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Abstract

As our world becomes increasingly urbanized, smart cities are leading the way in using technology to create more efficient,

connected, and sustainable environments. However, amidst all the talk of connectivity and smartness, it’s crucial not to lose

sight of one of the most basic human needs: access to nature in cities. This research describes a novel open-source framework

for investigating the availability and accessibility of green recreation spaces using open-source data and statistical analytic

approaches. The framework includes a comprehensive set of tools for data extraction, processing, analysis, and visualization,

thereby enabling reproducible geospatial research. We test our framework on five international cities: Medellin, Milan, Chicago,

Singapore, and Mumbai. Through geospatial analysis and statistical modeling of data sourced from OpenStreetMaps, we explore

and comprehend the characteristics and distribution of spatial accessibility related to green recreation spaces in five cities. We

find significant clustering of green recreation spaces in all these cities, indicating that a majority of such spaces are located

in close proximity to each other within small areas. Our findings also shed light on the potential implications of unequal

distribution of green recreation spaces for the health and well-being of city residents and highlight the need for policies and

initiatives that promote equitable access to green recreation spaces in smart cities.

1



Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Smart Cities and Access to Nature: A Framework
for Evaluating Green Recreation Space
Accessibility
JENNY MARTINEZ1, and SACHIT MAHAJAN2
1Decision Sciences Group, Universidad Nacional de Colombia, Medellín, Colombia (e-mail: jrriosm@unal.edu.co )
2Computational Social Science (COSS), ETH Zurich, 8092 Zurich, Switzerland (e-mail: sachit.mahajan@gess.ethz.ch)

Corresponding author: Sachit Mahajan (e-mail: sachit.mahajan@gess.ethz.ch).

This work was supported through the project “CoCi: Co-Evolving City Life”, which has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement No. 833168.

ABSTRACT As our world becomes increasingly urbanized, smart cities are leading the way in using
technology to create more efficient, connected, and sustainable environments. However, amidst all the talk
of connectivity and smartness, it’s crucial not to lose sight of one of the most basic human needs: access
to nature in cities. This research describes a novel open-source framework for investigating the availability
and accessibility of green recreation spaces using open-source data and statistical analytic approaches. The
framework includes a comprehensive set of tools for data extraction, processing, analysis, and visualization,
thereby enabling reproducible geospatial research. We test our framework on five international cities:
Medellin, Milan, Chicago, Singapore, and Mumbai. Through geospatial analysis and statistical modeling
of data sourced from OpenStreetMaps, we explore and comprehend the characteristics and distribution of
spatial accessibility related to green recreation spaces in five cities. We find significant clustering of green
recreation spaces in all these cities, indicating that a majority of such spaces are located in close proximity
to each other within small areas. Our findings also shed light on the potential implications of unequal
distribution of green recreation spaces for the health and well-being of city residents and highlight the need
for policies and initiatives that promote equitable access to green recreation spaces in smart cities.

INDEX TERMS Accessibility, Cities, Geospatial analysis, Recreation Spaces, Open-source

I. INTRODUCTION

Urbanization is one of the defining trends of the twenty-first
century, with cities now housing more than half of the world’s
population [1]. While cities provide numerous advantages,
such as economic opportunities and cultural diversity, they
also pose significant challenges, such as traffic congestion,
environmental pollution, and social inequality [2]–[6]. By
harnessing technology to build more sustainable, efficient,
and livable urban settings, smart cities have emerged as a pos-
sible answer to these difficulties [7]. However, the traditional
emphasis on data-centric techniques and connectivity has fre-
quently overlooked the relevance of nature and accessibility
in influencing the urban quality of life. As cities continue to
grow and become more densely populated, it is important to
consider the role that green recreation spaces play in promot-
ing community well-being [8], [9]. Green recreation spaces
can provide a variety of benefits to city residents, including
improved mental and physical health, social cohesion, and

a sense of community pride [10], [11]. There is a growing
body of evidence that demonstrates the positive impact of
green spaces on health. For example, a recent study found
that living near green space is associated with a lower risk
of mortality [12], while another found that exposure to green
space can lead to reductions in stress and anxiety [13]. In
addition, green recreation spaces can also promote physical
activity, which is an important factor in maintaining good
health [14]. As we delve deeper into the development of
smart cities, it becomes increasingly apparent that the signif-
icance of access to nature, such as green recreation spaces
has been undervalued. The conventional understanding of
what constitutes a smart city has largely centered on the
deployment of cutting-edge technologies such as Artificial
Intelligence (AI), the Internet of Things, etc. to optimize the
efficacy and efficiency of government services [15], [16].
While this approach has yielded positive results in many parts
of the world, there remains room for a paradigm shift from
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a data-driven to a data-informed approach. By leveraging
technological advancements and available data, this approach
could prioritize promoting community well-being and access
to nature, instead of solely prioritizing government efficiency
and productivity. As a result, there is a growing need for
a more comprehensive strategy that integrates technology,
community, and nature to develop sustainable, healthy, and
inclusive urban environments that promote livability, sustain-
ability, and resilience. This transition is critical for addressing
urbanization-related issues such as limited access to green
spaces and the detrimental impact on community well-being.

In this study, we propose an open-source1, reproducible,
and extendable framework that can be used to investigate
the distribution and accessibility of green recreation spaces
(as well as other amenities) in cities using open-source data.
As compared to the previous works in this area that look at
the accessibility of infrastructure like green spaces through
the lens of socio-economic factors, we follow a more quan-
titative approach that looks into the spatial distribution of
green recreation spaces by performing statistical analysis to
understand their spatial arrangement in the cities followed by
a network analysis to understand the accessibility of those
spaces. We evaluate the framework on five global cities,
namely Medellin, Milan, Chicago, Singapore, and Mumbai,
in order to identify potential disparities in green recreation
space distribution and access. Our findings suggest that de-
spite the differences in geography, level of development, and
planning strategies across these cities, green recreation spaces
tend to cluster in certain areas, which impacts their accessibil-
ity to citizens. By analyzing the accessibility of green spaces,
our approach offers a systematic and quantitative means for
city planners to identify areas that require improvement in
order to promote greater access for all members of society.
In this way, our research contributes to the development of a
more equitable and sustainable urban environment.

The rest of the paper is organized as follows: In Section
2, we discuss the related work. In Section 3, we describe
the methods used, followed by the presentation of results in
Section 4. Section 5 contains the discussion and conclusions
of this study.

II. BACKGROUND
In this section, we briefly go through the related work in
the area of accessibility analysis of city amenities like green
recreation spaces. We also discuss the commonly used terms
as well as methods that are widely used in the literature to
discuss the accessibility of social infrastructure in cities as
well as the use of digital technology and open-source data for
decision-making in smart cities.

Accessibility is a multifaceted concept that encompasses
several dimensions, including physical, and socio-economic
aspects. In the context of urban planning, accessibility refers
to the ease with which people can reach and use essential
services and amenities, such as green recreation spaces [17].

1https://github.com/sachit27/Accessibility-Analysis

These spaces, which include parks, gardens, and other natural
environments for recreation, play an important role in promot-
ing physical andmental well-being, fostering social cohesion,
and enhancing the overall quality of life for urban residents
[18], [19]. Many studies have investigated the accessibility
of urban green spaces [20], [21] as well as other amenities
in cities [22], employing various methods and metrics. Some
researchers have used distance-based measures, such as the
proximity of residential areas to the nearest green space [23],
while others have used more sophisticated approaches, such
as the two-step floating catchment area method, which ac-
counts for both supply and demand factors [24]. Additionally,
researchers have explored the role of socioeconomic factors
in shaping accessibility patterns, revealing that lower-income
and minority communities often face greater barriers to ac-
cessing green spaces [25], [26]. There has also been a signifi-
cant increase in the use of open-source digital technologies as
well as openly available data to map cities [27]–[29]. Several
recent works have utilized data sources like OpenStreetMap
(OSM) [22], [30], remote-sensing data [31], [32] as well
as sensor-based data to understand how the resources and
infrastructure is distributed in cities and how it has changed
over the time [33].
Despite the growing body of literature on green space

accessibility, its integration into the smart city discourse re-
mains limited. Smart city initiatives often prioritize techno-
logical solutions, such as sensor networks, data analytics,
and intelligent transportation systems, while overlooking the
importance of equitable access to green spaces [34], [35].
The existing research gaps highlight the critical need for
a comprehensive understanding of accessibility within the
context of smart cities, as well as innovative techniques to
enhance the availability and distribution of green recreation
spaces. Furthermore, it is critical to use digital infrastructure
to develop user-friendly frameworks and tools that allow
decision-makers as well as other stakeholders to make in-
formed decisions about urban planning initiatives. If done the
right way, smart cities have the ability to seamlessly integrate
technology, community, and nature, and to create equitable
access to resources while increasing communal well-being.

III. METHODOLOGY
In this section, we will discuss in detail the methodology that
is used in the work. Figure 1 provides an overview of the
framework that is used for understanding the spatial distribu-
tion of green recreation spaces in a city as well as analyzing
the accessibility of those recreation spaces. The framework
comprises three integrated workflows. The first workflow is
used to extract the street network of a location using OSM
API. The OSM data is accessed using the “osmnx” package
in Python [36]. This package provides easy-to-use functions
for retrieving, processing, and manipulating OSM data. This
workflow takes the name of the city as well as the network
type to extract the street network. In this work, we used the
"walk" network type to extract the street network suitable for
pedestrians. The extracted street network is then converted
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FIGURE 1. A schematic representation of the proposed framework consisting of three workflows.

into a GeoDataFrame that contains the nodes and edges of
the street network. The second step in this workflow entails
retrieving the location’s green recreational spaces. We then
extract the polygons of green recreation spaces in the city.
We specify the tags to narrow down the green spaces with the
tags "leisure" and "landuse" that are connected with parks and
recreation areas.

The second workflow uses the extracted green recreation
spaces data to first visualize the distribution of the green
recreation spaces as a density heatmap. The density estima-
tion is performed using a kernel density estimation (KDE)
algorithm [37]. KDE calculates the density at each point
as a weighted sum of nearby points. This is followed by
a point pattern analysis approach to understand the spatial
distribution of green recreation spaces. Point pattern analysis
is a statistical method used to study the spatial arrangement
of points in two-dimensional space. This approach is widely
used in geospatial analysis, ecology, and epidemiology to
analyze the spatial patterns of different variables [38], [39].
In our case, we are interested in understanding how green
recreation spaces are distributed in a region of interest. To
do this, we create a point pattern object from the coordinates
of the green recreation spaces within the specified window.
The window represents the extent of the region of interest. We

use the K function [40] to quantify the spatial distribution of
points in a point pattern. It is defined as the expected number
of points within a certain distance of any point in the pattern,
normalized by the density of the points. K function can be
represented as:

K (d) =
1

n

n∑
i=1

n∑
j ̸=i

1

A
I(∥xi − xj∥ ≤ d) (1)

where K (d) is the value of the K-function at distance d ,
n is the total number of points in the study region, xi and xj
are the locations of the i-th and j-th points and A is the area
of the study region. The function I returns the value 1 if the
distance between points i and j is less than or equal to d , and 0
otherwise. The envelope test is a method of hypothesis testing
that is commonly used to determine if the pattern of points
is significantly different from a random spatial distribution.
It involves generating a large number of simulated point
patterns and calculating the K function for each simulation.
The results are then used to create an envelope of confidence
intervals around the observed K function values. Following
the point pattern analysis, we use the nearest neighbor ap-
proach [41] to quantify the degree of clustering or dispersion
of points in a point pattern. This approach calculates the dis-
tances between each point (in this case, the green recreation
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spaces) and its nearest neighbors. By examining the distances
between the points, we can determine if the distribution is
random, clustered or dispersed.

To perform the nearest neighbor analysis, we first create
a neighbor list object and set the distance range between 0
and 1000 meters to identify the neighboring points within this
range. The formula for the nearest neighbor distance (d) is
given below:

d = min(dist(xi, xj)) (2)

where d is the nearest neighbor distance, xi is the location
of the ith point in the pattern, and xj is the location of the near-
est neighbor to the ith point. TheG function is used to quantify
the degree of clustering or dispersion in a point pattern [42].
It is defined as the cumulative distribution function of the
nearest neighbor distances. The formula for the G function
is given below:

G(d) = P(d(xi) ≤ d) (3)

where G(d) is the value of the G function at distance d ,
d(xi) is the nearest neighbor distance of point i, andP(d(xi) ≤
d) is the probability that the nearest neighbor distance is less
than or equal to d . The expected value of the G function for a
random spatial distribution is given by the following equation:

G(r) = 1− exp

(
−πr2

λ

)
(4)

where G(r) is the expected value of the G function at
distance r , λ is the intensity of the point pattern (i.e., the
number of points per unit area), and exp

(
−πr2

λ

)
is the

Poisson probability of finding a point within a distance r of a
randomly chosen point in a Poisson point process with inten-
sity λ. The ratio of the observed G function to the expected
G function is called the K function, which is the same as
the K function used in point pattern analysis. We also use
an envelope approach to create a confidence interval around
the nearest neighbor histogram. The confidence interval is
calculated by simulating 1000 point patterns and calculating
the nearest neighbor distances for each simulated pattern.

The point pattern analysis and nearest neighbor approach
are appropriate methods to understand the distribution of
green recreation spaces in cities. These methods allow us
to determine if these spaces are randomly distributed or if
they are clustered or dispersed. This information can help
urban planners and policymakers make informed decisions
about the location and distribution of green spaces in the city.
Additionally, this approach can be applied to other cities to
compare the distribution of green spaces and identify areas
that may require additional green spaces.

The final workflow deals with understanding the accessi-
bility of green recreation spaces in cities by calculating the
shortest walking distance from the nearest node to the points
of interest (POI). The POI here is the location data of the
green recreation space. To perform this, we first calculate the

City Number of green recreation spaces
Medellin 816
Milan 790
Chicago 870
Singapore 432
Mumbai 963

TABLE 1. The number of green recreation spaces in cities analyzed in this
article.

nearest node to each POI using the nearest neighbor search
algorithm. We then select the nearest node that is part of the
pedestrian network. This is followed by the calculation of the
shortest walking distance from the nearest node to the POI
using the Dijkstra algorithm. The Dijkstra algorithm finds
the shortest path between nodes in a graph, in this case, the
pedestrian network. This is represented mathematically as:

D(i, j) = min
v∈V

dist(i, v) + D(v, j) (5)

where D(i, j) is the shortest path between node i and node
j, v is the set of all nodes in the graph, dist(i, v) is the distance
between node i and node v, and D(v, j) is the shortest path
between node v and node j.
After calculating the shortest walking distance from each

POI to the nearest node on the pedestrian network, we aggre-
gate this information to understand the accessibility of green
recreation spaces in the city. It is important to consider here
that our analysis did not take into consideration the total num-
ber of green recreation spaces, but rather the proximity of the
nearest green recreation space to each node. This technique is
based on the convention that accessibility measures are often
linked to the number of amenities at specific places, such as
POI numbers or other POI features [43].

IV. RESULTS
In this section, we will discuss the results obtained after test-
ing the proposed framework in five global cities: Medellin,
Milan, Chicago, Singapore, and Mumbai. We chose these
five global cities for their different geographic locations,
cultural settings, and varying levels of urban growth in order
to thoroughly examine the performance of our approach.
Medellin, a South American city noted for its modern urban
planning projects, is included to provide unique insights into
how green recreation spaces are dispersed and utilized in
a developing urban setting. Milan, on the other hand, is a
European city known for its commitment to sustainability,
serving as a model for green space distribution in a densely
populated metropolitan setting. As a major North American
city, Chicago provides insight into green space accessibility in
a densely populated and culturally diverse metropolis. Singa-
pore, a Southeast Asian city-state famed for its rigorous urban
planning, exemplifies how a dense urban setting may provide
universal access to green recreational spaces. Lastly,Mumbai,
one of the most populous cities in the world, presents a unique
case study on the challenges of providing equitable access to
green spaces in a densely populated, rapidly growing urban
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FIGURE 2. Density maps showing the distribution of green recreation
spaces in (a) Medellin, (b) Milan, (c) Chicago, (d) Singapore, and (e)
Mumbai. The legend "level" refers to the density level of the green
recreation spaces.

area. By selecting these diverse cities, we aimed to capture
a broad range of urban landscapes and examine the distri-
bution and accessibility of green recreation spaces across
different contexts. Table 1 shows the cities and the number
of green recreation spaces. This is based on the data till De-
cember 2022. Figure 2 shows the density of green recreation
spaces based on their spatial distribution in different cities.
The regions are divided into bins and the density of green
recreation spaces is calculated in each bin. The intensity or
concentration of green recreation spaces in various parts of
the map is represented by these density maps. The maps show
kernel density surfaces, with colored values representing a
condensed representation of the spatial variance in the density
of green recreation spaces across the study areas. Figure 2
shows that the distribution of green recreation places is not
uniform across cities. The heat maps reveal distinct patterns in

different cities. Medellin and Mumbai show notable clusters
of green spaces in specific areas within the city. In comparison
to the other cities, Milan has a less concentrated distribution
of green spaces. In Chicago, there is a large clustering of green
recreation places around the city center, whereas, in Singa-
pore, significant clustering is evident in the city’s eastern part.
While the heat maps provide a visual understanding of the dis-
tribution of green recreation spaces, further statistical analysis
is required to comprehensively understand the distribution
patterns. Therefore, our next step involves conducting a point
pattern analysis.

Following up on the previous analysis, we performed a
point pattern analysis to get a more detailed picture of the
distribution of green recreation spaces in the selected cities.
Our primary focus was on investigating distribution patterns
using the nearest-neighbor approach, as shown in Figure 3. To
do this, we created histograms of the actual data’s distances
to the nearest neighbor, as well as an envelope of expected
values acquired through simulation. This involved creating
1000 random point patterns with a Poisson distribution, the
intensity of which was determined by the density function
produced from the original data. Then, for each bar in the
histogram, we generated the 95% confidence interval and
superimposed it on the original histogram. This methodology
draws inspiration from the work of Bevan et. al in [41]. The
primary goal here is to establish if the observed distribution
of nearest-neighbor distances matches our expectations or is
completely random. This could be done using the Clark and
Evans test [44] as it has been used in the past, but we used
a more robust alternative. We generate random point patterns
through Monte Carlo simulation [45] to simulate a compa-
rable number of random points in the study areas. These
simulated point patterns are used to establish an expected
distribution and create an envelope of expected values for
the nearest-neighbor distances. By comparing the observed
distribution of nearest-neighbor distances to the simulated
distribution, we can determine whether the observed pattern
deviates significantly from randomness. There are three ways
to analyze the relationship between the bars and the envelope
(Figure 3).

1) If the bars are constantly within the envelope, it indi-
cates that the observed distribution of nearest neighbor
distances is consistent with a random pattern. In this
scenario, the green recreation spaces are dispersed in
the manner that would be expected if they were ran-
domly placed within the study area.

2) If the bars continuously surpass the upper bounds of
the envelope, this suggests a clustering pattern. In this
case, it suggests that the green recreation spaces tend
to be closer to each other than would be expected by
chance, indicating a non-random spatial organization
with significant clustering.

3) If the bars continually fall below the envelope’s lower
bounds, this indicates a dispersed pattern. In this sce-
nario, this indicates that the green recreation spaces are
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FIGURE 3. Histograms of observed nearest neighbor distances, with envelopes of expected frequencies for (a) Medellin, (b) Milan, (c) Chicago, (d)
Singapore, and (e) Mumbai.

more equally spaced apart than would be expected by
random chance, showing a non-random spatial organi-
zation with a dispersed distribution.

As observed in Figure 3, in the case of Medellin, variations
from the expected nearest neighbor distances for a Poisson
process with similar density are seen. The graph demonstrates
a clustering pattern, with a larger concentration of green
recreation spaces, than expected observed within 100 meters.
Beyond around 200 meters, however, fewer spaces are con-
centrated, indicating amore dispersed distribution. ForMilan,
little clustering is observed within a distance of 150 meters,
indicating a tendency for green recreation spaces to be located
in closer proximity to each other within this range. Above this
threshold, however, the observed distribution more closely
resembles a random pattern, as indicated by the bars falling
within the envelope. In the case of Chicago, a clustering pat-
tern for green recreation spaces within a 300-meter distance
is seen. After 500 meters, the distribution falls below the
expected values, indicating a deviation from a random spatial
layout. Similarly, for Singapore, clustering can be observed
within approximately 400 meters, followed by a dispersed
distribution of green recreation spaces beyond that point.
Lastly, for Mumbai, a similar pattern emerges, with a strong
clustering observed within 200 meters, followed by dispersed
distribution of green recreation spaces. One takeaway from
the analysis of all the cities is that a high frequency of green

recreation spaces is clustered within an average distance of
200 meters (approximately). There are higher densities at
shorter distances and there is a gradual decrease in density
of green recreation spaces as the distance increases. There
are some occasional fluctuations in counts that suggest the
existence of distinct clusters or zones with varying densities.

While the nearest-neighbor analysis has provided valuable
information about the distribution and clustering patterns of
green recreation spaces within the study areas, understanding
the proximity of these spaces alone is not enough in assessing
their true accessibility. In the next step, we aimed to analyze
the accessibility of green recreation spaces by calculating the
shortest distance from the nearest node to the POI i.e. a green
recreation space. The results of our analysis are presented in
Figure 4, which shows heatmaps for each city that illustrate
the walking time (in minutes) from all nodes in the pedestrian
network to the nearest green recreation space. Additionally,
Figure 5 presents a histogram for all five cities, showing the
number of nodes, and walking time (in minutes) required to
reach the nearest green recreation space. Our findings show
that the average walking time to the nearest green space is
7.8 minutes for Medellin, 8.3 minutes for Milan, 6.7 minutes
for Mumbai, 10 minutes for Chicago, and 14 minutes for
Singapore. Despite the reported differences in walking time
to the nearest green in these cities, it is critical to account
for changes in node density and distribution within each
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FIGURE 4. The heatmaps display the walking time required to reach the closest green recreation space for each of the five cities analyzed in this study,
including (a) Medellin, (b) Milan, (c) Mumbai, (d) Chicago, and (e) Singapore.

city network. For example, Chicago, with almost 16k nodes,
and Singapore, with more than 10k nodes, have a more vast
and complicated network structure than Medellin, which has
only 3.5k nodes, and Mumbai which has only 4k nodes. The
accessibility and closeness of green recreation areas may be
influenced by differences in network complexity.

V. DISCUSSION AND CONCLUSION
The notion of smart cities is still developing, and many ele-
ments are taken into account while creating and implementing
smart city programs. While access to nature and green spaces
is crucial in urban development, it is not necessarily the
major emphasis of smart city projects. There is a growing
recognition of the importance of access to nature and green
areas for human health and well-being, and this should be
reflected in the development of smart city programs. Access
to green recreation spaces has been shown to have numerous
benefits for mental and physical health. Studies have shown
that spending time in nature can reduce stress and improve
overall well-being [46]. In addition, green space can help to
improve air and water quality, reduce urban heat island effects
[47], and provide habitat for urbanwildlife [48]. Furthermore,
green space can serve as an important public gathering space
for communities. Parks, gardens, and other green spaces can
provide a place for people to come together and socialize, pro-
moting a sense of community and improving social cohesion.

While there have been a lot of ongoing discussions about
nature in the cities, potential benefits as well as frameworks
to create more inclusive cities [49], [50], there is still a lot
to do when it comes to access to green recreation spaces

in cities. The uneven spatial distribution of green spaces in
cities can have a significant impact on the city’s sustainability,
environment, and quality of life for city residents [51]. One of
the major issues is a lack of precise data and sufficient tools
for understanding the distribution and accessibility of these
areas. Despite considerable advances in recent years, utiliz-
ing this data for informed decision-making remains difficult
due to limited technological infrastructure and complexity.
Addressing these challenges requires a coordinated effort to
create and implement tools and technology that enable data-
informed decision-making, not just for the decision-makers
but also for city residents. Open-source tools and technology
have demonstrated significant promise in facilitating collec-
tive intelligence and participatory resilience [52], [53]. These
tools can aid in democratizing information availability and
encouraging public engagement and feedback in decision-
making processes.

In this study, we proposed an open-source and extendable
framework that gives statistical insights and visualizations of
the distribution and accessibility of green recreation places
in cities. The proposed framework was applied to five global
cities: Medellin, Milan, Chicago, Singapore, and Mumbai, to
analyze the distribution of green recreation spaces and assess
their pedestrian accessibility. While the cities represented
different geographical and cultural settings, we found that
for all of them, most of the green recreation spaces were
clustered in small areas resulting in uneven distribution. In
terms of accessibility, we found that the walking time to the
nearest green space was highest in Chicago and Singapore.
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FIGURE 5. The histograms show the count of nodes against the walking time required to access the nearest green recreation spaces in: (a) Medellin, (b)
Milan, (c) Mumbai, (d) Chicago, and (e) Singapore.

As the framework is open-source and based on open-source
OSM data, it adds flexibility to the framework and makes
it easy to test it for other amenities as well as locations.
Furthermore, the framework’s open-source structure allows
collaboration and encourages community participation in the
tool’s development and enhancement. The flexibility for de-
velopers and researchers to add new functionality and features
to the existing code base considerably saves the time and
effort required to build equivalent tools from the ground up.
Here it is also important to acknowledge the limitations of
usingOSMdata.While OSMhas shown to be a great resource
for understanding urban landscapes, its reliance on volunteer
contributions may result in data gaps or discrepancies, es-
pecially in areas with low levels of community engagement
or technical expertise. Nonetheless, OSM remains a useful
and effective data source for urban data analysis, providing a
plethora of geospatial information that may be used to better
understand the spatial distribution and accessibility of green
recreation spaces as well as other amenities within cities.
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