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Abstract

This paper investigates the concept of frequency in arbitrary multi-phase systems based on geometrical principles. The proposed

approach relies on state-of-the-art mathematical techniques such as differential geometry and geometric algebra in $\bm{n}$
dimensions. By analyzing the generalized Frénet-Serret frame, we derive how the Darboux bivector can accurately express the

rotation of this frame as a rigid body in space. It is shown how the concept of frequency in power grids can be intimately

linked to spatial rotations. New insights are presented based on the comparison with other recently published works. It is also

concluded that the application to single-phase systems cannot always be accommodated by spatial curves. Several examples are

used to illustrate the findings of this paper.
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Frequency Generalization via Darboux Bivector and
Electrical Curves in Multi-Phase Power Systems

Francisco G. Montoya, Jorge Ventura, Francisco Arrabal-Campos, Alfredo Alcayde and Ahmad H. Eid

Abstract—This paper investigates the concept of frequency in
arbitrary multi-phase systems based on geometrical principles.
The proposed approach relies on state-of-the-art mathematical
techniques such as differential geometry and geometric algebra in
n dimensions. By analyzing the generalized Frénet-Serret frame,
we derive how the Darboux bivector can accurately express the
rotation of this frame as a rigid body in space. It is shown
how the concept of frequency in power grids can be intimately
linked to spatial rotations. New insights are presented based on
the comparison with other recently published works. It is also
concluded that the application to single-phase systems cannot
always be accommodated by spatial curves. Several examples
are used to illustrate the findings of this paper.

Index Terms—Geometric Electricity, Geometric Algebra, Dif-
ferential Geometry, Frequency, Multi-phase Systems, Electric
Curves.

I. INTRODUCTION

THE study of power systems is crucial for the proper
management and operation of the power grid. In this

sense, voltage or frequency control plays a fundamental role
in its stability [1]. The use of appropriate mathematical tools
is very important for this task. However, engineers end up
overwhelmed by the extensive and heterogeneous number of
them to tackle the analysis process with certain guarantees. The
not-so-exhaustive list includes complex numbers and phasors
[2], quaternions [3], matrices [4], tensors [5] or differential
forms [6]. In addition, it is common to find a combination of
them, which unnecessarily complicates the analysis or causes it
to be difficult to understand. In this sense, Geometric Algebra
(GA) provides a unifying vision as a universal framework for
engineering and physics [7], [8]. It not only offers a unique
framework for the study of electrical systems [9]–[12] but
also enables the study of other fields (such as differential
geometry, DG) from a multidimensional and comprehensive
perspective [13]. However, its application is rather limited in
the engineering field, so more work is needed to highlight the
benefits of the GA framework.

As a result of this unifying view, it is possible to address
outstanding challenges with greater consistency. For example,
there is an abundance of literature studying transient events
in dynamic conditions, where the complexity of accurate
estimations of the grid frequency is highlighted [14]–[16].
Recently, this issue has been emphasized in two papers [17],
[18] where the role of differential geometry and geometric
algebra in the study of electrical systems and circuits is
underlined. In [17] an interesting geometrical interpretation
of the frequency of electrical circuits is established through
the definition of a multivector that has a symmetrical and an
antisymmetrical part. This multivector is obtained from the
study of spatial curves representing the magnetic flux of the
different phases of a circuit. Although this work envisions the
possibility of working with arbitrary dimensions, this aspect is
not explored in depth. Interestingly, in [18] the promising

GA line is abandoned in favour of an approach focused
exclusively on DG. It proposes the use of the Frénet-Serret
frame and intrinsic properties of curves such as the curvature
and torsion invariants. The concept of geometrical frequency
and its relation to current and voltage derivatives is further
elaborated. However, certain aspects need deeper investigations
for clarity. For example, the extension to systems of more
than three phases (dimensions) is not presented (although
it is outlined in [17]). It could be of interest in important
applications such as multi-phase electrical machines [19] and
power converters [20]. Moreover, the interpretation provided
for single-phase systems and DC suffers from some hard-to-
fit aspects. From a physical point of view, there is no flux
to rely on in a DC or a purely resistive circuit. Therefore,
building a spatial curve and finding its intrinsic properties is
not completely justified.

In this work, we exploit the application of geometric algebra
and differential geometry to electrical engineering and power
systems by characterizing the voltage (current) of a multi-phase
AC system using spatial curves in n dimensions. We’ll refer to
them as electrical curves (EC). This approach allows the study
of important properties in multi-phase power systems from a
purely geometric point of view. In particular, the definition of
frequency extended to arbitrary n phases is provided. This is a
significant breakthrough for multi-phase systems, where none
of the individual phases can faithfully characterize the entire
system and its properties.

Similar to [12], the use of time derivatives plays a funda-
mental role in determining the underlying properties of the
electrical curves, and hence, of the electrical systems.

A. Contributions

The main contributions and novelties of this paper are based
on the following aspects:
• Application of geometric algebra and differential geometry

to extend the concept of geometric frequency for arbitrary
multi-phase systems.

• Introduction of the Darboux bivector (DB) for electrical
curves. It generalizes the plane of rotation of the Frénet-
Serret frame for n dimensions and links the angular
velocity to the generalized geometric frequency. The
derivative of DB also generalizes the concept of RoCoF.

• Introduction of the scaled curvatures.
• Introduction of a time-dependent geometric rotor function
R(t) to transform phase coordinates to constant Frénet-
Serret frame coordinates.

• Determination of restrictions for the validity of the method
in single-phase and DC circuits.

• Unified mathematical formulation for electrical engineer-
ing and differential geometry concepts based on the use
of geometric algebra that improves understanding at the
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educational level through visualization techniques widely
used in other engineering disciplines.

B. Outline
The outline of the paper is as follows. Section II presents

the basic concepts of geometric algebra and its application
to classical differential geometry. The concepts of bivector
and geometric rotor are introduced to model rotations in n-
dimensional spaces without the use of matrices. Section III
discusses the application of the developed model in Section
II to power systems. In this context, the Darboux bivector is
introduced to represent the instantaneous plane of rotation of the
Frénet-Serret frame. Section IV presents the main analytical
derivations for sinusoidal AC systems. Some examples are
provided in section V to highlight the benefits and validate the
proposed approach. Section VI draws some conclusions and
Section VII outlines future work.

II. DIFFERENTIAL GEOMETRY IN THE GEOMETRIC
ALGEBRA FORMALISM

Differential geometry is the study of the geometry of
manifolds. It is widely used today in many disciplines, including
architecture, computer vision, computer graphics, engineering,
and physics. Historically, techniques based on linear algebra
and vector calculus have been commonly deployed to apply
in DG. Interestingly enough, large parts of vector calculus are
confined to R3 due to the extensive use of the cross product.
However, other formalisms like tensors and differential forms
must be used to extend to higher dimensions. In contrast, GA
provides an at once simpler and more powerful way to deal with
these issues because it enables the development of several new
methods for coordinate-free DG on manifolds of any dimension.
Is the authors’ belief that GA will make differential geometry
more accessible to readers who have at least completed a basic
course in linear algebra.

A. Geometric Algebra basics
GA is “the new kid on the block” in a sense. Nevertheless,

it is merely a powerful mathematical method that has been
attracting the attention of researchers in recent years. Its
application to general problems in electrical engineering is
gaining increasing acceptance. However, its use is still limited,
perhaps because of the traditional avoidance of change that any
new methodology entails. In this section, a quick overview is
given of the most basic foundations that allow its elementary
knowledge and the application to the developments of this
work. The reader is referred to references [7] and [13] for
further details.

The process starts with the definition of a Euclidean
orthonormal basis in Rn

σ = {σ1,σ2, . . . ,σn} (1)

with basic properties

σi · σi = 1 for i = 1, . . . , n

σi · σj = 0 for i 6= j
(2)

Any vector v of this space can be considered as a linear
combination of the given orthonormal basis σ

v =

n∑
i=1

viσi = v1σ1 + . . .+ vnσn (3)

Figure 1. Representation of a simple bivector generated by vector u and
v. Note that u ∧ v has a direction (the same as the generated plane), sense
(indicated by the arrow, from u to v) and magnitude (the area of the hatched
rectangle).

Note that, so far, we have only used simple and widely known
concepts in linear algebra. The relevant parts entail the use
of Grassmann’s exterior algebra [21] and Clifford’s geometric
algebra [22]. The former defines an axiomatic bilinear operation
for vectors:

v ∧ v = 0 (4)

i.e., the wedge or exterior product of a vector by itself is null.
This property automatically implies that the wedge product
is an anticonmutative operation, i.e., given two non-collinear
vectors u and v, the following is satisfied

u ∧ v = −v ∧ u (5)

The wedge product of two vectors builds up a new geometric
entity: the (simple) bivector u∧v. It represents a 2-dimensional
object (a plane) with direction, sense, and magnitude (see
Fig. 1). All bivectors in 2D and 3D are simple, i.e., they
are always a product of 2 vectors. This is not the case for
higher dimensions [23], where a bivector is the sum of simple
bivectors. Moreover, by wedging more vectors together, new
high-dimensional objects (k-vectors) can be constructed. For
example, in a 4-dimensional space, the wedge product of
4 different non-collinear vectors gives a quadvector, i.e., a
hypervolume object.

Finally, the geometric product1 is defined as an invertible
bilinear operation

uv = u · v + u ∧ v (6)

which is the sum of the inner and the wedge product. Using
properties (2) and (4), the geometric product among basis
vectors fulfills

1Although Clifford made great contributions to geometric algebra, the
geometric product has been erroneously attributed to him [24]. However, it
was Marcel Riesz who first proposed it formally.
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Figure 2. Determination of arclength s in a 2D space curve v. For parameters
t = a and t = b, two points Pa and Pb can be mapped on the curve. The
length between these points is s and it can be determined using the derivative
v′, i.e. when Pb approaches Pa.

σ2
i = σiσi = σi · σi = 1 for i = 1, . . . , n

σiσj = σij = −σji = σi ∧ σj for i 6= j

(σiσj)
2 = σiσjσiσj = −σiσiσjσj = −1

(7)

In GA, different k-vectors can be added up to form a
multivector M . The norm of a multivector is:

M =
√
〈M †M〉0 (8)

where M † is the reverse operation and the operator 〈·〉0
refers to the scalar part of a multivector (see [7] for more
details). Note that bold capital letters are used for multivectors
(including bivectors) and bold small letters for vectors. Scalars
are represented by non-bold letters.

B. Differential Geometry for space curves using GA

The classical study of space curves is accomplished by
means of DG. For this purpose, one usually defines an n-
dimensional curve in parametric form within a given interval.
Mathematically, it is denoted as v : t ∈ [a, b]→ Rn. Note that
the vector given in (3), with vi = vi(t) being dependent on the
parameter t, can be used for the representation of the curve v
respect to the fixed orthonormal frame σ. The length between
two arbitrary points of this curve, Pa and Pb (see Fig. 2 for a
simple case with n = 2), can be computed as

s =

∫ b

a

‖v′(t)‖dt (9)

where

v′(t) =
dv(t)

dt
=

n∑
i=1

v′i(t)σi (10)

is the first derivative of the curve v respect to parameter t
(also known as speed) and

Figure 3. Tangent vector u to curve v at point P . This vector has a unitary
length by definition.

‖v′‖2 = v′2 = v′ · v′ =

n∑
i=1

v′2i (11)

is the norm of v′. From now on, parameter t will be omitted
unless otherwise stated.

1) Arc-Length reparametrization and the role of derivatives:
A very common practice in DG is to perform a reparametriza-
tion of the curve as a function of the arclength s. The rationale
behind this change is that the new speed is always one, i.e.,
‖v̇(s)‖ = 1. In what follows, derivation with respect to
arclength s will be denoted by an overdot.

If the chain rule is applied to the first-time derivative of the
curve, we obtain

v′ =
dv

dt
=
dv

ds

ds

dt
= v̇s′

v̇ =
v′

s′
=

v′

‖v′‖
= u

(12)

with s′ = v′ = ‖v′‖ by virtue of (9). Higher order derivates
can be computed but with a much more intricate algebraic
structure than (12) as shown in [25].
It is interesting to note that vector u is unitary by definition and
tangent to the curve by construction (see Fig. 3). Certainly, this
vector can change direction but not magnitude along the curve.
This fact has an immediate consequence, namely, it is possible
to find another special vector that is always orthogonal to u.
Multiplying the second expression in (12) by u and taking the
derivative of the result, we get

d(uu)

dt
= u′u+ uu′ = 2u′ · u = 0 (13)

where the property u′ · u = 1
2 (u′u+ uu′) has been used. As

a consequence, the tangent vector and its first derivative are
always orthogonal

u · u′ = u · u̇ = 0 (14)

This is equivalent to say that a simple bivector Ω1 exists [26],
such that

u′ = u ·Ω1 (15)

with
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Figure 4. The dot product of a generic vector v and a simple bivector Ω.
The result is a vector that lies in the plane defined by Ω and is orthogonal to
v‖ (the projection of v onto Ω). Left and right multiplication give opposite
results.

Ω1 = uu′ = u ∧ u′ =
v′ ∧ v′′

v′2
= (v′)−1 ∧ v′′ (16)

The simple bivector Ω1 will be revealed as a pivotal element
later on. Expression (15) has a clear interpretation. It is possible
to obtain the time derivative of the unit tangent vector u by
performing the dot product of this vector and a special bivector
Ω1. Geometrically, equation (15) represents the orthogonal
projection onto the plane defined by the bivector Ω1 followed
by a rotation of 90º in that plane (see Fig. 4). Note that, in this
particular case, u is already contained in the plane represented
by the bivector Ω1. Note also that expressions (15) and (16)
are valid for arbitrary dimensions.

2) Local Orthogonal Frames and Scaled Curvatures:
Attached to the curve v, a moving orthogonal frame
{u1,u1, . . . ,um} with m ≤ n and its corresponding orthonor-
mal frame {e1, e1, . . . , em} that travels with the curve are
defined. It is known as the generalized Frénet-Serret frame or
FS for short.
By choosing e1 = u, the FS is called mobile or comoving
frame. The remaining basis vectors are readily obtained by
application of an orthogonalization method (such as the Gram-
Schmidt process) to the n derivatives of v with respect to
arc-length, i.e., {v̇, v̈, . . . , ∂ns v} provided that they are linearly
independent. However, this is not always the case, resulting
in m ≤ n elements. It is interesting to recall the relationship
between the FS vectors and their first arc-length derivative.
Assuming m = n, it can be expressed through the following
generalized Frénet-Serret equations

ė1 = κ1e2

ė2 = −κ1e1 + κ2e3

ė3 = −κ2e2 + κ3e4

. . .

ėn = −κn−1en−1

(17)

where the so-called curvatures κi can be obtained as [27]

κi = ėi · ei+1 =
‖ui+1‖
‖ui‖

(18)

According to the chain rule presented in (12), the first time-
and arc-length derivatives are related by e′i = v′ėi, which leads
to the following time-dependant Frénet-Serret equations

e′1 = k1e2

e′2 = −k1e1 + k2e3

e′3 = −k2e2 + k3e4

. . .

e′n = −kn−1en−1

(19)

where the values ki are known as scaled curvatures,

ki = v′κi = e′i · ei+1 (20)

Scaled curvatures ki are preferred over conventional curva-
tures κi for application in electrical engineering since electrical
curves are ultimately dependent on the time parameter t.

3) Darboux Blades: One of the main contributions of this
work is the introduction of the Darboux blades in the context
of electrical engineering. They are 2D objects in a high-
dimensional Euclidean space that represent planes of rotation.
Using the generalized FS frame and scaled curvatures ki, the
simple bivector in (16) can be generalized into a set of m− 1
simple bivectors

Ω1 = k1e1 ∧ e2 = k1e1,2

Ω2 = k2e2 ∧ e3 = k2e2,3
...

Ωm−1 = km−1em−1 ∧ em = km−1em−1,m

(21)

Clearly, the norm for every Darboux simple bivector is
‖Ωi‖ = ki. By virtue of (19) and (21), the following can be
proved

e′i = ei ·Ω (22)

Similar to the discussion in chapter 6 of [7], Ωi can by
made into a single bivector by simple summation

Ω =

m∑
i=1

Ωi =

m−1∑
i=1

kiei,i+1 =
1

2

m∑
i=1

ei ∧ e′i

= v′
m−1∑
i=1

u−1i ∧ ui+1

(23)

with norm given by

‖Ω‖ =
√
〈Ω†Ω〉0 =

√√√√m−1∑
i=1

k2i (24)

For the special case of a 3-dimensional space, it reduces
to ‖Ω‖ =

√
k21 + k22 . Expressions in Eq. (21) account for

orthogonal angular velocity bivectors of the moving FS frame,
i.e., each Ωi represents an instantaneous plane of rotation in
n dimensions. The bivector Ω is called the Darboux Bivector
(DB) because it directly generalizes the classical Darboux
vector to higher dimensions. Moreover, the set of Darboux
simple bivectors, and by extension their sum (23), summarizes
the geometrical properties of a curve in a single convenient
quantity.

Note that while each Ωi is a simple bivector that represents
a plane, the sum Ω is generally not a simple bivector, except in
2 and 3-dimensions. The interpretation for Ω is that it accounts
for the instantaneous angular speed of the FS frame.
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Figure 5. Frénet-Serret frame for a three-dimensional system travelling along an electrical curve (left). At instant t0 the associated rotor R(t0) rotates the
fixed basis σ to FS frame e(t0) (middle). The same curve for time t1 and associated rotor R(t1) (right) .

The rationale for this interpretation stems from considering
the rotation of the fixed basis vectors σi to match the mobile
FS basis vectors ei (see figure 5). The rotational motion of
these vectors is determined by a time-varying geometric rotor
R(t), such that

ei(t) = R(t)σiR
†(t) (25)

where RR† = RR−1 = 1.
By performing the derivative of equation (25) with respect

to time and after some algebraic manipulations, the following
expression is obtained

Ω = 2R′R−1 = −Ω† (26)

Note that for 2D and 3D, both Ω and R are always bivectors
[28]. In higher dimensions, R can include higher even grade
elements, however, Ω remains as a bivector. Solving equation
(26) is equivalent to solving the system of equations in (17).

Using the rotor R as a linear transformation, the spatial
curve described by vector v can be converted into a general
piecewise straight line vFS in the mobile reference frame. This
is quite similar to a DC quantity as highlighted by Milano in
[29]. This new transformation should be considered equivalent
to decoupling the variation in frequency from the amplitude
of the vector signal involved. This geometric technique has
recently been applied successfully by the authors in [30] and it
deserves further exploration in future works to test a reduction
of the complexity in the control loop of the system by switching
from the fixed reference frame to the moving one.

III. GEOMETRY IN MULTI-PHASE POWER SYSTEMS

In this section, we present the main ideas that relate to the
geometrical aspects associated with space curves as described
in the previous section with the notion of vector representation
in power systems. Specifically, we are mostly interested in the
interpretation of frequency. Interestingly, even though we all
have a more or less clear notion associated with the repetition of
something in time, nowadays the scientific community still does
not agree when it comes to instantaneous frequency (IF), that is
to say, there is no clear agreement to define what the frequency
means for a specific instant of time [14], [31]. From the authors’
point of view, perhaps the geometric association proposed in
this paper can shed light on the problem. The concept of angular
velocity, which is widely used in mechanical systems, does
have an immediate physical translation: it is a measurement of
rotation rate referring to how fast an object rotates, i.e. how

fast the angular position or orientation of an object changes
with time. This is the case of the moving FS frame previously
presented. It rotates in space according to the DB, encoding the
plane/s of rotation and angular speed. The importance of this
bivector is highlighted in the remainder of the text. We also
emphasize discussing a comprehensive concept of frequency,
not limited to a specific electrical single-phase, but linked to
the multi-phase system as a whole. Additionally, the concept
of Rate of Change of Frequency (RoCoF) is also linked to the
derivative of DB as a measure of the available inertia in the
system [31].

A. Geometric voltage in multi-phase circuits and angular
frequency as intrinsic property

Let’s consider the voltages (or currents) of a multi-phase
power system with a number of phases n ≥ 2 (see next section
for the special case n = 1). They can be arranged to form a
vector describing a curve in space, known as electrical curve
(EC). For simplicity, we will focus on voltage, although the
same can be applied to the current. The geometric voltage is
defined as in equation (3), where the coordinates vi can be
line-to-line (LL), line-to-neutral (LN) or line-to-virtual neutral
(LVN) voltages,

v = v1σ1 + v2σ2 + . . .+ vnσn (27)

Note that n can be the number of phases or wires, depending
on the specific application. By analysing the intrinsic properties
of the curve v, i.e., the scaled curvatures ki and the Darboux
Bivector Ω, a general concept of frequency can be established.
One of the main results of this work is to propose that the
angular frequency of the multi-phase system as a whole is
encoded in the above-mentioned intrinsic properties ki and
Ω. The coordinates of DB also provide information about the
rotation in specific planes. Fig. 6 shows a diagram with the
main parts of this process.

B. Special cases: DC and single-phase circuits
The study of single-phase or DC systems through differential

geometry presents a severe drawback for natural reasons: in one
dimension there are no associated curvatures, and therefore,
there is no way to compute the DB. By virtue of (3), the
geometric voltage is

v = vσ1 (28)
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Figure 6. Flowchart of the proposed method for computation of the Darboux
Bivector and scaled curvatures.

Figure 7. Complex representation of a harmonic voltage using the Hilbert
Transform. The curvature κ is not constant for a constant frequency signal.

A one-dimensional manifold does not have any intrinsic
curvature at all. It is always locally isometric to a straight,
“flat” line. Intrinsic curvature only makes sense in 2 or more
dimensions. Thus, unless additional assumptions are made,
IF computation is not feasible in single-phase or DC power
systems. To overcome this issue in AC systems, an additional
dimension is commonly added through the use of quadrature
methods and complex algebra. For example, in [18] the Hilbert
transform (HT) is employed to create an analytic signal.
However, this only works well for purely sinusoidal systems,
but not for non-sinusoidal ones [32]. As an example, consider
the harmonic voltage v(t) = cosωt + cos 2ωt with constant
angular frequency ω. Fig. 7 shows the curve associated with
the complex analytic signal v̄(t) = v(t) + jH[v(t)], where H
is the HT operator. By simple inspection, it is evident that the
associated curvature is not constant, in contrast to the frequency
of the system. This appears to be a disputable flaw in [18].
The problem is that it is not possible to find the right IF value
of a signal without prior information about its structure [33],
so IF becomes meaningless. A possible solution for this issue
is to use hypercomplex representation as presented in [34].

IV. ANALYTICAL FORMULATION FOR SINUSOIDAL SUPPLY

In this section, the main analytical derivations for n-phase
systems are presented for sinusoidal AC systems. Due to their
significance, three-phase systems are included as a particular
case. The software Mathematica and WolframAlpha have been
used for symbolic computation, along with the GeometricAl-
gebra FulcrumLib library [35] which has greatly simplified the
calculations. For more elaborated voltages, including harmonics
or transients, the analytical solution becomes more intricate
and tedious, so it adds no value to disclose it here. Numerical
results for realistic cases will be presented in section V.

A. Three-phase AC system
This section presents the case of a three-phase AC system.

It can be 4- or 3-wire depending on the presence of a neutral
conductor or not. This circumstance enables the definition of
either a set of 4 LL voltages (more specifically, wire-to-wire) or
3 line-to-common-wire voltages (referred to the same conductor,
usually the neutral wire or n). In the most general case, the
voltages referred to the neutral wire need not add up to zero, i.e.
van + vbn + vcn 6= 0. In contrast, line voltages always add up
to zero because of KVL, i.e., vab+ vbc+ vcn+ vna = 0. Some
authors make use of the so-called virtual neutral N to form
another set of zero-sum voltages vaN + vbN + vcN + vnN =
0. Regardless of the chosen strategy, it will be shown that
the results remain similar at the geometrical level since the
resulting curve is confined to a three-dimensional space. For
the particular case of 3 wires, it will be shown in section IV-C
that a reduction of one dimension can be carried out because
of KVL.

Here, sinusoidal AC systems with symmetrical and non-
symmetrical voltages will be analyzed. We select the phase-to-
neutral voltages

va(t) =
√

2Va cos(ωt)

vb(t) =
√

2Vb cos(ωt+ ϕb)

vc(t) =
√

2Vc cos(ωt+ ϕc)

(29)

where ϕa = 0 for simplicity. According to (3), the voltage
vector is

v = vaσ1 + vbσ2 + vcσ3
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1) Symmetrical voltage: For the symmetric and positive
sequence case, i.e., Va = Vb = Vc = V and ϕb = −ϕc = − 2π

3 ,
the resulting curve is the well-known circle in 3D space. Of
course, the angular frequency ω is constant. For this particular
case, it suffices the application of Eq. (16), resulting in the
following simple DB

Ω =
ω√
3

(σ12 + σ23 + σ31)

with ‖Ω‖ = ω. As explained in previous sections, Ω encodes
the plane of rotation of the FS along the curve, while ‖Ω‖
is the angular velocity, which coincides with the electrical
angular frequency for this particular case. The application of
Gram-Schmidt procedure and equation (22) provide the unit
vectors e1 and e2 that span the plane of rotation

e1 = −
√

2

3

[
sin(ωt)σ1 + sin

(
ωt− 2π

3

)
σ2 + sin

(
ωt+ 2π

3

)
σ3

]
e2 = −

√
2

3

[
cos(ωt)σ1 + cos

(
ωt− 2π

3

)
σ2 + cos

(
ωt+ 2π

3

)
σ3

]
e′1 = ωe2

e′2 = −ωe1
Note also that the DB can be expressed in the FS frame as

Ω = k1e12 = ωe12 as stated in equation (23), i.e., it rotates
(but not twist) clockwise in the plane of the circle.

The case of negative sequence is straightforward. Changing
roles for vbc and vca in (29), the new DB results in Ω− = −Ω.
It is the same curve with the same angular velocity and the
same frequency but rotating counterclockwise, i.e., Ω = ωe21.
Note that for a zero sequence system, Ω = 0, i.e., a straight
line is obtained for the voltage curve. Therefore, we are in the
same case as in section III-B.

2) Asymmetrical voltage: For this case, we limit ourselves
to the case of Va 6= Vb 6= Vc and ϕb = −ϕc = − 2π

3 , for
simplicity. Realistic general cases will be considered in the
next section. As in the symmetrical case, the electrical curve
also lies in a plane, so the application of (16) now gives

Ω =

√
3ω3

v′2
(VaVbσ12 + VbVcσ23 + VcVaσ31)

‖Ω‖ = Ω =

√
3ω3V

v′2

with

v′2 = 2ω2
(
V 2
a sin2(ωt) + V 2

b sin2
(
ωt− 2π

3

)
+ V 2

c sin2
(
ωt+ 2π

3

))
V =

√
V 2
a V

2
b + V 2

b V
2
c + V 2

c V
2
a

In this case, the angular velocity is not constant and depends
not only on the electrical angular frequency ω but also on the
amplitude of the voltages Va, Vb and Vc. It is interesting to note
that the plane of rotation is different from that of the balanced
case. It changes according to the values of the amplitudes of
the voltages. This fact provides invaluable information for the
study of the asymmetry of the system and deserves further
investigation. The scaled curvature is readily obtained as

k1 = Ω = Ω1 =

√
3ω3V

v′2

If we now compute the derivative of Ω, the geometric
counterpart of RoCoF is obtained

Ω′ =
dΩ

dt
= −2v′′

v′
Ω (30)

Note that v′′ is null for symmetrical voltages, so is Ω′ as
expected.

B. General sinusoidal n-phase AC systems
The sequence described in Fig. 6 is completely general and

can be applied to any kind of voltage supply with any number
of phases. This section presents the analytical solution for
the typical case of use concerning highly sinusoidal networks
(low level of harmonic) but with potential asymmetries. In the
Example section, the method is applied for arbitrary harmonic
voltages, including transients and distortions.

For an n-phase system, the geometrical voltage describes
an electrical curve given by

v =

n∑
i=1

√
2Vi cos (ωt− ϕi)σi

=

n∑
i=1

√
2 (Vi cosϕi cosωt+ Vi sinϕi sinωt)σi

= cosωt

[
n∑
i=1

√
2Vi cosϕiσi

]
+ sinωt

[
n∑
i=1

√
2Vi sinϕiσi

]
= cosωta+ sinωt b

with

a =

n∑
i=1

√
2Vi cosϕiσi b =

n∑
i=1

√
2Vi sinϕiσi

Thus, the vector v describes an elliptical curve in the plane
determined by the n-dimensional vectors a and b. The first
two derivatives of this signal are:

v′ = ω (− sinωta+ cosωt b)

v′′ = −ω2 (cosωta+ sinωt b) = −ω2v

They are linear combinations of vectors a and b, so they
are in the same plane as the vector v. The general expressions
for all even and odd-time derivatives are

v(2m) = (−1)
m
ω2mv

v(2m+1) = (−1)
m
ω2mv′

m ∈ {1, 2, . . .}

This means that all higher derivatives v(k) with k > 1 are
linearly dependent on v or v′, hence belong to the plane defined
by a and b. In GA, this plane can be represented by the 2-blade
K = a ∧ b (see Fig. 1). Using the above results, the DB can
be computed as in equation (16)

Ω =
v′ ∧ v′′

v′2
=
ω3

v′2
K (31)

Because K does not depend on time, the expression for
RoCoF is the same as in (30). It is evident that both, Ω and
Ω′ are scaled versions of the 2-blade K with time-dependent
scale factors.

C. General Rotations and Frénet-Serret frame
Matrix-based linear maps like Clarke or Park transformations

are widely used in electrical systems. They can be considered
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Figure 8. Three-phase LL (top) and LN (bottom) voltages for a real building in
example A). The signals are polluted mainly with 3rd, 5th and 7th harmonics.

as general rotations in the Euclidean space [4], [36]. In GA,
rotations are accomplished employing geometric rotors [30].

Based on the geometrical interpretation of voltage or current
signals adopted in this work, multi-phase AC voltages can be
studied from a simplified conceptual and dimensional point of
view by applying an adequate rotation to the basis σ defined
in (1). The result is that vector v is now represented as vT
in a new basis using a reduced number of coordinates and/or
leading to a simplified shape. For example, for a three-phase
system, Park transform allows describing vector v exclusively
by a linear combination of only two basis vectors (say d and
q) lying in the plane represented by bivector K and rotating
at an arbitrary speed ωP . Additionally, as shown in Section
II-B3, it is also possible to find a new transformation based on
the rotation of the FS frame that transforms the electrical curve
into a simplified piecewise straight line. Interestingly enough,
this fact holds for any sinusoidal multi-phase system with a
number of phases greater than 2, as outlined in the previous
sections.

V. EXAMPLES

Several simulations and real-world examples are presented
and analyzed hereafter to validate the proposed framework in
this paper. First, a steady-state harmonic voltage measured in
an educational building at the University of Almeria (Spain)
is presented. Secondly, the simulation of a transient due to a
fault in the IEEE34 network is reported.

A. Three phase AC voltage with harmonics
In this section, harmonic polluted signals obtained in the

low voltage panel of an academic building at the University of
Almeria (Spain) are analyzed. Fig. 8 shows the LL (top) and
LN (bottom) voltages acquired using the openzmeter device
[37] at a sampling frequency of 24 kHz. The nominal frequency
of the grid is 50 Hz. Some waveform distortion caused by the
harmonic content (mainly third, fifth and seventh harmonics) is
noticeable. Fig. 9 shows the electrical curve for the LN voltage
from different viewing angles. It can be seen that the curve
is not exactly a circle but a hexagon because of the harmonic

Figure 9. Electrical curve for LN voltages in a real building in example A).
Different views are presented. Note that the curve does not exactly lie in a
plane as shown in the lower-centred subfigure.

Figure 10. Orthogonal view for electrical curves for LN (left) and LL (right)
voltages. The red circles represent nominal voltage with radius rLN = 230

√
3

(LN) and rLL = 400
√
3 (LL).

content. Moreover, it does not lie in a plane either since there
is a zero sequence component, i.e., va + vb + vc 6= 0. Fig. 10
shows a comparison of the shape for the LL and LN electrical
curves. The non-circularity of both curves is indeed observed.
Note that, unlike the curve for the LN voltages, the LL curve
is contained in a plane.

The computation of DB is based on the integral of expression
(23) for better numerical stability. The result is shown in Fig. 11.
It is interesting to note that due to harmonics, the instantaneous
angular frequency is not constant although its mean value
(313.98 rad/s) is very close to the nominal angular frequency
of the grid (ωnom = 314.15 rad/s). Note also that ‖Ω‖ is a
periodic curve, with a period of exactly 240 samples, i.e., 50 Hz.
The above results were obtained using a simple kernel average
smoothing linear interpolation method [38] which allows for

Figure 11. Instantaneous angular frequency DB ‖Ω‖ for LN and LL voltages.
The mean value of the DB is 313.98 rad/s for both LL and LN which is very
close to the nominal angular frequency grid (ω = 314.15 rad/s).
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Figure 12. Three-phase line voltages at bus 832 at the IEEE 34-bus system. A line-to-line fault in bus 854 starts at t = 0.1s. The fault is cleared at t = 0.25s.

Figure 13. Different views of the point-cloud-like electrical curve for the LN voltage. The colours encode different stages in the transient evolution

obtaining accurate first and second derivatives.
It should be emphasized that it is recommended to use the
line-to-line voltage as the preferred electrical curve due to its
differential nature, which ensures greater numerical stability
and reduced noise. Furthermore, this approach allows for a
one-dimensional reduction of the problem compared to the
phase-to-neutral voltage curve.

B. Fault in IEEE34-bus network

This second example shows the application of the proposed
method to estimate the DB at a bus of a power system under
faulty conditions. To this aim, the IEEE 34-bus model provided
by EMTP is used to perform a transient simulation. A line-
to-line fault has been generated between phases a and b at
terminal bus 854 of the system at t = 0.1s. The fault is cleared
at t = 0.25s. The integration time step considered is 10−6s.
The line voltages at bus 832 during pre- and post-fault are
shown in Fig. 12. A point-cloud-like electrical curve is depicted
in Fig. 13 for the LN voltages. Different colours are assigned
to highlight different stages in the waveforms. The outermost
circle (blue) represents the initial steady state condition. At
around t = 0.1s, a fault produces a transient (dark green) that
evolves in a new distorted steady state represented by several
ellipses (green, yellow and orange). At around t = 0.25s, the
fault starts to clear (purple) and finally, a new steady state is
reached (red) depicted by the inner circle (with a lower voltage
magnitude). Note that all the points are nearly contained in a
plane, except for the transient part (dark green) that is scattered
around the vicinity of the plane in 3D space.

Figure 14 shows the DB for the LL voltages in the
considered timespan. All the computations for the derivatives
of the voltage vector have been performed by using the same
linear interpolation technique as before. Initially, the three
phases remain balanced and thus, the DB remains constant
at an angular frequency close to the nominal value of the
grid, i.e., 377 rad/s (60 Hz). The same holds after the fault

Figure 14. Instantaneous angular frequency DB ‖Ω‖ for LL voltages. The
mean value of the DB before the transient is 376.97 rad/s which is very close
to the nominal angular frequency grid (ω = 376.99 rad/s).

clearance. Interestingly enough, the DB suffers heavy but
periodic oscillations during the fault that are consistent with
an elliptical motion (as shown in Fig. 13). The mean value of
this oscillation matches again the nominal angular frequency
of the grid. In the same vein as in the previous example, the
electrical line-to-line curve lies in a plane and thus, only the
scaled curvature k1 is non-null.

VI. CONCLUSIONS

In this paper, we have presented a novel approach for
the analysis of multi-phase power systems using geometric
algebra and differential geometry. We have extended the
concept of geometric frequency to arbitrary n-phase systems by
introducing the Darboux Bivector and Electrical Curves, which
characterize voltage or current in multi-phase AC systems. This
breakthrough allows for a more comprehensive understanding
of frequency in multi-phase power systems and has potential
applications in multi-phase electrical machines and power
converters.

Our main contributions include the generalization of fre-
quency for arbitrary multi-phase systems, the introduction of
the Darboux bivector for electrical curves, the introduction of
scaled curvatures, and the determination of restrictions for the
validity of the method in single-phase and DC circuits. We have
also demonstrated how the geometric algebra framework unifies
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mathematical concepts and provides a clearer understanding
of these systems, which can benefit educational settings.

This work not only sheds new light on the study of multi-
phase power systems but also highlights the benefits of using
geometric algebra and differential geometry in the engineering
field.

VII. FUTURE WORK

Future work may involve exploring the application of our
findings to specific multi-phase power systems or investigating
the potential benefits of this approach in other areas of electrical
engineering. Additionally, the development of new visualization
techniques using geometric algebra can further improve the
understanding and analysis of these complex systems.

As anticipated by Milano et al. [18], despite the increased
complexity introduced by the new theoretical framework, it is
worth exploring the benefits that a unified geometric perspective
can bring to the study of electrical systems. For instance, the
analysis of properties such as bending energy, eccentricity,
or other concepts associated with characterizing curves from
a geometric viewpoint may provide valuable insights for
understanding power quality events or even detecting anomalies
and system malfunctions.

By delving into the geometric characteristics of power sys-
tems, researchers can potentially uncover previously unexplored
relationships and patterns that can improve system performance
and stability. Furthermore, this geometric approach can also
facilitate the development of new methods for monitoring,
diagnosing, and controlling power systems, based on the
inherent properties of the underlying geometric structures.

In addition to these potential benefits, the unified geometric
perspective can also contribute to a more intuitive understanding
of power systems, making it easier for engineers and researchers
to visualize and comprehend their behaviour. This can lead
to more efficient problem-solving strategies and facilitate the
exchange of ideas between experts from various disciplines,
ultimately resulting in a more holistic understanding of the
power systems in question.
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J. Roldán Pérez, “Geometric algebra framework applied to symmetrical
balanced three-phase systems for sinusoidal and non-sinusoidal voltage
supply,” Mathematics, vol. 9, no. 11, p. 1259, 2021.

[11] F. G. Montoya, R. Baños, A. Alcayde, F. M. Arrabal-Campos, and
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