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Abstract

Reliable, valid, efficient measurement of symptom severity in internalizing disorders is critical to gauge treatment response. Self-

report and clinical interview are subjective and difficult to standardize, impose patient burden, and lack granularity. We tested

the hypothesis that comprehensive sampling of audio and visual modalities during open-ended interviews can reveal severity

of obsessive-compulsive disorder (OCD) and comorbid depression. Participants were six patients with chronic, refractory OCD

that were treated with deep brain stimulation (DBS). They were recorded during open-ended interviews at pre- and post-surgery

baselines and at 3-month intervals following activation of the DBS. Ground-truth severity was assessed by clinical interview

and self-report. Visual and auditory modalities included facial action units, head and facial landmarks, speech behavior and

content, and voice acoustics. Using mixed-effects random forest regression with Shapley feature reduction strongly predicted

severity of OCD, severity of comorbid depression, and total electrical energy delivered by the DBS electrodes (ICC = 0.83,

0.87, and 0.81, respectively). Multimodal measures of behavior outperformed ones from single modalities. The approach could

contribute to closed-loop DBS that would automatically titrate DBS based on affect measures.
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✦

1 INTRODUCTION

I NTERNALIZING disorders (e.g., obsessive-compulsive disorder
and depression) are characterized by anxiety, depressive, and

somatic symptoms [1]. Advances in the development and pro-
vision of effective treatments for internalizing disorders depend
on patient self-report and clinical interview. Self-report is limited
by patients’ reading ability, idiosyncratic use, inconsistent metric
properties across scale dimensions, reactivity, and differences
between clinicians’ and patients’ conceptualization of symptoms.
Clinician interviews enable more consistent use, but are time-
intensive, difficult to standardize across settings, inherently sub-
jective, and susceptible to reactivity effects, rater drift, and bias.
Neither self-report nor clinical interview have the granularity
necessary to measure moment-to-moment response to intervention
or enable brain-behavior quantification. To assess quantitative
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changes in treatment response, objective measures are needed.
Extant assessment methods fail to consider that internalizing

disorders have marked observable influence on psychomotor func-
tioning (e.g., agitation), expression of affect (reductions in positive
affect and increases in negative), and interpersonal communication
(lack of synchrony). Behavioral signal processing of audio and
video recorded behavior has shown great potential to objectively
measure symptoms of depression and to a lesser extent anxiety
[2], [3], [4], [5], [6].

Further advances depend in part on three challenges. One is
greater emphasis on severity rather than detection. While detection
matters for screening purposes, to inform treatment and assess
outcomes precise measurement of severity is what matters. For
instance, percentage reduction in severity is a common measure
of treatment response. Unless severity is measured, treatment
response cannot be quantified. Two is attention to internalizing
disorders beyond depression. Depression is only one of many
internalizing disorders that are cause for significant distress and
disability and often are inter-related or comorbid. In the following
work, we focus on obsessive-compulsive disorder (OCD) with
comorbid depression.

And three, previous work on computational approaches to clin-
ical measurement is limited to measures at single points in time. In
clinical treatment and research, what matters more is quantitative
change (degree to which patients are getting better or worse) over
the course of treatment. With exception of [7], when databases
have included repeated assessments, investigators have treated
interviews from the same persons as if they were independent [4].
Failure to model the correlation of observations within persons
ignores individual differences that can present serious confounds
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if not taken into account. When serial observations within subjects
are combined, trends may disappear or even reverse; an effect
known as Simpson’s paradox [8].

We used mixed-effects multimodal random forest regression
to objectively measure change in severity within patients over the
course of their treatment for chronic, severe, obsessive-compulsive
disorder. Obsessive-compulsive disorder (OCD) is a persistent,
oftentimes disabling condition that is characterized by obsessive
thoughts and compulsive behavior. Obsessions are repetitive and
intrusive thoughts (e.g., contamination), images (violent scenes),
or urges (e.g., to stab someone) that can be highly disturbing.
Individuals with OCD attempt to ignore or suppress obsessions
or to neutralize them with other thoughts or actions (American
Psychiatric Association, 2015). Compulsions are repetitive be-
haviors that an individual feels driven to perform in effort to
reduce or avoid obsessions. Obsessions and compulsions are time-
consuming (many hours per day), result in clinically significant
impairment, and often are comorbid with depression, especially in
more severe cases [9]. Both disorders entail high levels of negative
affectivity, and related brain networks have been associated with
each [10], [11].

Participants met research criteria for treatment-resistant, or
refractory, OCD. Treatment-resistant OCD is defined as repeated
failure to respond to front- or second-line treatments. Frontline
treatments for OCD are exposure and response prevention (ERP),
a cognitive-behavior therapy, and serotonin reuptake inhibitors
with or without clomipramine, a tricyclic antidepressant [12], [13].
Second-line treatments may include anti-psychotics [14]. About
25% of patients with OCD fail to respond to front- or second-
line treatments or have difficulty with adherence or tolerance,
respectively, and are considered treatment-resistant.

Participants were treated with deep brain stimulation (DBS)
of or close to the ventral capsule/ventral striatum (VC/VS). The
VC/VS is in a subcortical circuit involved in error detection, habit
formation, and motivational processes [15], [16]. In studies by
our group and others, DBS using implanted electrodes targeting
nodes of this circuitry (Fig. 1 and 2) has proven highly effective in
relieving treatment-resistant OCD. The most comprehensive and
up to date review of DBS outcomes found that 66% of patients
fully responded to treatment [17]. DBS also proved effective in
treating comorbid depression; 50% of patients fully recovered
from comorbid depression and another 16% partially recovered.

We measured change in severity of OCD and comorbid depres-
sion over the course of an 18-month clinical trial for treatment-
resistant OCD. We tested the hypothesis that an unobtrusive AI-
based system deployed in open-ended interviews can effectively
yield biomarkers of OCD and comorbid depression severity as
well as total electrical energy delivered (TEED) by the DBS
electrodes. Participants undergoing DBS treatment for refractory
OCD were recorded in open-ended interviews at regular intervals
over the course of the trial. Modalities included facial expression,
eye movement, head pose, voice acoustics and timing, and lin-
guistic measures of speech. Because each participant was seen on
a variable number of occasions, we used a mixed-effects random
forest regression with feature reduction and cross-validation to
control for individual differences and overfitting. We seek to
objectively measure response to treatment.

We first briefly review multimodal measures of affect related
to internalizing disorders and novelties of the research and the
research questions

(a)

(b)

Fig. 1: (a) Frontal view of an OCD patient’s brain. Implanted DBS
leads and their electrodes are shown with purple lines and white
circles, respectively. The ventral striatum (target area) is in yellow.
(b) Saggital view of the DBS electrodes in relation to the cortico-
striatal-thalamo-cortical circuit that is implicated in OCD.

1.1 Multimodal measures of affect

Extensive evidence in psychology and affective computing
supports the view that affective communication is multimodal
[2], [18], [19], [20], [21]. We briefly review literature relevant to
both unimodal and multimodal communication of emotion and
internalizing disorders such as OCD and depression.

Visual features: The Facial Action Coding System (FACS)
affords description of nearly all-possible visually discernible
facial movement [22]. Movements for which the anatomic basis
is known are referred to as Action units (AUs). Examples of AUs
include AU 1 (medial strand of the frontalis, which raises the
inner brow), AU 2 (lateral frontalis, which raises the outer brow),
AU 6 (orbicularis oculi, which raises the cheeks, narrows the
eye aperture and may cause ”crows-feet” wrinkles at the lateral
eye corners), and AU 12 (zygomatic major, which pulls the lip
corners obliquely in smiling). While not without controversy,
strong evidence suggests that specific combinations of actions
are strongly related to specific emotions and intentions [23],
[24], [25], [26], [27]. Automatic detection of AU occurrence
and intensity and continuous measurement of some action
descriptors has become possible [28], [29], [30], [31]. Velocity
of automatically detected action units and head motion has been
strongly related to emotional distress, depression, mania, and
autism spectrum disorder [4], [21], [32], [33], [34], [35], [36].
Preliminary evidence suggests that facial AUs and head dynamics
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may differentiate between different levels of DBS stimulation
[37] and predict OCD severity [38].

Acoustic features: Affective states strongly influence voice
production [39], [40]. Change in subglottal pressure, transglottal
airflow, and vocal fold vibration can be seen in acoustic features of
affective speech. Additional features that have proven informative
include vocal fundamental frequency (intonation and rhythm)
[41], energy (volume or intensity) [42], utterance duration [43],
and intra- and inter-speaker pause duration [42], [44]. Due to
the effectiveness of acoustic and temporal features, they are
frequently used in mental health studies: Anxiety [45], Distress
Assessment [46], and depression and suicide [3]. Hence, acoustic
and related temporal features are good candidates to assess DBS
treatment in OCD patients. Several packages are available to
analyze voice acoustics and behavior. They include OpenSMILE
[47], COVAREP [48], and GeMAP [49].

Linguistic features: Linguistic features reveal sentiment and
interests [50]. Prior to analysis, pre-processing is typically
required, which includes localization of speakers’ audio, speech
recognition [51], and speech-to-text conversion [52]. To calculate
linguistic features, several natural language processing techniques
and models can be used. Notable examples include BERT [53],
RoBERTa [54], PALM [55], cTAKES [56], and LIWC [50]. The
instances of well-known linguistic features are syntax parsing
using dependency trees, Chomsky transformational grammars,
and statistical methods (e.g., word counting) [57]. Language-
based deficits are common symptoms of psychiatric disorders
[58]. Linguistic features are frequently used to detect depression
and suicidal ideation [59], [60], [61], [62], [63], addiction [64],
[65], [66], anxiety [67], and bipolar disorder [68].

Multimodal features: In social interaction, affective states are
expressed multimodally. Because modalities may carry different
messages, attention to a single modality can result in ambiguous or
misleading results. To increase precision and accuracy, multimodal
fusion can be performed. Feature-level fusion (or early fusion)
[69], decision-level fusion (or late fusion), and hybrid-level fusion
all may be useful. In early fusion, all features across modalities
are placed together; and all or subsets are used to train a desired
model. In decision-level fusion, separate modality-specific models
may be developed and then fused using majority voting. Multi-
modal affective analysis can vary in the combination of modalities
used to detect affective states. Several studies investigated how
different modalities may complement each other to increase the
performance of an ensemble model. For instance, combinations of
acoustic-visual [46], acoustic-linguistic, or all three [4], [59] may
be used. Most multimodal affective computing methods, using
either early- or late fusion, typically outperform unimodal models.

1.2 Machine learning for internalizing disorders

Machine learning has been increasingly used to detect depression
[70], [71], [3], [72], [73]. Machine learning has been used less
often to infer symptom severity [4], [7], [74]. Conventional ma-
chine learning approaches are based on designing and selecting
hand-crafted features and training classifiers to detect disorders.
Previous research has trained models including support vector ma-
chines (SVMs) [75], logistic regression [4], and decision trees [76]
mostly with the aim of achieving high prediction performance.

Deep learning approaches that automatically learn important fea-
tures from the data often realize superior performance in detecting
depressive [77] and manic episodes [78] compared to conventional
approaches. However, a major drawback of deep learning based
approaches is that large numbers of participants are required and
features typically lack interpretability that is important for clinical
science and treatment.

In clinical fields, a common goal is to develop a system that
informs assessment, treatment, and mechanisms. To achieve a
machine learning model with good performance in each of these
areas, it is crucial to understand why a model has given a particular
decision and which features are critical in evaluating the degree
to which patients are improving or not. For that reason, recent
works have revisited the use of hand-crafted features. They afford
interpretable results and high predictive performance.

Shapley analysis has been especially informative in interpret-
ing feature contributions to model performance [79]. Recent exam-
ples include mothers’ depression in dyadic interactions with their
adolescent offspring [21], mania prediction in bipolar disorder
[59], and differentiation of apathy and depression in older adults
[80].

As noted above, prior work has failed to consider repeated
assessments over time of the same individuals. When repeated
assessments have been available, they have been treated as if
they were independent [4]. When longitudinal assessments are
available, attention to within-subject correlation is important to
control for individual differences. For observations nested within
individuals, mixed-effects models are needed. In mixed-effects
models, each individual has their own, unique slope and intercept.
Mixed-effects models are well known in behavioral statistics [81],
[82] as multilevel models, but less so in machine learning. When
multilevel structure is ignored, statistical artifacts can emerge [83].

In recent work, mixed effect random forests (MERFs) have
been used to predict depression severity from physiological mea-
sures in a longitudinal study [7]. With their ability to personalize
model parameters, mixed-effects models improve performance
compared with standard random forests. We extend mixed-effects
random forests three ways. First is to include multimodal features;
second is to predict OCD as well as depression severity; third is
to predict total electrical energy delivered by the DBS electrodes
(TEED).

1.3 Novelties and Research Questions
This paper extends our preliminary work [38] in several ways:

1) Predict OCD severity, comorbid depression severity, and
total electrical energy delivered (TEED) by DBS from voice
acoustics and timing, linguistic features, head and face dy-
namics, and facial action units; evaluate relative contributions
of each set of features.

2) Train mixed-effects random forests (MERFs) that account for
the nesting of observations within participants.

3) Use Shapley analysis to reduce the number of features,
optimize prediction, and afford interpretable parameters.

4) Include additional participants and assessments.
To our knowledge, this paper presents the first use of multi-

modal affective computing to assess OCD severity or DBS stim-
ulation and one of very few to consider longitudinal measures. In
a clinical trial of 18 months duration with a single-subjects-with-
replications design, each participant served as their own control.
Participants are a highly select group with treatment-resistant
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OCD that have been implanted with a deep brain stimulator and a
connected battery pack implanted in the chest cavity. The repeated
measures design addresses the longitudinal demands of clinical
research and treatment. A multidisciplinary team of psychiatrists,
neurosurgeons, clinical psychologists, neuro-scientists, and engi-
neers are actively involved in all phases of the study. Given the
nature of the research, program officials from the U.S. National
Institutes of Health (NIH) and Food and Drug Administration
(FDA) are closely involved as well.

DBS stimulation as measured from contact sensors in the
VC/VS region was operationalized as total electrical energy de-
livered (TEED) as defined in section 2. Visual features were
measured using AFAR (AUs, eye behavior, and head dynamics)
[28]. Acoustic and vocal timing features were measured using
OpenSMILE [47] and COVAREP [48]. Linguistics features were
measured using LIWC [50].

OCD severity was operationalized using the Yale-Brown
Obsessive-Compulsive Scale - Second Edition (YBOCS-II), which
is the gold standard for assessing OCD severity [84], [85]. Depres-
sion severity was operationalized using the self-report Beck De-
pression Interview - Second Edition, BDI-II [86]. Total electrical
energy delivered by the DBS electrodes is defined below.

We address three research questions.
RQ1- To what extent can severity of OCD, comorbid depres-

sion severity, and total electrical energy delivered (TEED) by the
DBS electrodes be predicted using visual, acoustic, and linguistic
modalities?

RQ2- Which features within and across modalities are most
predictive of symptom severity and TEED?

RQ3- What is the relative predictability from multimodal
features of OCD severity, depression severity, and total energy
delivered?

2 STUDY SETUP AND PROTOCOL

This study is from an ongoing clinical trial of DBS for treatment-
resistant OCD. Inclusion criteria are: 1) Repeated failure to re-
spond to evidence-based treatments (cognitive behavioral therapy
and medication); and 2) severe symptoms as measured by a score
greater than 27 on the Yale-Brown Obsession Compulsion Scale-
I (YBOCS-I)) (scale of 0-40). The first two participants were
implanted with the Medtronic Activa PC+S DBS device; the
other four were implanted with the Medtronic Summit RC+S
Percept. With one exception, the three men and three women
have completed at least 15 months of the study (Table I). A brief
description of the study protocol follows.

Participants underwent a 1-month pre-implantation baseline
evaluation followed by implantation of bilateral DBS electrodes in
or near the VC/VS. A second baseline was observed prior to initial
activation and programming of the DBS device. Patients then
were seen for in-person or virtual visits monthly for open-loop
programming of the DBS to optize treatment. Each visit started
with an open-ended interview with a clinician. The interviews
were 3 to 8 minutes in duration and were followed by assessment
of symptom severity using the YBOCS-II for OCD [87] and the
BDI-II [86] for depression.

Interviews were recorded using a GoPro camera and high-
resolution microphone positioned about 10 to 15 degrees of
frontal view of the patient. A separate GoPro camera recorded
the interviewer. On the same or following day, the stimulation
parameters were titrated as needed in what is referred to as a

TABLE 1: Sessions available for analysis. Baselines 1 and 2
occurred before and after implantation of DBS electrodes, respec-
tively, and prior to DBS activation.

Participant S1 S2 S3 S4 S5 S6
Baseline1 ✓ ✓ ✓ ✓ ✓ ✓
Baseline2 ✓ ✓ ✓ ✓ ✓ ✓
3rd Month ✓ ✓ ✓ ✓ ✓ ✓
6th Month ✓ ✓ ✓ ✓ ✓ ✓
9th Month ✓ ✓ ✓ ✓ ✓ NA
12th Month ✓ ✓ ✓ ✓ ✓ NA
15th month ✓ ✓ ✓ ✓ ✓ NA
18th month NA ✓ ✓ ✓ NA NA

programming session. At approximately six months from study
start, patients received Exposure and Response Prevention (ERP)
therapy, a form of Cognitive Behavior Therapy, for two months.
Over the course of the trial, we analyzed pre- and post-baseline
interviews and interviews approximately every 3 months (Table
1). To consider possible within-session differences, each session
was divided into two halves.

Parameters relevant to DBS include: amplitude, pulse duration,
and frequency. The total electrical energy delivered per second, or
power, was computed using the formula [88]:

TEED(W ∗1s) = I(A)2.PW (sec).f (Hz).R(Ω), (1)

where power is expressed in Watts, current in Amperes, pulse
width in seconds, frequency in Hertz, and resistance in Ohms.
Throughout the clinical trial, the stimulation frequency was held
constant at 150.6 Hz. Since the purpose of the study was to predict
variations in total electrical energy delivered, the constant term
was omitted. Because measurement may be affected by transient
fluctuations in battery output, pulse shape, or resistance, actual
delivered energy may differ slightly from calculated values.

3 METHODS

Figure 2 depicts the analysis pipeline. Facial action units, head
and face dynamics, and eye motion are extracted from video;
acoustic and linguistic features are extracted from audio. Using
individual sets of extracted features, mixed-effects random forests
(MERFs) are trained to predict OCD severity, depression severity,
and total electrical energy delivered (TEED). SHAP analysis is
used to evaluate the most informative unimodal features. We then
aggregate the top-k features from each set and train a multimodal
MERF. Finally, with a SHAP analysis on multimodal features,
we identify the most-informative k multimodal features and the
corresponding model.

3.1 Feature extraction
We extract four sets of features namely action units, head and
face dynamics, acoustic features, and linguistic features.

Action units: Faces in the video are tracked and normalized using
the Zface module of AFAR [28]. ZFace [89] is a real-time face
alignment software that accomplishes dense 3D registration from
2D videos and images without requiring person-specific training.
Faces are normalized to have an interocular distance (iod) of 80
pixels. AU detector module of AFAR is used to detect facial action
units (AUs) in the normalized faces.

The version of AFAR, used in this study, was trained on the
EB+ dataset (an expanded version of BP4D+ [90]), in which
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Fig. 2: Overview of the pipeline. (a) Action units, head and face dynamics, acoustic features, and linguistic features are extracted. (b)
Mixed effects random forests (MERFs) are trained using each of the four feature sets separately. (c) The top-k features are selected
from each of the four sets of features. Feature selection consists of SHAP analysis to identify important features, rank them based on
their Shapley values, choose top-k optimal features for each feature set, and aggregate them into a single feature vector. (d) Mixed
effects random forests (MERFs) are trained with a combined multimodal set of optimal features. (e) Multimodal optimal features and
corresponding model are found with a multimodal feature selection step.

participants interact with an experimenter in a variety of emotion
related tasks. Reliability of AFAR in EB+ was tested using k-
fold cross validation. Average free-margin kappa was 0.75 and
AUC 0.73 [29]. Cross-domain generalization was assessed by
testing AFAR in Sayette GFT [91]. Average free-margin kappa
was 0.49 and AUC 0.66, which represent moderate cross-domain
generalizability. Because test results in GFT were likely attenuated
by the larger head motion and lower video resolution in GFT, these
comparisons provide a conservative estimate of the cross-domain
generalizability in the current study. EB+ and the clinical trial
were more alike than EB+ and GFT. EB+ and the clinical trial
both used higher resolution video and were more similar in their
more limited head motion.

AFAR was used to asses intensity of 6 facial AUs: AU1
(inner brow raiser), AU6 (cheek raiser), AU10 (upper lip raiser),
AU12 (lip corner puller), AU14 (dimpler), AU17 (chin raiser).
AU 1+2 is typically seen in surprise and affective engagement.
An additional feature was average intensity of AU 6+12, which
comprises the Duchenne smile, a marker of positive affect. For
each of these, we extract time-series featues using tsfresh [92].
TsFresh outputs 794 time series characteristics for each feature
for a total of 5,558 (7× 794) features. In case of tracking failure
or an AU feature fails to vary throughout the video, all related
TsFresh features are set to 0. While the number of features is
initially large, the analysis plan greatly reduces the number in a
number of unimodal and multimodal steps.

Head and face dynamics: Head dynamics is defined using the
time series of the 3 degrees of freedom of out-of-plane rigid
head movement, which correspond to head nods (i.e., pitch),
head turns (i.e., yaw), and lateral head inclinations (i.e., roll).
Face dynamics is defined as time series of per frame eye and
mouth openings. Eye opening is calculated using the Eye Aspect
Ratio (EAR) [93], which is a normalized measure that divides
the distance between landmarks on the upper and lower eyelids
to the distance between inner and outer eye corners. Average
of left and right EAR is used. Similarly, mouth opening is
calculated using the Mouth Aspect Ratio (MAR), which is a
normalized measure that divides the distance between landmarks
on the upper and lower lips to the distance between left and
right mouth corners. After head (pitch, yaw, and roll) and face
(EAR, MAR) dynamics are calculated, time series characteristics
are extracted using TsFresh [92], yielding a total of 3,970 features.

Acoustic Features: Audio for each speaker is localized and
transcribed using TranscribeMe [94]. Audio and text are aligned
using the Montreal-Forced-Aligner [95]. The openSMILE [96]
toolkit and Collaborative Voice Analysis Repository (COVAREP)
[48] are used to extract acoustic features. For openSMILE, we
use the Geneva minimalistic acoustic parameter set (eGeMAPS
[49]), which is a subset of audio features chosen for their ability
to represent affective physiological changes in voice production.
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eGeMAPS contains 62 features: arithmetic mean and coefficient
of variation of 18 low-level descriptors (LLD), 8 functionals
applied to loudness and pitch LLD, and 6 temporal features.
COVAREP provides 72 low-level speech acoustic features,
which are derived from the speech signal, that include pitch,
energy, spectral envelope, loudness, voice quality and other
characteristics.

Linguistic features: We use Linguistic Inquiry and Word Count
(LIWC) [97], [98], which is a text analysis tool that determines the
percentage of words in a text that fall into one or more linguistic,
psychological, and topical categories. We extract 92 features from
the verbal content of each interview. Approximately 93% of the
words used in each interview were present in the LIWC dictionary
and analyzed. We drop the coverage variable (referred to as “Dic”
in LIWC) and normalize the word count variable with the duration
of interaction.

3.2 Unimodal model training with mixed effects ran-
dom forests (MERF)

When measures cluster within persons, as in a longitudinal study,
mixed effects models are used in statistics and econometrics
[99], [100]. In addition to the fixed effect terms, they include
random effect parameters, which change the model’s assump-
tions to accommodate heterogeneous data with many sources of
random variability (e.g., both intra- and inter-individual). As a
result, mixed effects methods allow for more accurate statistical
inferences about the factors that connect with observed variance.

Motivated by two previous studies that used mixed effects
models to infer depression severity in a longitudinal design [7],
[38], we use MERF to infer OCD severity, related depression
severity, and TEED.

MERF [100] is defined as:

Yij = f (Xij)+bi + εi (2)

where: i = 1, ...,m are the clusters (participants) each with ni
observations (j = 1, ...,ni); Xij is the input feature matrix; f (Xij) is
the fixed effects random forest; bi is the random effect parameter;
εij is the measurement error; and Yij is the regression target
variable. In our unimodal experiments, the fixed effect parameters
are the features derived from individual modalities and the random
effect parameter is the participant ID. The model is trained using
expectation maximisation (EM) with a generalised log-likelihood
(GLL) function to monitor convergence. For each cross- training
/ testing, the mixed effects random forests were trained for 50
iterations.

3.3 Unimodal feature selection

Shapley values [101] were introduced in game theory to gauge
each player’s participation in cooperative games. The machine
learning and explainable AI communities recently have shown
interest in Shapley. Shapley value for the jth feature is defined as
the weighted average of differences in predictions in the presence
of the jth feature and when it is marginalized, given the ith data
instance with m features represented by Xi

m. Marginalization
is accomplished by leveraging predictions from several feature
subsets. Calculating Shapley value is computationally expensive
due to the laborious marginalization procedure. However, the
SHAP (SHapley Additive exPlanations) framework can be used

to estimate Shapley values [102]. Shapley value ϕj of feature j can
be computed as:

ϕj(v) = ∑
S⊆{1,2,...,m}\{j}

|S|! (m−|S|−1)!
m!

(v(S∪{j})−v(S)),

where v is the model, m is the total number of features and S is a
subset of features.

We use kernel-based LIME, which combines Shapley values
with Local Interpretable Model-agnostic Explanations (LIME)
[103]. LIME has been widely used to interpret model decisions in
the explainable AI field. While LIME provides local correctness,
the SHAP framework improves upon that by ensuring feature
consistency and robustness to missing features. Missing features
have no impact on the contribution of features of interest.

We use SHAP values to rank characteristics in terms of their
relative contribution to prediction performance. We then choose
the top-k features, where the optimal value of k is found iteratively
based on the mean square error of the MERF trained with top-
k features. Optimal k may differ for each set of features (e.g.
action units, head and face dynamics, acoustic features, and
linguistic features). Optimal features for all individual modalities
are concatenated to obtain combined unimodal optimal features
(see Figure 2c)

3.4 Multimodal model training and feature/model selec-
tion

Following unimodal modeling, we train MERF using multimodal
features. Multimodal features comprise the combined top-k fea-
tures selected from action units, head and face dynamics, acous-
tics, and linguistics. By training MERF with selected multimodal
features, we seek to reveal the relative contribution of each
modality to performance. We use combined features as the fixed
effects and participant ID as the random effect parameter.

We use SHAP values to rank the multimodal features based
on their relative contribution to the prediction performance. Sim-
ilarly to unimodal feature selection, we choose top-k multimodal
features and optimize the value of k using an iterative approach.

3.5 Model training and evaluation
We trained separate models to predict OCD severity, depression
severity, and TEED. To validate our approach we performed leave-
one-session-out cross-validation. For the multimodal model and
each of the unimodal models, we optimized the number of features
k in the set k ∈ {6,11,16, ...46}.

To evaluate relative performance of the models we used the
following performance metrics:

1) Mean Absolute Error (MAE) is one of the most commonly
used performance metric for continuous labels. It is defined
as the sum of the absolute errors divided by the number of
observations.

MAE =
∑

D
i=1 |xi −yi |

D
(3)

where D is the number of observations, xi is the ground truth
score, yi is the predicted score.

2) Root Mean Squared Error (RMSE) is the root of the mean of
the square of the errors. RMSE score can never be zero. It is
a frequently used metric for continuous observations.

RMSE =

√
∑

D
i=1(xi −yi)2

D
(4)
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3) R Square (R2) is also known as the coefficient of determina-
tion. It is always in a range (0,1).

R2 = 1−

√
∑

D
i=i(xi −yi)

∑
D
i=i(xi − ȳ)

(5)

where ȳ is mean ground truth score.
4) Intraclass Correlation (ICC) is commonly used to deter-

mine the correlation between raters. In our case, ”raters”
are represented by ground-truth and predicted scores. ICC
may be computed for agreement or for consistency. We use
consistency.

5) Normalized mean absolute error is the ratio of MAE to the
range of measure (ROM), which is the difference between
the possible maximum and minumum values of the measure.
It is calculated as:

Norm MAE =
MAE
ROM

(6)

As the ranges of the OCD, depression, and TEED measures
differ, directly comparing MAEs obtained with each of them
would not be meaningful. By dividing the MAEs by the range
of each measure, we obtain a normalized measure that is
comparable across all of them.

6) Contribution is used to find the importance of a modality in
the prediction of the model. It is based on SHAP values. We
define contribution for a particular modality as:

Contribution =
∑

F
j=1 ∑

D
i=1 SMij

∑
M
k=1 ∑

F
j=1 ∑

D
i=1 Sijk

×100 (7)

where SM is SHAP value for a particular modality, S are all
SHAP values, F is number of features in a modality, M is number
of modalities. It is the ratio of sum of the all the SHAP values
for a particular modality by the sum of all SHAP values across all
modalities.

4 RESULTS

In Section 4.1, we report MERF results for OCD severity, comor-
bid depression severity, and total energy delivered (i.e., YBOCS II,
BDI II, and TEED, respectively). These include the test statistics
(e.g., ICC) for each modality before and after feature selection
by SHAP analysis. In Section 4.2, we present the most important
SHAP identified features within each modality.

4.1 Prediction results
OCD severity: The left side of Table 2 shows performance
for each of the unimodal models when all features are used.
Among unimodal models trained using all features, the one trained
with acoustic features gave the best performance on each of the
performance metrics. ICC for the unimodal acoustic model was
0.76. ICCs for the other unimodal models ranged from 0.45 -
0.48.

The right-hand side of Table 2 shows the performance for each
of the unimodal models after SHAP reduction; the multimodal
model that includes all SHAP-reduced features for each modality
(i.e., ”Combined”); and the SHAP-reduced multimodal model
(i.e., ”Best”).

SHAP reduction improved each of the unimodal models. The
SHAP-reduced acoustic model was the best among them and
required only six features.

By comparing the ”Combined” and unimodal SHAP-reduced
models, one can evaluate whether SHAP-reduced multimodal
models improved performance relative to unimodal. For acoustics,
the multimodal model afforded no advantage. The SHAP-reduced
acoustics model was equal to or outperformed the multimodal
model on all four performance metrics. For the other SHAP-
reduced unimodal models, the differences between unimodal and
multimodal were mixed.

By comparing ”Combined” and ”Best” one can evaluate
whether further SHAP reduction is valuable. The best SHAP-
reduced multimodal model achieved the highest performance with
an ICC of 0.83 and a large reduction in the number of features.
SHAP-reduction in the multimodal model optimized prediction of
OCD severity.

Depression severity: Table 3 shows the corresponding results
for depression (BDI II). As for OCD, the unimodal model for
acoustics again was the best performing unimodal model with an
ICC of .80. ICCs for the other unimodal models were much lower
and similar trends were found for the other test metrics.

SHAP reduction again strongly improved performance for
each of the unimodal models. Among the SHAP-reduced uni-
modal models, the model for acoustics again outperformed the
other unimodal models. The number of features required in the
SHAP-reduced model for acoustics, however, was larger than that
for OCD prediction (Table 2).

As in Table 2, by comparing ”Combined” and unimodal
SHAP-reduced models, one can evaluate whether SHAP-reduced
multimodal models improved performance relative to unimodal.
In contrast to the results for OCD, the SHAP-reduced multimodal
model for depression outperformed that for acoustics and other
modalities.

Comparing ”Combined” and ”Best”, we again see that further
SHAP reduction improves perfomance on all metrics. The relative
improvement is greater for MAE and RMSE; for R sq and ICC,
the gain is minimal.
Total Electrical Energy Delivered (TEED): Table 4 shows the
corresponding performance for TEED. Similar to what was found
for OCD and depression, prediction of TEED was highest for the
acoustics model. The relative advantage of acoustics, however,
was smaller than that found for OCD and depression.

Relative to the unimodal SHAP-reduced model for acoustics,
the SHAP-reduced multimodal model resulted in only small
improvement in two of four performance metrics. The SHAP-
reduced multimodal model (”Best”) optimized prediction of
TEED. The SHAP-reduced multimodal model was consistently
best.
Performance comparison across labels: To further compare
performance across OCD, depression, and TEED, we compute
the normalized MAE values for each individual set of features and
their combination as shown in Figure 3. For MAE, lower scores
are better. For individual modalities, acoustic features yielded the
lowest MAE for OCD, depression, and TEED. Linguistic features
yielded the highest. Multimodal models with SHAP reduction
yielded the smallest MAEs for depression and TEED although
not OCD.

Prediction of OCD severity and depression severity (Figure 3a
and Figure 3b) are similar for all feature types except for acoustic
features, which perform better. TEED prediction performances
given in Figure 3c are much lower compared to other two for
all feature sets.
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TABLE 2: Prediction of OCD servity using unimodal and multimodal features. OCD was measured using the YBOCS-II

All Features SHAP Reduced Features

Acoustics Linguistics AUs Head & Face Acoustics Linguistics AUs Head & Face Combined Best

Number of Features 6 11 36 16 69 6
MAE 5.93 8.67 8.67 8.46 5.05 7.85 6.7 5.86 7.65 5.2

RMSE 7.29 10.26 10.29 10.25 6.22 9.58 8.1 7.67 9.82 6.47
R sq 0.61 0.2 0.22 0.23 0.72 0.32 0.5 0.57 0.67 0.7
ICC 0.76 0.45 0.46 0.48 0.84 0.57 0.7 0.74 0.81 0.83

TABLE 3: Prediction of comorbid depression severity using unimodal and multimodal features. Comorbid depression was measured
using the BDI-II

All Features SHAP Reduced Features

Acoustics Linguistics AUs Head & Face Acoustics Linguistics AUs Head & Face Combined Best

Number of Features 25 20 10 15 81 11
MAE 8.14 8.83 11.65 11.83 7.9 11.05 8.1 8.67 6.55 6.30

RMSE 10.29 10.40 13.88 14.05 10.29 11.05 10.0 10.76 8.59 8.28
R sq 0.64 0.18 0.33 0.32 0.64 0.39 0.60 0.60 0.75 0.76
ICC 0.80 0.44 0.57 0.56 0.80 0.62 0.80 0.75 0.86 0.87

TABLE 4: Prediction of Total Electrical Energy Delivered (TEED) using unimodal and multimodal features

All Features SHAP Reduced Features

Acoustics Linguistics AUs Head & Face Acoustics Linguistics AUs Head & Face Combined Best

Number of Features 20 5 20 10 55 16
MAE 3.22 3.71 4.00 3.66 2.67 3.34 3.05 2.78 2.70 2.33

RMSE 3.88 4.67 4.7 4.74 3.28 4.35 4.00 3.54 3.30 2.79
R sq 0.34 0.02 0.00 0.02 0.53 0.24 0.36 0.45 0.60 0.69
ICC 0.31 0.27 0.30 0.24 0.71 0.46 0.54 0.62 0.70 0.81
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Fig. 3: Cross-validation Normalized MAE performance of top-k features derived from SHAP analysis

4.2 Relative contribution of features within modalities
for the best-performing model

For OCD severity, depression severity, and OCD, Table 5 presents
the top-k multimodal features in predicting their respective values.
Red denotes that an increase in the value of the feature leads to an
increase in the predicted value. Blue indicates that an increase in
the value of the feature leads to a decrease in the predicted value.

For OCD and depression severity, the majority of the top-
k multimodal features are acoustic. Of these, Mel Frequency
Cepstrum Coefficients from the lower registers were especially
informative. This finding is consistent with previous research that

suggests this set of features is strong predictor of depression [104].
In addition to MFCC, harmonic and phase distortion coefficients
were negatively correlated with depression. Linguistic features
were related to TEED only. Head and face dynamics were re-
lated to depression and TEED but not OCD. Facial action units
contributed to OCD and TEED.

4.3 Individual differences among participants
To visualize individual differences, we plotted MERF predicted
values by ground truth for OCD, depression, and TEED (Figure
4a, Figure 4b, and Figure 4c). With exception of S6, the slopes
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TABLE 5: Rank ordering of the top-k features across all modalities in predicting symptom severity of OCD, symptom severity of
depression, and total electrical energy delivered (TEED) by the DBS electrodes. Note: The color indicates the sign of the correlation;
red for positive correlation and blue for negative correlation.

Modality Feature OCD Depression TEED

Acoustic

MFCC 4 1 4 2
Loudness 2 - -
HMPDM 13 3 1 -
MFCC 6 5 8 -
MFCC 8 6 3 -
MFCC 18 - 2 1
HMPDM 8 - 6 -
MFCC 24 - 7 5
MFCC 13 - 11 -
NAQ - - 16
HMPDM 10 - - 4

Linguistic

Words with greater than six letters - - 6
Work - - 8
Tentative - - 11
Auxiliary verbs - - 15

Head and Face Dynamics

Yaw spectral Welch density - - 9
Mouth approximate entropy - - 10
Eyes spectral Welch density - - 12
Eyes permutation entropy - 5 -
Eye change in quantile of mean - 10 -
Eye velocity of change in opening - 9 -
Mouth longest strike below mean - - 3
Yaw partial auto correlation - - 13
Yaw permutation entropy - - 7

Action Units
AU1 Benford correlation 4 - -
AU1 augmented dickey fuller - - 14

for OCD were closely related in intercepts and slopes across
participants. For S6, a factor may have the smaller number of
observations and attenuated variability of OCD for them.

For depression and especially for TEED, there was more
variability across participants in slopes and intercepts. Attenuated
variability may have contributed to this finding especially in S6.
These findings support the importance of mixed-effects modeling
for longitudinal machine learning.

Figure 4c shows the regression plots for TEED. Slopes and
intercepts are more variable than for the symptom scores.

5 DISCUSSION

An unobtrusive, multimodal mixed-effects regressor based on
open-ended interviews measured severity of OCD and comorbid
depression over the course of the clinical trial with good reliability.
For OCD, the ICC for the SHAP-reduced ICC model was 0.83; for
depression, the corresponding ICC was 0.87. These ICCs rival the
interrater reliabilities of trained clinicians. If supported by further
research, these findings suggest that OCD and comorbid depres-
sion severity could be obtained without the need for formal clinical
interviews. Routine use of this approach could reduce patient
burden and clinical costs in treatment and clinical trial settings
and eliminate error due to judgement differences between raters
and drift in criteria over time. Consistency within and between
treatment settings could be achieved by multimodal assessment of
spontaneous patient behavior.

In the neuroscience community, there is increasing interest
in brain-behavior quantification and synchronization [105]. That
is, how changes in neural activity relate to synchronous changes
in behavior. We found strong correlation between total energy

delivered by the DBS electrodes in or near the VC/VS and multi-
modal behavior in the open-ended interviews. ICC for the SHAP-
reduced model was 0.81. This ICC is for summary measures of
behavior and TEED over several minutes duration. Further work
will be needed to discover whether moment-to-moment changes
in multimodal behavior reveal activity in the VC/VS on same time
scale.

The current state of the art in DBS for treatment refractory
OCD is open-loop programming. That is, patients return to the
clinical setting at frequent intervals to evaluate recent symptoms
and adjust DBS parameters as needed. In these sessions, clin-
ical interviews and observations inform determination of DBS
parameters through trial and error. Judgments are subjective and
vary within and between clinicians and over time. A multimodal
regressor could greatly reduce or eliminate subjective judgment
and enable more accurate titration of the DBS.

Because exposure to OCD triggers and the severe symptoms
they elicit can vary within and across days, more frequent evalua-
tion and adjustment of DBS parameters than is possible in periodic
office visits would be beneficial. In DBS-treatment for essential
tremor, effective closed-loop programming has been achieved. The
same is a current goal of research in DBS treatment for refractory
OCD. The current findings suggest that multimodal behavior
acquired via audio and video could be an effective component
of a self-titrating DBS system. It also could be effective in
detecting hypomania or mania, which are side effects of DBS, and
automatically down-regulating DBS energy to reduce or eliminate
this unwanted and potentially dangerous side effect.

An unexpected discovery was made when voice acoustics
alone approached the accuracy of the best multimodal model. This
finding highlights the potential of voice in effectively revealing
affective states, particularly those associated with OCD and de-
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(a) OCD (b) Depression (c) TEED

Fig. 4: Observed and MERF Predicted values

pression. The inherent dynamism of the voice, coupled with its
connection to the vagus nerve—the longest nerve in the autonomic
nervous system and the primary nerve of the parasympathetic
nervous system—renders it well-suited to capturing variations in
arousal and stress levels. Notably, voice has been recognized as
a reliable predictor of depression. Similarly, we observed compa-
rable results for OCD and the total electrical energy delivered to
the DBS electrodes. Nevertheless, multimodal models that include
facial action units, face and head dynamics, and linguistic features
maximized prediction. As well, they may afford robustness to
signal loss from any one modality.

In behavioral and clinical science, explanation has historically
been more important than prediction. Especially when dealing
with health, explanation is critical. Recent work has called for an
integration of explanation and prediction [106]. Our models were
informative in detecting relative contribution of each modality and
of key features within each modality.

Shapley analysis contributed to enabling more powerful mod-
els. By using SHAP-reduction, the number of features could
be reduced while eliminating those may have contributed error.
SHAP analysis is potentially a powerful tool for optimizing model
performance.

In machine learning we typically assume that labels or out-
comes are independent. Most often, this assumption is warranted
(i.e., each participant provides only a single label) and thus the
assumption of independence is not violated. In a clinical trial, on
the other hand, participants are assessed longitudinally and labels
are clustered within participants. In our study, labels came from
as many as 8 longitudinal assessments. To ignore the dependency
of labels within participants would have seriously violated the as-
sumption of independence and risked Simpson’s paradox. For this
reason, mixed-effects models were used. Because mixed-effects
models are subject specific, however, they are unable to guide
prediction for unseen participants. To the extent that individual
differences are limited to intercepts, however, it may be possible to
make valid predictions to new participants from relatively few data
points. In the case of chronic, severe, treatment-resistant disorders,
it is likely that intercepts would be reliably estimated from baseline
assessments. It is likely, as well, that predictions would become
more accurate as the number of observations increases. This would
be particularly advantageous for a closed-loop DBS. For now,
these hypotheses are open research question.

A limitation of the study was the small number of participants.
The participant pool from which to draw was small. Participants

had to meet stringent criteria for severe and chronic treat-resistant
DBS, additional psychiatric and medical criteria, opt for surgical
implantation of electrodes deep in their brain, and participate in an
18-month trial. The within/participants (longitudinal) design with
up to 8 assessments from each participant provided some offset
to the limited numbers of participants. Supporting the validity of
the findings was the consistency of the findings for depression.
Comparable to previous research that had access to larger samples
of participants, our findings for depression were quite consistent.
For OCD and total energy delivered to the DBS, comparative data
are unavailable. OCD and DBS energy are new research topics in
affective computing.

To protect participant confidentiality, the audio-video data
used in this study cannot be shared with other investigators.
We will seek from IRB permission to distribute deidentified and
anonymized features for use by other researchers.

6 CONCLUSION

An unobtrusive, multimodal mixed-effects regressor based on
open-ended interviews measured severity of OCD, severity of
comorbid depression, and TEED over the course of a clinical
trial for treatment resistant OCD. The regressor achieved strong
consistency with state-of-the art clinical measures. With further
validation, the proposed system could greatly reduce subjective
variation in clinical judgment within- and between clinicians
and eliminate drift over time in assessments for refractory DBS.
An unexpected finding was the strength of acoustic features in
inferring symptom severity and TEED. Because lower vocal track
parameters may be recorded from contact sensors on the throat,
they may be especially advantageous in a closed-loop DBS sys-
tem. Facial action units and head and face dynamics contributed
further predictive power. Linguistic features contributed relatively
little. A key contributor to the modeling results was use of SHAP
reduction in selecting most informative features and use of mixed-
effects modeling. Most prior work has considered only single
assessments or has ignored clustering of longitudinal assessments
within participants. Mixed-effects models enabled predictions ro-
bust to individual differences in participants.
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[45] T. Özseven, M. Düğenci, A. Doruk, and H. I. Kahraman, “Voice traces
of anxiety: acoustic parameters affected by anxiety disorder,” Archives
of Acoustics, pp. 625–636, 2018.

[46] S. Scherer, G. Stratou, and L.-P. Morency, “Audiovisual behavior
descriptors for depression assessment,” in Proceedings of the 15th ACM
on International conference on multimodal interaction, 2013, pp. 135–
140.
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