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Abstract

As the demand for renewable energy sources continues to increase, solar energy is becoming an increasingly popular option.
Therefore, effective training in solar energy system design and operation is crucial to ensure the successful implementation of
solar energy technology. To make this training accessible to a wide range of people from different backgrounds, it is important
to develop effective and engaging training methods. Immersive virtual reality (VR) has emerged as a promising tool for
enhancing solar energy training and education. In this paper, we present a unique approach to evaluating the effectiveness of
an immersive VR experience for solar energy systems design training, using a multi-module approach and a detailed analysis of
user engagement. To better understand the effectiveness of this VR experience, we divided our experiment into several scenes
and employed a range of sensors, including eye-tracking and wireless wearable sensors, to accurately assess users’ engagement
and performance in each scene. Our results demonstrate that the immersive VR experience was effective in improving users’
understanding of solar energy systems design and their ability to perform complex tasks. Moreover, by using sensors to measure
user engagement, we identified specific areas that required improvement and provide insights for enhancing the design of future
VR training experiences for solar energy systems design. Our study highlights the potential of immersive VR as a tool for

enhancing solar energy training and education, with implications for both research and practice.
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Abstract—As the demand for renewable energy sources contin-
ues to increase, solar energy is becoming an increasingly popular
option. Therefore, effective training in solar energy system design
and operation is crucial to ensure the successful implementation
of solar energy technology. To make this training accessible
to a wide range of people from different backgrounds, it is
important to develop effective and engaging training methods.
Immersive virtual reality (VR) has emerged as a promising
tool for enhancing solar energy training and education. In
this paper, we present a unique approach to evaluating the
effectiveness of an immersive VR experience for solar energy
systems design training, using a multi-module approach and a
detailed analysis of user engagement. To better understand the
effectiveness of this VR experience, we divided our experiment
into several scenes and employed a range of sensors, including
eye-tracking and wireless wearable sensors, to accurately assess
users’ engagement and performance in each scene. Our results
demonstrate that the immersive VR experience was effective in
improving users’ understanding of solar energy systems design
and their ability to perform complex tasks. Moreover, by using
sensors to measure user engagement, we identified specific areas
that required improvement and provide insights for enhancing
the design of future VR training experiences for solar energy
systems design. Our study highlights the potential of immersive
VR as a tool for enhancing solar energy training and education,
with implications for both research and practice.

Index Terms—Virtual reality, eye tracking, vital signs, engage-
ment level.

I. INTRODUCTION

Addressing some of the world’s most pressing environ-
mental challenges demands a paradigm shift in the way we
design and develop renewable energy systems. Conventional
methods rely on experts creating designs on 2D flat screens
using outdated CAD models, often at a great distance from the
actual site or community. This separation requires designers to
painstakingly adapt images of the actual site to the flat screens
on which these designs are being developed. In particular,
our vision is to revolutionize solar energy system design and
education by allowing users to experience the actual site
as if they were physically present. This sense of presence
frequently leads to higher design performance and deeper
comprehension. Indeed, humans possess an innate ability to
instantly understand an environment simply by being present
in it. Presence allows us to confidently form hypotheses,
plan actions, and make discoveries. Visualization tools, with
their interactive and representational capabilities, can further

facilitate higher levels of engagement, ultimately enhancing
learning and understanding of the presented information.

Virtual reality (VR) is one of the most promising visualiza-
tion tools in education, training, and instructional design, offer-
ing users an innovative immersive experience. Researchers are
increasingly exploring and evaluating this immersive environ-
ment to enhance user experience, comprehension of content,
decision-making, and problem-solving [1]. Maintaining posi-
tive psychological states such as motivation and engagement
is crucial to prevent boredom and loss of focus after repeated
exposure [2]. The latest VR headsets, including HTC Vive
and Oculus Rift, deliver high levels of immersion to users [3]
[4]. This immersion influences the level of presence, which
is the sensation of being in the virtual world [5]. Jennett
et al. in [6] discussed the three core concepts frequently
used to characterize engagement experiences: flow, cognitive
absorption, and presence.

Numerous VR studies examine the relationship between
users’ performance and their sense of presence in the virtual
reality environment, particularly in the context of education
and training [7], [8]. In fact, several studies in the literature
have employed virtual reality technology in solar energy edu-
cation and training. For example, Lopez et al. in [9] present a
study aiming to foster students’ self-learning in the installation
of a photovoltaic power plant. Similarly, P. Abichandani et al.
in [10] introduce a novel virtual reality educational system
teaching students the fundamentals of PV cells, solar modules,
and various PV array installation configurations. Alqallaf et
al. [11] present a VR game-based approach for teaching
basic solar energy system design concepts to higher education
students.

In recent human-computer interaction studies, measuring
user experience (UX) primarily relies on self-reported data,
questionnaires, and user performance. However, questionnaires
as self-assessment methods face two main challenges: the
potential for misinterpretation and misunderstanding of the
items’ meanings, and the risk of eliciting stereotypical re-
sponses [12]. Current research advocates for the integration of
physiological measures into immersive virtual reality applica-
tions and experiments, as they can significantly complement
self-report data when estimating users’ emotions and stress
levels [13]. Furthermore, combining both objective and sub-
jective methods leads to more reliable results [12].

Many contemporary theories of emotion view the autonomic



nervous system’s (ANS) activity as a significant contributor
to emotional responses [14]. Bio-signals, such as electrocar-
diography, electroencephalography, and blood pressure moni-
toring, can provide objective data. Engagement is associated
with physiological changes, including increased heart rate,
sweating, tensed muscles, and rapid breathing [15]. The degree
of engagement affects the autonomic nervous system, which
in turn influences physiological changes in the body [15].
McNeal et al. in [16] presented a study using galvanic skin
response (GSR) to measure students’ engagement levels in an
Introductory Environmental Geology Course. Similarly, Lee et
al. in [17] employed electrodermal activity (EDA) measure-
ments to gauge cognitive engagement in Maker learning activ-
ities. Darnell and Krieg utilized heart rate measurements via
wristwatch monitors to assess cognitive engagement among
medical school students [18].

As levels of engagement influence the autonomic nervous
system and are associated with physiological changes in the
body, these responses can be expressed through specific bio-
signals, including signals reflecting learner engagement indices
in class. By combining physiological parameters such as heart
rate, breathing rate, skin conductance, and other sensor data,
a comprehensive understanding of users’ emotional behavior
can be obtained.

II. EYE TRACKING IN VR

Virtual reality has opened new avenues for integrating
implicit measures such as eye tracking, which can reveal
unconscious processes and provide valuable insights into
users’ behavior and attention distribution in various sectors of
education [19]. The assessment of eye tracking data in virtual
reality environments creates novel research opportunities to
understand users’ visual attention [20] and cognition [21],
especially with the advent of head-mounted displays (HMD)
featuring built-in eye tracking capabilities [22].

A crucial aspect of evaluating cognitive function lies in
the analysis of eye tracking parameters, as they can more
accurately reflect human mental states compared to other bio-
signals [23]. The main eye movement measures obtainable
through eye tracking are fixation and saccades [24]. By
analyzing these data, user experience researchers can gauge
users’ engagement levels by interpreting the number of eye
fixations and average fixation duration [25], [26].

In addition to eye movements, pupil dilation serves as a
psychophysiological arousal indicator, regulated by autonomic
nervous system activity [27], [28], [29]. Research has estab-
lished correlations between pupil dilation, task engagement,
and task difficulty [30], [31], [32].

Moreover, eye blinking rates are influenced by variables
such as cognition, task engagement, and exhaustion [33].
Various studies have demonstrated a relationship between
blinking rate and task difficulty or engagement [34], [35], [36].

The Cognitive Load Theory (CLT) underscores the impor-
tance of avoiding overloading working memory to maximize
learning [37], [38], [39]. In this context, eye-tracking variables
have been employed in the literature for measuring cognitive
load [40].

To summarize, eye tracking and vital sign data are essen-
tial techniques for observing user behavior in virtual reality
environments. By seamlessly interconnecting and analyzing
these data, researchers can obtain valuable insights to enhance
instructional design in immersive applications, ultimately im-
proving user experience and learning outcomes.

III. APPROACH AND HYPOTHESES

In our previous paper [41], we compared learner engage-
ment levels in a 2D application and a 3D immersive virtual
reality application for designing solar energy systems. We
estimated learner vital signs using a non-invasive radar sensor
and validated the data with self-reported questionnaires. Our
study confirmed our hypothesis that a 3D virtual reality appli-
cation leads to higher engagement levels than a 2D application.
Figure 1 illustrates the heart rate of a participant who designed
a solar energy system using both 2D and 3D applications.
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Fig. 1: Comparison of a participant’s heart rate from Radar

sensor during 2D application and 3D immersive virtual reality

environment.

In the present study, our goal is to measure learner en-
gagement levels while designing a solar energy system in our
novel 3D immersive environment, analyzing biofeedback and
eye-tracking data. We aim to compare biofeedback reflecting
engagement levels within the VR experience across different
scenes. Identifying areas of low learner engagement can guide
modifications to the application’s design, thereby increasing
learner attention and focus. Moreover, our approach to collect-
ing data offers the key advantages of being wireless, wearable
and unobtrusive compared to other methods of measuring vital
signs and eye-tracking data.

Most importantly, we aim to extend our understanding
of learner engagement and experience in the 3D immersive
virtual reality environment by focusing on specific scenes
within the application and analyzing eye-tracking and biofeed-
back data. Therefore, we propose the following three research
questions (RQ’s) and hypotheses (H):

1) RQI: How do users’ engagement levels differ across

various scenes within the 3D immersive virtual reality
environment when designing solar energy systems?

e HI: Users’ engagement levels vary across different
scenes in the 3D immersive virtual reality envi-
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of learning by doing in retaining more information than
learning by hearing, seeing and observing.

ronment, with certain scenes eliciting higher en-
gagement levels than others during the solar energy
system design process.

2) RQ2: How do eye-tracking data and biofeedback corre-
late with user experience (UX) and engagement levels
in the 3D immersive virtual reality environment?

e H2: Eye-tracking data and biofeedback effectively
reflect users’ UX and engagement levels, with in-
creased fixation durations and lower blink rates
indicating higher engagement in the 3D immersive
virtual reality environment.

3) RQ3: To what extent do modifications in the 3D immer-
sive virtual reality environment, informed by biofeed-
back and eye-tracking data, improve user engagement
and focus in designing solar energy systems?

e H3: Modifications to the 3D immersive virtual re-
ality environment, based on biofeedback and eye-
tracking data, lead to significant improvements in
user engagement and focus in designing solar en-
ergy systems.

In accordance with Dale’s cone theory [42], which structures
learning experiences, we chose to focus on active and passive
learning through hands-on experiences, since these are situated
at the base of the cone, as shown from Figure 2. This decision
stems from the fact that teaching sustainable energy subjects
typically relies on a theoretical approach, which may not
provide the most effective learning experience [43].

IV. METHODOLOGY

As mentioned earlier, traditional evaluation methods such as
quizzes, multiple-choice questions and self-reported question-
naires may not always provide the most accurate assessment
of VR experiences. Instead, researchers should consider us-
ing operational, protocol, and behavioral measurements that
are combined with neurocognitive methods to evaluate user
experience for a more comprehensive evaluation [44] [45]

[46] [47]. Operational measurements often assess a learner’s
ability to correctly operate equipment or machinery, while
protocol measurements evaluate whether the learner adheres
to a prescribed process for a specific job task. In contrast,
behavioral measurements examine whether the learner exhibits
the desired behavior in a given situation. Given that solar
energy systems design involves a set of procedures and best
practices (a protocol) that designers must follow, we devel-
oped a methodology to evaluate the effectiveness of our VR
experience.

To gain a deeper understanding of learner engagement, we
divided the VR experience into distinct scenes. Our objective
was to observe participants as they interacted with the VR
experience, identifying the aspects that captured their interest,
the elements they grasped quickly, the parts they wanted to
explore further and the areas they found challenging. We
also aimed to pinpoint unclear rules and mechanics that
were not yet fully developed within our VR experience. By
analyzing participants’ interactions, we sought to determine
which mechanics were enjoyable and which ones needed fine-
tuning to balance the experience and guide users towards
the intended learning objectives at an appropriate pace. Our
motivation behind this approach was to gain valuable insights
into the design of the VR experience and refine it accord-
ingly. To collect real-time data during this process, we used
physiological sensors as an additional evaluation tool.

In our methodology, we divided the VR experience into
three main scenes, each corresponding to a crucial task in a
typical solar energy system design project. These tasks are
vital for ensuring the efficiency, functionality and optimal
performance of the solar energy system. Here is a summary
of the tasks associated with each scene:

Scene 1: Site Selection - Users begin by choosing a location
for installing the solar energy system. Accurate site selection is
crucial for maximizing solar energy production, as it accounts
for factors such as available sunlight, local weather conditions
and physical constraints.

Scene 2: Power Room - In this scene, users explore the
power room, where they can interact with the essential system
components, such as batteries, inverters and charge controllers.
Users can use the VR controllers to grab and install the
components on a stand. Familiarizing themselves with these
components and understanding their roles is essential for
designing a functional solar energy system that meets energy
production and storage requirements.

Scene 3: Solar Panel Installation - The third scene takes
users to the house’s roof, where they can experiment with
the arrangement of solar panels on a stand. Users can add,
remove and adjust the tilt of the panels, observing the effects
of these changes on the solar power output and electricity
generation, as displayed by a gauge. This task is critical in
the design process, as optimizing the solar panel arrangement
can significantly impact the system’s overall efficiency and
energy production.

By incorporating these essential tasks into the VR experi-
ence, we wanted to give users gain hands-on experience and
develop a comprehensive understanding of the solar energy
systems design process.
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Fig. 3: Hardware setup and electrode placement: A wireless
Shimmer3 ECG system employing Bluetooth and WiFi for
heart rate data streaming. The Shimmer kit collected data using
ConsensysPRO software. The HP Reverb G2 Omnicept has
a built-in eye-tracking headset and other sensors that were
used to gather participants’ heart rate, cognitive load and eye-
tracking data.

In the following sections we will provide a detailed account
of the hardware and software used for developing and evalu-
ating the effectiveness our VR experience.

A. Hardware

Psychophysiological signals were collected using the Shim-
mer Sensing Kit [48], which featured a sampling rate of
204 Hz for measuring electrocardiogram (ECG). The ECG
electrodes were positioned on the chest as shown in Figure 3:
Right Arm (RA), Right Leg (RL), Left Arm (LA), Left Leg
(LL), and V1.

The virtual environment was displayed through the HP
Reverb G2 Omnicept [49], equipped with an integrated eye-
tracking system powered by Tobii. This Head Mounted Dis-
play (HMD) offers a field of view of 114 degrees, presenting
the scene with a resolution of 2160 x 2160 pixels per eye and
a combined resolution of 4320 x 2160 pixels. The headset also
features a refresh rate of 90 Hz. Furthermore, the integrated
sensors in the headset provide heart rate, cognitive load, and
eye-tracking data, enabling the tracking of user engagement
and the evaluation of user responses in real-time. These data
also facilitate a deeper understanding of user performance and
inform decision-making regarding the application’s design.

B. ECG Analysis

Heartbeats are decomposed into five main waves: P, Q, R,
S and T [50]. The R waves can be used from the electro-
cardiogram to determine the heart rate in beats per minute
(BPM). This wave is a part of the QRS complex, which is the
main spike shown in the ECG signals representing Ventricular
depolarization. Figure 4 shows the ECG Waveform and QRS
complex, which can be used to calculate the heartbeats from
the ECG signals.

The Shimmer software, known as ConsensysPRO, employs
an ECG-to-HR algorithm that allows users to access heart rate
data from the ECG sensor. ECG signals were concurrently
collected from participants via five disposable electrodes at-
tached to their skin. Data were streamed to ConsensysPRO
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Fig. 4: ECG signals that show QRS wave for calculating
heartbeats.

using Bluetooth and saved in a CSV file for each participant.
Additionally, a custom script based on the HP Omnicept SDK
was developed, capable of capturing heart rate, cognitive load,
and eye-tracking data. These data were stored in separate files
for each scene of the VR application and for each participant.
At this stage, a low-pass filter was applied to the ECG
signals to preserve crucial low-frequency components while
attenuating high-frequency noise.

Similarly, eye-tracking data were cleaned and pre-processed
using Python (3.9). Filtering the eye-tracking data from the
VR headset involved utilizing a confidence level of 1, which
refers to selecting only the most certain and reliable data for
analysis, ensuring the analyzed data is free from errors and
biases.

As the three scenes in the VR application have varying
durations and are task-based, blinking and the number of
fixations were normalized using the MinMaxScaler function.
This transformation adjusted the values to a range between
0 and 1, facilitating data comparison across different scenes
while also eliminating the effects of varying scene durations
or individual characteristics.

C. Virtual Reality Setup

The experiment was conducted in a VR lab, with par-
ticipants taking part voluntarily via an ethically approved
consent form that was approved by our university. Initially,
participants were briefed on the instructions and the purpose
of the experiment. Then, they were asked for permission to
place the ECG electrodes at the specified positions. Omnicept
Overlay was utilized to visualize heart rate and cognitive
load data concurrently. Open Broadcaster Software (OBS)
was employed to record and live-stream the VR application,
including the overlay screen, as shown in Figure 6-(B). Prior
to starting the VR application, calibration was carried out for
each participant to ensure optimal accuracy when performing
the eye-tracking measurements, as depicted in Figure 5.

Moreover, the 3D application was developed using the
Unity3D game engine [51], version 2020.3.25f1. C#, the
programming language, was used to create the application’s
scripts. OpenXR was used in this application to create VR
functionality such as grabbing and locomotion. The OpenXR
Plugin package was used for implementing all VR-specific
features. As previously mentioned, our application was divided
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Fig. 5: Before starting the VR application, participants per-
formed a calibration for the eye-tracking to ensure optimal
data accuracy. The procedure involved (a) adjusting the head
position, followed by (b) setting the interpupillary distance
(IPD) using the slider. Subsequently, (c) participants focused
on the center of the screen, and finally, (d) they were instructed
to follow the dot.

into the three main scenes shown in figure 7. Furthermore,
we implemented the VR application on a Lenovo laptop with
Windows 11 having a 64-bit operating system and an Intel
Core 17 with an NVIDIA GeForce RTX 3070 graphics card.

D. Finding the Average Brightness for the VR Scenes

Numerous studies have reported that eye-tracking data,
particularly pupil dilation, can be influenced by the luminance
of the environment. As a result, we analyzed the brightness
levels of the three scenes in the VR application. We recorded
a 30-second video for each scene and used Python code with
the OpenCV video processing library to extract frames from
the videos and convert them to grayscale. Subsequently, we
calculated the lightness value for each frame by determining
the mean pixel value of the grayscale frame, summing up all
pixel values, and dividing by the total pixel count. Finally,
we computed the average lightness values for the entire video
by adding all the lightness values and dividing by the total
number of frames.

E. Self-Report Questionnaire Design

Participants took part in the project voluntarily via ethically
approved consent using anonymous and confidential online
self-report questionnaires after experiencing the virtual reality
application and collecting the vital data using the headset
and the ECG sensor. They were also informed that they
were able to withdraw their participation from the project
at any time. The questionnaire consists of fourteen ques-
tions designed to measure the engagement and immersion
level of the participants in general and for each scene. The

(B)

Fig. 6: The experiment setup. (A) the user is wearing the ECG
sensor and the HP headset to perform the VR application. At
the same time, the application was live-streaming and recorded
on a laptop. (B) The screen of the OBS studio where the
overlay app was transparently appeared for casting the heart
rate and cognitive load data from the HP headset.

first question was whether the participants had a previous
experience with virtual reality. The second question asked
participants to rate how easy the application was from 1 to
5, where 1 (Extremely Difficult) and 5 (Extremely easy).
The third question was about asking the participants if they
felt engaged in the virtual environment or not. The fourth
question enabled the participants to select the scene they felt
more engaged in, in front of the house, the power room,
or the roof. In questions 5, 6 and 7, participants rated their
engagement level in each scene from 1 to 5, where 5 is
the highest engagement level. Questions 8 to 14 were taken
from the unified questionnaire on user experience (UX) in
an immersive virtual environment(IVEQ) proposed by [12]
related to measuring engagement and immersion sub-scales.

F. Participants

A total of 27 students from the University of Glasgow
volunteered to take part in our experiment. These participants
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Fig. 7: The three main scenes in the VR application: (A) Site Selection, where users are positioned in front of the house,
learning about system components before installing the solar energy system. (B) The Power Room, where users can grab and
place the system components on the designated stand. (C) Solar Power Installation, where users can add, remove, and adjust
the angle of the stand, observing changes in the power generated from the system via the gauge chart.

included 17 males and 10 females, ranging from 25 and 42
years old. All participants were healthy and did not take
medication for heart problems or mental diseases.

V. RESULTS
A. Self-Reported Questionnaire Results

Participants completed self-report questionnaires that as-
sessed their sense of immersion and engagement in each
scene of the application. Out of the 27 users, 12 (44% of
the participants) had previous experience with VR. On a
scale of 1 to 5, with 1 being extremely difficult and 5 being
extremely easy, 23 participants (85% of the population) rated
the application as easy to use, selecting scores of 4 and 5.
Meanwhile, 4 participants (15%) chose scores of 3 or below.

Regarding engagement in VR, 48% of participants strongly
agreed that they felt engaged, 44% agreed, 4% were neutral,
and 4% strongly disagreed. When asked which scene they felt
most engaged in, 4% chose the front of the house scene, 30%
chose the power room scene, and 67% chose the house roof
scene. Figure 8 illustrates participants’ responses when rating
their engagement level during the three scenes.

When asked if the visual aspects of the virtual environment
engaged them, 44% of participants rated the engagement as
extremely high (5), 41% chose 4, and 15% chose 3. In
terms of feeling compelled or motivated to move around
inside the virtual environment and complete the application,
41% of participants rated this aspect as extremely high (5).
Furthermore, 59% of participants rated their involvement in
the virtual environment as extremely high (5).

Regarding stimulation from the virtual environment, 52%
of participants selected an extremely high rating (5), while
only one participant (4%) chose a neutral rating (3). As for
becoming so involved in the virtual environment that they
were unaware of things happening around them, 33% rated
this aspect as extremely high (5) and 37% rated it as 4. When
asked if they felt physically present in the virtual environment,
30% rated this aspect as 5 and 52% rated it as 4. Finally, 33%
rated their involvement in the virtual environment as extremely
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Fig. 8: Figure illustrates the participants’ engagement levels
during the three scenes, with 5 representing extremely high
engagement and 1 representing extremely low engagement.

high (5) when it came to losing track of time, while 37% rated
it as 4.

B. Vital Signs and Eye Tracking Data

Based on the literature, we analysed the data representing
users’ engagement level, such as heart rate, cognitive load,
blinking rate, pupil dilation and the number of fixations. The
row data from the headset is interpreted through machine
learning to provide real-time insight.

1) Heart Rate: After analysing the heart rate data from the
ECG sensor and the sensor from the HP headset, we found that
the accuracy for the HP headset was 86.72% compared with
the ECG sensor. Therefore, we decided to rely on the ECG data
for analysing the heartbeat signals. Interestingly, the means of
the heart rate level were almost identical in the three scenes.
This suggests that there is no impact of the heart rate data in
measuring the level of engagement in a VR environment.

2) Cognitive Load: As anticipated, our results show that
the highest cognitive load was observed in Scene 1 due to the
amount of text included in this scene. Users in the first scene
had to read and comprehend the role of each component in
the solar energy system. This may indicate that the cognitive
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Fig. 9: The mean heart rate values during the three scenes.
The finding shows that there is no significant difference in the
ECG signals for the three scenes, which indicated that there
is no impact of the heart rate data in measuring the level of
engagement in virtual reality environment.

demands of processing textual information, particularly when
learning new concepts, are higher compared to the other tasks.

Scene 2 exhibited the lowest cognitive load values, as the
task involved grabbing and placing 3D objects, the system
components, on a stand. This suggests that the task in Scene 2
was more intuitive and relied primarily on users’ motor skills,
thus requiring less cognitive effort.

Scene 3 was intermediate, as it combined interactions with
3D objects and observation of the results generated by the
system. This could be interpreted as an indication that users
were engaged in both cognitive processing and motor skills,
balancing the overall cognitive load.

Figure 10 displays the box plot of cognitive load data across
the three scenes. These findings can inform future refinements
of the VR experience by optimizing the amount and presenta-
tion of information in each scene, balancing cognitive load and
ensuring that users remain engaged throughout the experience.
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Fig. 10: The cognitive load of the users during the three scenes
in the virtual reality application. The results showed that Scene
1 had the highest cognitive load while Scene 2 had the lowest.

3) Pupil Dilation: We examined the changes in pupil dila-
tion among participants across the three scenes. Our findings
show the greatest pupil dilation for participants in Scene 2,
the power room. As previously mentioned, pupil size tends to
decrease as the brightness of the visual environment increases.
Figure 11 illustrates the noticeable difference in average
brightness in Scene 2 compared to the other scenes, which
led to increased pupil size for participants.

The brightness level for Scenes 1 and 3 is nearly the same,
but the pupil size for participants in Scene 3 is larger than in
Scene 1. This discrepancy may be attributed to the difference
in the tasks’ difficulty and the nature of the environment, as
pupil size typically increases with a rise in mental activity and
engagement level.

These results suggest that the tasks in Scene 2 and Scene
3 could have been more cognitively engaging or demanding
for participants, while Scene 1, despite its textual information,
may not have induced the same level of mental effort. Addi-
tionally, the variations in brightness between scenes may have
influenced pupil dilation, further affecting the interpretation
of cognitive load or engagement. Future iterations of the VR
experience may benefit from taking these factors into account
to optimize the balance between engagement, cognitive load,
and visual design.
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Fig. 11: The pupil dilation for the participants within the
three scenes. Our results showed that the largest pupil dilation
occurred in scene 2 while the smallest dilation appeared in
scene 1. The red line represents the average brightness level
for each scene in 30 seconds. Scene 2 had the lowest brightness
level, while scenes 1 and 3 had close brightness levels.

4) Blinking Rate: Figure 12 illustrates the normalized
blinking rate for participants across the three scenes. We
normalized the data for the blinking rate in each scene to
account for the differences in duration between them. The
highest number of blinks occurred in Scene 2, followed by
Scene 3 and Scene 1, respectively.

The differences in blinking rates among the scenes could
suggest varying levels of cognitive load, attention, or visual
engagement for the participants. A higher blinking rate in
Scene 2 might indicate increased cognitive effort, possibly
due to the interaction with 3D objects or the lower brightness



level in that scene. Meanwhile, the lower blinking rates in
Scenes 1 and 3 might be indicative of reduced cognitive load or
increased focus on the tasks at hand. It is essential to consider
these factors when evaluating user engagement and cognitive
load in the VR experience. Further analysis of the relationship
between blinking rate and other physiological or behavioral
data might offer additional insights into the effectiveness of
each scene in promoting learning and engagement.
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Fig. 12: The difference in blinking among the three scenes.
The results showed that Scene 2 had the highest blinking rate,
while Scene 1 had the lowest.

5) Number of Fixations: Figure 13 presents the number of
fixations for participants during the three scenes. Our findings
reveal a significant difference in the number of fixations
across the scenes, with Scene 2 having the highest number
of fixations.

The higher number of fixations in Scene 2 could be in-
dicative of increased visual attention or cognitive effort, as
participants may have been more focused on manipulating and
placing the 3D objects in the power room. This could also
suggest that Scene 2 was more engaging or required more
intricate interactions, drawing the participants’ gaze more
frequently to various elements within the scene.

Conversely, the lower number of fixations in Scenes 1
and 3 might imply that participants found these scenes less
visually demanding or cognitively challenging. However, it is
essential to consider the context of the tasks and the nature
of the interactions within each scene when interpreting these
findings. A more detailed analysis of the spatial distribution
and duration of fixations, alongside other physiological or
behavioral data, could offer a deeper understanding of the
participants’ engagement, learning, and cognitive load during
each scene in the VR experience.
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Fig. 13: The number of fixations during the three scenes. Scene
2 had the highest fixations number, while Scene 1 had the
lowest.

Finally, table I provides a summary of the mean and
standard deviation values for all parameters across the three
scenes in the VR application.

TABLE I: Summary of the Collected Data Analysis

| Scene# | Mean | SD
Heart Rate 1 88.15 16.28
88.06 16.07
3 88.04 13.94
Cognitive Load 1 0.582 0.132
2 0.513 0.163
3 0.567 0.135
Pupil Dilation 1 3.260 0.717
4314 0.929
3 3.636 0.857
Blinking Rate 1 0.20 0.18
2 0.36 0.28
3 0.34 0.20
Number of Fixations 1 0.24 0.20
2 0.40 0.25
3 0.38 0.20

VI. DISCUSSION

Human-computer interaction innovations depend heavily
on understanding users’ mental states. This study investigated
UX during a 3D immersive virtual environment using an HP
Omnicept headset and the ECG sensor on a solar energy
systems design task. We investigated whether eye tracking,
heart rate and cognitive load data would be associated with
increasing engagement and cognitive level in each scene of the
VR application. We also formulated three RQ’s and hypothesis
at the start of the experiment around these areas and we will
now discuss our findings related to these hypotheses.



We hypothesised that diverse emotional responses within the
three scenes would have produced various attention patterns.
Results from our study showed that the user experience and
engagement level could be estimated by analysing eye-tracking
data, as the eyes can reveal much more about a person’s
emotions than most people realise and are a slightly more
enigmatic indicator of their emotions.

Despite the survey showing greater engagement in a specific
scene, there is no difference in the heart rate data. The
participants in the three scenes had almost equal heart rate
levels, and there was no significant impact from the ECG
signals related to the engagement level. The VR game was
likely immersive and engaging for all participants during the
three scenes. Our finding with the ECG sensor contradicts
what was shown by the study of Murphy and Higgins in [52].
They used ECG and EEG sensors to assess user engagement
in an immersive virtual reality environment. Their findings
showed that the heart rate is a good indicator for measuring
the users’ engagement level in virtual reality.

It was hypothesised that utilising an approach that increased
cognitive load when teaching a topic to students would have an
adverse effect on their performance [53]. A task becomes more
challenging and places a heavier intrinsic load on working
memory when it has a greater number of interconnected
informational components. The cognitive load in scene 1 is
higher than in scenes 2 and 3. This was to be expected because
participants needed to read and understand the role of the solar
energy system components, as there is a lot of text in this
scene.

Psychologists have long been curious about how changes in
pupil size and mental activity relate to one another [54]. Also,
mental activities are closely connected with problem difficulty,
which affects pupil response [31] [55]. We predicted that
pupil dilation would be affected by the users’ engagement and
performance in the VR application in different scenes. Pupil
diameter is a complicated parameter in eye-tracking because
it is affected by the brightness of the visual stimulation [56]
and cognitive load [57]. Our results showed increased pupil
dilation in scene 2, which had a lower average brightness level
than in scenes 1 and 3. This was aligned with the literature
that the pupil size and brightness of the visual environment are
found to be inversely proportional [58]. This finding suggests
the importance of considering the effect of visual brightness
on pupil size while reliably measuring the user experience in
virtual reality applications. Moreover, when comparing scenes
1 and 3, there is no significant difference in the average
brightness level between them, but the pupil dilation in scene
3 is larger than in scene 1. This indicated the relationship
between pupil dilation and task difficulty [59], increasing the
level of interest and arousal [60] and users’ attention [61].

As we mentioned earlier, scenes 1 and scene 3 have different
physical efforts. In scene 1, users read and understand the role
of the solar energy system components by clicking on buttons
and demonstrating the information. While in scene 3, users
interact more with the 3D objects as they grab and place the
solar panels and try different situations of the system. This
physical activity has an impact on pupil dilation. Our results
revealed that the size of the pupil increased in response to

physical exertion like one of a previous study indicated that
pupil size increased during physical effort [62].

Higher blink rates are frequently observed in insight
problem-solving situations and creativity performance [63]
[64]. However, a previous study observed the relationship be-
tween the blinking rate and visual attention [34]. The result of
this study indicated that the blinking rate increases when visual
attention is engaging and vice versa. Our findings indicated
the relation between the blinking rate and task difficulty. The
blinking rate in scene 1 was lower than in scenes 2 and 3, as
the task in scene 1 was very easy to perform. This aligned with
the finding from the study by Tanaka and Yamaoka [36], which
shows that the blinking rate with the difficult task was higher
than for the easy task. In addition, the blinking rate is affected
by the nature of the task. Users experienced different types of
tasks during the three scenes, which produced different levels
of blinking rates. Also, endogenous blinks are reduced when
a task demands more concentration [65], which was clearly
obvious with the blinking rate in scene 1. The amount of
text in scene 1 reduced the blinking rate of the participants
as they had to be focused on comprehending the presented
information. This finding matches the literature that indicated
that the blinking rate reduced during reading [35].

The relationship between blink rate and cognitive load is
often found to be inverse. The fundamental hypothesis from
earlier studies is that when cognitive load is at its lowest,
we blink more frequently because we believe we can blink
without missing anything. Moreover, blinking inhibition may
be an adaptive strategy that shields delicate cognitive processes
from disruption when a mental load is raised [66].

The number of fixations in eye-tracking data can provide
insights into several aspects of visual processing, attention, and
cognitive engagement. The number of fixations might indicate
which parts of a visual environment appeal to the user. A scene
with a higher fixation number may show that the user finds
that area more visually attractive or interesting. The number
of fixations may also be a good indicator of the difficulty of
a task or stimuli. As we expect that a user moves his eyes
to absorb information and make sense of the visual input.
Scene 2 had the highest number of fixations which suggests
the high level of users’ interest in this scene. Increasing the
number of fixations in scene 3 may suggest that the user spent
more time processing and integrating information from various
scene areas. We assumed that participants would look more at
the solar energy power, the output, of the system they already
built simultaneously with trying a new design. This process
attracted users’ attention and motivated them to try different
design scenarios.

A high number of fixations, which occur when a user
revisits the same place or object repeatedly, may indicate a
high level of interest. That might, however, also be a sign of
understanding issues [67]. It’s crucial to know that fixations
number may not always give a full understanding of visual pro-
cessing. Other eye-tracking elements, such as fixation duration,
saccades or sensory data, should be considered to interpret the
data precisely. It is important to note that eye-tracking research
is a complicated field, and analysing data should be done in
conjunction with other relevant measures.



Our findings indicated the importance of capturing several
physiological data for monitoring the user experience. Data
from eye tracking can be highly helpful in testing the usability
and user experience of any VR game. The capacity of eye
tracking to detect variations in involvement during particular
tasks enables the researcher to link particular contexts to
particular outcomes and demonstrate that engagement was
the mediating factor [59]. Researchers can also learn more
about the motivations behind users’ responses and behaviours
as they engage with photorealistic items, environments, and
pretty much any stimuli by submerging research participants
in a virtual reality world.

VII. SUMMARY

We summarise our findings and illustrate how our results
are aligned with our original research hypotheses (H).

HI1: We hypothesized that diverse emotional responses
within the three scenes would produce various attention pat-
terns. Results from our study showed that the user experience
and engagement level could be estimated by analyzing eye-
tracking data, as the eyes can reveal much more about a
person’s emotions than most people realize and are a slightly
more enigmatic indicator of their emotions. The number of
fixations might indicate which parts of a visual environment
appeal to the user. Scene 2 had the highest number of fixations,
which suggests a high level of users’ interest in this scene.
Increasing the number of fixations in scene 3 may suggest
that the user spent more time processing and integrating
information from various scene areas.

H2: We predicted that pupil dilation would be affected by
the users’ engagement and performance in the VR application
in different scenes. Our results showed increased pupil dilation
in scene 2, which had a lower average brightness level than
in scenes 1 and 3. This was aligned with the literature that
the pupil size and brightness of the visual environment are
found to be inversely proportional. This finding suggests the
importance of considering the effect of visual brightness on
pupil size while reliably measuring the user experience in
virtual reality applications. Moreover, when comparing scenes
1 and 3, there is no significant difference in the average
brightness level between them, but the pupil dilation in scene
3 is larger than in scene 1. This indicated the relationship
between pupil dilation and task difficulty, increasing the level
of interest and arousal and users’ attention.

H3: It was hypothesized that utilizing an approach that
increased cognitive load when teaching a topic to students
would have an adverse effect on their performance. Our results
showed that cognitive load in scene 1 is higher than in scenes
2 and 3. This was to be expected because participants needed
to read and understand the role of the solar energy system
components, as there is a lot of text in this scene. Our
findings indicated the relation between the blinking rate and
task difficulty. The blinking rate in scene 1 was lower than in
scenes 2 and 3, as the task in scene 1 was very easy to perform.
This aligned with the finding from the study by Tanaka and
Yamaoka, which shows that the blinking rate with the difficult
task was higher than for the easy task.

VIII. CONCLUSIONS

This paper highlights how combining multimodal data
channels, which include a variety of objective and subjective
metrics, can offer insights into a more comprehensive under-
standing of learner engagement and evaluate user experience.
We compared the captured data in each scene of a VR solar
energy systems design task to investigate learner engagement
levels. We found that heart rate data do not significantly
represent users’ engagement. Our findings also showed that
analysing reliable eye-tracking and vital signs data allows
designers and developers to understand users better and design
intuitive applications that meet their expectations. The impact
of these findings is multifaceted, as they contribute to under-
standing user engagement and experience in immersive virtual
environments. By highlighting the importance of multimodal
data channels and revealing the limitations of heart rate data
in representing user engagement, our paper offers valuable
insights for developers, designers and educators.
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