “ rφr,cs P Z`

hˆw.
3: for r Ð 0, h´ 1 do
4: for cÐ 0, w ´ 1 do
5: Acquire the histogram ṽ belonging to point pr, cq.
6: for j Ð 1,M do
7: Estimate θ̂

pjq
in Table II for Mtju by LS fit.

8: Recover v̂pjq in (7) by replacing parameters.
9: Obtain Misfit-percent ej “ e

`

ṽ, v̂pjq
˘

by (8).
10: end for
11: Compute j‹ in (9).
12: Estimate intensity by (11) as λr,c Ð Î .
13: Feed v̂pj

‹
q to FDP to estimate fall-time ψr,c Ð τ̂f .

14: Initialise life profile label as φr,c Ð j‹.
15: Update the life profile label using penaliser.
16: Assign unknown class where required.
17: end for
18: end for

practice at discrete time bins. If variables ∆ and N are respec-
tively the bin width and the number of bins for a histogram,
the discrete representation vrns,@n “ 0, 1, . . . , N ´ 1, of
the continuous response vptq can be generated by replacing t
with n∆ in life models. An algorithmic implementation of our
method, depicted in Fig. 1 (b), is summarised in Algorithm 1.
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B. Stochastic modelling

Measurements in the real world are noisy, but not determin-
istic as modelled in Section II. This means the deterministic
life model of vrns P R` should be contaminated by a represen-
tative random component. Various dependent and independent
noise sources from photon counting equipment and instrument
ambient disturbances exist [13]. Their collective effect can
be considered as additive noise by a Poisson distribution of
ηrns „ P pλq, in which the parameter λ P p0,8q denotes the
mean rate of shot noise photons. Hence, actual measurements
for each model can be rewritten as:

ṽrns “ tvrnss` ηrns, (6)

where ṽrns P Z` and ηrns P Z`. The symbol Z` represents
the set of all positive integers. The operator t¨s means round
function to mimic physical quantised measurements.

C. Life-model’s parameters estimation and selection

Consider the multi-parameter models in Table II as the set
M fi tMo-xp,Rayl.,Weib.,Bi-xp,C-dmp,U-dmpu. For the
jth model, parameters can be represented by the vector θpjq “
“

θ0, . . . , θKj´1

‰T
, where Kj ,@j “ 1, 2, . . . ,M , denotes the

number of parameters of jth model. Also, M fi |M| “ 6
means the number of elements of the life model-set, where
| ¨ | represents the cardinality of a set. Our method can be
expanded to other candidate models. The unknown parameters
are identified from available measurements of histogram of
photon counts. The problem can be formulated by a parameter
estimator. We utilised the optimized nonlinear LS with the
“trust region” algorithm [21] for estimating the unknown
vector as θ̂

pjq
. Once the vector θ̂

pjq
was determined for

the jth model, its related fitted curve can be calculated
by replacing the estimated parameters into its corresponding
discrete response, definable as the vector of:

v̂pjq “
”

v̂
pjq
0 , . . . , v̂

pjq
N´1

ıT

. (7)

Afterwards, our method contains a mechanism of model
selection [23] below.

Misfit-percent criterion: To select an optimal curve de-
scribing the best data trend, various Badness-of-Fit (BoF) or
Goodness-of-Fit (GoF) objective functions may be employed.
Generally, BoF criteria such as two-sample Kolmogorov-
Smirnov (K-S) difference [32], Kullback-Leibler (K-L) di-
vergence [33], chi-square [13], Mean Squared Error (MSE)
[13], Normalised Root Mean Square Error (NRMSE) [34] and
Symmetric Mean Absolute Percentage Error (SMAPE) [35], or
GoF Correlation Coefficient (CC) [33] can be used. However,
these metrics suffer from two main problems: 1) being limited
in terms of fidelity and robustness, or 2) being non-fully
normalised. The former causes inefficient model selection in
noisy situations; e.g., MSE may only work well for head (bins
with higher intensities) fitting of the skewed life distributions,
whereas the chi-square measure is loyal more to tail fitting
[13]. The latter hardens understanding the rate of a criterion;
e.g., consider the task of thresholding on a non-normalised
value, which would not be straightforward by user. To tackle

them, we have proposed a novel, simple yet efficient error
metric for model selection, called Misfit-percent. This calcu-
lates the sum of absolute error between the actual histogram of
photon counts and an estimated curve on all bins and normalise
the result to the union of the curves as the whole possible
photons space. Generally, Misfit between the actual p̊ and
estimated p̂ vectors is defined in % as:

Misfit-percent fi
100

řN´1
i“0 |p̊i ´ p̂i|

řN´1
i“0 max pp̊i, p̂iq

. (8)

We redefine the entry e
`

ṽ, v̂pjq
˘

, @j “ 1, 2, . . . ,M , as
the error of Misfit-percent between the vectors of ac-
tual histogram ṽ “ rṽr0s, . . . , ṽrN ´ 1ss

T and jth esti-
mated model v̂pjq and arrange it over all models as e “
“

e
`

ṽ, v̂p1q
˘

, . . . , e
`

ṽ, v̂pMq
˘‰T

. The label of optimal life
model for a single point can be detected by minimising:

j‹ “ arg min
j

peq. (9)

The minimised Misfit-percent model is refereed to intensity
and fall-time estimators as well as life profile detection.

D. Intensity estimation

A summation on bin-wise photons is considered as intensity
per histogram in FLIM [2] (called an “empirical mode”) as:

Î “
N´1
ÿ

i“0

ṽi “ 1Tṽ, (10)

which 1 denotes a column-wise vector of all ones. Although
this sort of integration has inherent smoothing property, the
intensity still is calculated from a mixture of signal and noise.
To improve SNR, we ideally desire to estimate the intensity
from the original signal alone, i.e., Î “ Gpṽq, where the
operator Gp¨q is a denoiser. The denoising operator can be a
non-parametric smoothing filter such as Savitzky-Golay filter
[13] (called a “smoothed mode”), or a parametric fitting model
(called a “fitted mode”, as our approach is a type of this). If
the function G is 1T, it is equivalent to (10). We leverage
the capability of our life recovery to estimate the intensity. If
Misfit stays below the fitting failure threshold TAM, we rely
on the integral of optimal fitted curve as a filtered, smoothed
signal; otherwise, it is estimated as usual, as:

Î “

#

1Tv̂, e
`

ṽ, v̂pj
‹
q
˘

ă TAM

1Tṽ, otherwise
. (11)

In experiments, we adjusted TAM “ 10%. This mechanism
can balance better between bias and variance.

E. Fall-time determination procedure

Conventional FLIM assumes a monotonically decaying
curve, whereas underlying life distributions may be generally
left or right skewed, or even symmetric. A skewed distribution
has three characteristics of mode (its peak point), median, and
mean (also defined as centre of mass [8] or the first moment).
For possessing a right imaging system, distinguishing them
is crucial. To this intent, we have measured fall-time as
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graphically explained in Fig. 1 (b). The value of distributions
characteristics can be determined mathematically or computa-
tionally. The former requires to analytically derive an equation
for each life mode as a function of model parameters as
presented in Table II. If during the fitting process, a failure
in estimating one or more parameters exists due to lack of
control on noisy data, computations are wrong, physically
meaningless. For example, a lower bound for bi-exponential
fall-time in terms of parameters pα, τ1, τ2q is:

τf ě
p1´ 1

e qτ1τ2

p1´ αqτ1 ` ατ2
, (12)

where it is derived in Section S4 of the SMs. However, in
the latter, the parameter τf can be graphically computed from
profile’s shape with less sensitivity to parameters pα, τ1, τ2q.

As seen from the curve of Fig. 1 (b), at most two points
cross the red line corresponding to the amplitude 1

e v̂m, one
corresponding to the rising edge, and one due to the falling
edge. The estimated fall-time, τ̂f , is determined at falling edge
of the response, i.e., the vertical green line. To analyse the
intersection point for a given life model, we calculate slope at
crossing points. For the rising and falling edges, the slope is
identified respectively positive and negative. Nevertheless, for
a measurement window, it may happen that such a crossover
does not exist in the falling edge, for example, because of slow
damping. In this case, we quantise the fall-time to a predefined
span value such as τ̂f “ ∆N . In terms of estimated parameters,
the profile of a fitted model may not always follow from a
reasonable shape such as the first growth and then decay trend
shown in the curve of Fig. 1 (b). Generally, five main possible
rise and fall forms may occur in real scenarios, which are
controlled in FDP of Algorithm 1 for obtaining τ̂f . Section S5
from SMs provides details of these cases. It is notable that, for
the fall-time determination in U-dmp model, the envelope of
the rectified sinusoidal response, namely vptq Ð Ae´

1
τ tuptq,

is fed as input. Although the valid v̂m is calculated from the
original rectified version in (5).

F. Life profile extraction

A decision about detecting fluorescence life profile can
be selecting the model with minimum Misfit-percent in
(9). Due to following reasons, this alone will not lead to
accurate outcomes. A model from a “model set” may have
different shapes. For the model, infinite “model parameters”
can be imagined. In practice, mathematical functions from
the model set may meet each other on some specific vectors
of parameters, and consequently generate similar functional
forms [36]. In our model set, it can be seen between the
naturally flexible model of Weibull and other models. As
clear examples, see specifications of mono-exponential and
Rayleigh models in Table II. This reveals further rules are
required to investigate model parameters and improve the
chance of deciding a right profile. We check consistency of
estimated parameters with physical constraints such as those
mentioned in (1) and stability criterion. If we observe any
inconsistencies, the corresponding model is penalised to be
able to select the best descriptive label for a life profile. To

2

1

3

4 5

6

Fig. 4: Ground truth life pattern map in simulator.

this intent, consider the matrix of fluorescence life pattern map
as Φ “ rφr,cshˆw ,@φr,c P Z`. We first initialise φr,c Ð j‹.
Then, the entry φr,c is updated using a penaliser if neces-
sary. In addition to the parameters control mechanism, we
considered a parsimonious strategy in establishing penalising
rules; namely, if the difference of Misfit-percent between
two models is less than a threshold, a 1st-order system is
preferred than a 2nd-order one. We set the rules according to
our optimisation procedure. Nonetheless, important rules that
may change the current state of a fluorescence life profile in (9)
are itemised and detailed in Section S6 from SMs. Each label
is coded by a distinct colour in software for visualisation. We
have also defined an extra “unknown class” for more control
on uncertainty in the proposed profile detection as expressed
in Section S7 from SMs.

IV. EXPERIMENTS

A. Evaluation of imaging on synthetic samples

1) Synthesised-data generation and visualisation: We have
generated synthetic data for simulation of sensing biological
specimens based on a fibre bundle-based imager. Figure 4
depicts the ground truth image of a synthesised life pattern
map. As shown in the colour bar of Fig. 4, each colour
represents an individual life model. The histogram of photon
counts for each pixel are obtained using the generative model
in (6). Figure 3 plots the shape of life profiles at 6 separate
locations of the fluorescence life regions in Fig. 4 from a
random run. Section S8 from SMs explains setting of the
number of photons per histogram for a model. We added
Poisson noise with the rate λ “ 4. The vectors of parameters
of models are reported in the legend. Other parameters are:
N “ 64, ∆ “ 0.1 ns.

Figure 5 visualises our imaging framework (See also Fig.
S3 from SMs that visualises Misfit-percent error.). The rep-
resentation contains an interesting example with the following
two cases:

‚ Case I: Weib. and Bi-xp share the same intensity but
different fall-times. These are respectively equivalent to the
numbered regions 3 and 4 in Fig. 4. As seen in Fig. 5, the
regions are not separable in the intensity map. Instead, the
fall-time map reveals the differences. This proves the fact
that time-resolved fluorescence fall-time/lifetime imaging
surpasses steady state intensity sensing.

‚ Case II: As a generalised case, Mono-xp and C-dmp models
respectively corresponding to the numbered regions 1 and 5
in Fig. 5, expose both the same intensity and fall-time but
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Fig. 5: Visualisation of our imager. This shows both the regions discriminability of Weib. and Bi-xp in Fall-time map (Case
I), and Mo-xp and C-dmp in Life pattern map (Case II).

TABLE III: Efficiency of intensity and fall-time estimators

Model
Intensity (a.u.) Fall-time (ns)

GT (µ˘ σq GT (µ˘ σq

Mono-exponential 3000 3256˘15.95 3.38 3.61˘0.05

Rayleigh 2000 2255˘16.29 2.69 2.83˘0.01

Weibull 1000 1257˘15.92 1.4 1.51˘0.01

Bi-exponential 1000 1249˘16.71 0.6 0.64˘0.01

Critically-damped 3000 3250˘15.93 3.38 3.5˘0.02

Under-damped 3500 3758˘17.72 2.73 2.78˘0.07

different life profiles. Neither the intensity map nor the fall-
time map cannot discriminate. However, they are separated
in the life pattern map. This demonstrates the added value of
our proposed life profile sensing, providing complementary
information for high-level interpretations.

The visualisation contains 6 subplots, where from top to
bottom and left to right include respectively: maps of intensity,
fall-time and life pattern, intensities’ histogram, a stacked his-
togram of fall-times that accounts for the distribution of each
life model across time bins, and a bar chart which represents
models portion in percent. A fall-times’ stacked histogram
can generally provide multi-modal distributions that make our
model attractive for higher level analyses such as segmentation
by valley thresholding. For instance, see the valley at t « 2.3
ns between the two peaks in the fall-times’ stacked histogram
of Fig. 2. The pixel-wise classification capability of life
pattern map can reveal microscopic structures of a specimen.
It provides complementary contrast information as coherent
shapes such as distinct islands. The information can also be
employed in other tasks like co-registration, fluorescence data
classification, and image-to-image translation.

2) Bias and variance of estimating intensity and fall-time:
Bias and variance are two metrics for measuring efficiency
of an estimator as indicators of accuracy and precision, re-
spectively. Table III reports mean and standard deviation of
estimated intensity and fall-time values for different regions of
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Fig. 6: The chart of confusion matrix of life profile detection.
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Fig. 7: Comparison of three error percentage criteria, including
the proposed Correlation Coefficient-based and Misfit metrics.

Fig. 5. Ground truth information was calculated from the com-
putational procedure described in Section III-E in the noise-
less case. Comparing ground truth values to estimated intensity
and fall-time results notifies acceptable overestimation levels
in bias under controlled variances for all life models.

3) Confusion table of life profile detection: Here, for a more
comprehensive evaluation of the proposed method, in addition
to the parameters set marked in Fig. 3 (called The Parameters
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Our fit-flexible intensityRobust RLD lifetimeRLD-OW lifetimePoisson MLE lifetimeCMM lifetime Our fit-flexible fall-time Our fit-flexible life profileUsual intensity

Fig. 8: Qualitative comparison of outputs of different approaches. Colour bars of corresponding maps have the same scale.
The points with cyan colour in the Life pattern map from Sample C1 reveal the locations of microbeads.

TABLE IV: Characteristics of the human lung experiment

Sample Label Probe/dye (relative intensity) Shutter open Nf BoI†

Beads in saline A1 InSpekTM/Green (0.3 %) Blue 12 1
Beads in saline A2 SpheroTM/Red (low) Blue, orange 18 1, 2
The lung alone B1 - Blue 17 1
The lung alone B2 - Blue, orange 15 1, 2
The lung+beads C1 InSpekTM/Green (0.3 %) Blue 19 1
The lung+beads C2 SpheroTM/Red (low) Blue, orange 15 1, 2

† BoI stands for spectral Band(s) of Interest in investigation.
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Fig. 9: Comparison of average histogram recovery error.

Set 1), we designed three other parameters sets resulting in
diverse profiles. Section S9 from SMs provides details of The
Parameters Sets 2 to 4. The confusion matrix of life profile
detection for The Parameters Set 1 has reported in the core
table of Fig. 6. For classes 1 to 3 and almost class 4 (with only
2 misclassified pixels as mono-xp), the classification is perfect.
However, more misclassification errors mainly between classes
5 and 6 are seen as is confirmed in the upper right image of
Fig.5. The origin of errors is the similarity of their estimated
distributions. A number of pixels of individual classes of 5
and 6 had been misclassified as class Weib. as well. The side
vertical and horizontal tables in Fig. 6 reports recall (accuracy)
and precision per class, respectively. Empty cells mean 0. Total
accuracy of life profile detection is 98.4%, 63.89%, 85.25%,
and 97.07% for The Parameters Sets 1 to 4, respectively, which
demonstrate reproducibility of results over the diversity of
profiles’ shapes and parameters. Averaging on all sets gives

promising 86.15% accuracy.
4) Fidelity and robustness of Misfit-percent criterion: This

section has devoted to investigate how the criteria stays stable
by increasing noise levels. Due to the two problems mentioned
about criteria, we have compared Misfit-percent to a proposed
CC-based BoF metric and NRMSE fi

100}p̊´p̂}
}p̊´meanpp̊q} . The

symbol } ¨ } means l2-norm. We used the NRMSE version
implemented in MATLAB’s System Identification Toolbox
[34]. However, the correlation, as a GoF criterion with the ratio
´1 ď r ď 1, cannot be directly employed in our framework,
because of using the error percentage rate. To overcome the
issue, we converted it back into a BoF metric, normalised
between 0 and 100 percent defined as: CC-BoF fi 50p1´ rq.
Figure 7 plots total accuracy of life profile detection for
different approaches vs various noise levels with mean rates
of λ “ 1, 2, 4, 8, 16, 32, 64 on The Parameters Set 3. Misfit
exposes competitive results with stable behaviour across rates.
In intense noises of λ “ 32, 64 that spike outliers appear,
our criterion outperforms others. Our proposed Misfit-percent
acts as a specific type of l1-norm and remains outlier-robust
in comparison to l2-norm counterparts.

B. Test of imaging on real samples

1) Experimental samples preparation: To prove the concept
of our approach in real imaging, we established a human
lung experiment for acquiring samples that potentially meet
desirable characteristics like diversity among samples, natural
heterogeneity in life model, and the presence of 2D structural
information. Data were collected via fibre-based time-resolved
fluorescence imaging from an ex vivo human lung model [2],
with the alveolar space spiked with fluorescent microspheres
as a surrogate for fluorescently labelled bacteria. This was
designed as an experimental mimic of recently reported optical
endomicroscopy based imaging of cases of suspected ventila-
tor associated pneumonia in a clinical setting [37]. A challenge
in its data is the spectral overlap between the labelled bacteria
and lung autofluorescence, limiting the imaging sensitivity. We



IEEE TRANSACTIONS ON X, VOL. X, NO. X, AUGUST XXXX 10

estimated fluorescence intensity, fall-time, and life profile to
determine whether additional features could be identified with
our approach than the steady-state intensity imaging.

All experimentation using human samples were performed
following approval of the appropriate Regional Ethics Com-
mittee (REC), NHS Lothian, and the South East Scotland
Research Ethics Committee 02 (reference 11/SS/0103), and
with informed consent. The human lung was obtained from a
solid organ donor after being declined by all UK transplant
centers as being unsuitable for transplantation. The lung was
prepared and ventilated as described in [38]. InSpekTM Green
(λex “ 505 nm, λem “ 515 nm) 6 µm Beads, 0.3 %
intensity (ThermoFisher, I14785), and SpheroTM 1.7-2.2 µm
Fluorescent Purple Particles (λex “ 590 nm, λem “ 620
nm), low intensity (SpheroTM Tech, FL-2062-2) were each
diluted 1:10 into sterile 0.9 % NaCl (Baxter). an amount 100
µL of each dilution was instilled to a defined region of the
lung by needle and syringe, and imaging was performed by
bespoke FLIM system and endoscopy imaging fibre described
in [2, 13, 38]. Also, an amount 100 µL of the prepared beads
in saline were imaged under the same parameters. We fed
samples to our imager as well as conventional FLIMs.

2) Samples’ imaging, outcomes and comparison: Data
were captured with an image size of 128ˆ 128 pixels, 85 µs
acquisition time per pixel, and 16 time bins. Laser excitation
was at 480 nm and 590 nm, with collection in green (Band
1: 498 „ 570 nm) and red (Band 2: 594 „ 764 nm) spectral
bands. Each sample contains Nf video frames. Figure S16 in
SMs shows a data format of our imager. Table IV summarises
information and acquisition data regarding the samples.

Figure 8 visualises outputs of our imager and compares
them to methods of CMM [8], Poisson MLE [5], RLD-OW
[7], and Robust RLD [13]. A visual comparison between
usual and fit-flexible intensity maps justifies the expected
Signal-to-Noise Ratio (SNR) improvement in our method.
Also, our fall-time maps provide sharper and crisper images
representing local variations than those of compared lifetime
maps. To compare results of Fig. 8 more quantitatively, Fig. 9
reports average error of recovering histogram of photon counts
calculated via (8). The proposed approach achieves the lowest
error on all samples with around 7% improvement on average
than the best competing result from Robust RLD, as a benefit
of our model selection mechanism. The CMM approach was
omitted from comparisons list; because, it only estimates
the lifetime but not the amplitude of mono-exponential and
consequently incapable of a full histogram recovery [13]. The
distinguishable granular points on Samples A1 and C1 (places
with beads’ presence) show flow traces of microbeads on both
saline and more importantly human lung tissue, which are
not detectable by conventional systems of FLIM2. Figure S2
from SMs shows results of Sample C1 after assigning an
unknown class for segmenting foreground beads. This ability
of discriminating beads from tissue can find attractive potential
applications such as detection of microplastics in the lung,
drug carriers efficacy, and bacteria detection.

2This problem is similar to the proverb “finding a needle in a haystack”.

V. CONCLUSION AND FUTURE STUDIES

This paper first proposed a model for investigation of
time-resolved fluorescence imagers. We modelled the com-
plex quantum systems by understandable white-box electrical
models. Afterwards, we derived life models for fluorescence
techniques and beyond. Then, an algorithm called a fit-flexible
approach, was developed for sensing fluorescence intensity,
fall-time and life profile from hardware time-resolved imaging.
Supported by the mathematical insights, we demonstrated
capabilities of our method to visualising the information.
Experiments on real data demonstrated sharper images and
the potential for discriminating beads.

Our modelling can open up research avenues towards char-
acterising molecular and cellular structures of living organ-
isms. It would be of great importance in real-world scenarios
because of potential applications to disease diagnosis and
drug discovery. Due to the capabilities of stacked fall-time
histogram and life profile detection, our approach can be
employed in higher level biomedical images analysis tasks
such as registration, segmentation and classification. One can
also extend the search engine to more useful mathematical
models describing real phenomena. Additionally, it is possible
to extract other temporal markers from our framework such as
the fluorescence rise-time. Other future developments could be
incorporating spatial and spectral correlations.
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S1. PREFACE

This document provides supplementary materials for the
paper “A novel fit-flexible fluorescence imager: Tri-sensing
of intensity, fall-time, and life profile”. Different sections here
provide details of the cross-references in the main paper. These
sections also refer to the paper body where required.

S2. MEAN LIFETIME FOR INFINITE-EXPONENTIAL DECAY

Consider the most general infinite-exponential decay as:

vptq “

8
ÿ

i“1

Aie
´ t

τi . (S1)

We define A fi
ř8

i“1 Ai. Dividing (S1) by A gives:

vptq “ A
8
ÿ

i“1

αie
´ t

τi , (S2)

where αi fi Ai

A , 0 ă αi ă 1, @i, and
ř8

i“1 αi “ 1. In
fluorescence lifetime imaging microscopy (FLIM), the time
of arriving the first photon can be considered as a random
variable; hence, the histogram of photon-count arrivals will
be a non-normalised approximation of probability density
function of the temporal random variable. Consider T as
the random variable of photon arrival time, for which the
probability density function of T is calculated from:

fT ptq “
vptq

ş8

´8
vptqdt

. (S3)

Define the denominator in (S3) as a constant as d fi
ş8

´8
vptqdt, where it is:

d “ A
8
ÿ

i“1

αi

ż 8

0

e
´ t

τi dt
looooomooooon

“τi

“ A
8
ÿ

i“1

αiτi. (S4)
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The expected value of T gives mean lifetime as:

EpT q “

ż 8

´8

tfT ptqdt “
A

d

8
ÿ

i“1

αi

ż 8

0

te
´ t

τi dt
looooomooooon

“τ2
i

. (S5)

By replacing d, solving the integral from integration by parts,
and simplifying, the mean lifetime is finally determined by:

τmean “

ř8

i“1 αiτ
2
i

ř8

i“1 αiτi
. (S6)

Mono- and bi-exponential decays are both spacial cases
of (S2). Consequently, one can simply show that the mean
lifetime for the famous mono- and bi-exponential models are
respectively as:

τmean “ τ, (S7)

τmean “
ατ21 ` p1 ´ αqτ22
ατ1 ` p1 ´ αqτ2

. (S8)

S3. LIFE MODELS

A. Mono-exponential life model

If in the equivalent RLC circuit of Fig. 1 (a) the winding
resistance approaches Rw Ñ 8, a mono-exponential RC
circuit will be determined as shown in Table II. This circuit is
a LTI system. The time constant of a RC circuit is defined as
τRC fi RˆC, where for the life circuit, it is τRC “ τ ˆ1 “ τ .
This reveals the fact that the concept of the time constant and
the average fluorescence lifetime is the same.

Theorem 1 (Mono-exponential life model): Consider the
mono-exponential circuit shown in Table II. The response of
the circuit leads to mono-exponential life model (Mo-xp).

Proof: KCL in the mono-exponential circuit from Table
II gives:

C
dvptq

dt
`

vptq

R
“ iptq. (S9)

Substituting components R “ τ and C “ 1, and taking
bilateral Laplace transform from both sides of (S9) yields:

sV psq `
1

τ
V psq “ Ipsq, (S10)

where Ipsq “ A
K

řK´1
k“0 e´skT . If T Ñ 0, then Ipsq « A. By

substituting the value of Ipsq in (S10), we have V psq “ A
s` 1

τ

.

Taking inverse Laplace transform results in vptq “ Ae´ 1
τ tuptq,

where A and τ denote amplitude and lifetime, respectively.
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B. Rayleigh life model

Equivalent circuit of Rayleigh life model is shown in Table
II. This circuit is a LTV system. The resistor r2ptq acts as
a negative resistance1, as a natural property of fluorescent
lamps2 or molecules here.

Theorem 2 (Rayleigh life model): Assume the Rayleigh
circuit shown in Table II. The response of the circuit leads
to Rayleigh life model (Rayl.).

Proof: Starting from the Weibull circuit in Table II, KCL
in it yields:

C
dvptq

dt
`

„

1

r1ptq
`

1

r2ptq

ȷ

vptq “ iptq. (S11)

Its corresponding homogeneous equation by substituting
Weibull circuit’ components will be:

dvptq

dt
`

„

btb´1

τ
`

p1 ´ bq

t

ȷ

vptq “ 0. (S12)

By separating variables, we have:

dvptq

vptq
“

„

pb ´ 1q

t
´

btb´1

τ

ȷ

dt, (S13)

where integrating from both sides of it gives ln rvptqs “

ln
`

tb´1
˘

´ 1
τ t

b ` c, in which c is an integration con-
stant. Finally, taking exponential of that results in vptq “

Atb´1e´ 1
τ tbuptq. Repeating the above proof for b “ 2 obtains

Rayleigh model.

C. Weibull life model

Equivalent circuit of Weibull life model is shown in Table
II. In this LTV circuit, the variable b P R` is defined as
a flexible shape parameter. For the special case of b “ 1,
the equivalent circuit of Weibull life model is simplified to
the mono-exponential equivalent circuit. Also, if b “ 2, the
circuit is exactly converted to the equivalent circuit of Rayleigh
model. The same property is held for the system response, as
shown in Table II.

Theorem 3 (Weibull life model): Assume the Weibull circuit
shown in Table II. The response of the circuit leads to Weibull
life model (Weib.).

Proof: See Theorem 2.

D. Bi-exponential life model

A bi-exponential function contains two different fluores-
cence lifetimes. These fluorophores are modelled in the load
of our proposed RLC circuit as two distinct parallel light
bulbs. Table II portrays equivalent circuit of bi-exponential
life model.

Theorem 4 (Bi-exponential life model): Assume the bi-
exponential circuit shown in Table II. The response of the
circuit leads to bi-exponential life model (Bi-xp).

1D. K. Roy, “Tunnelling and negative resistance phenomena in semicon-
ductors,” 2014.

2W. Elenbaas, Fluorescent lamps. Macmillan International Higher Educa-
tion, 1971.

Proof: KCL in the bi-exponential circuit from Table II
gives:

C
dvptq

dt
`

ˆ

1

R1
`

1

R2

˙

vptq `
1

L

ż t

´8

vpλqdλ “ iptq. (S14)

Components’ substitution and derivative from both sides yield:

d2vptq

dt2
`

ˆ

1

τ1
`

1

τ2

˙

dvptq

dt
`

vptq

τ1τ2
“

diptq

dt
. (S15)

Taking bilateral Laplace transform obtains:

s2V psq `

ˆ

1

τ1
`

1

τ2

˙

sV psq `
1

τ1τ2
V psq “ sIpsq, (S16)

where Ipsq “ A
K

řK´1
k“0 e´skT ` A

s

´

α
τ2

` 1´α
τ1

¯

. If T Ñ

0, then Ipsq « A ` A
s

”

α
τ2

`
p1´αq

τ1

ı

. By substituting the
function Ipsq in (S16) and after simplifications, we rewrite

V psq “ A

„

α
s` 1

τ1

`
p1´αq

s` 1
τ2

ȷ

. Inverse Laplace transform results

in vptq “ A
”

αe´ 1
τ1

t
` p1 ´ αqe´ 1

τ2
t
ı

uptq, where A P R`,
0 ă α ă 1, τ1 P R` and τ2 P R` signify initial ampli-
tude, pre-exponential factor, short lifetime and long lifetime,
respectively.

E. Critically-damped life model

If the two light bulbs in Bi-xp circuit are identical, i.e.,
τ1 “ τ2 fi τ , the equivalent circuit of critically-damped life
model is determined. It is shown in Table II.

Theorem 5 (Critically-damped life model): Assume the
circuit shown in Table II. The response of the circuit leads
to critically-damped life model (C-dmp).

Proof: KCL in the critically-damped circuit from Table
II gives:

C
dvptq

dt
`

vptq

R
`

1

L

ż t

´8

vpλqdλ “ iptq. (S17)

Components’ substitution and derivative from both sides yield:

d2vptq

dt2
`

2

τ

dvptq

dt
`

vptq

τ2
“

diptq

dt
. (S18)

By taking bilateral Laplace transform, we have:

s2V psq `
2

τ
sV psq `

1

τ2
V psq “ sIpsq, (S19)

where Ipsq “ A
s . By substituting the function Ipsq in (S19)

and after simplification, we obtain V psq “ A

ps` 1
τ q

2 . Inverse

Laplace transform results in a critically-damped response as
vptq “ Ate´ 1

τ tuptq.

F. Under-damped life model

With the same light bulbs, the equivalent circuit of under-
damped life model is described in Table II.

Theorem 6 (Under-damped life model): Assume the under-
damped circuit shown in Table II. The response of the circuit
leads to under-damped life model (U-dmp).
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Proof: KCL in the under-damped circuit from Table II
gives:

C
dvptq

dt
`

vptq

R
`

ˆ

1

L1
`

1

L2

˙
ż t

´8

vpλqdλ “ iptq. (S20)

Components’ substitution and derivative from both sides yield:

d2vptq

dt2
`

2

τ

dvptq

dt
`

ˆ

1

τ2
` ω2

˙

vptq “
diptq

dt
. (S21)

Applying bilateral Laplace transform determines:

s2V psq `
2

τ
sV psq `

ˆ

1

τ2
` ω2

˙

V psq “ sIpsq, (S22)

in which Ipsq “ Aω
s . By substituting the function Ipsq in (S22)

and simplifying, we have V psq “ Aω

ps` 1
τ q

2
`ω2

. The response

is obtained by taking inverse Laplace transform as vptq “

Ae´ 1
τ t sin pωtquptq, where ω signifies the natural frequency.

S4. LOWER BOUND OF FALL-TIME FOR BI-EXPONENTIAL

Consider the model of bi-exponential decay as a spacial
case of (S2) as:

vptq “ A

»

—

–

α1
loomoon

fiα

e´ t
τ1 ` α2

loomoon

fip1´αq

e´ t
τ2

fi

ffi

fl

. (S23)

At the time t “ τf , we have vptq “ A
e . substituting this and

simplifying yield:

1

e
“ αe´

τf
τ1 ` p1 ´ αqe´

τf
τ2 . (S24)

Solving (S24) requires the mathematical task of isolating τf .
This can be realised by Maclaurin series approximation of
ex “ 1`x` x2

2! ` x3

3! ` ¨ ¨ ¨ . For all x, there exists ex ě 1`x.
Hence, we can rewrite (S24) by ignoring the higher order terms
as:

1

e
ě αp1 ´

τf
τ1

q ` p1 ´ αqp1 ´
τf
τ2

q. (S25)

By using some simplification, we will:

τf ě
p1 ´ 1

e qτ1τ2

p1 ´ αqτ1 ` ατ2
. (S26)

S5. DIFFERENT CASES IN FALL-TIME DETERMINATION

Below lists five main possible cases which may occur in
real fitting scenarios:

‚ A strictly monotonic decreasing function, which is a
normal case such a mono-exponential decaying function.

‚ A strictly monotonic growth function, which shows an
unstable behaviour with a negative lifetime. For such an
exception, any fall does not exist; therefore, we truncate
τ̂f “ 0.

‚ A function with first growth and then decay trend, e.g.,
Rayleigh life model, as that shown in the curve of Fig. 1
(b).

‚ A curve with first decay and then growth trend. This case
may happen in combination of two different decay and

growth exponential terms in a bi-exponential model due
to some specific estimated parameters. In such a case, we
consider falling edge of the response but not its rising
edge and correspondingly measure the fluorescence fall-
time.

‚ A flat fit without any rise or fall. In this case, we set the
span value as τ̂f “ ∆N .

S6. PENALISING RULES

Important rules are as follows:
‚ By identifying the control-theoretic property of the dom-

inant pole between two real poles on the left side of s-
plane from a stable system, we can ignore the effect of
the farther pole than the imaginary axis and basically
reduce a bi-xp model to a mono-xp counterpart. So, if
j‹ “ 4 ^

minps1,s2q

maxps1,s2q
ě RDP, then assign ϕr,c Ð 1. In

implementations, we considered the ratio RDP “ 10.
‚ If the absolute value of the imaginary part of complex-

conjugate poles in a detected U-dmp model is negligible,
it can be replaced by a C-dmp model. So, if j‹ “ 6^ω ď

ϵ, then ϕr,c Ð 5. We set ϵ “ 0.1.
‚ A detected Weibul model with b « 1 is assigned to a

mono-xp model. So, if j‹ “ 3 ^ 1 ´ δ1 ď b ď 1 ` δ1,
then ϕr,c Ð 1. We set δ1 “ 0.05.

‚ A detected Weibul model with b « 2 is singled out as an
individual non-fractional Rayleigh. So, if j‹ “ 3 ^ 2 ´

δ2 ď b ď 2 ` δ2, then ϕr,c Ð 2. We set δ2 “ 0.2.

S7. UNKNOWN CLASS ASSIGNMENT

In practical scenarios, a process may encounter with some
unknown inputs that demand appropriate handling. In our
problem, examples that can take an unknown label are: 1)
an undefined life outside the already defined normal range
of life model set; 2) fitting error at a location exceeds a
tolerable threshold; 3) intensity of a pixel is below or above
a predefined value; and 4) an uninformative content related
to scene background. To be responsible in such situations, we
define an extra unknown class #7 in the life pattern map. In
Algorithm 1, a passive function is considered, where user can
configure if-then rules and activate it if required. As a result,
the user can take further notices and actions on unknown
labels.

Figures S1 and S2 show results of Frame 5, Band 1 of
Sample C1 before and after an unknown class assignment,
respectively. In Fig. S2, we assigned both Classes 5 and 6
mainly related to background lung tissue as the unknown class
to be able to more clearly visualise and single out potential
microbeads.

S8. SETTING THE NUMBER OF PHOTONS PER HISTOGRAM

In generating synthesised data, we desire the number of
photons per histogram (or equivalently the number of photons
per pixel) remains constant for all pixels related to a given
model before adding any noise. We determine the amplitude
of the given model to meet the target. To do this, consider the
deterministic life model of jth as:

vjrns “ Ajfjrns,@j “ 1, 2, . . . ,M. (S27)
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Fig. S1: Original results of Frame 5, Band 1 from Sample C1 before assigning unknown class in comparison to Fig. S2 having
unknown class assignment.

Fig. S2: Results of Frame 5, Band 1 from Sample C1 after assigning Classes 5 and 6 as unknown class to visualise foreground
microbeads.
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Fig. S3: Error map of the experiment related to The Parameters
Set 1.

Taking summation on all bins from both sides of (S27) gives:

Aj “

řN´1
n“0 vjrns

řN´1
n“0 fjrns

fi
Np

řN´1
n“0 fjrns

, (S28)

where the constant Np means the photons per histogram which
is set by user.

S9. INFORMATION OF THE PARAMETERS SETS 1 TO 4

Figure S3 shows error map from the experiment related to
The Parameters Set 1.

Figures S4, S5, S6 and S7 provide detailed information
about The Parameters Set 2, which include: life profiles,
visualised results of the proposed imager, confusion matrix
and Misfit error map, respectively. Similarly, Figs. S8, S9,
S10 and S11 show the information for The Parameters Set 3,
and Figs. S12, S13, S14 and S15 for The Parameters Set 4,
too.

S10. OUR IMAGING RAW DATA FORMAT

Figure S16 depicts a false-colour data format of the utilised
imaging system represented as a 5D tensor arrangement con-
sisting of a matrix of cubes as px, y; t;λ; iq. The dimensions
along px; yq, t, λ, and i denote spatial coordinate, time,
wavelength, and frame sequence index, respectively.
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Fig. S4: Life profiles related to The Parameters Set 2.
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Fig. S5: GUI related to The Parameters Set 2.
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Fig. S6: Confusion matrix related to The Parameters Set 2.
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Fig. S7: Error map of the experiment related to The Parameters
Set 2.
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Fig. S8: Life profiles related to The Parameters Set 3.
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Fig. S9: GUI related to The Parameters Set 3.
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Fig. S10: Confusion matrix related to The Parameters Set 3.
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Fig. S11: Error map of the experiment related to The Param-
eters Set 3.
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Fig. S12: Life profiles related to The Parameters Set 4.
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Fig. S13: GUI related to The Parameters Set 4.
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Fig. S14: Confusion matrix related to The Parameters Set 4.
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Fig. S15: Error map of the experiment related to The Param-
eters Set 4.
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Fig. S16: Tensor data formatting of our multi-spectral fluo-
rescence imaging system. The dimensions along px; yq, t, λ,
and i represent spatial coordinate, time, wavelength, and frame
sequence index, respectively.
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