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Abstract

This study summarizes the theory of laser-amplifier noise based on the master equation, the
quantum-mechanical Langevin equation, and the rate equation. The three approaches are used
differently depending on the application. Laser-amplifier noise in the direct-detection receiver
is described by the master equation. Meanwhile, the quantum-mechanical Langevin equation is
most effective for analyzing noise appearing in coherent optical communication systems. The rate
equation approach provides a clear understanding of the intensity-noise characteristics of laser
oscillators, including the amplitude squeezing.

1 Introduction

Laser amplifiers, such as erbium-doped fiber amplifiers (EDFAs) and semiconductor optical amplifiers
(SOAs), have widely been employed in optical communication systems and devices. Therefore, the noise
characteristics of laser amplifiers are critical for improving the performance of systems and devices.
Theoretically, the laser-amplifier noise has been analyzed using the master equation [1], which focuses
on fluctuations in the number of photons. The performance of the pre-amplified direct-detection
(DD) receiver can be evaluated using the derived noise formulae. As an alternative approach, the
quantum-mechanical Langevin equation is introduced into the analysis of noise in laser amplifiers [2].
In this approach, the evolution of the electric field along the amplifier is calculated, and thus we can
evaluate the performance of coherent optical communication systems using laser amplifiers [3]. The
rate-equation approach can also analyze the laser-amplifier noise, although it has been most commonly
used to analyze the semiconductor-laser characteristics including noise [4].

The purpose of this study is to review the three approaches described above. By bridging physics
and engineering, particular attention is paid to the application of the theory to the optical commu-
nication system. Consequently, the derived noise formulae are finally expressed in terms of system
parameters, such as photocurent, optical bandwidth, and receiver bandwidth.

The organization of this paper is as follows. Section 2 describes emission and absorption of photons,
optical modes in free space, and coherent states of light in preparation for discussions in the remaining
sections. Sections 3, 4, and 5 deal with the master equation, Langevin equation, and rate equation,
respectively. In Sec. 6, we examine the physical meaning of the noise formulae derived in Sections 3,
4, and 5. Sections 7 and 8 discuss the sensitivity of the pre-amplified DD receiver and the coherent
receiver, respectively. In Sec. 9, we discuss the noise figure (NF) of optical amplifiers based on the
concept of the equivalent input noise. Section 10 analyzes accumulation of the noise in a laser-amplifier
chain, where laser amplifiers act as optical repeaters. In Sec. 11, we describe the intensity noise and
FM noise of semiconductor lasers, using the rate-equation approach. Finally, Sec. 12 concludes this
paper.
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2 Preparation

In this section, we summarize the fundamentals necessary for noise analyses of laser amplifiers. Namely,
photon emission and absorption in the two-level atomic system, optical modes in free space, and
coherent states of light are explained.

2.1 Emission and absorption of photons in the two-level atomic system

We consider the two-level atomic system. Lower state b has the energy of Eb, whereas upper state a
has the energy of Ea.

As shown by Fig. 1, when the electronic state of an atom is a at t = 0, it makes a transition from
state a to b, emitting a photon with an energy of hf = Ea−Eb, where h denotes Planck’s constant, and
f is the frequency of light. This phenomenon is called the spontaneous emission. Let the probability
of the transition from state a to b per unit time be Aab. The time variation of the number of atoms
Na in state a is given by

−dNa

dt
= AabNa , (1)

where Aab is called Einstein’s A coefficient.

bE

aE State a

State b

a bhf E E= −

Figure 1: Spontaneous emission process in a two-level atomic system.

On the other hand, when a photon having an energy of hf = Ea − Eb interacts with a two-level
atomic system, two types of transitions occur. The transition in Fig. 2 shows the light absorption
process. By absorbing a photon, transition of the atom takes place from state b to state a. In contrast,
Fig. 3 represents the stimulated emission process1 in which the atom in state a makes a transition
to state b under the influence of an incident photon and emits an additional photon. Let the energy
density per unit frequency of light be ρ(f). Then, the probabilities of these transitions are given by

Wba = Bbaρ(f) , (2)

Wab = Babρ(f) , (3)

where Bba and Bab are called Einstein’s B coefficients.
Therefore, the overall transition probability per unit time from state a to b consists of the proba-

bilities of spontaneous emission and stimulated emission and it is given by

Wab = Babρ(f) +Aab . (4)

On the other hand, the transition probability from state b to a is caused by light absorption and it is
given by

Wba = Bbaρ(f) . (5)

1This process is also called induced emission.
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bE

aE State a

State b

Figure 2: Light absorption process in a a two-level atomic system.

bE

aE State a

State b

Figure 3: Stimulated emission process in a two-level atomic system.

Meanwhile, it is well known that blackbody radiation at temperature T has the spectrum given by

ρ(f) =
8πhf3

c3
1

exp

(
hf

kT

)
− 1

. (6)

This is called Planck distribution.
Since the relation

NaWab = NbWba (7)

holds in thermal equilibrium, we have

Na [Babρ(f) +Aab] = NbBbaρ(f) . (8)

Using
Na

Nb
= exp

(
−hf

kT

)
, (9)

we can derive
8πhf3

c3
1

exp

(
hf

kT

)
− 1

=
Aab

Bba exp

(
hf

kT

)
−Bab

. (10)

Therefore, we obtain

Bab = Bba , (11)

Aab

Bab
=

8πhf3

c3
. (12)
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We consider the transition probability from state a to b again. Noting that the mode density of
the electromagnetic field in the three-dimensional space is given by

gm(f) =
8πf2

c3
, (13)

we have the photon emission probability as

[Aab +Babρ(f)]Na =

[
Aab

(
1 +

ρ(f)

hfgm(f)

)]
Na

= [Aab (1 + n(f))]Na . (14)

In this equation, n(f) denotes the average number of photons per optical mode at the frequency f
and represents the ratio of the probabilities of induced emission and spontaneous emission. Thus, the
induced emission occurs in proportion to the photon number but the spontaneous emission does not
depend on the photon number. On the other hand, the transition probability from state b to a is given
by

Babρ(f)Nb = Aab
ρ(f)

hfgm(f)
Nb

= Aabn(f)Nb , (15)

which shows that photon absorption takes place in proportion to the number of photons.

2.2 Modes in free space

Let us consider a traveling wave propagating in free space along the z-direction. To define a mode for
the electromagnetic field propagating in free space, we assume a virtual boundary as shown in Fig. 4,
where L is the length in the traveling direction (time interval T = L/c) and that the periodic boundary
condition is satisfied2. In other words, we consider the electromagnetic field at the right edge to be
continuously connected to the left edge. A box with the length L is traveling in the z-direction at a
speed of c. Taking the wave number of the traveling wave as k, the periodic boundary condition is given
by kL = 2πn where n is an integer; then, the frequency of the eigenmode is given by f = nc/L = n/T .
The eigen-frequencies are aligned at equal intervals of 1/T on the frequency axis and each mode is
represented with a line spectrum, as shown in Fig. 5, where fc denotes the carrier frequency. Each
mode can handle the bandwidth of 1/T , surrounded by broken lines; and thus, the whole bandwidth
is covered. Consequently, the optical filtering bandwidth, ∆f , is written in units of 1/T as

∆f =
M

T
, (16)

where M is an integer showing the number of modes included in the bandwidth3.

2.3 Coherent state of light

The quantized electric field of light is expressed in terms of the annihilation operator â and the creation
operator â†, which correspond to the classical complex amplitude of the electric field and its complex
conjugate, respectively, and satisfy the following commutation relation:[

â, â†
]
= 1 . (17)

2Since the time interval T is a virtual value, it can be set arbitrarily. The actually measured amount of noise is
expressed in terms of the optical and electrical bandwidths instead of T .

3In the following, we assume that ∆f ≫ 1/T .
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c

L

z

Figure 4: Definition of the eigenmode of traveling waves. A segment of length L is propagating towards
the right side at the speed of light c. We assume virtually that the electromagnetic field in the right
edge is connected to the left edge.

The operator of the real part of the complex amplitude is given by

â1 =
â+ â†

2
, (18)

and the operator of the imaginary part of the complex amplitude is given by

â2 =
â− â†

2i
. (19)

The operators, â1 and â2, satisfy

[â1, â2] =
i

2
. (20)

Moreover, the photon number operator is expressed as

n̂ = â†â . (21)

From Eqs. (18), (19), and (21), we obtain the following relation:

â21 + â22 = n̂+
1

2
, (22)

and hence, the energy of the electric field (Hamiltonian) is expressed as

Ĥ = hfc
(
â21 + â22

)
= hfc

(
n̂+

1

2

)
. (23)

Equation (23) demonstrates that the energy of light includes the n-photon energy and the half-photon
vacuum-fluctuation energy4.

The coherent state of light, |α⟩, satisfies

â|α⟩ = α|α⟩ , (24)

where α is a complex number. We find that |α⟩ is an eigenstate of â, and the eigenvalue is α. Then,
α means a parameter corresponding the classical complex amplitude. Since α is the eigenvalue of â,

4The DD receiver measures the number of photons, and is insensitive to the vacuum field; on the other hand, the
coherent receiver can detect the vacuum fluctuations.
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f

1

T

1

T

cf

Figure 5: Relationship between the signal spectrum and the eigenmode. One mode can handle the
bandwidth 1/T .

it seems as if the complex amplitude of the coherent state has no fluctuation. However, this idea is
incorrect. Since the operator â is not Hermitian, there are no means to measure it directly. On the
other hand, it is possible to measure the real and imaginary parts of the complex amplitude separately,
because the corresponding operators, â1 and â2, are Hermitian. However, in such a case, fluctuations
are present in the measured values.

In the coherent state, the average of the real part is given as5

⟨â1⟩ =
α+ α⋆

2
. (25)

In addition, the average of the square of the real part is given as〈
â21
〉
=

1

4

(
α2 + α⋆2 + 2|α|2 + 1

)
. (26)

Therefore, the variance of â1 is calculated as

⟨∆â21⟩ =
1

4
. (27)

Similarly, we have

⟨∆â22⟩ =
1

4
. (28)

Equations (27) and (28) show that the uncertainty product of the coherent state, ⟨∆â21⟩⟨∆â22⟩, is 1/16,
which is the minimum value allowed in the Heisenberg uncertainty principle [3]. Moreover, it can
be seen that the fluctuations are equally distributed in the real and imaginary parts of the complex
amplitude. Therefore, if the complex amplitude is illustrated on a complex plane, it will be shown as
Fig. 6. The average complex amplitude is α, which is associated with the noise having the isotropic
distribution. Since this noise is present even when the state of light is |0⟩, it called the “vacuum
fluctuations.” Thus, light in the coherent state can be interpreted as the superposition of the fixed
complex amplitude α and the vacuum fluctuations. Meanwhile, the average and variance of the photon

5We express the average as ⟨∗⟩ instead of ⟨α| ∗ |α⟩ for short.
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number for the coherent state are given by

⟨n̂⟩ = |α|2 , (29)〈
∆n̂2

〉
= |α|2 . (30)

From the classical point of view, the photon-number fluctuations are considered to be the Poisson
process, because the average and variance of the number of photons are equal as seen from Eqs. (29)
and (30). In this sense, the photon number fluctuations in the coherent state are called the “shot
noise” in the DD system.

Re

Im


Figure 6: Complex amplitude of the coherent state. The vacuum field fluctuations are associated with
the fixed complex amplitude α.

Let the fluctuation of the in-phase component be ∆â1, and the fluctuation of the quadrature
component be ∆â2

6. In such a case, we have

â1 = |α|+∆â1 , (31)

â2 = ∆â2 . (32)

The photon number operator is also represented by using the average photon number ⟨n̂⟩ and the
fluctuation part ∆n̂ as

n̂ = ⟨n̂⟩+∆n̂ . (33)

Equations (22), (31), (32), and (33) yield the relation between the amplitude fluctuation and the
photon-number fluctuation as follows:

∆n̂ = 2 |α|∆â1 . (34)

From Eqs. (27) and (34), we have 〈
∆n̂2

〉
= 4 |α|2

〈
∆â21

〉
= ⟨n̂⟩ , (35)

which demonstrates that the shot noise is interpreted as the noise generated from the beat between
the signal and vacuum fluctuations. Note that the vacuum fluctuations alone cannot be detected by
the direct detection receiver because the number of photons is zero, but generate the photon number
fluctuations called the shot noise.

Meanwhile, the fluctuation of the phase can be approximately represented as

∆ϕ̂ =
∆â2
|α|

. (36)

Hence, using Eqs. (27), (28), (35), and (36), the uncertainty product of the photon number and phase
is found to be

⟨∆n̂2⟩⟨∆ϕ̂2⟩ = 1

4
. (37)

6The orthogonal coordinate system is rotated such that α is located on the real axis.
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3 Master Equation Approach

The master-equation approach to analyze the noise of optical amplifiers was presented by Shimoda
et al. in 1957 [1], and is the simplest way to understand the intensity-noise characteristics of laser
amplifiers. The noise characteristics of EDFAs used in the DD system have been analyzed by this
approach.

3.1 Derivation of the master equation

When the box passes through the amplifier, the photon number inside the box is amplified (see Fig.4).
The emission and absorption probabilities of photons per unit time are given by Eqs. (14) and (15).
Consequently, we define the gain coefficient, g, and loss coefficient, γ, as

g = ANa , (38)

γ = ANb , (39)

where A = Aab. In the following, we ignore changes in Na and Nb along the traveling direction and
regard them as constants7.

The spontaneous emission of photons occurs in one mode with a probability per unit time g. Thus,
since the number of modes that pass through the filter bandwidth ∆f is M (see Eq. (16)), the total
spontaneous emission probability is given as Mg.

We represent the probability that the number of photons in the box is m at t as Pm(t). The
transition of the atomic state induced by absorption and emission of a photon is shown by Fig. 7.
State A having the number of photons m undergoes absorption and makes a transition to state B
having the number of photons m− 1. The probability of this transition is γm per unit time. Further,
by stimulated and spontaneous emissions, state A makes a transition to state C having the number
of photons m + 1. The probability of this transition is gm + Mg per unit time. In the same way,
state B makes a transition to state A by stimulated and spontaneous emissions with a probability of
g(m − 1) +Mg. In addition, state C makes a transition to state A by absorption with a probability
of γ(m+ 1). We can express all of the above processes as a differential equation in terms of Pm(t):

dPm

dt
= − [(g + γ)m+Mg]Pm + [g(m− 1) +Mg]Pm−1 + γ(m+ 1)Pm+1 . (40)

This differential equation is called the master equation, and enables the calculation of n-th moment of
the number of photons [1].

Photon number Photon number Photon number

m

( 1)g m Mg− +

( 1)m +

gm Mg+

AB C

1m − m 1m +

Figure 7: Diagram of atomic state transition accompanied with absorption and emission of a photon.

7See 4.5 as to the analysis of distributed-constant amplifiers.
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3.2 Average number of photons

The average number of photons is given by8

m =

∞∑
m=0

mPm . (41)

Using the relation

dm

dt
=

∞∑
m=0

m
dPm

dt
(42)

and Eq. (40), we have

dm

dt
= −(g + γ)

∞∑
m=0

m2Pm −Mg

∞∑
m=0

mPm

+ g

∞∑
m=1

m(m− 1)Pm−1 +Mg

∞∑
m=1

mPm−1 + γ

∞∑
m=0

m(m+ 1)Pm+1 . (43)

Further, using the following relations

∞∑
m=0

m2Pm = m2 , (44)

∞∑
m=1

m(m− 1)Pm−1 = m2 +m , (45)

∞∑
m=1

mPm−1 = m+ 1 , (46)

∞∑
m=0

m(m+ 1)Pm+1 = m2 −m , (47)

we can derive the differential equation for the average number of photons as

dm

dt
= (g − γ)m+Mg . (48)

When we solve Eq. (48) under the initial condition that the average number of photons is n0 at t = 0,
the output number of photons is obtained as

m (t) = G(t)n0 +M (G(t)− 1)nsp , (49)

where

G(t) = exp [(g − γ)t] , (50)

nsp =
g

g − γ
(≥ 1) . (51)

Since the first term of Eq. (49) indicates that the incident number of photons has become G times,
it is clear that G represents the amplifier gain. Since the second term is independent of the input, it
represents a process in which the spontaneously emitted photon is amplified and output. Hence, it is
called “ amplified spontaneous emission (ASE).” The parameter nsp is called the spontaneous emission
factor. When all the atoms are excited (Nb = 0, Na = 1), nsp has the minimum value of 1. This state
is the ideal operating condition of the amplifier.

8The statistical average is written as ∗ differently from ⟨∗⟩.
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3.3 Photon number fluctuations

The second moment of m is given by

m2 =

∞∑
m=0

m2Pm . (52)

From Eq. (40), the differential equation for m2 is obtained as

dm2

dt
= 2(g − γ)m2 + (g + γ + 2Mg)m+Mg . (53)

Equation (53) can be solved using Eq. (49). If we assume that the input light is in the coherent state
and the variance of the number of photons is n0 at t = 0, the variance at the output is calculated as

∆m (t)
2
= G(t)n0 + (G(t)− 1)Mnsp + 2G(t)(G(t)− 1)n0nsp + (G(t)− 1)2Mn2

sp . (54)

This photon-number fluctuation appears in the baseband below the frequency of 1/2T . In other
words, Eq. (54) demonstrates the electrical single-mode effect9. The noise of direct-detection (DD)
receivers can be derived from Eq. (54) by including the electrical multi-mode effect, which will be
discussed in Sec. 7.

4 Langevin Equation Approach

The Langevin-equation approach can describe the evolution of the electric field. Therefore, this ap-
proach is effective for analyzing the noise characteristics of coherent optical communication systems,
where laser amplifiers are employed as repeaters and pre-amplifiers.

4.1 Quantum-mechanical Langevin equation

When the annihilation operator for a signal electric field, â, passes through a medium with gain and
loss, it obeys the following Langevin equation [2][5]10:

dâ (t)

dt
=

1

2
(g − γ) â (t) + f̂g (t) + f̂γ (t) . (55)

The fluctuation operators, f̂γ and f̂g, result from the loss and gain of the medium, respectively. The
solution to Eq. (55) is given as

â (t) =
√

G (t)

â (0) +
∫

t

0

(
f̂g (t

′) + f̂γ (t
′)
)

√
G (t′)

dt′

 . (56)

4.2 Properties of the fluctuation operators

The annihilation operator, â (t), and the creation operator, â† (t), must satisfy the commutation rela-
tion given by Eq. (17). Consequently, Eq. (56) demonstrates that the commutation relation between

f̂γ (t) and f̂†
γ (t

′), and that between f̂g (t) and f̂†
g (t

′), should be given by [6][
fγ (t) , f

†
γ (t

′)
]
= γδ (t− t′) , (57)[

fg (t) , f
†
g (t

′)
]
= −gℓδ (t− t′) . (58)

9The optical bandwidth ∆f includes M optical modes. Therefore, Eq. (54) deals with the optical multi-mode effect.
10This is an optically single-mode equation. When M ≥ 2, we need to include multi-mode effects.
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By contrast, according to the quantum damping theory [5], the correlation properties between the
above-mentioned fluctuation operators are expressed, when the photon energy is much larger than the
thermal energy, as 〈

f̂γ
†
(t) f̂γ (t

′)
〉
= 0 , (59)〈

f̂γ (t) f̂γ
†
(t′)

〉
= γδ (t− t′) , (60)〈

f̂g
†
(t) f̂g (t

′)
〉
= gδ(t− t′) , (61)〈

f̂g (t) f̂g
†
(t′)

〉
= 0 . (62)

In addition, f̂g and f̂γ have no correlation.

4.3 Closed-form expression of the amplified electric field

We convert Eq. (56) into a closed-form expression of the amplified electric field. Using the gain, G,
and nsp, we define the noise operator, ĉ†, as

√
(G (t)− 1)nspĉ

† =
√
G (t)

∫ t

0

f̂g (t
′)√

G (t′)
dt′ . (63)

Equations (58) and (63) demonstrate that the noise operators, ĉ and ĉ†, satisfy the following commu-
tation relation: [

ĉ, ĉ†
]
= 1 . (64)

Equation (64) suggests that ĉ and ĉ† are the annihilation and creation operators operating on the

vacuum field, respectively. Moreover, we define the noise operator, d̂, as√
(G (t)− 1) (nsp − 1)d̂ =

√
G (t)

∫ t

0

f̂γ (t
′)√

G (t′)
dt′ . (65)

Equations (57) and (65) yield the commutation relation between d̂ and d̂† as[
d̂, d̂†

]
= 1 , (66)

which suggests that d̂ and d̂† are the annihilation and creation operators operating on the vacuum field,
respectively. The noise operators, ĉ and d̂, are not correlated with each other, and have no correlation
with the input signal, â (0).

Consequently, by using Eqs. (63) and (65), Eq. (56) is reduced to the closed-form expression of the
amplified electric field, given by

â (t) =
√
G(t)â (0) +

√
(G(t)− 1)nspĉ

† +
√
(G(t)− 1) (nsp − 1)d̂ . (67)

The first term represents the electric field of the amplified signal, the second term represents noise
associated with gain, and the third term represents noise associated with loss. Equation (67) enables
us to calculate the noise characteristics of optical amplifiers through simple manipulations of the
operators.
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4.4 Noise formulae

The photon-number operator of the output signal is given by n̂ (t) = â† (t) â (t). Using Eq. (67), we
can obtain its average as

⟨n̂ (t)⟩ = G(t) ⟨n̂ (0)⟩+ (G(t)− 1)nsp , (68)

which coincides with Eq. (49) when M = 1. When M ≥ 2, there are modes that only include ASE;
thus, the second term in Eq. (68) should be multiplied by M .

The noise characteristics of laser amplifiers can be calculated by simple algebraic manipulation of
the creation and annihilation operators in Eq. (67). For example, the variance of the photon number
is obtained from Eq. (67) after straightforward calculations as〈

∆n̂ (t)
2
〉
= G(t) ⟨n̂ (0)⟩+ (G(t)− 1)nsp + 2G(t) (G(t)− 1) ⟨n̂ (0)⟩nsp + (G(t)− 1)

2
n2
sp , (69)

which is the same as Eq. (54) when M = 1. When M ≥ 2, we can easily derive Eq. (54) from Eq. (69),
taking the modes that only include ASE into account.

Moreover, the average and variance of the real part of the amplified electric field are given from
Eq. (67) as

⟨â1 (t)⟩ =
√
G(t) ⟨â1 (0)⟩ , (70)〈

∆â1 (t)
2
〉
= G(t)

〈
∆â1 (0)

2
〉
+ (G(t)− 1)nsp

〈
ĉ21
〉
+ (G(t)− 1) (nsp − 1)

〈
d̂21

〉
, (71)

where the suffix “1” of the operators indicates the real part. Noting that
〈
∆â1 (0)

2
〉

= 1/4, and〈
ĉ21
〉
=

〈
d̂21

〉
= 1/4, we find from Eq. (71) that〈

∆â1 (t)
2
〉
=

1

4
+

1

2
(G(t)− 1)nsp . (72)

The first term on the right-hand side of Eq. (72) originates from vacuum fluctuations, whereas the
second term originates from ASE. The noise characteristics of the imaginary part of the signal electric
field, â2 (t), are the same as those of the real part, because laser amplifiers can amplify the real and
imaginary parts of the signal electric field by the same gain, as expressed by Eq. (67)11. Equation (72)
is useful for analyzing coherent optical communication systems12.

4.5 Distributed-constant laser amplifiers

We generalize our noise theory, developed in 4.3 and 4.4, to include the distributed gain and loss
coefficients [7]. In other words, the gain coefficient, g, and loss coefficient, γ, are dependent on t. In
Erbium-doped fiber amplifiers (EDFAs), the pump wave attenuates along the fiber length, and hence,
g and γ usually have t-dependence.

First, the gain of the amplifier is rewritten as

G(t) = exp

{∫ t

0

[g(t′)− γ(t′)] dt′
}

. (73)

Next, we define R and S as

R(t) = G(t)

∫ t

0

g(t′)

G(t′)
dt′ , (74)

S(t) = G(t)

∫ t

0

γ(t′)

G(t′)
dt′ , (75)

11The real and imaginary parts are simultaneously measured by coherent receivers, the noise, originating from the
vacuum fluctuations, is doubled, as discussed in Sec. 8.

12The noise of coherent receivers is derived from Eq,(72) and discussed in Sec 8. The multi-mode effect when M ≥ 2
and the difference in the impact of optical filtering between DD and coherent receivers are elucidated there.
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which satisfy

R(t)− S(t) = G(t)− 1 . (76)

Then, Eqs. (63) and (65) are expressed as

√
R (t)ĉ† =

√
G (t)

∫ t

0

f̂g (t
′)√

G (t′)
dt′ . (77)

√
S (t)d̂ =

√
G (t)

∫ t

0

f̂γ (t
′)√

G (t′)
dt′ , (78)

and Eq. (67) is modified to

â (t) =
√
G(t)â (0) +

√
R(t)ĉ† +

√
S(t)d̂ . (79)

Equation (79), in turn, yields the following revised noise formulae, corresponding to Eqs. (68), (69),
and (72):

⟨n̂ (t)⟩ = G(t) ⟨n̂ (0)⟩+R(t) , (80)〈
∆n̂ (t)

2
〉
= G(t) ⟨n̂ (0)⟩+R(t) + 2G(t)R(t) ⟨n̂ (0)⟩+R(t)2 , (81)〈

∆â1 (t)
2
〉
=

1

4
+

1

2
R(t) . (82)

Note that the term, (G−1)nsp, in Eqs. (68), (69), and (72) should be replaced with R(t) in the revised
noise formulae.

5 Rate Equation Approach

This section describes the rate-equation approach for analyzing the laser-amplifier noise. Moreover,
the laser noise can be analyzed by the rate equations very effectively, because the photon-electron
interaction in the lasing system can clearly be introduced to the rate equations. Such analyses will be
given in Sec. 11.

5.1 Derivation of the rate equation

The Langevin equation, given by Eq. (55), can be transformed into the rate equation for n̂(t) = â†(t)â(t)
as

dn̂(t)

dt
= â†(t)

dâ(t)

dt
+

dâ†(t)

dt
â(t)

= (g − γ) n̂(t) + â(t)†f̂(t) + f̂†(t)â(t) , (83)

where
f̂(t) = f̂g(t) + f̂γ(t) . (84)

The Langevin force, f̂(t), satisfies the following correlation relations:〈
f̂†(t)f̂(t+ τ)

〉
= gδ(τ) , (85)〈

f̂(t)f̂†(t+ τ)
〉
= γδ(τ) . (86)

13



Equations (56), (85), and (86) yield 〈
â(t)†f̂(t) + f̂†(t)â(t)

〉
= g . (87)

Next, using tc that satisfies |t− tc| ≃ 0, we define f̂c(t) as

f̂c(t) = â†(tc)f̂(t) + f̂(t)†â(tc) . (88)

Given that the correlation between â†(tc) and f̂(t) disappears, we have〈
f̂c(t)

〉
= 0 , (89)〈

f̂c(t)f̂c(t+ τ)
〉
= {g [⟨n̂(t)⟩+ 1] + γ ⟨n̂(t)⟩} δ(τ) . (90)

The first, second, and third terms in the right-hand side of Eq. (90) represent noise associated with
induced emission, spontaneous emission, and loss, respectively. Consequently, the final form of the
rate equation is derived from Eq. (83) as

dn̂(t)

dt
= (g − γ) n̂(t) + g + f̂c(t) , (91)

which can be solved as

n̂(t) = G (t) n̂ (0) + (G (t)− 1)nsp +G (t)

∫ t

0

f̂c (t
′)

G (t′)
dt′ . (92)

Using Eqs. (89), (90) and (92), we can derive the noise formula such as Eqs. (68) and (69).
Moreover, taking multi-mode ASE into account, we can modify Eqs. (91) and (90) as

dn̂(t)

dt
= (g − γ) n̂(t) +Mg + f̂c(t) , (93)〈

f̂c(t)f̂c(t+ τ)
〉
= {g [⟨n̂(t)⟩+M ] + γ ⟨n̂(t)⟩} δ(τ) . (94)

The rate equation, given by Eqs. (93) and (94), is commonly used for analyses of the laser noise.
This is because the photon-electron interaction in the lasing system can clearly be described by this
approach. Details are given in Sec. 1113.

5.2 Classical interpretation of Langevin force in the rate equation

We discuss the classical interpretation of the Langevin force in the rate equation, which is associated
with gain/loss of photons. Let the number of photons obey the following rate equation:

dn(t)

dt
= A(t) + fn(t) , (95)

where A(t) generally describes the photon emission/absorption process, and fn(t) is the noise term
associated with A(t). The noise term, fn(t), satisfies the following correlation relation14:

fn(t)fn(t+ τ) = aδ(τ) . (96)

13In Sec. 11, the rate equations are treated classically. See also 5.2.
14From this correlation function, we find that fn(t) is a white noise, which means that its spectral density is constant.

The two-sided spectral density defined in (−∞,+∞) is given by a.
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The number of emitted photons within ∆t is given from Eq. (95) as

n =

∫ ∆t

0

A(t)dt+

∫ ∆t

0

fn(t)dt . (97)

The average and variance of n are written as

n = A∆t , (98)

∆n2 =

∫ ∆t

0

∫ ∆t

0

fn(t)fn(t′)dtdt
′

= a∆t . (99)

Note that n = ∆n2, when the photon emission/absorption process is regarded as the Poisson process.
In such a case, we have A = a, and actually, Eqs. (93) and (94) satisfy this relation. Thus, we can
interpret the rate equation classically, assuming that the photon emission/absorption process obeys
the Poisson statistics.

Finally, we find that Eq. (93) can be regarded as a c-number equation, and the Langevin force,
Eq. (94), can be assumed to be a white Gaussian noise15. Actually, in Sec. 11, the rate equations are
treated in such a way.

5.3 Relation between the rate equation and master equation

The rate equation can be transformed into the differential equation for the moments of photon number
fluctuations, which is derived from the master equation in Sec. 3. For example, the differential equation
for the second moment,

〈
n̂2

〉
, is obtained from Eq. (93) as follows. First, we have

dn̂(t)2

dt
= 2n̂(t)

dn̂(t)

dt

= 2(g − γ)n̂(t)2 + 2Mgn̂(t) + 2f̂c(t)n̂(t) . (100)

Next, the average of Eq. (100) is given by

d
〈
n̂(t)2

〉
dt

= 2(g − γ)
〈
n̂(t)2

〉
+ 2Mg ⟨n̂(t)⟩+ 2

〈
f̂c(t)n̂(t)

〉
. (101)

Since Eqs. (92) and (94) yield〈
f̂c(t)n̂(t)

〉
=

1

2
[g (⟨n̂(t)⟩+M) + γ ⟨n̂(t)⟩] , (102)

we have

d
〈
n̂(t)2

〉
dt

= 2(g − γ)
〈
n̂(t)2

〉
+ (g + γ + 2Mg) ⟨n̂(t)⟩+Mg . (103)

Equation (103) coincides with Eq. (53), which is derived from the master equation approach.

6 Physical Interpretation of the Laser-Amplifier Noise

In this section, we examine the physical meaning of the noise formulae for laser amplifiers derived in
Sections 3, 4, and 5.

15The Poisson distribution can be approximated by the Gaussian distribution, when the number of occurrences is
large.
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Equation (49) shows that the output number of photons can be written as

m = n0 + (G− 1)(n0 +Mnsp) . (104)

The first term represents the incident number of photons and the second term represents the number
of photons added by the amplifier. This situation is illustrated in Fig. 8(a). The amplified signal light
is composed of the photons (G− 1)n0 generated by the stimulated emission and the incident photons
n0 themselves.

Meanwhile, the noise is generated as follows. Equation (72) demonstrates that the amplified electric
field consists of the vacuum fluctuation and ASE. When the vacuum field (where the number of
photons is zero) is incident on the amplifier, it “induces spontaneous emissions.” Consequently, with
the spontaneously emitted photons as the seed, stimulated emissions occur and ASE is generated,
as shown Fig. 8(b). Thus, we find that the amplifier output includes the ASE and vacuum field in
addition to the amplified signal.

+

0( 1)G n−

0n 0 0 0( 1)n G n Gn+ − =(a)

+(b)
Vacuum field

Signal

ASE: 𝐺 − 1 𝑀𝑛𝑠𝑝

Vacuum field +ASE

Figure 8: The concept of optical amplification. (a): Signal amplification process and (b): noise
generation process.

Next, we consider the physical meaning of the photon-number fluctuations of the amplifier output
given by Eq. (54) in a classical manner, using the beat-noise concept. Let the output electric field, Es,
be written as

Es = as + (∆as1 +∆av1) + i (∆as2 +∆av2) , (105)

where as is the signal electric field, ∆as1 is the in-phase ASE noise, ∆av1 is the in-phase vacuum noise,
∆as2 is the quadrature ASE noise, and ∆av1 is the quadrature vacuum noise. All of them are classical
parameters, and the noise parameters are regarded as Gaussian random variables. The energy of the
output light is given by

|Es|2 = |as|2 + 2as (∆av1 +∆as1) + (∆a2s1 +∆a2s2) + (∆a2v1 +∆a2v2)

+ 2(∆as1∆av1 +∆as2∆av2) . (106)

The first term is the output photon number, Gn0. The second term represents the beat noise between
the signal and vacuum field, and the beat noise between the signal and ASE. Their variances are given
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by (
∆n2

)
sig−vac

= 4Gn0∆a2v1

= Gn0 , (107)(
∆n2

)
sig−ASE

= 4Gn0∆a2s1

= 2G(G− 1)n0nsp . (108)

The third term shows the ASE energy. The real and imaginary parts of the ASE obey the zero-mean
Gaussian distribution, and their variance is given as

∆a2s1,s2 = σ2 =
1

2
(G− 1)nsp . (109)

Therefore, the average of the ASE energy is given by

(n)ASE = ∆a2s1 +∆a2s2 = (G− 1)nsp . (110)

Meanwhile, the variance of the ASE energy fluctuations, which is called the ASE-ASE beat noise, is
expressed as (

∆n2
)
ASE−ASE

=
{
(∆a2s1 +∆a2s2)−

(
∆a2s1 +∆a2s2

)}2

=
(
∆a4s1 −∆a2s1

2
)
+
(
∆a4s2 −∆a2s2

2
)
. (111)

The fourth moment of the Gaussian noise, ∆as1,s2, is given as

∆a4s1,s2 = 3σ4 =
3

4
(G− 1)2n2

sp . (112)

Then, from Eqs. (111) and (112), we have(
∆n2

)
ASE−ASE

= (G− 1)2n2
sp . (113)

In the multi-mode operation, Eq. (113) is multiplied by M . The fourth term represents the vac-
uum fluctuation energy, which is not measured by DD receivers and is omitted16. The sixth term
demonstrates the beat noise between the ASE and vacuum field. Its variance is given by(

∆n2
)
ASE−vac

= 4
(
∆a2s1 ∆a2v1 +∆a2s2 ∆a2v2

)
= (G− 1)nsp . (114)

In the multi mode operation, Eqs. (110) and (114) are multiplied by M . Thus, in total, the photon
number fluctuation is given by Eq. (54).

7 Pre-amplified DD Receivers

The DD receiver measures the incoming rate of photons, N̂ (t), usually by using the photocurrent of
photodiodes, Î (t). When ideal photodiodes having 100% quantum efficiency are employed as detectors,
we have

Î (t) = qN̂ (t) , (115)

16The vacuum fluctuation energy must be treated quantum mechanically
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where q denotes the electron charge. On the other hand, the relation between n̂ and N̂ is given by

N̂ (t) =
n̂ (t)

T
. (116)

Let a pre-amplifier be placed in front of the DD receiver. Since Eq. (16) demonstrates that the
mode number within the filtering bandwidth ∆f of ASE is given by M = ∆f · T , Eq. (49) yields〈

N̂ (t)
〉
= G (t)N0 + (G (t)− 1)nsp∆f , (117)

where N0 represents the photon rate of the input signal given by

N0 =
n0

T
. (118)

From Eq. (117), we find that the signal power, Psig, and ASE power, PASE , are written as

Psig = hfcG(t)N0 , (119)

PASE = hfc (G (t)− 1)nsp∆f . (120)

Equation (120) demonstrates that ASE is white noise17, and its spectral density is given by

SASE = hfc (G (t)− 1)nsp , (121)

which is commonly used for computer simulations18.

Next, we express
〈
∆N̂ (t)

2
〉
, using ∆f and B, both of which are determined from an experimental

setup19. As discussed in Sec. 6, Eq. (54) is valid when the electrical bandwidth is B = 1/2T , because
the beat noise appears only at f = 0 (see Fig. 9). Expanding the electrical bandwidth such that
B ≥ 1/2T , beat noise components appear at f = k/T (k: integer), as shown by Fig. 9. Note that the
beat noise, which is generated from the beat between different optical modes in Fig. 5, appear in the
both sidebands, whose width is 2B20. Considering that the number of modes in the both sidebands is
given by 2BT and summing up all of the beat noise components, we obtain21〈

∆n̂ (t)
2
〉
= 2BT

[
G(t)n0 + (G(t)− 1)Mnsp + 2G(t)(G(t)− 1)n0nsp + (G(t)− 1)2Mn2

sp

]
. (122)

On the other hand, the variance of
〈
N̂ (t)

〉
is given by

〈
∆N̂ (t)

2
〉
=

〈
∆n̂ (t)

2
〉

T 2
. (123)

Consequently, Eqs. (122) and (123) yield the following final expression of
〈
∆N̂ (t)

2
〉
:〈

∆N̂ (t)
2
〉
= 2B

[
G(t)N0 + (G(t)− 1)nsp∆f + 2G(t)(G(t)− 1)N0nsp + (G(t)− 1)2n2

sp∆f
]
, (124)

17We assume that fc ≫ ∆f .
18In the simulations, where the sampling time interval is Ts, the ASE power is given by SASE/Ts. The electric field

of ASE is regarded as a Gaussian random variable, as discussed in Sec. 6.
19Since T is a virtual parameter, it must be eliminated from noise formulae.
20Provided that we consider the single sideband spectrum, its spectral density must be doubled.
21When the number of optical modes is M , M − k optical beat notes contribute to the k-th electrical beat-noise

component. Therefore, strictly speaking, the ASE-ASE beat noise is not a white noise, because its spectral density
depends on k. However, when B ≪ ∆f , the spectral density of the ASE-ASE beat noise is approximately constant
within B.
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and the variance of the photocurrent,
〈
∆Î(t)2

〉
, is then given by〈

∆Î(t)2
〉
= q2

〈
∆N̂ (t)

2
〉

= 2qB
[
G(t)I0 + q(G(t)− 1)nsp∆f + 2(G(t)− 1)I0nsp + q(G(t)− 1)2n2

sp∆f
]
, (125)

where I0 represents the photocurrent measured when G = 1.
Meanwhile, the thermal noise of the receiver circuit is given by [8]

I2th =
4kBTcB

R
, (126)

where kB is the Boltzmann constant, Tc is the temperature of the circuit, and R is the load resis-
tance of the circuit. The thermal noise is usually the main cause determining the SN ratio of DD
receivers without optical pre-amplifiers. However, when the pre-amplifier gain is sufficiently high, the

photocurrent noise can overwhelm the thermal noise of the circuit, that is,
〈
∆Î(t)2

〉
≫ I2th, and we

cam improve the SN ratio. As far as G ≫ 1 and N0 ≫ nsp∆f , the signal-ASE beat noise (the third
term of the left-hand side of Eq. (124)) predominates as the cause of noise. Thus, Eqs. (117) and (124)
yield the SN ratio of the amplifier output, given by(

S

N

)
out

=
N0

4Bnsp
. (127)

On the other hand, the SN ratio of the input signal is given by22(
S

N

)
in

=
N0

2B
. (128)

Although the pre-amplifier improves the SN ratio through the relative reduction in the circuit-noise
effect, the SN ratio is still degraded by 2nsp(≥ 2), compared with the SN ratio of the input signal.
The SN-ratio degradation by optical amplification is called the NF of the amplifier. Hence, the NF of
laser amplifiers is 2nsp, the minimum value of which is 2 (3 dB).

8 Pre-amplified Coherent Receivers

We consider the phase-diversity homodyne receiver [3] to measure the in-phase (I) and quadrature
(Q) components of the signal. In the pre-amplified homodyne receiver, the signal is pre-amplified and
split into two branches. Each of the split signals is homodyne-detected, and the IQ components of
the signal are measured simultaneously. The photocurrent for the in-phase signal electric field with
respect to the local electric field, Aℓ, is given by [3]

Î1 (t) =
qAℓ

T
(âs1 (t) + ∆ân1) , (129)

where âs1 is the in-phase component of the signal electric field, and ∆ân1 is the in-phase component of
the vacuum electric field. The vacuum electric field is merged into the signal through the 3-dB beam
splitter in the receiver. On the other hand, the photocurrent for the quadrature signal electric field is
written as

Î2 (t) =
qAℓ

T
(âs2 (t) + ∆ân2) , (130)

where âs2 is the quadrature component of the signal electric field, and ∆ân2 is the quadrature com-
ponent of the vacuum electric field.

22This is the shot-noise-limited SN ratio obtained when G = 1 and the thermal noise is neglected.
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Figure 9: Beat noise spectrum. The red solid lines show beat-noise components appearing in the single
sideband (f ≥ 0). Meanwhile, the dotted lines show the spectra in both sidebands. The number of
modes within 2B is 2BT , where B represents the electrical bandwidth.

Let us consider the case that the incoming rate of photons of the signal, N0, is measured by the
phase-diversity coherent receiver23. Firstly, we measure the IQ components separately. The averages
of Î1 (t) and Î2 (t) are given by 〈

Î1 (t)
〉
=

qAℓ

T
⟨âs1 (t)⟩ , (131)〈

Î2 (t)
〉
=

qAℓ

T
⟨âs2 (t)⟩ . (132)

Squaring and adding them, we obtain

I (t)
2
=

〈
Î1 (t)

〉2

+
〈
Î2 (t)

〉2

= qIℓG (t)N0 , (133)

where Iℓ is the photocurrent, generated by the local light alone, and is given by

Iℓ =
qA2

ℓ

T
. (134)

Using Eq. (133), we can determine N0 from the measured photocurrents24.
Meanwhile, the variance of the photocurrent, Î1, is derived from Eq. (129) as〈

∆Î1(t)
2
〉
=

qIℓ
T

(〈
∆âs1(t)

2
〉
+
〈
∆â2n1

〉)
. (135)

Moreover, the number of modes included in the baseband width, B, is 2BT , as seen in Fig. 9. Then,
using Eq. (72), Eq. (135) is transformed into〈

∆Î1(t)
2
〉
= 2qIℓB

(〈
∆âs1(t)

2
〉
+

〈
∆â2n1

〉)
= 2qIℓB

[
1

2
+

1

2
(G(t)− 1)nsp

]
. (136)

23The measurement of the in-phase/quadrature components can be analyzed by the similar method.
24N0 is determined independent of the carrier phase. This fact is the origin of the name of “phase diversity. ”

20



The variance of Î2 is the same as Eq. (136). Thus, the total variance is given by

∆I(t)2 =
〈
∆Î1(t)

2
〉
+

〈
∆Î2(t)

2
〉

= 2qIℓB [1 + (G(t)− 1)nsp] . (137)

The SN ratio is given from Eqs. (133) and (137) by(
S

N

)
out1

=
N0

2Bnsp
, (138)

when G ≫ 1. If we do not use the pre-amplifier and the circuit-noise effect is ignored, the SN ratio is
given by (

S

N

)
out2

=
N0

2B
, (139)

because G = 1 in Eqs. (133) and (137). On the other hand, considering that the light in the coherent
state includes the vacuum fluctuations with the half-photon energy, the SN ratio of the input signal is
written as25 (

S

N

)
in

=
N0

B
. (140)

Comparing Eqs. (139) and (140), we find that the SN ratio is degraded by 3 dB owing to 3-dB beam
splitting necessary for the simultaneous IQ measurement. However, even if we introduce the optical
pre-amplifier into the coherent receiver, the degradation of the SN ratio is maintained at nsp, as seen
from Eqs. (138) and (140). In the ideal case that nsp = 1, the pre-amplifier noise does not degrade the
SN ratio. This is because 3-dB beam splitting after pre-amplification does not reduce the SN ratio,
whereas 3-dB beam splitting without pre-amplification reduces the SN ratio by 3 dB [8].

It should be also noted that Eq. (137) does not include ∆f . The homodyne detection is the linear
detection process with respect to the signal, and the signal can be filtered in the electrical domain
without optical filtering as far as B < ∆f/2. On the contrary, DD is the square-law detection process,
and the receiver noise includes ∆f , as shown by Eq. (124). Optical filtering is indispensable for DD
receivers even if the directly detected signal is tightly filtered in the electrical domain.

9 Equivalent Input Noise and NF

In this section, we reconsider the NF of optical amplifiers, using the concept of equivalent input noise.
As shown by Fig. 10 (a), the average of the signal electric field, as,in, is amplified by

√
G, and the

noise electric field, an,out, is generated. Hence, the amplifier output is given by

as,out =
√
Gas,in + an,out . (141)

If the equivalent input noise26 is defined by

an,eq =
an,out√

G
, (142)

we can regard that the signal and equivalent input noise are incident on a virtual noise-free amplifier,
as shown by Fig. 10 (b) and then, the output, given by Eq. (141), is generated from the noise-free
amplifier. Therefore, the NF of the amplifier, which represents the degradation of the SN ratio by

25Note that the spectral density of the vacuum fluctuations is 1/2, and the bandwidth is 2B.
26This is also called the input-referred noise.

21



amplification, is given by the energy ratio between the equivalent input noise and actual input noise,
written as

NF =
|an,eq|2

|as,in|2
. (143)

When G ≫ 1, the equivalent input noise has the energy of nsp photons per mode, while the actual
input noise, which is the vacuum fluctuations, has the half-photon energy. Hence, from Eq. (143), we
find that the NF is generally given by 2nsp.

G , , ,s out s in n outaa Ga= +

G

Virtual noise-free 
optical amplifier

(a)

(b)

, ,s in n ina a+

Optical amplifier

,

,

n out

s in

a
a

G
+ , , ,s out s in n outaa Ga= +

Figure 10: Definition of NF using the equivalent input noise. (a): An actual amplifier. The signal is
amplified, and the noise is generated simultaneously. (b): A virtual noise-free amplifier. The signal
and equivalent input noise are incident on the virtual amplifier, which is noise-free. Consequently, the
NF is defined as the ratio of power between the equivalent input noise and actual input noise.

10 Optical Transmission Using Laser Amplifier Chain

In long-distance optical fiber transmission systems, the laser amplifier chain, shown by Fig. 11, plays
an important role. In such systems, each laser amplifier compensates for the span loss and extends
the transmission distance; however, we cannot avoid the accumulation of the amplifier noise. In the
following, we discuss how the amplifier noise is accumulated in the laser amplifier chain.

We focus on the noise in the real part of the electric field. The noise in the amplifier output, which
consists of the vacuum fluctuations and ASE, attenuates by Γ in each span. Meanwhile, the vacuum
fluctuations, having the variance of (1 − Γ)/4, are merged from the loss. Then, the variance of the
total noise is expressed by〈

∆â1 (t)
2
〉
span

=

[
1

4
+

1

2
(G− 1)nsp

]
Γ +

1

4
(1− Γ)

=
1

4
+

1

2
(1− Γ)nsp , (144)

where we use GΓ = 1. Summing up the noise generated by each span, we have the variance of the
noise at the output, given by 〈

∆â1 (t)
2
〉
out

=
1

4
+

1

2
(1− Γ)nspn . (145)
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Provided that the span length is made shorter and the number of spans resultantly increases, the
peak optical power is maintained at a lower level, preventing from the Kerr nonlinearity of fibers [3].
Meanwhile, the the total ASE noise increases in proportion to n. It means that nsp of the single
amplifier should be replaced with nspn in the laser amplifier chain.

#1 #2 #n

G G G G
 

Figure 11: Laser amplifier chain, where the span loss, Γ, is compensated for, using the amplifier gain
G in every span.

11 Laser Noise

In this section, we analyze the intensity-noise characteristics of semiconductor lasers including the
amplitude squeezing [9][10] by using the classical rate equations described in Sec. 5. This approach
enables us to obtain a clear understanding of the amplitude-squeezing mechanism. Moreover, the FM
noise and spectral width of semiconductor lasers are also discussed.

11.1 Rate Equations for photons and electrons

The number of electrons, ne, in the active region and the number of photons, s, inside the cavity obey
the following classical rate equations for the single-mode oscillation of semiconductor lasers [11]:

dne

dt
= p− ne

τs
− (Ecv − Evc) s+ fn , (146)

ds

dt
= (Ecv − Evc) s+

βne

τs
− s

τph
+ fs . (147)

In Eq.(146), p represents the pump rate. When the laser is driven by a current, J , it means the injected
number of electrons per second, and is written as

p =
J

q
. (148)

The parameter, τs, is the carrier lifetime, originating from spontaneous carrier recombination processes
including spontaneous emission, Ecvs is the induced emission rate, and Evcs is the absorption rate. In
Eq. (147), the photon lifetime, τph, is written as

1

τph
=

1

τp1
+

1

τp2
, (149)

where τp1 represents the lifetime determined from the output coupling, and τp2 is the lifetime deter-
mined from the internal loss. The parameter, β(≪ 1), shows that only a small portion of spontaneous
emission (the second term of the right-hand side of Eq. (146)) contributes to the lasing mode. In the
following, we ignore this term including β.
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In the stationary state, we find from Eqs. (146) and (147) that

p =
ne

τs
+

(
Ecv − Evc

)
s , (150)

Ecv − Evc =
1

τph
. (151)

On the other hand, the noise terms, fn and fs, are divided separately, corresponding to each process
in the right-hand side of the rate equations, as

fn = fn1 + fn2 + fn3 , (152)

fs = fs1 + fs2 + fs3 . (153)

The noise characteristics of lasers are analyzed by Fourier transform of the rate equations. In the
analyses, Fourier transforms of fk(t) is written as Fk(f), and its power spectral density is represented
by Sk(f). The relation between the Fourier transform, Fk(f), and the power spectral density, Sk(f)
is generally given by

Sk(f) = lim
T→∞

⟨F ∗
k (f)Fk(f)⟩

T
, (154)

where T denotes the measurement time interval.
Using the discussions in 5.2, we can derive theoretical expressions of the spectral densities as follows.

The noise term, fn1, stems from the pumping process, and its two-sided spectral density is given by

Sn1(f) =

{
p when the pump noise is associated as in optically pumped lasers,

0 when the pump noise is suppressed as in constant-current driven lasers.
(155)

The spontaneous carrier recombination process (the second term of the right-hand side of Eq. (147))
generates the noise term, fn2, whose power spectral density is

Sn2(f) =
ne

τs
. (156)

Moreover, fn3 and fs1, are caused by the induced emission and absorption, and satisfy

fn3 = −fs1 . (157)

This negative correlation between fn3 and fs1 originates from the fact that the emission (absorption) of
a photon always follows the recombination (generation) of an electron-hole pair. Their power spectral
densities are given by

Sn3(f) = Ss1(f) =
(
Ecv + Evc

)
s . (158)

The noise terms, fs2 and fs3, are associated with the output coupling and the internal loss, respectively.
The power spectral densities of these noises are written as

Ss2(f) =
s

τp1
, (159)

Ss3(f) =
s

τp2
. (160)

Small deviations, ∆ne and ∆s, from the stationary values, ne and s, obey

d∆ne

dt
= −

(
1

τs
+As

)
∆ne −

∆s

τph
+ fn , (161)

d∆s

dt
= As∆ne + fs , (162)
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where A is the differential gain defined as

A =
∂ (Ecv − Evc)

∂ne

∣∣∣∣
ne=ne

. (163)

We apply the adiabatic approximation to Eqs. (161) and (162) to demonstrate the noise generation
mechanism clearly. Using the following equation obtained from Eq. (161):

∆ne =

−∆s

τph
+ fn

1

τs
+As

, (164)

we find that ∆s obeys the differential equation given by

d∆s

dt
= − As

τph

(
As+

1

τs

)∆s+
As

As+
1

τs

fn + fs . (165)

This approximation holds in the frequency range well below the relaxation resonance.

11.2 Origin of shot noise

When the current J is much larger than the threshold current Jth, the spontaneous carrier recombina-
tion rate is negligibly smaller than the induced emission rate: As ≫ 1/τs. In such a high-power limit,
Eq. (165) is approximated as

d∆s

dt
= −∆s

τph
+ fms , (166)

where the new noise term, fms, is written as

fms = fn + fs = fn1 + fs2 + fs3 . (167)

Note that fn3 and fs1 are canceled out each other in Eq. (167). Hence, the photon number fluctuation
inside the cavity, ∆s(t), is generated only from the pump fluctuation, fn1, output coupling, fs2, and
internal loss, fs3.

When the pump fluctuation exists, the spectral density of fms(t) is given by

Sms(f) = p+
s

τph
. (168)

Using Eqs. (150) and (151), Eq. (168) is transformed into

Sms(f) =
2s

τph
. (169)

The Fourier transform of ∆s(t) is obtained from Eq. (166) as

∆S(f) =
Fms(f)

i2πf +
1

τph

. (170)

Then, Eqs. (169) and (170) yield the spectral density of ∆s(t) written as

Sph(f) =
2s

τph
· 1

(2πf)
2
+

(
1

τph

)2 . (171)
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Integrating Sph(f) on [−∞,+∞], we have the variance of the fluctuations of the number of photons
written as

∆s2 =

∫ +∞

−∞
Sph(f) df = s . (172)

Equation (172) indicates the shot-noise character that the variance and average are equal.
We next consider the outgoing rate of photons from the cavity, which we can measure outside the

cavity. The average outgoing rate of photons, r, is given by

r =
s

τp1
, (173)

and its fluctuation can be expressed as

∆r =
∆s

τp1
− fs2 . (174)

Equation (174) is easily understood from the fact that when the outgoing rate of photons from the
cavity becomes higher (lower) than the average due to the output coupling noise fs2, the photon
emission rate inside the cavity decreases (increases) from the average value. From Eq. (174), the
Fourier transform of ∆r(t) is given by

∆R(f) =
∆S(f)

τp1
− Fs2(f) . (175)

Equations (170) and (175) yield

∆R(f) =
1

τp1

Fn1 + Fs2 + Fs3

i2πf +
1

τph

− Fs2 . (176)

Using Eqs. (155), (159), and (160), (176) results in the following expression of the spectral density of
∆r(t):

SR(f) =
s

τp1
, (177)

which demonstrates that the outgoing rate of photons has the shot-noise character.
Now, we go on to the case that semiconductor lasers are driven by a constant-current source, where

fn1 = 0. In such a case, the photon-number fluctuation inside the cavity is derived from Eq. (170) as

Sph(f) =
s

τph
· 1

(2πf)
2
+

(
1

τph

)2 . (178)

Integration of Sph(f) over [−∞,+∞] gives us the variance of the fluctuations of the number of photons
written as

∆s2 =

∫ +∞

−∞
Sph(f) df =

s

2
. (179)

Consequently, the amount of noise is halved from the standard shot-noise level given by Eq. (172).
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On the other hand, the outgoing rate of photons is given from Eqs. (170) and (175) by

∆R(f) =
1

τp1

 Fs2 + Fs3

i2πf +
1

τph

− Fs2 . (180)

Equations (159), (160), and (180) yield the spectral density of ∆r(t) given by

SR(f) = SR1(f) + SR2(f) , (181)

where

SR1(f) =
s

τp1
· (2πfτph)

2

(2πfτph)
2
+ 1

, (182)

SR2(f) =
s

τp1
· τp1
τp1 + τp2

· 1

(2πfτph)
2
+ 1

. (183)

The black and blue curves in Fig. 12 show SR1 and SR2, respectively. In the ideal case where no
internal loss exists, that is, τp2 → ∞, SR2 vanishes, and only SR1 remains. We find that the spectral
density of SR1 becomes less than the standard shot noise level, s/τp1, in the frequency range below
the cutoff frequency of 1/2πτph, and the amplitude squeezing is achieved. On the contrary, when the
internal loss is increased larger than the output coupling loss, that is, τp2 ≪ τp1, SR approaches the
standard shot noise level. It should be noted that when the pump noise exists, the noise spectral
density is the shot-noise level, s/τp1, independent of f .
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Figure 12: Intensity noise spectra when semiconductor lasers are driven by a constant-current source.
SR1 is the intrinsic only caused by output coupling. SR2 is the noise induced by internal loss. SR3 is
the noise caused by spontaneous carrier recombination. The cut-off characteristics of theses spectra
are approximated by line graphs.

11.3 Intensity noise due to spontaneous carrier recombination

In 11.2, we have derived the noise spectrum in the high-power limit where As ≫ 1/τs. In the opposite
limit where As ≪ 1/τs, the excess noise is generated as shown in what follows. In this case, Eq. (165)
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can be approximated as
d∆s

dt
= −Asτs

τph
∆s+ fs . (184)

The spectral density of fs is given from Eqs. (151), (158), (159), and (160) as

Ss(f) =
2nsps

τph
, (185)

where nsp is the spontaneous emission factor defined by

nsp =
Ecv

Ecv − Evc

. (186)

The output rate of photons is given by Eq. (174), but the second term can be omitted by the
approximation used in this section. Equations (174), (184), and (185) yield the spectrum of the
fluctuation of the outgoing rate of photons written as

SR3(f) =
2nspτph
A2τ2s τp1s

· 1

1 +

(
2πf

τph
Asτs

)2 , (187)

which is the conventional expression for the intensity noise of lasers [12]. The red curve in Fig. 12
shows SR3(f).

In this way, we can classify the semiconductor-laser noise into the three categories, SR1, SR2, and
SR3. The noise at any bias current can approximately be expressed as the superposition of the three
noises. The noise SR3 can be suppressed by operating low-threshold lasers at high bias current levels
(J ≫ Jth). Even in such a case, there remain SR1 and SR2. To reduce SR2, it is necessary to make
the internal loss much smaller than the output coupling loss (τp2 ≫ τp1). The two conditions are
nothing but those for obtaining the 100% quantum efficiency. The noise SR1 is the ultimate noise of
semiconductor lasers, whose spectral density is less than the standard shot-noise level below the cutoff
frequency of the passive cavity. However, it is not easy to observe such a low-noise state below the
shot-noise level in actual semiconductor lasers. Only a few experimental results have been reported so
far [13].

11.4 FM noise and spectral width

We need rely on the Langevin equation approach to discuss the FM noise characteristics. The Langevin
equation given by Eq. (55) is adapted to lasers, as shown by

dâ (t)

dt
= −i∆ω(ne)â (t) +

1

2
[Ecv(ne)− Evc(ne)] â (t)−

â(t)

2τph
+ f̂ℓ (t) , (188)

where ∆ω(ne) shows the angular frequency deviation from the cavity mode. The Langevin noise term,
fℓ(t), is expressed as

f̂ℓ(t) = f̂cv(t) + f̂vc(t) + f̂ph(t) , (189)
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where f̂cv(t), f̂vc(t), are f̂ph(t) stem from the induced emission, absorption, and photon lifetime of the
passive cavity, respectively. The correlation relations of these noise terms are given by〈

f̂†
cv(t)f̂cv(t

′)
〉
= Ecvδ(t− t′) , (190)〈

f̂cv(t)f̂
†
cv(t

′)
〉
= 0 , (191)〈

f̂†
vc(t)f̂vc(t

′)
〉
= 0 , (192)〈

f̂vc(t)f̂
†
vc(t

′)
〉
= Evcδ(t− t′) , (193)〈

f̂†
τph

(t)f̂ph(t
′)
〉
= 0 , (194)〈

f̂ph(t)f̂
†
ph(t

′)
〉
=

1

τph
δ(t− t′) . (195)

Using Eqs. (190)-(195), we obtain the correlation relations of the real part operator, f̂ℓ,1(t), and

imaginary part operator, f̂ℓ,2(t), as〈
f̂ℓ,1(t)f̂ℓ,1(t

′)
〉
=

〈
f̂ℓ,2(t)f̂ℓ,2(t

′)
〉
=

1

4

(
Ecv + Evc +

1

τph

)
δ(t− t′) =

nsp

2τph
δ(t− t′) , (196)

1

2

〈
f̂ℓ,1(t)f̂ℓ,2(t

′) + f̂ℓ,2(t)f̂ℓ,1(t
′)
〉
= 0 . (197)

These equations demonstrate that the real and imaginary parts of the Langevin force have the same
energy, and heve no correlation between them27.

Neglecting the intensity noise, we assume that â(t) is expressed as

â(t) =
√
s exp

[
−i∆ϕ̂(t)

]
, (198)

where ∆ϕ̂(t) is the phase fluctuations28. Equation (188) shows that ∆ϕ̂(t) satisfies

d∆ϕ̂(t)

dt
= − f̂ℓ,2(t) + αf̂ℓ,1(t)√

s
. (199)

The parameter α is called the linewidth enhancement factor, defined by [14]

α =
2
∂∆ω

∂ne

A
. (200)

Since the fluctuation of the instantaneous frequency is expressed as

f̂instant(t) =
1

2π

d∆ϕ̂

dt
, (201)

its spectral density is given from Eqs. (196), (197), and (199) by29

SFM (f) =
nsp

(
1 + α2

)
8π2sτph

, (202)

27It can be shown that the energy of noise inside the passive resonator bandwidth is given by hfcnsp, which is the
origin of the laser noise.

28See Eq. (36) on the definition of the phase operator.
29The operators can be regarded as c-numbers. The Langevin force can be regarded as a classical Gaussian noise.
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which is called the FM noise spectrum. When the FM noise spectrum is white, the field spectrum has
the Lorentzian shape, whose full width at the half maximum (FWHM), δf , is 2πSFM [15]. Therefore,
from Eq. (202), we have

δf =
nsp(1 + α2)

4πτphs
. (203)

The output power, Po, including the loss inside the cavity, is expressed as

Po =
hfcs

τph
. (204)

Moreover, the full spectral width of the passive resonator, ∆ν, is given by

∆ν =
1

2πτph
. (205)

Then, Eq. (203) is transformed into

δf =
πhfcnsp(1 + α2)∆ν2

Po
. (206)

The linewidth when nsp = 1 and α = 0 in Eq. (206) was derived by Schawlow and Townes [16].
Therefore, this expression is commonly called the Schawlow-Townes linewidth.

12 Conclusions

This study reviewed the master equation, the quantum-mechanical Langevin equation, and the rate
equation that can analyze the noise characteristics of laser amplifiers. Bridging physics and engineering,
we especially took care to apply the theory to the system applications. Consequently, the derived
noise formulae were finally expressed in terms of system parameters, such as a photocurent, optical
bandwidth, and receiver bandwidth. Using the derived noise formulae, we discussed the sensitivity of
the pre-amplified DD receiver and coherent receiver. Moreover, the NF of laser amplifiers was examined
by using the concept of the equivalent input noise. The accumulation of noise along the laser-amplifier
chain was also analyzed. Finally, based on the rate-equation approach, we clearly demonstrate the
intensity noise and FM noise characteristics of semiconductor lasers.
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