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Abstract

ZeroMove hashing is a novel data distribution technique for distributed systems that offers several key benefits. In contrast

to the consistent hashing algorithm, which requires data migration when scaling the system, ZeroMove hashing enables the

addition of clusters of nodes on demand without the need to move data between nodes. A cluster is located using an encoded

unique identifier, while a node is identified with a hash function within a cluster. This approach ensures that data remains in

the node where it is hashed, thereby increasing availability and improving system performance. Furthermore, the ZeroMove

hashing technique can significantly reduce facility and administrative expenses, making it an excellent option for largescale

distributed systems. Our tests on consistent hashing and ZeroMove hashing have shown that scaling from one node to six nodes

with 480,000 data records took 6100 seconds in a system based on consistent hashing. In contrast, it took only 1.2 seconds

for ZeroMove hashing to achieve similar scaling under the same settings. With consistent hashing, the time taken and amount

of data moved increase proportionally with the amount of data stored in the system. However, with ZeroMove hashing, these

values does not increase in proportion to the amount of data being stored. This is because ZeroMove hashing only involves the

exchange of small amount of metadata between nodes during scaling processes.
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Distributing Data with Zero Migration
Jonathan Z. Yue

Abstract—ZeroMove hashing is a novel data distribution tech-
nique for distributed systems that offers several key benefits.
In contrast to the consistent hashing algorithm, which requires
data migration when scaling the system, ZeroMove hashing
enables the addition of clusters of nodes on demand without the
need to move data between nodes. A cluster is located using
an encoded unique identifier, while a node is identified with
a hash function within a cluster. This approach ensures that
data remains in the node where it is hashed, thereby increasing
availability and improving system performance. Furthermore, the
ZeroMove hashing technique can significantly reduce facility and
administrative expenses, making it an excellent option for large-
scale distributed systems. Our tests on consistent hashing and
ZeroMove hashing have shown that scaling from one node to six
nodes with 480,000 data records took 6100 seconds in a system
based on consistent hashing. In contrast, it took only 1.2 seconds
for ZeroMove hashing to achieve similar scaling under the same
settings. With consistent hashing, the time taken and amount
of data moved increase proportionally with the amount of data
stored in the system. However, with ZeroMove hashing, these
values does not increase in proportion to the amount of data
being stored. This is because ZeroMove hashing only involves
the exchange of small amount of metadata between nodes during
scaling processes.

Index Terms—Hashing, distribution, horizontal scaling, cluster,
database, storage, distributed systems.

I. INTRODUCTION

THIS paper introduces the ZeroMove hashing protocol, a
data distribution technique for distributed systems that

eliminates the need for data migration during horizontal scal-
ing. The protocol consists of several algorithms for efficient
data distribution and system scaling, which are described in
detail in this article.

A. Scaling

Horizontal scaling, also known as scaling out, is a method of
increasing the capacity of a system by adding more machines
or nodes to the system [1]. This is in contrast to vertical
scaling, or scaling up, which involves adding more resources,
such as CPU, RAM, or storage, to a single machine.

Horizontal scaling involves distributing the workload across
multiple machines, which allows the system to handle more
traffic or requests. This approach can improve the system’s
performance, increase its capacity, improve its reliability, and
reduce the risk of a single point of failure. Horizontal scaling
is commonly used in cloud computing and distributed systems,
where applications can be scaled up or down dynamically
based on the workload.

Horizontal scaling has several advantages over vertical
scaling. While vertical scaling can be a simple way to increase
the capacity of a system, it has several limitations:

1) Cost: As the resource requirements increase, the cost of
upgrading the hardware can become prohibitively expensive.

In some cases, it may be more cost-effective to add more
machines horizontally rather than upgrading a single machine
vertically.

2) Limitations of the hardware: The performance of a
machine can only be scaled up to a certain limit. Beyond
that limit, adding more resources may not result in significant
improvements in performance.

3) Single point of failure: When a single machine is respon-
sible for handling all the workload, it becomes a single point
of failure. If the machine fails, the entire system can go down,
resulting in downtime and lost revenue.

4) Limited scalability: Vertical scaling may not be a prac-
tical solution when the workload is highly variable or unpre-
dictable. In such cases, horizontal scaling is a better option
since it allows for dynamic scaling up or down based on the
workload.

5) Downtime: When upgrading the hardware, the machine
needs to be taken offline, resulting in downtime. This can be
disruptive to the users and can result in financial losses.

In a storage-computing separation framework, data is stored
in a separate storage system that can be scaled up dynamically
on demand. However, it is important to note that a storage
system is also a distributed system consisting of physical
machines, or nodes, and devices that are connected through
a network. Cloud storage uses horizontal scaling to increase
the capacity of the storage system by adding more nodes to the
cluster. When there is a need for more storage capacity, new
nodes can be added to the cluster dynamically, allowing the
storage system to scale up to meet the demand. The data stored
in cloud storage is typically distributed across multiple nodes
in the cluster using techniques such as replication, sharding, or
erasure coding. In this article, we will adopt the term ”scaling”
to specifically refer to horizontal scaling.

B. Distribution
The vast majority of distrbuted systems employ hash-based

sharding to distribute data across a group of nodes. Other
systems utilize a centralized look-up service for finding nodes
to store and search data. In a distributed database system that
uses a centralized look-up service, the look-up service acts as a
directory for storing the mapping between data keys and their
corresponding nodes. When a read or write operation needs
to access a specific piece of data, it first contacts the look-up
service to find out which node currently owns that data.

However, the look-up service can become a single point of
failure and a bottleneck for the entire system since each read
or write operation needs access to the service. If the look-
up service fails, the entire system may become unavailable.
Additionally, as the number of nodes and data keys in the
system grows, the look-up service may become overwhelmed
with requests, leading to poor performance.



2

To address these issues, some distributed database systems
use more decentralized approaches to locate data, such as
distributed hash tables or gossip protocols. These approaches
distribute the responsibility for maintaining the mapping be-
tween data keys and nodes among all the nodes in the system,
reducing the reliance on a centralized look-up service.

Classic hashing is a technique in which a hash function is
used to map data items to nodes in a fixed set of nodes. The
hash function maps each data item to a specific node based on
its hash value. This approach is simple and easy to implement,
but it suffers from a major drawback: if a new node is added
or an existing node is removed from the system, the mapping
of data items to nodes may change drastically. This can result
in a significant amount of data needing to be moved, which
can be expensive in terms of time and network bandwidth.

Consistent hashing is a more sophisticated technique that
was developed to address this limitation of classic hashing.
In consisent hashing, the hash function is used to map both
data items and nodes to a ring-shaped continuum. Each node is
assigned a range of hash values on the ring, and data items are
mapped to the node whose range of hash values includes the
hash value of the data item. When a new node is added or an
existing node is removed, only the ranges of the affected nodes
need to be adjusted. This means that only a portion of the data
needs to be moved, resulting in a more efficient and scalable
system. However, the challenge of data migration has not been
fully resolved. In successive scaling processes, a significant
amount of data still needs to be moved multiple times, causing
disruptions and potential performance bottlenecks.

C. Consistent Hashing
Consistent hashing is a technique used in distributed com-

puting to map keys to nodes in a distributed system in a way
that minimizes the amount of reorganization required when
nodes are added or removed from the system [2] [3] [4] [5]
[6]. The basic idea is to use a hash function to map each key
to a point on a ring, and then use the ring to determine which
node is responsible for each key.

Here are the mathematical expressions that describe the
process of consisent hashing:

• Hash Function A hash function H maps a key to a value
in the range [0, 1].

• Node Positions Each node in the distributed system
is represented by a point on a ring, also known as
continuum, of circumference 1. The position of the node
on the ring is determined by a hash function R, which
maps the identifier of a node to a value in the range [0, 1].
The node is responsible for all keys that map to a point
on the ring between its own position and the position of
its successor node, in clockwise order.

• Key Mapping To determine which node is responsible
for a given key, we first apply the hash function H to the
key to obtain a value in the range [0, 1]. We then find
the position of the node on the ring that immediately
follows this value (in clockwise order), and that node is
responsible for the key.

• Adding or Removing Nodes When a new node is added
to the system, its position on the ring is determined by the

hash function R, and keys that were previously assigned
to the node’s successor are reassigned to the new node.
When a node is removed from the system, keys that were
previously assigned to that node are reassigned to its
successor.

• Virtual Nodes To improve load balancing, a number of
virtual nodes may be created out of a node. The virtual
nodes are positioned on the ring similarly to the original
node. If a key is mapped to a virtual node on the ring,
then the key eventually is stored on the original node.
The number of virtual nodes for a node acts as a weight
in load balancing.

Rendezvous hashing is a technique related to consistent
hashing that enables data replication with r copies among a
set of N nodes [7]. Unlike consistent hashing, rendezvous
hashing does not require precomputing or storage of tokens.
However, it requires recomputing N hash values for every
read and write operation. As N grows larger, computing all N
hash values becomes costly. Consistent hashing is equivalent
to rendezvous hashing when the number of sites is equal to
one. Both consistent hashing and rendezvous hashing exhibit
similar patterns in terms of data migration volume during
scaling processes. In both approaches, when the system scales
by adding nodes, there is a need to redistribute the data across
the nodes.

In this section, we analyze the cost of data migration in
consistent hashing. Let us assume that each node in the system
has a storage capacity of C, which represents the number of
data records it can store. We begin with Z nodes in the system
and during each scaling process, m new nodes are added.

Theorem 1: When adding m nodes to an existing set of Z
nodes in the consistent hashing method, the amount of data
migration required is approximately

X =
mZC

Z +m
(1)

Proof: In the consistent hashing method, when a large
number of virtual nodes divide each physical node, before
scaling, each node is responsible for approximately 1

Z portion
of the data. However, after scaling by adding m nodes, each
node will be responsible for approximately Z

Z+m portion of
the data. The migrated data amount from each of the Z nodes
is:

C − ZC

Z +m
=

mC

Z +m
(2)

In total, the migrated data amount from all the Z nodes is:

X =
mZC

Z +m
(3)

Another perspective on this problem is to consider dividing
the total data amount, denoted as ZC, among Z+m nodes. In
this scenario, each node would be responsible for ZC

Z+m data
records. With the addition of m new nodes, the total number
of records on these nodes would be mZC

Z+m , which is equivalent
to the number of data records that are being moved during the
scaling process.
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Approximation arises when the number of virtual nodes
is not large enough to achieve perfect data distribution and
balance among the physical nodes. Due to the limited number
of virtual nodes, there might be slight imbalances in the
distribution of data across the physical nodes. However,
this approximation is often considered acceptable as it still
provides a reasonably balanced data allocation in practice.
Q.E.D

We now study the behavior of consistent hashing during the
incremental scaling processes of a system.

Theorem 2: To scale the system from initially Z0 nodes to
Z0 + Nm nodes containing C(Z0 + Nm) data records, the
total number of data records that undergo migration after N
rounds of scaling operations is approximately mCN .

Proof: At the k-th scaling, the total number of nodes, Z,
prior to the k-th scaling is Z = Z0 + (k − 1)m, where Z0

is the number of nodes in the initial cluster. Addingg m new
nodes to the value, we obtain the total number of nodes: Z0+
(k− 1)m+m = Z0 + km. Now referring to Theorem 1, data
migration amount at the k-th scaling is:

S(k) = X

=
mCZ

Z +m

=
mC[Z0 + (k − 1)m]

Z0 + km

=
mC(Z0 + km−m)

Z0 + km

=
mC(Z0 + km)

Z0 + km
− Cm2

Z0 + km

= mC − Cm2

Z0 + km

(4)

After a total of N times of scaling, the total migration
amount is obtained by summing up the amount of data
migrated during each scaling process, ranging from k = 1 to
N. This cumulative sum captures the overall data movement
that occurs during the successive scaling operations. The value
of the sum S(N), is expressed as follows:

S(N) =

N∑
k=1

S(k)

=

N∑
k=1

(mC − Cm2

Z0 + km
)

= mCN −
N∑

k=1

Cm2

Z0 + km

= mCN −
N∑

k=1

Cm

(Z0/m) + k

(5)

To evaluate the term
∑N

k=1
1

(Z0/m)+k we use the Harmonic
numbers:

H(N) =

N∑
k=1

1

k
(6)

which is approximately equal to:

H(N) ≈ lnN + γ − 1

2N
(7)

where γ ≈ 0.5772 is the Euler-Mascheroni constant.
Given the behavior of the Harmonic numbers, we can

obtain:

N∑
k=1

1

(Z0/m) + k
< H(N) (8)

S(N) > mCN −mCH(N)

> mCN −mC(lnN + γ − 1

2N
)

(9)

Therefore, the asymptotic complexity of S(N) can be
expressed as S(N) = mCN . To scale the system to have
Z0 + Nm nodes containing C(Z0 + Nm) data records, the
total number of data records that undergo migration after N
scaling operations is approximately mCN . Q.E.D

Theorem 3: In a distributed system utilizing consistent
hashing, the majority of data records created and stored within
the system will experience migration from one node to another.
This migration occurs as a result of a sequence of incremental
scaling processes that the system undergoes.

Proof: The decimal portion of data records that undergo
migration after N scaling operations can be calculated by
dividing the total number of migrated records by the total
number of records in the system, which is C(Z0 +Nm).

p(N) =
mCN

C(Z0 +Nm)
=

Nm

Z0 +Nm
(10)

As N grows large, the fraction p(N) approaches 1,
indicating that every data record will eventually be moved
from one node to another. Q.E.D

This excessive data migration results in high costs for
the system, including increased power consumption, hardware
wear and tear, and degraded performance. While there have
been several attempts to reduce data migration, many of these
approaches still fall within the scope of consisent hashing
[8] [9] [10] [11] [12] [13] [14]. While these methods may
differ in their specific implementation details, they do not
fundamentally change the underlying framework of consisent
hashing. In other words, while there may be some variation in
how data migration is handled, the core principles of consisent
hashing remain the same.

Next, we introduce a new framework to address the chal-
lenge of data migration during the scaling of distributed
systems. This new framework is intended to eliminate the need
for any data to be moved during the process of scaling, which
can be a complex and time-consuming task that may result in
downtime or other issues if not managed carefully.
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II. ZEROMOVE HASHING

ZeroMove hashing protocol is a method of distributing data
to nodes arranged in clusters. Unlike other hashing protocols,
ZeroMove hashing does not require data to be moved from
one node to another during a scaling process. Rather, data
remains in the node where it was originally hashed indefinitely.
The following formulation outlines the process of ZeroMove
hashing.

A. State

The state of a distributed system can be defined as the
collective knowledge about the system at a particular point
in time. It encompasses the configuration and status of all the
nodes and clusters that make up the system, as well as the
metadata of all user data. The state represents the metadata
encompassing the entire system.

• Cluster A cluster k, where k ∈ {1, 2, 3, ... N}, having
kn nodes in the cluster.

• Clusters At any point of time, the system has a total of
N clusters.

• Active Clusters A set of clusters that are available for
storing new data.

• Nodes A node in cluster k is denoted by nki, where i ∈
{0, 1, 2, 3, ...kn − 1}.

• Topology The way in which the nodes and clusters are
connected and arranged.

• Metadata Knowledge of a set of data records.

The metadata in the distributed system provides important
information about the data records stored in the system. Typi-
cally, each data record has a unique identifier and an associated
value, and the metadata describes these attributes along with
other relevant information such as the structure, size, location,
and access permissions. Compared to the amount of user data
stored in the system, the metadata is relatively small and faster
to transmit over the network.

In the distributed system, the nodes in the active clusters are
designated for storing new data. The system maintains a roster
of nodes that can receive and store new data. The decision
to designate a cluster as active can be made algorithmically
or through a predefined policy. Typically, clusters that have
available storage space are chosen as active clusters. However,
even clusters that are not designated as active can still perform
data reads from the system. This allows for a more efficient
use of resources in the distributed system.

B. Protocol

The ZeroMove hashing protocol is applied to data opera-
tions and administrative procedures in the following manner:

Protocol 1 ZeroMove Protocol
Input A list of N clusters each containing a set of nodes
Output A ZeroMove distributed system
Main Protocol

1) Initialize the first cluster, N = 1;
2) Insert data with the Insert Algorithm, or
3) Search records with the Search Algorithm, or
4) Update data with the Update Algorithm, or
5) Delete records with the Delete Algorithm, or
6) Add a new cluster, N ← N + 1, with the Scale

Algorithm;
7) Proceed to Step 2 to continue

The protocol begins with the initialization of a cluster that
can have any number of nodes. Once initialized, the system is
ready to perform data operations such as insert, search, update,
and delete in any order. However, at some point, the system
may need to be scaled out for two main reasons.

Firstly, capacity increase may be required when the storage
capacity of the current system is reached, and additional
storage is needed. Secondly, performance increase may be
necessary when more nodes and resources are required to
increase read/write IOPS or both. In storage capacity scale-out,
performance may not be an issue, and in performance capacity
scale-out, storage capacity may not be an issue. In some cases,
scaling out may resolve both storgae and performance issues.

In this article, the term ”capacity” refers to either storage
capacity or performance capacity. Storage capacity refers to
the amount of data that can be stored within a system, while
performance capacity relates to the system’s ability to handle
and process I/O workload within a given time frame. Input
capacity represents the capacity of the system to process and
store new data or perform write operations efficiently. On
the other hand, output capacity represents the capacity of the
system to retrieve and deliver data or perform read operations
efficiently.

When the system needs to be scaled out, a new cluster
must be introduced to the system to handle the increased
capacity demand. The scaling method is outlined in the Scale
Algorithm, which is described in later sections of the paper.

C. Insert

A distributed system is designed to efficiently store and
retrieve data across a network of nodes. One of the key
functions of a distributed system is to shard data and allocate
nodes for storage in a timely and efficient manner. The
algorithm below outlines the process for allocating nodes and
inserting data into the system:

The function getCluster is responsible for inspecting the
current state of the system and identifying an available active
cluster in the system. It is essential for determining the
designated cluster for new data and storing the new data to
the appropriate cluster.

In the distributed system, there are several methods that can
be used to allocate an available active cluster for storing new
data. These methods include least-used cluster, round-robin,
and performance-based load balancing.
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Algorithm 1 Insert Algorithm
Input Data D and state S
Output New state S′

Procedures
k ← getCluster(S);
uid ← encoder(D,S, k);
i ← hash(uid) mod kn;
Store data D and uid on node nki

The least-used cluster method involves selecting the cluster
with the least amount of data already stored. This technique
ensures that the workload is distributed evenly across the active
clusters and helps to prevent overloading of any particular
cluster.

Round-robin is another method used for allocating clusters
in the distributed system. With this method, the system allo-
cates the next available active cluster for storing new data in
a circular manner. This ensures that the workload is evenly
distributed across all the active clusters, regardless of their
capacity.

In addition to these methods, performance-based load bal-
ancing can also be used in a distributed system to allocate
an available active cluster for storing new data. This method
involves selecting a cluster based on its performance capacity,
which helps to ensure that the new data is stored in a cluster
that can handle the workload effectively.

One technique that can combine or mix the previously
mentioned techniques is a hybrid load balancing approach.
In this approach, multiple load balancing methods are used
together to balance the workload across the active clusters.
The hybrid load balancing approache offers greater flexibility
and can be tailored to meet the specific requirements and
characteristics of a distributed system.

To ensure the uniqueness of each piece of data within
the system, the encoder function combines the information
of the data D, the system state S, and the active cluster
number N to form a unique identifier uid. Timestamps, MAC
addresses, process IDs, and IP addresses could be used in
the encoder function. More importantly, the available and
active cluster number found by the function getCluster must
be incorporated in the unique identifier uid. The encoder
function plays a critical role in ensuring that each piece of
data in the system is uniquely identifiable and can be easily
retrieved.

The encoder and decoder functions are two-way mapping
functions that can encapsulate and extract information in the
identifier uid. The mod function is the modulo operation. The
insertion of data into different nodes within the system can be
simultaneously carried out in parallel by multiple clients.

D. Search

Efficient data search is a fundamental feature of any dis-
tributed system. In general, there are three types of data search:
point query, range query, and full scan.

Point query involves searching for a single record in the
system based on a given identifier. The system returns the

associated value, which is unique to that identifier. This type
of search involves only one data record and is very fast by
quickly finding the target cluster and node.

Range query, on the other hand, involves searching for a
range of records that meet certain criteria. For example, a
range query might involve finding all records within a certain
time period. If the unique identifier uid is encoded with
timestamp as the leading field, then range query by time period
is possible and fast. Range queries require the system to search
through a larger set of data records.

Finally, a full scan of all data records might be necessary in
certain scenarios. This type of search involves examining every
record in the system to find the data that meets specific criteria.
Full scans typically require the system to read data records in
all the nodes and in all the clusters. In the following, we extend
the concept of range queries to encompass full scans that span
the entire range from negative infinity to positive infinity.

In range queries, filter conditions may be applied to narrow
down the search to only those records that meet specific
criteria. These filter conditions might include constraints on the
data values themselves, such as a range of values or a specific
value, or more complex arithmetic and logical operations
involving multiple fields.

The search algorithm for point queries in the system is
outlined below:

Algorithm 2 Search Algorithm
Input Unique identifier uid
Output Data D
Procedures
k ← decoder(uid);
i ← hash(uid) mod kn;
Verify or fetch data D on node nki

The function decoder must be capable of extracting the
cluster information from the unique identifier uid, and utilizing
it to locate the data linked to the identifier. The primary
objective of the search algorithm is to determine the cluster and
node that store the required data. In a data search operation,
the objective may be to retrieve the value associated with a
given identifier or simply to determine whether the value exists
or not.

During a range search operation, both the desired range
and filtering condition are distributed to all nodes across all
clusters. Each node then searches for data records that fall
within the given range and/or meet the specified filtering
condition.

Just like the insertion operation, the search for data in the
system can also be independently and concurrently performed
by multiple clients.

E. Update

An update operation changes the data of one or more records
in a system. After identifying the cluster and node associated
with a unique identifier uid using the SearchAlgorithm, an
update operation can be carried out on that node. ange updates
are executed in a similar manner as range queries.
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F. Delete

Once the cluster and node that store the data record associ-
ated with a unique identifier uid have been located using the
search algorithm 2, it is possible to perform a delete operation
on the node.

G. Scale

At some point, a distributed system may need to be scaled
out to meet storage capacity or performance capacity re-
quirements. The following algorithm outlines the process for
scaling:

Algorithm 3 Scale Algorithm
Input System state S
Output New system state S′

Procedures
Determine the need for scaling;
Identify the appropriate size of a new cluster;
Create a new cluster N + 1, with a number of nodes;
Add the new cluster to the active cluster set;
Broadcast or gossip state change from S to new state S′

The system should be monitored to identify the need for
scaling, which may be triggered by reaching storage capacity
limits or experiencing performance issues. The size of the new
cluster should be determined based on the requirements of the
system, such as storage capacity or performance needs.

Creating a new cluster involves provisioning a set of nodes,
allocating network connectivity, and installing the necessary
software on each node. The following equations provide in-
sights into determining the appropriate size of the new cluster
that needs to be introduced to the system for capacity scaling.

We define Ips as the input per second, representing the data
ingestion capacity of each node, and Ops as the output per
second, indicating the output capacity of each node. The total
number of nodes in all existing clusters that can accept new
data is denoted as Nw. In the case of introducing a new cluster,
the number of nodes in this cluster is represented by m. It is
assumed that the m new nodes have a higher input capacity,
denoted as gIps, and a higher output capacity, denoted as
gOps, where g ≥ 1.

In this context, the nodes capable of accepting new data
and storing it are referred to as input nodes, while the nodes
capable of performing data reads are referred to as output
nodes. An input node is a member of an active cluster. The
input capacity signifies the maximum rate at which a node can
process incoming data, while the output capacity indicates the
maximum rate at which a node can execute data outputs. An
input node in the system has the capability to handle both data
read and write operations.

Theorem 4: When a new cluster with m nodes, where m ¿
1, is added to the system, the read capacity of the system is
always increasing.

Proof: The system is designed to enable each node in both
the existing clusters and the new cluster to independently
perform data reads. Consequently, the input capacity of the
existing clusters is determined as Nw × Ips. After the scaling

process, the input capacity of the system is augmented to
Nw × Ips +m× gIps, which is always greater than the input
capacity of the existing clusters, Nw × Ips. Therefore, the
introduction of m nodes to the system invariably leads to an
increase in the overall input capacity of the system. Q.E.D

Theorem 5: Upon introducing a cluster consisting of m
nodes to the system, where m > 1, the input capacity of the
system experiences an increase if and only if the condition
gm > Nw −Mw is satisfied. Here, Nw represents the total
number of input nodes present in all existing clusters before
the scaling process, and Mw represents the total number of
input nodes in all existing clusters after the scaling.

Proof: Following each scaling operation, the total number of
input nodes within the existing clusters may undergo changes.
Nodes that have reached their storage capacity limits will be
removed from the roster of input nodes. As a result, we have
Nw ≥ Mw. Prior to scaling, the input capacity is determined
as Ips × Nw. However, after completing the scaling process,
the input capacity becomes Ips ×Mw + gmIps. In order to
ensure that the scaling results in an increase in input capacity,
the following inequality must hold true:

Ips ×Mw + gmIps > Ips ×Nw

Mw + gm > Nw

gm > Nw −Mw

(11)

Q.E.D

Theorem 5 proves valuable in situations where a production
system experiences a high rate of data ingestion, leading to the
depletion of input capacity. In such scenarios, increasing the
input capacity becomes imperative to ensure the system can
effectively handle the rapid influx of data.

The process of removing input nodes from the roster of
input nodes can be achieved through a distributed approach,
wherein each node monitors its own usage level relative to
its storage capacity. When the usage level reaches its limit, it
initiates a request to all other nodes in the system, requesting
its removal from the roster. Subsequently, all nodes in the
system respond and take the necessary actions, resulting in
the removal of the specified node from the entire system.

There are other cases where the system already possesses
sufficient input capacity, but it has reached its storage capacity
limit. In these instances, adding new clusters and nodes be-
comes crucial to scale the system and accommodate additional
storage requirements.

Suppose the actual input rate of the system is denoted as t.
During the scaling process, it becomes essential to guarantee
that the new input capacity is not less than t, as demonstrated
below:

Ips ×Mw + gmIps > t

Ips(Mw + gm) > t
(12)

The appropriate selection of the new cluster size, denoted
as m, is crucial in meeting the input rate requirement based
on the values of Ips, t, Mw, and g. It is necessary to carefully
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determine the size of the new cluster to ensure that the input
rate can be effectively accommodated and sustained by the
system.

Once the optimal size for the new cluster has been deter-
mined, the new nodes are assembled into a functional cluster.
This newly formed cluster is then added to the system through
a network command that is simultaneously propagated to
all nodes. By executing the command in parallel across the
system, the addition of the new cluster can be efficiently and
swiftly coordinated. In certain scenarios, partial or complete
state information may also be sent to client nodes. This enables
client nodes to generate unique identifiers locally, utilizing the
received information, without the need to request data from a
server node.

In a large distributed system, using a unique identifier for
each data record is crucial for quickly finding data associated
with an identity. With a vast number of objects such as
devices, mobile targets, virtual objects, messages, documents,
transactions, events, and parts, quickly locating these objects
is a crucial function. The ZeroMove hashing protocol is partic-
ularly well-suited for such applications. By ensuring that data
remains in the node where it is hashed to forever, the protocol
reduces the need for data migration and improves system
efficiency. This feature, coupled with the ability to quickly
locate data using unique identifiers, makes the ZeroMove
hashing protocol an excellent choice for distributed systems
handling large amounts of data.

H. Attribute Key
The unique identifier, often denoted as uid, is commonly

employed to uniquely identify data records within the system.
However, there are situations, such as when indexing numeric
values, where one or more attributes of a data record can serve
as effective identifiers. These attributes, known as attribute
keys, can be either individual attributes or a combination of
attributes that possess the ability to uniquely identify each
data record. By utilizing attribute keys, alternative approaches
to identification can be implemented in specific contexts or
scenarios.

Adopting this approach, the Insert Algorithm 1 can be
modified as follows:

Algorithm 4 Insert Algorithm 2
Input Attribute key A, Data D and state S
Output New system state S′

Procedures
k ← getCluster(S);
i ← hash(A) mod kn;
Store data D and A on node nki

Algorithm 4 functions in a similar manner to Algorithm 1,
but with a notable difference. In Algorithm 4, the determina-
tion of the hashed node involves directly hashing the attribute
key A against an available cluster, instead of relying on a
unique identifier that may not be accessible or relevant in
certain cases.

Similarly, the search algorithm 2 would undergo modifica-
tions to accommodate the changes described below.

Algorithm 5 Search Algorithm 2
Input Attribute key A, and cluster number N
Output Data D
Procedures
for k = 1 to N do
i ← hash(A) mod kn;
Search A on node nki;
if A is found on node nki then

Cache k for A;
return data D of A

else
Continue to cluster k + 1

end if
end for
Subsequent searches of A go to cached cluster k and
Find A on its hashed node i ← hash(A) mod kn

The search algorithm 5 begins by identifying the cluster
that contains the attribute key A and its associated data D.
Subsequent searches for A will then only visit the hashed
node within the discovered cluster k, using the same hash
function. Initially, a search of an item may require visiting all
the clusters in the system. However, once the correct cluster
has been identified, subsequent searches for other properties
of the same item will only need to access the corresponding
cluster, resulting in faster search times.

The ZeroMove technique can also be beneficial for an-
alytical tasks that require reading data from all nodes in
a well-balanced system. Range searches, similarity studies,
or full scans of data records might need to visit all the
clusters in the system. However, for these types of tasks,
using attribute keys to read a collection of data records
from multiple clusters and nodes may be sufficiently efficient.
The ZeroMove technique allows for efficient scaling of the
system while maintaining a balanced data distribution, which
can be particularly advantageous for analytical workloads.
By minimizing data migration and maintaining optimal load
distribution, ZeroMove can further enhance the efficiency of
such tasks in a distributed database environment.

I. Virtual Nodes

In the aforementioned algorithms, we made the assumption
that all nodes within a cluster have the same storage capacity
and are assigned an equal share of the workload. Consequently,
data distribution across the nodes in the cluster would be
approximately uniform. However, in practice, it is possible
for certain nodes to have greater storage capacity compared to
others.

To address this imbalance and achieve better load balancing,
we can employ the technique of virtual nodes within Consisent
hashing. This approach involves assigning different weights to
individual nodes based on their storage capacity. The weight
assigned to a node corresponds to the total number of virtual
nodes associated with it. Therefore, in algorithms 1, 2, 4,
and 5, the hashing function i ← hash(V ) mod kn should be
modified to j ← hash(V ) mod kv where V is either uid or
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A, j is index of the virtual node, and kv represents the total
number of virtual nodes in cluster k. The virtual node index
j is then mapped to the real node index i with a map in the
state S.

J. Replication

Data replication on multiple nodes is a technique used in
distributed systems to improve data availability, fault toler-
ance, and performance. In this approach, copies of data are
maintained on multiple nodes within the system. When data
is updated or added, it is replicated across the designated nodes
to ensure consistency.

We define a replica node as the designated node that is
responsible for storing a copy of the original data. Replica
nodes can be selected with a replica selection function R(i, k):

R(i, k) = getReplicaNodes(i, k, S) (13)

To determine the replica nodes for a given node nki, the
function getReplicaNodes(i, k, S) is designed to consider the
network topology of the system. By leveraging information
such as the node index i, cluster index k, and the state S of
the system, this function returns a list of replica nodes that are
appropriate for the specific node nki.

III. RESULT

We conducted tests to compare the performance of consisent
hashing and ZeroMove hashing techniques in a setup compris-
ing six nodes. Each node had 2TB HDD, 72GB RAM, 2.4GHz
CPU, and a gigabit local area network. We used LevelDB as
the underlying storage engine, and all the nodes maintained
the same network topology. A consistent-hash ring was shared
and synchronized among the nodes.

In our test, we first inserted a number of data records into
the first node and then scaled the system by adding another
node. We continued adding more records by distributing them
into the two nodes until there were six nodes in the system.
Throughout this process, we measured the time taken for
scaling and data migration, as well as the volume of data
migrated.

The following steps demonstrate the process:
1) Insert B data records into the first node;
2) Scale the system by adding a second node;
3) Distribute B more data records across the two nodes;
4) Scale the system by adding a third node;
5) Distribute B more data records across the three nodes;
6) Repeat steps 2 and 5 until there are six nodes in the

system.
In our tests, each data record comprises a 22-byte key and

a 565-byte value.
Figure 1 displays the time taken for scaling in the consis-

tent hashing approach. The experiment began by writing ten
thousand data records, B = 10K, to the first node in the
system. Subsequently, the system was scaled out by adding
a second node, which involved migrating data from the first
node. Another batch of ten thousand records was then stored
in the system by distributing them among the available nodes.

2 3 4 5 6

100

200

300

Number of Nodes

Sc
al

in
g

Ti
m

e
(S

ec
on

ds
)

Fig. 1. Consistent Hashing With 60K Records

2 3 4 5 6

200

400

600

Number of Nodes

Sc
al

in
g

Ti
m

e
(S

ec
on

ds
)

Fig. 2. Consistent Hashing With 120K Records

As a result, the system consisted of sixty thousand records
distributed across six nodes.

Figure 2 illustrates the time taken for scaling in the
consistent hashing approach when the stored data size is
doubled. The experiment began by writing twenty thousand
data records, denoted as B = 20K, to the first node in the
system. Subsequently, the system was scaled out by adding
a second node, which required migrating data from the first
node. Another batch of twenty thousand records was then
stored in the system, with the distribution spread among the
available nodes. Consequently, the system consisted of one
hundred twenty thousand records distributed across six nodes.
It is noteworthy that the scaling time exhibited a significant
increase compared to the case with B = 10K as shown in
Figure 1.
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Fig. 3. Consistent Hashing With 180K Records

Figure 3 illustrates the time taken for scaling in the Consis-
tent Hashing approach when the stored data size reaches one
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hundred eighty thousand records, denoted as B = 30K. As
observed from the results, the scaling time is further increased
compared to the previous experiments.
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Fig. 4. Consistent Hashing With 240K Records

When the stored data size reaches two hundred forty thou-
sand records, B = 40K, the scaling time is further increased
compared to the case of B = 30K. The result is shown in
Figure 4 for scaling in the Consistent Hashing approach.
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Fig. 5. Consistent Hashing With 480K Records

A series of experiments were conducted in the consis-
tent hashing system with more varying values of B =
50K, 60K, 70K, 80K. It was observed that as more data is
stored in the system, the scaling time increases. For instance,
when there are four hundred thousand eighty data records
stored in the system, the scaling time is depicted in Figure
5. The redistribution of the first 80,000 records took 2547
seconds, and the total time taken to scale from one node
to six nodes was 6176 seconds, including the subsequent
redistribution steps (2140 seconds, 709 seconds, 479 seconds,
and 301 seconds).

Figure 6 presents a stacked graph for the results of time
taken for scaling in consistent hashing. Each column in the
graph represents the total time taken to redistribute data in the
system with different values of B. For instance, the rightmost
column displays the total time taken (6176 seconds) for scaling
when the system stores 480,000 data records with parameter B
set to 80,000. Linear regression analysis of the graph estimates
that when the system eventually stores 4.8 billion records,
the total time spent on scaling processes would be around
61 million seconds.

The scaling time values may vary depending on various
factors such as system resources and storage engine utilized
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Fig. 6. Scaling Time In Consistent Hashing

in a system that employs consisent hashing. A faster network
can result in quicker data migration. However, it is evident
that the migration time is directly proportional to the size of
the stored data that needs to be redistributed among the nodes.
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Fig. 7. Migration Size In Consistent Hashing

Figure 7 illustrates the amount of data that is migrated
during the scaling process using consistent hashing. Each
column on the graph represents the total volume of data that is
redistributed in the system. For example, the rightmost column
displays the total amount of data moved (61,000 KB) when
the system stores 480,000 data records. As shown, the volume
of data migration increases proportionally with the amount of
data stored in the system.

The study of the scaling behavior of consistent hashing
provides valuable insights into the potential cost reductions
offered by the ZeroMove hashing method. Unlike consistent
hashing, the ZeroMove hashing approach eliminates the need
for scaling time and significantly reduces data migration.
In ZeroMove hashing, no user data is migrated, and only
a small amount of control information is exchanged over
the network. As a result, the complexities associated with
consistent hashing are drastically reduced in the ZeroMove
hashing method. This highlights the significant advantages and
efficiency improvements that ZeroMove hashing brings to the
scaling process.
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Fig. 8. Scaling Time In ZeroMove Hashing

Figure 8 depicts the time taken to scale a system based on
ZeroMove from a single node to multiple nodes. The experi-
ments were conducted on the same machines as the consistent
hashing tests, as described in [15]. With the ZeroMove system,
adding a new node takes only a matter of sub-seconds. The
total time taken to scale from one node to six nodes is 1.24
seconds. Additionally, separate experiments were conducted to
add a new cluster of three nodes to an existing cluster of three
nodes, which was completed in 1.1 seconds.
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Fig. 9. Metadata Exchange In ZeroMove Hashing

During the scaling process of the ZeroMove hashing
method, no user data was migrated. Instead, only metadata
was exchanged between the nodes and the client. The size of
the metadata was relatively small, approximately 26 kilobytes,
in contrast to the considerable amount of user data, which
was around 64,000 kilobytes, migrated during the consistent
hashing experiments. It is important to note that in real
production systems, the amount of user data can reach multiple
petabytes, and migrating such a massive volume of data would
be an extremely time-consuming task.

The tests conducted clearly demonstrate that the ZeroMove
hashing technique provides significant advantages over the
consisent hashing hethod. The source code and test scripts
for the benchmark can be found on the GitHub reposi-
tory at github.com/fserv/jaguardb benchmark directory. The
benchmark uses LevelDB as the storage engine, and the
Ketama package is used to manage the consistent-hashing ring
data structure. To test ZeroMove hashing, the package from
github.com/fserv/jaguardb was downloaded and included in
the benchmark tests.

IV. DISCUSSION

In a single-node system, data migration in consisent hashing
and classic hashing algorithms may not incur significant costs.
This is primarily because the data migration occurs within the
same node, and in-memory data writes are generally very fast.
In such scenarios, the data can be easily reorganized within
the node by updating the relevant data structures in memory.
As a result, the overhead of copying or moving data within
the memory is minimal compared to other I/O operations.

However, when it comes to data migration across nodes
in a network, the costs can be much higher. Data migration
in a distributed system involves transferring data between
different nodes, which introduces additional complexities and
challenges. Unlike in a single-node system where data can
be moved within the memory, migrating data across nodes
requires network communication and coordination, which can
be resource-intensive.

Network communication introduces various overheads that
can impact the efficiency and performance of data migration.
These overheads include: 1) Handshaking: Before data transfer
can begin, there is often a handshaking process between the
sender and receiver nodes to establish a connection and agree
on communication parameters. This handshake introduces
additional latency and overhead. 2) Flow control: To ensure
smooth and efficient data transfer, flow control mechanisms
are employed to regulate the rate at which data is sent and re-
ceived. This involves monitoring the receiver’s buffer capacity
and adjusting the transmission rate accordingly. Flow control
mechanisms can introduce delays and overhead. 3) Congestion
control: In network environments where multiple nodes are
concurrently transferring data, congestion control mechanisms
come into play. These mechanisms detect and manage network
congestion to prevent packet loss and ensure fair resource
allocation. Congestion control adds complexity and introduces
additional latency. 4) Packet sending and acknowledgment:
Data is typically divided into packets for transmission over
the network. Each packet incurs overhead in terms of packet
header information, error checking codes, and other necessary
data. Upon receiving packets, the receiver must acknowledge
their successful receipt, which adds further overhead.

These overheads are inherent to network communication
and can affect the overall performance and efficiency of
data migration. They contribute to increased latency, reduced
throughput, and potentially longer migration times. The speed
of data migration is affected not only by factors such as net-
work throughput but also by the performance of I/O devices.
In particular, random I/O operations, which are often involved
in data migration, tend to be slower than sequential write
operations. Some systems employ techniques to optimize data
migration by converting random I/O operations into sequential
writes. However, even with such optimizations, every new data
write typically requires an actual write to the storage device to
ensure data durability, which involves flushing the page cache
to the disk drive.

That being said, the ZeroMove hashing method can also
offer advantages to applications that rely on in-memory com-
puting, especially when dealing with large amounts of data
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that need to be cached or stored in computer memory. In such
scenarios, each node can be seen as a bucket, and the clusters
of buckets maintain a fixed size. By gradually adding new
clusters of buckets to the data structure, it is possible to achieve
similar functionality to a distributed system. This approach can
provide scalability and efficient data management in memory-
centric applications.

The ZeroMove data hashing and distribution technique is
evaluated from the following pertinent perspectives.

• Scalability Reducing the amount of data migration during
the scaling process of a distributed system can signifi-
cantly improve the system’s scalability by minimizing the
disruption and potential risks associated with migrating
large amounts of data. In a secure system, multiple
replicas are stored on the system to prevent data loss. The
benefit of zero data migration is more pronounced when
data replication strategies are implemented for improved
data availability and reliability.

• Complexity Data migration can be a complex and
time-consuming process, especially in large distributed
database systems. By avoiding data migration, the system
is simplified, and the potential for errors and downtime
associated with data migration is reduced.

• Consistency Data consistency refers to the correctness of
one data in relation to another data. It can be a challenge
in distributed systems, especially during data migration.
By avoiding data migration, the system can potentially
maintain better data consistency.

• Cost Data migration can be expensive, especially if it is
big and requires a lot of resources and time. By avoid-
ing data migration, the system can potentially save on
equipment and network costs associated with migration.

• Balance The active clusters are composed of computer
nodes with newer hardware which tends to be more pow-
erful and have higher capacity, allowing them to handle
both read and write workloads more efficiently. This
means that newer hardware can process more requests in
a shorter amount of time, resulting in improved response
times and better load balancing.

• Performance In a distributed system that requires data
migration during the scaling process, a write and a
delete operation are required to perform a data move.
This can lead to increased network traffic, disk I/O, and
CPU utilization, which can impact the performance of
normal data operations. In ZeroMove scaling, the two
operations of data move are avoided. It is estimated that
the throughput rate can be three times higher during
extended periods of scaling.

• Quality Spikes in workloads on a system can have a
significant impact on the service level agreement (SLA)
provided to users. When a system experiences a sudden
increase in workload, it may struggle to process all
the requests in a timely manner, resulting in longer
response times, degraded system performance, or even
system failures. To mitigate this impact, it is important to
implement effective scaling strategies. ZeroMove strategy
can improve the quality of service for data platform

operators and can help ensure that users can access the
system when they need it, and that they can perform their
tasks without interruption.

ZeroMove hashing offers flexibility in adapting to the read-
to-write ratios of a production system. If there is a higher
proportion of reads compared to writes, the system can have
fewer input nodes. Conversely, if there is increased write
pressure, more input nodes can be added during the scaling
process to handle the higher write load.

Additionally, ZeroMove hashing provides load balancing
capabilities by assigning a greater workload to newer and more
powerful computers. Recently added clusters are responsible
for both read and write operations, allowing them to handle a
larger share of the system’s load.

The growth rate of computing power, as measured by In-
put/Output Operations Per Second (IOPS), has seen significant
advancements over time. With the advent of Solid State Drives
(SSDs) that have no moving parts and faster data access speeds
compared to Hard Disk Drives (HDDs), the growth in IOPS
has been even more pronounced. In the early 2010s, the typical
IOPS for SSDs was around 10,000, which then increased
to approximately 100,000-200,000 by the mid-2010s. This
represents a growth rate of approximately 10-20 times every
five years. Presently, SSDs capable of achieving millions of
IOPS are being manufactured, showcasing the continuous
progress in computing power and storage technology.

V. CONCLUSION AND FUTURE WORK

This article introduces a novel technique for horizontally
scaling distributed systems with efficient data distribution.
Unlike traditional scaling methods, the proposed technique
eliminates the need for data migration during the scaling
process, resulting in a faster and more efficient scaling op-
eration. This approach significantly improves the availability
and performance of distributed systems.

Our study focuses on the behavior of consistent hashing,
a widely used hashing algorithm, and identifies that data
migration occurs for almost every piece of data during in-
cremental scaling operations. To address this challenge, we
present the protocol and algorithms of the ZeroMove hashing
technique, which enables efficient storage, searching, updating,
and deleting of data without the need for data migration.

In addition, we provide comprehensive guidelines and math-
ematical expressions for introducing new clusters to the system
during scaling processes. These guidelines ensure that capac-
ity and performance requirements are met while minimizing
disruption to the system.

To validate the effectiveness of ZeroMove hashing, we
conducted comparative experiments between consistent hash-
ing and ZeroMove hashing methods. The results clearly
demonstrate the advantages of ZeroMove hashing in terms of
efficiency and cost-effectiveness.

Overall, this paper contributes a valuable technique for
scaling distributed systems, offering significant improvements
in efficiency and cost-effectiveness compared to traditional
methods. The proposed ZeroMove hashing technique has the
potential to enhance the performance and scalability of various
distributed systems in real-world applications.
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In today’s world, there is a growing awareness among
companies about the importance of reducing their carbon
footprint and embracing sustainable business practices. The
use of energy contributes to various environmental issues,
including carbon dioxide emissions, depletion of the ozone
layer, and damage to the Earth’s ecosystem. To address these
concerns, innovative technologies like ZeroMove can play
a crucial role in helping enterprises achieve their carbon
neutrality and net zero goals.

ZeroMove technology stands out with its focus on re-
ducing power consumption, making it an ideal solution for
environmentally conscious companies. By minimizing energy
usage, ZeroMove can significantly contribute to lowering
carbon emissions and mitigating the negative impact on the
environment. By adopting ZeroMove, businesses can actively
contribute to sustainability efforts and align their operations
with a greener and more eco-friendly approach.

The implementation of ZeroMove technology empowers
enterprises to make substantial strides towards their sustain-
ability goals. By optimizing energy consumption and reduc-
ing their carbon footprint, companies can demonstrate their
commitment to environmental responsibility and contribute to
the global effort to combat climate change. By embracing
ZeroMove, businesses not only reap the benefits of improved
efficiency and cost savings but also make a positive impact on
the environment.

Further research can explore the performance of the system
in larger-scale scenarios, encompassing higher data volumes
that necessitate migration. Specifically, investigations should
focus on sustained write and read operations, as well as mul-
tiple scaling processes. Experimental studies can be designed
to evaluate the system’s efficacy in meeting storage capacity
requirements and handling performance demands efficiently.

Conducting a comprehensive analysis of the operational
costs and benefits related to the implementation of ZeroMove
hashing would be a valuable endeavor. This analysis could
encompass various factors, including the impact of wear and
tear of computer hardware, power consumption, maintenance
requirements, and management overhead. By quantifying these
aspects, a cost-effectiveness assessment can be performed to
evaluate the economic advantages of adopting ZeroMove hash-
ing compared to alternative scaling approaches. This analysis
will provide valuable insights into the financial implications
and help organizations make informed decisions regarding the
adoption of ZeroMove hashing in their distributed systems.
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