
P
os
te
d
on

11
M
ay

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
27
70
40
7.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Interoperability between DLT following a Gateway-based approach:

the Case of Ethereum and Hyperledger Fabric

Guzman Llambias 1, Sebastián Pandolfi 2, Laura González 2, Raúl Ruggia 2, Emiliano
González 2, and Mathias Castro 2

1Universidad de la República
2Affiliation not available

October 31, 2023

Abstract

Distributed ledger technologies (DLT) usage is currently limited to a single platform as they don’t have design-based interop-

erability capabilities. In general, it’s challenging for a DLT to communicate with another one. Although several DLT solutions

have been proposed and applied in specific application areas, building a general purpose interoperability solution for any DLT

remains a challenge. In previous work, we proposed a tailor-made interoperability solution between Hyperledger Fabric and

Corda. This paper extends that work to enable interoperability between Hyperledger Fabric and Ethereum. The main contribu-

tions of this paper are proposals for a new Ethereum connector, a new request-response interaction model and the introduction

of future payments to enable the payments of services. A prototype was developed and evaluated through a case scenario, per-

formance tests and cost analysis. Performance tests showed bottlenecks under heavy load scenarios due to Ethereum’s design.

Costs analysis showed that the approach is suitable for purchasing high-priced services. These promising results constitute a

step forward in developing a general-purpose solution for DLT interoperability.

1

Interoperability between DLT following a
Gateway-based approach: the Case of Ethereum and

Hyperledger Fabric
Sebastián Pandolfi

Facultad de ingenierı́a
Universidad de la República

Montevideo, Uruguay
sebastian.pandolfi@fing.edu.uy

Emiliano González
Facultad de ingenierı́a

Universidad de la República
Montevideo, Uruguay

emiliano.gonzalez.martinez@fing.edu.uy

Mathias Castro
Facultad de ingenierı́a

Universidad de la República
Montevideo, Uruguay

mathias.castro@fing.edu.uy

Guzmán Llambı́as
Facultad de ingenierı́a

Universidad de la República
Montevideo, Uruguay
gllambi@fing.edu.uy

Guzmán Llambı́as
Pyxis

Montevideo, Uruguay
guzman.llambias@pyxis.tech

Laura González
Facultad de ingenierı́a

Universidad de la República
Montevideo, Uruguay
lauragon@fing.edu.uy

Raúl Ruggia
Facultad de ingenierı́a

Universidad de la República
Montevideo, Uruguay

ruggia@fing.edu.uy

Abstract—Distributed ledger technologies (DLT) usage is cur-
rently limited to a single platform as they don’t have design-
based interoperability capabilities. In general, it’s challenging for
a DLT to communicate with another one. Although several DLT
solutions have been proposed and applied in specific application
areas, building a general purpose interoperability solution for
any DLT remains a challenge. In previous work, we proposed a
tailor-made interoperability solution between Hyperledger Fabric
and Corda. This paper extends that work to enable interoper-
ability between Hyperledger Fabric and Ethereum. The main
contributions of this paper are proposals for a new Ethereum
connector, a new request-response interaction model and the
introduction of future payments to enable the payments of
services. A prototype was developed and evaluated through a
case scenario, performance tests and cost analysis. Performance
tests showed bottlenecks under heavy load scenarios due to
Ethereum’s design. Costs analysis showed that the approach is
suitable for purchasing high-priced services. These promising
results constitute a step forward in developing a general-purpose
solution for DLT interoperability.

Index Terms—distributed ledger technology, blockchain, in-
teroperability, cross-chain transactions, ethereum, hyperledger
fabric

I. INTRODUCTION

Nowadays, distributed ledger technology (DLT) is applied
in different domains like finance, art, health, supply chain and
IoT among others. Bitcoin [1], Ethereum [2] and Hyperledger
Fabric [3] are some examples of DLT with different charac-
teristics and purposes. However, the usage of this technology
is limited by its nature. DLT are usually designed as silos of
information and interoperability is not part of their design. It
is a challenge for a DLT to communicate with an external
software system or another DLT [4]. In addition, registering
external data into a DLT is a challenge, as data verification
needs to be performed. In some cases, DLT can trust the

data source, but in other scenarios like DLT interoperability,
data verification must conform to the consensus protocol rules
defined by the source DLT. In this scenarios there is the need to
achieve a consensus between both DLT about data reliability,
which is a challenge.

In recent years, several interoperability solutions were pro-
posed for a particular type of DLT: blockchain platforms [5]
[6]. A blockchain platform is a distributed ledger technology
whose ledger structure is an ordered linked list of blocks,
each containing a set of transactions. Bitcoin and Ethereum
are some of the most popular blockchain platforms. These
blockchain interoperability solutions were applied with quite
success but are for specific domains or between specific
blockchains. One example is Polygon PoS Bridge [7] that en-
ables asset transfer (e.g. cryptocurrencies) between Ethereum
and Polygon blockchains. Another example is Hyperledger
Cactus [8], an initiative that enables interoperability between
business applications and DLT following an orchestrated ar-
chitecture. With this approach, business applications send
messages to Hyperledger Cactus, which registers transactions
on one or more DLT in a coordinated (orchestrated) way.
Weaver [9] is a recent DLT interoperability solution following
a choreography approach. With this approach a source DLT
can reliably send messages to a target DLT through Weaver.
However, not every DLT is supported. More specifically, it
is still a challenge to enable interoperability between some
blockchain platforms and DLT. In particular, with Ethereum,
one of the most popular blockchain platforms nowadays.

In our previous work [10], we proposed a gateway-based
DLT interoperability solution that enabled interoperability
between two DLT (Hyperledger Fabric and Corda [11]) with
a similar approach to Weaver. In this work, a source DLT
(i.e. Hyperledger Fabric) sent messages to the gateway, which

transformed and routed them to the target DLT (i.e. Corda).
The proposal was designed not to change the DLT source
code and to provide an interoperability solution based on the
DLT native building blocks. In particular, we used events
triggered by the source DLT and listened by the gateway.
Smart contracts were used as interfaces of the target DLT to
receive the messages. This method seems suitable to enable
interoperability between DLT and blockchain platforms, in
particular, between Hyperledger Fabric and Ethereum.

Given this context, this work proposed the following re-
search questions: How can the gateway solution be applied
to enable interoperability between Ethereum and Hyperledger
Fabric? How does the proposed solution impact the perfor-
mance while interoperating Ethereum and Hyperledger Fabric?
Which costs are required by the proposed solution when
interoperating Ethereum with Hyperledger Fabric?

This paper presents preliminary results to these research
questions. In particular, it was possible to extend the gateway
and build a new Ethereum connector that enabled connectivity
with Ethereum. Furthermore, an interaction model based on
Enterprise Integration Patterns [12] between these two DLT
was proposed to enable request-response interactions. In ad-
dition, this work introduces the concept of future payments
that allow the payment of services provided by Hyperledger
Fabric with Ethereum cryptocurrency (Ethers), enabling a use
case for Hyperledger Fabric and Ethereum interoperability. A
cost assessment showed that the proposed extension is suitable
for paying services with medium to high costs but not for the
payment of services with low costs. Performance assessments
showed limitations in the proposal’s throughput, being the
Ethereum connector a bottleneck in heavy load scenarios. The
main reason for this issue was the design of Ethereum to
prevent replay attacks that limited the number of concurrent
transactions the connector could send. Finally, the proposed
approach provides a generic purpose interoperability solution
between Ethereum and Hyperledger Fabric that can be used
in different use case scenarios.

The rest of the paper is organised as follows. Section II
provides background concepts. Section III describes an electric
vehicle scenario where DLT interoperability is required. Sec-
tion IV presents the detailed design of the proposal. Section V
describes a reference implementation of the proposal. Section
VI presents the assessment performed to the gateway. Section
VII presents a discussion of this work answering the research
questions and limitations of the proposal. Section VIII analyses
related work. Finally, section IX presents conclusions and
future work.

II. BACKGROUND

This section presents the background concepts required for
the comprehension of this work.

A. DLT & Blockchain concepts

A distributed ledger is an append-only database distributed
across a network of machines called DLT Nodes [13]. Once a
transaction is registered into the ledger, it cannot be updated

Fig. 1. Ethereum and Hyperledger Fabric ledger structure (adapted from [5])

or deleted. DLT Nodes use consensus mechanisms that define
rules and procedures to synchronise the ledger between them.

Blockchain is a particular type of distributed ledger whose
ledger structure is based on an ordered linked list of blocks,
each containing a set of transactions [14]. Blocks are linked
by cryptographic hashes that assure the security of the link. If
data are changed, the link breaks, giving users a proof that the
block was tampered. As participants reject tampered blocks,
this gives data immutability to the blockchain in practice.

The operation and usage of distributed ledgers are enabled
by Distributed Ledger Technologies (DLT) [13]. Blockchain
platforms are a specialisation of DLT that enable the usage
and operation of blockchain ledgers [14]. Both technologies
provide the software and hardware required to run a node or
any other required software to access the ledger. Ethereum is
one of the most popular blockchain platforms, while Hyper-
ledger Fabric is a DLT provided by the Hyperledger Founda-
tion. Fig. 1 depicts the ledger structure of both technologies.
Ethereum follows a blockchain ledger structure, while Hyper-
ledger Fabric defines the channel concept, where each channel
has its blockchain ledger. In Hyperledger Fabric, channels
(and blockchains) are restricted and only authenticated and
authorised users can read and write into the ledger. Users
authorised to read on one channel, may not be authorised
to read or write on another channel. These properties differ
from Ethereum where users do not require authentication (they
use pseudonyms using public keys), and every user may have
access to read or write the ledger. A DLT that requires access
to the ledger is usually called a permissioned DLT, while a
permissionless DLT give users unrestricted access to the ledger
[13]. Permissioned DLT are usually used by a consortium of
enterprises to improve their business process and reduce costs,
while permissionless DLT are used on decentralised use cases
where data transparency and unrestricted access to the ledger
is required [15].

On the other hand, smart contracts are software scripts
deployed on the DLT, whose execution is registered on the
distributed ledger [13]. Smart contracts execution is triggered
by DLT transactions autonomously by any DLT Node [14].
They can hold and transfer digital assets or invoke other smart
contracts stored on the DLT. Smart contract execution may use
data stored in the distributed ledger or gathered outside of the
DLT using special entities called Oracles. Once deployed, the
code of a smart contract is deterministic and immutable [14].

Fig. 2. Orchestrated vs choreographed architecture

B. DLT Interoperability

According to Wegner [16], “interoperability is the ability
of two or more systems to exchange information despite their
differences in language, interfaces and execution platform“.
Usually, information systems provide mechanisms that enable
interoperability (e.g. Web Services SOAP [17]). However,
these mechanisms cannot be used for DLT interoperability. It is
a challenge for a DLT to communicate with external software
systems or other DLT, as they are usually built as information
silos without interoperability mechanisms [4]. Furthermore,
registering data from an external data source is also a challenge
for a DLT, as every transaction registered on the ledger must
conform to the defined consensus protocol rules. In some
scenarios, the DLT may trust the data source. However, in
other cases like DLT interoperability, this is not possible, so
there is the need to achieve a consensus between the involved
DLT, and this is a challenge [4].

DLT interoperability involves a source DLT and a target
DLT. The source DLT usually initiates a local transaction in
its ledger that triggers a cross-chain transaction targeted to
the target DLT. A cross-chain transaction is a transaction that
spans the domain of a DLT into another DLT and involves a
local transaction on the source DLT and a local transaction on
the target DLT. The target DLT must verify the cross-chain
transaction using the source DLT consensus protocol rules to
reliably register the transaction in its ledger.

DLT interoperability solutions enable the delivery of cross-
chain transactions. In the last few years, several DLT in-
teroperability solutions were proposed by the industry and
academic community [5], [6]. Notary Scheme involves a
trusted third party that monitors the source blockchain and
triggers cross-chain transactions on the target blockchain.
Sidechain/Relays requires a primary blockchain (called main
chain) and a secondary blockchain (also called Sidechain)
which is an extension of the main chain. Usually, the sidechain
offers additional capabilities not offered by the main chain,
like improved performance, reduced costs or smart contract
execution. Cross-chain transactions are verified by components
on the target blockchain called relays using Simple Payment
Verification (SPV) mechanisms. Atomic Swaps is a protocol
followed by two users on two different blockchains that
enable the exchange of assets hosted on each blockchain1.

1The reader may have noted the term blockchain was used here, and that
is because Notary Scheme, Sidechains, Atomic Swaps and Blockchain of
blockchains are specific interoperability solutions for DLT with a blockchain
ledger structure

Fig. 3. Blockchain interoperability gateway

Gateways are a basic type of middleware that enables the
communication between two DLT, adapting message format
and communication protocols. DLT API Gateways (previously
known as Generic Interface) are a type of middleware that
enables external systems to communicate with one or more
DLT using a common interface. Enterprise Relays are so-
phisticated gateways that relies on proofs to perform cross-
chain transaction verification and provides policy rules to
access the ledger. Finally, blockchain of blockchains involves
a main chain and several Sidechains that use the main chain
to exchange cross-chain transactions reliably.

DLT interoperability solutions use different interaction ar-
chitectures. Some use an orchestrated architecture, while oth-
ers use a choreographed architecture. Fig. 2 depicts both
approaches. On orchestrated architectures, an entity exists that
manages the cross-chain transaction and is responsible for
registering the local transactions on DLT in a coordinated way.
The orchestrator initiates the cross-chain transaction. Notary
Scheme and DLT API Gateway use this architecture. On the
other hand, on a choreographed architecture, the cross-chain
transaction is performed by the exchange of messages between
two DLT, without the participation of an external third party
that coordinates the execution. In this architecture, the cross-
chain transaction is initiated by a source DLT. Gateways,
Sidechains and Blockchain of Blockhains use this approach.

C. DLT Interoperability Gateway

In our previous work [15], we presented a DLT interoper-
ability solution based on gateways that enabled interoperability
between two DLT following a choreography architecture:
Hyperleger Fabric and Corda. Fig. 3 depicts the DLT inter-
operability gateway.

The gateway was composed of two connectors and a router
component. The connectors enabled connectivity with the
DLT and allowed to send cross-chain messages to the DLT
and receive cross-chain messages from the DLT. On the
other hand, the Router received cross-chain messages from a
source connector and routed messages to the target connector.
Each DLT triggered events that were listened by to the DLT
connector. Those events were transformed into a canonical
data format and sent to the Router component. The Router
component inspected the message and routed it to the target
DLT connector. The target DLT connector transformed the
canonical message to the native target DLT data format and
sent it to the DLT. Smart contracts were used by the DLT
connectors to send messages to the blockchain.

Fig. 4. Gateway architecture

III. INTEROPERABILITY MOTIVATIONAL SCENARIO

This section presents a motivation scenario to illustrate DLT
interoperability between Ethereum and Hyperledger Fabric.

The proposed motivational scenario was inspired by the
work of Castro [18] that proposed the use of a DLT by a
consortium to register the electricity consumption for charging
electrical vehicles. The participants of the consortium were
the electric pump stations, the national electricity company of
Uruguay (UTE, Administración Nacional de Usinas y Trasmi-
siones Eléctricas) and the national energy regulator of Uruguay
(URSEA, Unidad Reguladora de Servicio de Energı́a y Agua).
These participants used a DLT to have a reliable source of truth
regarding pump and electricity usages among all participants
[18]. This work extended Castro’s scenario and allowed users
to pay electricity with Ethereum’s cryptocurrency (Ether). In
this extended scenario, users used a Web application and check
if the pump has the requested amount of energy to charge
their vehicles. After this, the user may select the amount
to charge and pays with Ethereum. As a consequence, the
amount of Ethers are transferred from the user’s account to
the pump’s account and a cross-chain transaction is triggered
from Ethereum to the DLT to release the energy from the
pump. For this scenario Hyperledger Fabric was used as the
DLT.

IV. DLT INTEROPERABILITY GATEWAY

This section describes the design principles defined for this
work, a general description of the improved gateway, the
canonical data format used, the proposed interaction model
and the concept of future payments that enabled interoper-
ability between Ethereum and Hyperledger Fabric to purchase
services provided by a consortium.

A. Design principles

This works posed the following design hypothesis to extend
the gateway:

• Choreography interactions: the gateway must maintain
the original design and keep the choreography architec-
ture. It must avoid being an orchestrator of the interac-
tions with the DLT.

• Not invasive: The extension must not require to change
the source code of Ethereum and its design must use its
native building blocks.

• Trusted and centralised: Considering the nature of some
DLT such as Hyperledger Fabric (they may run on a

semi-trusted environment), it is acceptable to trust in the
gateway. Furthermore, it is also acceptable to provide a
centralised design.

B. General description

Fig. 4 depicts the architecture of the gateway, locating
Ethereum and Hyperledger Fabric connectors and the smart
contracts that enabled the solution. New components are
depicted in blue, modified components in green and white
components are kept unmodified from the original proposal.

The Ethereum connector requires the existence of a cross-
chain smart contract on Ethereum that triggers events that are
listened by the Ethereum Connector. These events are used
to send cross-chain messages to other DLT. After receiving
these events, the Ethereum connector transforms them to the
canonical data format expected by the Router component.
On the other hand, when the Router receives a message that
needs to be delivered to Ethereum blockchain, it sends it to
the Ethereum connector. The Ethereum component inspects
the message and invokes the target cross-chain smart con-
tract on Ethereum. The Ethereum connector uses the passive
mode to integrate with Ethereum. Passive mode implies that
the connector monitors the blockchain an triggers events to
other blockchain platforms [19]. As every transaction sent to
Ethereum needs to be signed using a private key and has costs
attached, the Ethereum connector has its own wallet to register
transactions (and invoke smart contracts) on Ethereum.

The Hyperledger Fabric connector follows a similar ap-
proach. There must exist cross-chain smart contracts (called
chaincode on Hyperledger Fabric) that triggers events that
are listened by the Hyperledger Fabric connector and trans-
formed to the canonical data format. When the connector
receives messages from the Router, it invokes a smart contract
on Hyperledger Fabric based on the message content. As
every transaction sent to Hyperledger Fabric needs to be
authenticated and authorised, the connector has the credentials
of an authorised user to write into the ledger. This way,
the Hyperledger Fabric connector writes into the ledger on
behalf of the Ethereum blockchain. Changes were made to the
original connector to provide a general purpose Hyperledger
Fabric connector and be agnostic to the target smart contract
or the listened event.

C. Canonical message data format
The Ethereum and Hyperledger Fabric connectors exchange

messages with the Router component using a canonical mes-
sage data format. This format was inspired by the format
described by Hohpe and Wolf [12] and was composed of
a message header and a message body (in this case, data).
The message header contains all the information used by
the gateway to deliver the message to the target DLT and
includes the message origin, destination, timestamp, message
identification, among others. On the other hand, the message
data element includes business information that needs to be
delivered to the final destination. Table I presents the message
header attributes and their description.

TABLE I
MESSAGE HEADER ATTRIBUTES

Attribute Description
messageId Global unique identifier of the message.

correlationIdentifier
This attribute only applies to response messages.
It is a unique identifier that identifies the request
message of a request-response interaction.

timestamp The creation timestamp of the message.
source The blockchain that created the message.

target

Contains information about the destination of
the cross-chain message. The blockchain attribute
indicates the name of the target DLT and it is used
by the Router component to route the message.
The contract and operation attributes defines the
target smart contract and operation in this smart
contract, that the connector must invoke.

replyTo

Specifies how to reply to the message. It specifies
a blockchain, contract and operation attribute.
The blockchain attribute specifies to which DLT
the receiver must send the reply message to. The
smart contract and operation attribute specifies
which operation must be invoked of the specified
smart contract hosted by the DLT.

D. Interaction model
The gateway provides a request-response interaction model

based on the Request-Reply, Return Address and Correlation
Identifier patterns [12] to deliver cross-chain messages. Fig.
5 depicts the interaction model using Ethereum as the source
DLT and Hyperledger Fabric as the target DLT. Nevertheless,
the behaviour is the same in case Hyperledger Fabric is the
source DLT and Ethereum the target DLT.

Fig. 5. Request-response interaction model
When creating a cross-chain message, the source cross-

chain smart contract must set the messageId, timestamp,

source, target and replyTo data (step 1). The source con-
nector transforms the message to the canonical data format
and sends it to the Router (step 2). The Router uses the
blockchain element on the target header attribute to identify the
blockchain connector to route the message (step 3). The target
connector identifies the target smart contract and operation
to invoke using the target attribute (step 4). In particular,
the contract and operation elements. To generate a response,
the target smart contract triggers an event that is listened by
the target connector (step 5). This event must specify the
replyTo attribute on the request cross-chain message to build
the response cross-chain message. In particular, the target
blockchain, target smart contract and target operation must
use the values defined in the replyTo attribute of the request
message. The event must also specify the correlationIdentifier
and must be equal to the messageId of the request message.
The target connector transforms the message to the canonical
data format and sends it to the Router (step 6). The Router
inspects the message and delivers it to the source connector
(step 7). The source connector inspects the message searching
for the target contract and operation, transforms the message
to the native data format and invokes the source smart contract
(step 8). In this example the source smart contract creates the
request message and process the response. Nevertheless, this
smart contracts may be different, and one smart contract may
create the request and other smart contract may process the
response.

The proposed request-response interaction models implies
that a cross-chain transaction is composed of at least three
local transactions. Two on the source DLT and one on the
target DLT. In the case of Ethereum and Hyperledger Fabric,
this implies that the final execution of a cross-chain transaction
must wait for at least two blocks to be committed on Ethereum
and one block to be committed on Hyperledger Fabric. Note
that, delays in transaction processing may cause that the cross-
blockchain transaction may not be committed on consecutive
blocks.

E. Future payments

Registering a transaction on Ethereum implies costs and
signing the transaction with the user’s private key. When the
gateway registers a cross-chain transaction on Ethereum it
must pay the transaction’s fee and sign the transaction on
behalf of the user. To avoid having the user’s private key on the
gateway and pay for the user, this work introduces the concept
of future payments. A future payment is a cryptocurrency
transfer created by the user but not executed yet. Its execution
is locked until the gateway confirms its execution in the future.

Future payments implies the existence of a new smart
contract on Ethereum created and owned by the gateway.
This means, there are restrictions on who can invoke its
operations. This smart contract has four operations: register,
check, release and expire. The register operation allows the
user to register a future payment. This operation receives an
amount of Ethers, the user’s account, a target account and
transfers the amount of Ethers from the user’s account to the

Fig. 6. Future payments

smart contract account. This future payment is locked until
it is released by the release operation. The release operation
receives an account and releases the future payment related to
the specified account. This operation is restricted and can only
be invoked by the gateway. In case a timeout period expires
and the release operation is never called, the user can invoke
the expire operation to release the funds back to his account.
Finally, the check operation verifies if a future payment for a
specified account is registered.

Fig. 6 depicts the behaviour of future payments used for
cross-chain transaction between Ethereum and Hyperledger
Fabric. In this example, the user needs to purchase a service
provided by the DLT implemented with Hyperledger Fabric.
To do so, the user invokes the register operation and creates
the future payment that transfers an amount of Ethers from the
user’s account to the service providers’ account. This operation
temporary transfers the amount to the smart contract account.
Later on, the user invokes a smart contract on Hyperledger
Fabric to verify the future payment. This operation triggers
a request-response interaction from Hyperledger Fabric to
Ethereum for this purpose. After the future payment is verified,
the user buys the service by invoking another smart contract
that triggers a cross-chain transaction to Ethereum to release
the future payment and transfer the Ethers to the service
provider account. In this case, a transfer from the smart
contract account to the service provider’s account.

V. REFERENCE IMPLEMENTATION

This section describes the reference implementation of the
Ethereum connector and future payments. Further details and
the source code are available online2.

2Code will be online after response of the reviewers

A. Ethereum connector

The Ethereum connector was developed with Node.js and
the Web3 library3. The generalisation of the connector was
enabled by loading all the contract ABI (Application Binary
Interface) files from a specific folder4. At startup, the Ethereum
connector processes all these files and loads them so it has
all the necessary information to invoke the configured smart
contracts or listen to events they may trigger. Listing 1 presents
how the connector load this files and starts listening to the
events that may be triggered by these smart contracts.

var c o n t r a c t s = [] ;

async loadABI () {
g lob . sync (’./ABI/*.json’) . f o r E a c h (f u n c t i o n (f i l e) {

var c o n t r a c t = r e q u i r e (p a t h . r e s o l v e (f i l e)) ;
c o n t r a c t s . push (c o n t r a c t) ;

}) ;
await t h i s . l i s t e n B l o c k c h a i n E v e n t s () ;
await t h i s . s t a r t R o u t e r E n d p o i n t () ;

}

async l i s t e n B l o c k c h a i n E v e n t s () {
c o n s t web3 = new Web3 (c o n f i g . b l o c k c h a i n . e the reumHos t)
c o n s t n e t w o r k I d = await web3 . e t h . n e t . g e t I d () ;
c o n t r a c t s . f o r E a c h ((c o n t r a c t) => {

var dep loyedNetwork = c o n t r a c t . n e t w o r k s [n e t w o r k I d] ;
var myCont rac t = new web3 . e t h . C o n t r a c t (

c o n t r a c t . ab i ,
dep loyedNetwork && deployedNetwork . a d d r e s s ,

) ;

myCont rac t . e v e n t s . a l l E v e n t s ()
. on (’data’ , e v e n t => t h i s . even tRece ivedFromEthereum (

e v e n t))
. on (’changed’ , changed => c o n s o l e . l o g (changed))
. on (’error’ , e r r => { throw e r r })
. on (’connected’ , s t r => c o n s o l e . l o g (s t r))

}) ;
}

Listing 1. Load smart contracts on Ethereum connector

Listing 2 presents how the connector uses the ABI files to
invoke a smart contract when the Router component sends a
cross-chain message. The connector checks for the contract
header of the message and tries to match it to a smart contract
previously loaded. If it exists, the connector invokes the smart
contract on Ethereum with the corresponding parameters found
on the data message element. If the smart contract was not
found, the message is ignored. It is expected that data elements
parameters are ordered in the same way as smart contract
parameters, otherwise, an error occurs.

B. Future payments

Future payments were implemented as a structure in So-
lidity5 (Accion) with two states: open (ABIERTO), invalid
(INVALIDO). Future payments are composed of an amount
(monto) and an account (billSur). There were needed two
auxiliary mappings to map an address to states (saldoEstado)
and map address to future payments (saldo). Listing 3 presents

3https://web3js.readthedocs.io/en/v1.8.2/
4A contract ABI file is a specification that describes the interface of a

smart contract in Ethereum and how the caller can interact with it. Each
smart contract has an ABI file.

5Solidity is the programming language offered by Ethereum to write smart
contracts

async sendEven tToEthe reumBlockcha in (e v e n t) {
l o c k . a c q u i r e ("send" , async f u n c t i o n (done) {

c o n s t web3 = new Web3 (c o n f i g . b l o c k c h a i n .
e the reumHos t)

c o n s t n e t w o r k I d = await web3 . e t h . n e t . g e t I d () ;
c o n t r a c t s . f o r E a c h (async (c o n t r a c t) => {

i f (c o n t r a c t . con t r ac tName == e v e n t . h e a d e r .
t a r g e t . c o n t r a c t){

var dep loyedNetwork = c o n t r a c t . n e t w o r k s [
n e t w o r k I d] ;

var myCont rac t = new web3 . e t h . C o n t r a c t (
c o n t r a c t . ab i ,
dep loyedNetwork && deployedNetwork .

a d d r e s s) ;
var params = [] ;
f o r (var param in e v e n t . d a t a)

params . push (e v e n t . d a t a [param]) ;
var nonce = await web3 . e t h .

g e t T r a n s a c t i o n C o u n t (c o n f i g . b l o c k c h a i n .
b i g W a l l e t A d d r e s s) ;

var r a w T r a n s a c t i o n = {
nonce : web3 . u t i l s . toHex (nonce) ,
from : c o n f i g . b l o c k c h a i n .

b i g W a l l e t A d d r e s s ,
t o : dep loyedNetwork . a d d r e s s ,
d a t a : myCont rac t . methods [e v e n t . h e a d e r .

t a r g e t . o p e r a t i o n] . a p p l y (nul l , params
) . encodeABI ()

} ;
await web3 . e t h . s e n d T r a n s a c t i o n (

r a w T r a n s a c t i o n) ;
done () ;

}
}) ;

}) ;
}

Listing 2. Invoke smart contract on Ethereum.

the register and release operations. As shown in the code, the
release function has the onlyOwner modifier that restricts its
invocation only to the Ethereum connector. It also has the
chequeoAbierto modifier that checks it can only be invoked if
the state of the future payment is open. One limitation of the
implementation is that it does not support the expire operation
yet.

f u n c t i o n r e g i s t e r (address payable b i l l S u r) p u b l i c payable
{

i f (s a l d o E s t a d o [msg . sender] == E s t a d o s . INVALIDO){
Accion memory a c c i o n = Accion ({

monto : msg . value ,
b i l l S u r : b i l l S u r }) ;

s a l d o [msg . sender] = a c c i o n ;
s a l d o E s t a d o [msg . sender] = E s t a d o s . ABIERTO ;

}
}

f u n c t i o n r e l e a s e (address b i l l C l i) p u b l i c onlyOwner ()
c h e q u e o A b i e r t o (b i l l C l i) payable {

Accion memory a c c i o n = s a l d o [b i l l C l i] ;
a c c i o n . b i l l S u r . t r a n s f e r (a c c i o n . monto) ;
s a l d o E s t a d o [b i l l C l i] = E s t a d o s . INVALIDO ;

}

Listing 3. Register and release operations

VI. GATEWAY ASSESSMENT

The gateway assessment was performed through the de-
velopment of a case scenario, performance tests and a cost
analysis.

A. Development of the case scenario

The development of the case scenario involved the devel-
opment of two smart contracts on Ethereum and one smart
contract on Hyperledger Fabric. Future payments were used to
enable the user to pay for the service provided by Hyperledger
Fabric. In this case, electricity to charge the vehicle.

The smart contract CheckEnergy on Ethereum provided
two operations: checkEnergy, checkEnergyResponse. The first
operation allowed the user to check the energy of a pump and
trigger a query to Hyperledger Fabric. The second operation
was required to receive Hyperledger Fabric’s response to the
query following the request-response interaction model pre-
sented on Section IV-D. The smart contract FuturePayments-
ForEnergy provided the implementation of future payments in
this scenario and provided the three operations required and
described in Section IV-E: register, check and release.

The smart contract on Hyperledger Fabric provided
three operations: checkEnergy, checkFuturePayment and pur-
chaseEnergy. The first operation triggers an event with the
available energy of a specified pump. This event was listened
by the Hyperledger Fabric connector and sent as a response
to Ethereum. The checkFuturePayment operation triggered a
cross-chain transaction from Hyperledger Fabric to Ethereum
through the Gateway and checked if a future payment was
opened. Finally, the purchaseEnergy operation received an
amount and pump, and released an amount of energy from the
specified pump equal to the specified amount. This operation
also triggered an event to release the future payment.

B. Performance assessment

Performance tests were performed to evaluate the gateway
performance. In particular, the performance tests were per-
formed to only one operation of Hyperledger Fabric: check-
FuturePayment. Ganache and version 1.4.12 of Hyperledger
Fabric was used to simulate both DLT. jMeter was used to
invoked the operation and simulate concurrent users.

The performance tests were performed using one notebook
with Windows 10 operating system, using the Windows Sub-
system for Linux 2 (WSL 2). This subsystem enabled the
installation of a Linux kernel on Windows operativing system
without using Virtual Machines. The notebook’s hardware
was composed of an Intel Core I7-10750H 6 core/12 threads
2.6Ghz (Maximum frequency 5 Ghz), 32Gb DDRA 3200 Mhz
of memory and 1Tb SSD NVMe of storage. jMeter, Ganache
and the gateway were hosted on this hardware.

The initial results were unsatisfactory as all the tests failed.
The reason for this error was that creating a raw transaction
on Ethereum required to obtain the account’s nonce, which is
done using the web3.eth.getTransactionCount method of the
Web3 library. This method worked correctly when no con-
currency was involved, but when multiple concurrent threads
invoked this method, the same nonce value was returned for
every thread, generating a reply attack. Under this attack,
Ethereum rejected all other transactions besides the first one.
To cope with this issue, a thread queue was added to the
Ethereum connector by using the lock.acquire method (see

Fig. 7. Execution time of the performance tests

Listing 2). This method enabled serial processing of cross-
chain transaction on the Ethereum connector.

Table II presents the results obtained by the performance
tests after this performance fix. The execution time was the
time between the first request executed by jMeter until the
last response received by jMeter. With twenty concurrent
users, all requests were successfully executed. However, with
forty concurrent users, connection errors occurred between
the Ethereum connector and Ganache and only seventy-nine
percent of the requests were successfully executed and replied.
On the other hand, Fig. 7 depicts the response time of each
request. In this figure it is clearly depicted the impact of the
thread queue fix performed to the Ethereum connector and the
impact it had on the overall performance. The last request was
completely executed after 229 seconds. The latency between
the Router and the connectors did not show significant delays.

TABLE II
PERFORMANCE TESTS RESULTS

#Users #Requests #Success % Success Execution
time (mm:ss)

20 2,548 2,548 100% 08:44
40 5,139 4,073 79% 13:46

C. Costs assessment

Table III presents the cost evaluation of the gateway applied
to the proposed case scenario. The evaluation showed that
registering a future payment had minimum costs to the client6.
On the other hand, the verification and the release of the
future payment involved zero cost to the client, but had costs
to be afforded by the gateway. Finally, the pump check had
minimum costs for the gateway and client. The evaluation
considered a gas price of 14.31 Gwei (1 Gwei is equal to
0.,000000001 Ether) and a cotization of 1.625 USD per Ether7.

VII. DISCUSSION

This section discusses the proposed research questions,
performs an analysis of the obtained results and presents the
limitations of the proposal.

6All costs applied to the client did not include the cost of electricity to
charge the vehicle

7This price was gathered the 5th of November 2022.

TABLE III
COSTS ANALYSIS

Operations

Cost
in gas
(thou-
sands)

Total
cost
(USD)

Total costs
gateway
(USD)

Total
costs
client
(USD)

Register fu-
ture payment 53.7 1.248 0 1.248

Check pump 51 1.186 0.580 0.606
Check future
payment 29.3 0.681 0.681 0

Release
future
payment

23.9 0.555 0.555 0

How is it possible to apply the gateway solution to en-
able interoperability between Ethereum and Hyperledger
Fabric? This work proposed a detailed design and a reference
implementation on how to apply the gateway solution to enable
interoperability between Ethereum and Hyperledger Fabric.
The proposed design and implementation leverages existing
building blocks and native features of both DLT to build a new
Ethereum connector and reuse the existing Hyperledger Fabric
connector following a choreography approach. Furthermore, a
new concept of Future payments was introduced that enabled
the purchasing of services provided by Hyperledger Fabric and
be paid with Ethereum.

How does the proposed solution impacts on the perfor-
mance while trying to interoperate Ethereum and Hyper-
ledger Fabric? The performance assessment showed that there
are challenges to achieve interoperability between Ethereum
and Hyperledger Fabric under heavy load. The design of
Ethereum to prevent replay attacks was the main obstacle to
achieve this task.

Which are the costs required by the proposed solution
when trying to interoperate Ethereum with Hyperledger
Fabric? The cost assessment performed to the gateway on
the proposed scenario showed that the gateway had minimum
costs to the user that needed cross-chain transactions. Fur-
thermore, some costs were applied to the gateway on some
operations (check pump, check future payment, release future
payment) that need to be considered when using this solution.
After this evaluation, we consider that the proposed solution
can be applied by a consortium to provide services that can
absorb this costs in the overall price of the service. We do not
think that this solution may be applied for small price services
that can have a considerable impact on its final cost.

Besides the above comments, the experiment had some
limitations. The proposed principles restricted the problem
leaving out of scope cross-chain transaction verification and
cross-chain transaction authentication. A fully reliable so-
lution, requires the target DLT to validate any incoming
transactions following the consensus protocol rules defined
by the source DLT. Our approach trusted in the gateway
and did not validate cross-chain transactions on the target
DLT. Furthermore, Hyperledger Fabric requires to authenticate
any incoming transaction. This means Hyperledger Fabric
needs to verify the user and permissions of all cross-chain

transactions initiated from Ethereum. This task is a challenge,
as Ethereum users use pseudonyms that hinders this task.
Our approach provided a simplified solution to this challenge
and the gateway acted on behalf of all of the users that
initiated cross-chain transactions on Ethereum. Furthermore,
all authenticated users were authorised to write on Hyperledger
Fabric’s ledger.

VIII. RELATED WORK

Ghosh et al. [20] proposed a gateway-based architecture
that enabled interoperability between Ethereum and Hyper-
ledger Fabric. They also proposed a cross-chain transaction
verification based on Simplified Payment Verification (SPV)
for Ethereum and signature validation for Hyperledger Fabric
transactions. They proved liveness and safety properties for
the verification process. This is the most related work we
found, however, there is little information regarding the gate-
way design, implementation or performance. In particular, the
authors did not mention performance issues while integrating
the gateway with Ethereum as we had in our experiments.
Their performance test were focused on Hyperledger and
Ethereum, rather than on the integration solution. Considering
this, our approach complements this work as it is focused on
the gateway design, implementation and performance details.

André et al. [21] proposed a middleware based on the Secure
Asset Transfer Protocol (SATP) [22] to bridge Central Bank
Digital Currencies (CBDC) between Hyperledger Fabric and
EVM-based8 permissioned blockchains. The authors proposed
the usage of smart contracts and connectors to build the
middleware and shares similarities with our approach. André et
al. went a step further than our work and proposed a mapping
between EVM accounts and Hyperledger Fabric certificates
to achieve cross-chain transaction authentication. The main
differences with our approach is that the authors’ middleware
follows an orchestration architecture, while our work follows a
choreography architecture. Furthermore, our approach focuses
on permissionless EVM-based blockchains, like Ethereum,
while the authors used a permissioned EVM-based blockchain.
In addition, their work was focused on a specific asset (like
CBDC), while our proposal is for general purpose cross-chain
messages. Despite these differences, our work confirms the
results obtained by the authors that is possible to enable inter-
operability between Ethereum and Hyperledger Fabric using
either a choreography or orchestrated approach. The authors
did not report any performance issues as we had. This different
result may be explained as the authors performed latency tests
independently from each other, while our performance tests
incurred in twenty concurrent users.

Franzoni [23] proposed a decentralised application for the
fashion industry to enable interoperability between Hyper-
ledger Fabric and Ethereum. The proposal followed an orches-
trated architecture, where a decentralised application interacts
with both DLT. Franzoni proposed a component called Fab3

8Ethereum Virtual Machines or EVM-based blockchains are blockchains
based on Ethereum source code.

Proxy that acted as a proxy between the decentralised applica-
tion and Hyperledger Fabric. The Fab3 Proxy provided cross-
chain transaction authentication and mapped the identity on
Ethereum (accounts) to the identities on Hyperledger Fabric
(X.509 certificate). Our proposal differs from this work fol-
lowing a choreography architecture. Furthermore, we propose
a general purpose interoperability solution that can be applied
to the fashion industry or any other use case scenario. Franzoni
performed an annual cost analysis to support the usage of
both DLTs. This includes the hosting of Hyperledger Fabric
on Amazon and costs of executing transactions on Ethereum
for an estimated number of users. Our approach considered
the cost that each transaction may have to the service provider
and user (client), but did not estimate the annual cost of the
proposal.

YUI [24] enables interoperability between DLT by imple-
menting the Inter Blockchain Communication (IBC) protocol
[25]. Each DLT must have an IBC Module that enables
communication with other blockchains. The IBC Module im-
plements the IBC protocol and verifies the incoming messages
following the source DLT consensus protocol rules. YUI
has similarities with our work as it follows a choreography
architecture and enables interoperability between Hyperledger
Fabric and Hyperledger Besu9. However, the support for the
IBC protocol requires changes in the source code of the
blockchain, in contrast with our approach. We could not find
any reports regarding performance or costs applied by YUI.

Weaver [9] proposed a trusted relay approach to enable
reliable data exchange between blockchains. Weaver is com-
posed of an IOP Module, a Relay and an Identity Service. The
Relay acts as an ingress and egress endpoint to the blockchain,
providing service discovery and routing capabilities. The IOP
Module was implemented as a set of smart contracts on
the blockchain to provide access control, proof generation,
proof verification, asset locks, claims, pledges and reclaims
capabilities. The Identity Service provides the identity capa-
bilities required to support authentication on permissionless
blockchains like Hyperledger Fabric. Nowadays, Weaver sup-
ports interoperability between Hyperledger Fabric and Hyper-
ledger Besu. The Weaver’s approach is similar to our work as it
follows a choreography architecture. Furthermore, it provides
mechanisms for cross-chain transaction authentication and
cross-chain transaction verification that can serve as input for
our work. However, it does not yet support interoperability
with Ethereum.

Hyperledger Cactus [8] is an interoperability framework that
follows an orchestrated architecture and enables interoperabil-
ity between business applications and different DLT. It pro-
vides validators that enable cross-chain transaction verification
and a business logic plugin to allow developers to orches-
trate cross-chain transactions between DLT in a coordinated
way. Nowadays, Hyperledger Cactus enables interoperability
between Hyperledger Fabric and Hyperledger Besu, but fol-
lowing a different approach than our proposal.

9Hyperledger Besu is an Ethereum client.

Finally, Optimism bridge [26] and PoS Bridge [7] are
two Sidechain solutions that enabled interoperability be-
tween Ethereum and Optimism and Polygon (two EVM-based
blockchains). These bridges enable asset transfer between
Ethereum and Optimism/Polygon and vice-versa by defining
a communication protocol between them. This work shares
similarities with our proposal as it follows choreography
architecture. However, these two solutions are specific to asset
transfer scenarios between these two blockchains and do not
provide a general purpose interoperability solution.

IX. CONCLUSIONS AND FUTURE WORK

This paper extends our previous work that used a gateway-
based approach to enable interoperability between Corda and
Hyperledger Fabric. The proposed extension enabled interop-
erability between Ethereum and Hyperledger Fabric. This ap-
proach was composed of a new Ethereum connector, a request-
response interaction model based on the Enterprise Integration
Patterns and the introduction of future payments, which al-
lowed paying services provided by Hyperledger Fabric with
Ethereum’s cryptocurrency. A prototype was developed and
evaluated through a case scenario, performance test and cost
analysis. The evaluation assessed the technical feasibility of
the proposal. Performance tests showed bottlenecks may limit
its usage, where the design of Ethereum to deny reply attacks
was one of the observed reasons. Costs analysis showed the
approach fits purchasing services offered by a consortium for
medium to large amounts, but it is not suitable for purchasing
services with low amounts. These results are the paper’s
main contributions and constitute a step forward in developing
general-purpose solutions for DLT interoperability.

Future work includes design improvements to enable better
performance, improve the interaction model to support queries
without costs and improve future payments to support more
than one payment per account. Furthermore, the design evo-
lution is expected to support cross-chain transaction authenti-
cation and verification.

ACKNOWLEDGMENT

Guzmán Llambı́as was supported by Pyxis. The research
that gives rise to the results presented in this publication
received funds from the Agencia Nacional de Investigación
e Innovación under the code POS NAC 2022 4 174476.
Blockchain icons made by Freepik from www.flaticon.com.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2009, (accessed Apr. 2023). [Online]. Available:
http://www.bitcoin.org/bitcoin.pdf

[2] V. Buterin, “Ethereum: A next-generation smart contract and
decentralized application platform,” 2014, (accessed Apr. 2022).
[Online]. Available: https://ethereum.org/en/whitepaper/

[3] E. e. a. Androulaki, “Hyperledger fabric: A distributed operating
system for permissioned blockchains,” in Proc. 13th EuroSys
Conf., Porto, Portugal, Apr. 2018, pp. 1–15. [Online]. Available:
https://doi.org/10.1145/3190508.3190538

[4] B. e. a. Pillai, “Cross-blockchain technology: Integra-
tion framework and security assumptions,” IEEE Access,
vol. 10, pp. 41 239–41 259, Apr. 2022. [Online]. Available:
https://doi.org/10.1109/ACCESS.2022.3167172

[5] G. Llambı́as, L. González, and R. Ruggia, “Blockchain interoperability:
a feature-based classification framework and challenges ahead,” CLEI
Electron. J., vol. 25, no. 3, pp. 4–1, 2022.

[6] R. e. a. Belchior, “A survey on blockchain interoperability: Past,
present, and future trends,” ACM Comput. Surv., vol. 54, no. 8, pp.
1–41, Oct. 2021. [Online]. Available: https://doi.org/10.1145/3471140

[7] Polygon Team, “Introduction to polygon pos,”
(accessed Apr. 2023). [Online]. Available:
https://wiki.polygon.technology/docs/develop/getting-started

[8] H. Montgomery et al., “Hyperledger cactus whitepaper,”
2022, (accessed Apr. 2023). [Online]. Available:
https://github.com/hyperledger/cactus/blob/main/whitepaper/whitepaper.md

[9] Weaver Team, “Weaver: Dlt interoperability framework,” (accessed
Apr. 2023). [Online]. Available: https://labs.hyperledger.org/weaver-dlt-
interoperability/

[10] B. e. a. Bradach, “A gateway-based interoperability solution for
permissioned blockchains,” in 2022 XVLIII Latin American Computer
Conference (CLEI), Armenia, Colombia, Oct. 2022, pp. 1–10. [Online].
Available: https://doi.org/10.1109/CLEI56649.2022.9959907

[11] R. G. e. a. Brown, “Corda: An introduction,” 2016, (accessed
Apr. 2023). [Online]. Available: https://docs.r3.com/en/pdf/corda-
introductory-whitepaper.pdf

[12] G. Hohpe and B. Woolf, Enterprise integration patterns: Designing,
building, and deploying messaging solutions. Boston, MA, USA:
Addison-Wesley Professional, 2003.

[13] “Iso 22739:2020. blockchain and distributed ledger technologies
— vocabulary,” (accessed Feb. 2023). [Online]. Available:
https://www.iso.org/standard/73771.html

[14] X. Xu, I. Weber, and M. Staples, Architecture for blockchain applica-
tions. New York, NY, USA: Springer Cham., 2019.

[15] G. L. et al., “Gateway-based Interoperability for DLT,” Feb. 2023.
[Online]. Available: https://www.techrxiv.org/articles/preprint/Gateway-
based Interoperability for DLT/22120520

[16] P. Wegner, “Interoperability,” ACM Comput. Surv., vol. 28,
no. 1, p. 285–287, mar 1996. [Online]. Available:
https://doi.org/10.1145/234313.234424

[17] D. e. a. Box, “Simple object access protocol (soap)
1.1,” May 2000, (accessed Feb. 2023). [Online]. Available:
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[18] D. I. Castro Santestevan, “Estudio para la aplicación de
la tecnologı́a blockchain y la gestión inteligente a la red
eléctrica uruguaya. caso de estudio : recarga de vehı́culos
eléctricos,” 2022, (accessed Apr. 2023). [Online]. Available:
https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/34204

[19] H. Jin, X. Dai, and J. Xiao, “Towards a novel architecture for enabling
interoperability amongst multiple blockchains,” in 2018 IEEE 38th Int.
Conf. Dist. Comp. Sys., Vienna, Austria, Jul. 2018, pp. 1203–1211.
[Online]. Available: https://doi.org/10.1109/ICDCS.2018.00120

[20] B. C. e. a. Ghosh, “Leveraging public-private blockchain interoperability
for closed consortium interfacing,” in IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications, Vancouver, BC, Canada,
May 2021, pp. 1–10.

[21] A. A. et al., “CBDC bridging between Hyperledger
Fabric and permissioned EVM-based blockchains,”
Mar. 2023, (accessed Apr. 2023). [Online]. Available:
https://www.techrxiv.org/articles/preprint/CBDC bridging between Hyperledger Fabric and permissioned EVM-
based blockchains/21809430

[22] M. Hargreaves, T. Hardjono, and R. Belchior, “Secure asset transfer
protocol (satp),” Mar. 2023, (accessed Apr. 2023). [Online]. Available:
https://datatracker.ietf.org/wg/satp/about/

[23] S. Franzoni, “Blockchain and smart contracts in the Fashion
industry,” Jul. 2020, (accessed Apr. 2023). [Online]. Available:
https://webthesis.biblio.polito.it/15336/

[24] Datachain, “Yui,” (accessed Apr. 2023). [Online]. Available:
https://www.datachain.jp/products/yui

[25] C. Goes, “The interblockchain communication protocol: An
overview,” Jun. 2020, (accessed Apr. 2023). [Online]. Available:
https://arxiv.org/abs/2006.15918

[26] Optimism Team, “Bridging basics,” (accessed Apr. 2023). [Online].
Available: https://community.optimism.io/docs/developers/bridge/basics/

