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Abstract

This study proposes a novel artificial intelligence-enabled methodological framework for packet-based network intrusion detection

system that effectively analyzes header and payload data and considers temporal connections among packets. The AI framework

transforms sequential packets into a two-dimensional image, which is then passed through a convolutional neural network-based

intrusion detector model. Experimental results using publicly available data sets demonstrate that the methodology can detect

network attacks earlier than flow-based approaches. It also exhibits high transferability and shows promising resilience against

adversarial examples.

1



IEEE TRANSACTIONS ON BIG DATA 1
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Abstract—Machine learning (ML) and deep learning (DL) advancements have greatly enhanced anomaly detection of network
intrusion detection systems (NIDS) by empowering them to analyze big data and extract patterns. ML/DL-based NIDS are trained using
either flow-based or packet-based features. Flow-based NIDS are suitable for offline traffic analysis, while packet-based NIDS can
analyze traffic and detect attacks in real-time. However, current packet-based approaches rely on assumptions that generate bias in
the models, resulting in an increase in false negatives and positives. Additionally, most literature-proposed packet-based NIDS capture
only payload data, leaving out significant information from packet headers. To address these limitations, we propose a novel artificial
intelligence-enabled methodological framework for packet-based NIDS that effectively analyzes header and payload data and
considers temporal connections among packets. Our framework transforms sequential packets into a two-dimensional image, which is
then passed through a convolutional neural network-based intrusion detector model. Our framework excels in detecting network
attacks earlier than flow-based approaches, achieving detection rates of 97.7% to 99% across different attack types using publicly
available big data sets. It also exhibits high transferability, with an average attack detection rate of 95% on a new target data set, and
displays promising resilience against adversarial examples.

Index Terms—Network intrusion detection system, packet-based NIDS, early attack detection, sequential packets image
representation

✦

1 INTRODUCTION

INTRUSION detection systems (IDS) are designed to mon-
itor and identify attacks on organizations’ computer and

network systems. They can be classified into host-based IDS
(HIDS) and network-based IDS (NIDS). NIDS are a popular
option for detecting attacks in large organizations, since they
analyze the network traffic of critical nodes to identify attack
behavior, as opposed to monitoring a single node in HIDS.
The detection strategies used in NIDS include signature-
based and anomaly-based methods. While signature-based
methods rely on creating domain-specific rules, anomaly-
based methods employ machine learning (ML) and deep
learning (DL) algorithms and train on big data to iden-
tify malicious behavior. ML/DL-enabled NIDS are mainly
trained using either of the two types of features extracted
from the network traffic data, flow-based or packet-based.

Flow-based features aggregate information from the
packet headers in network communications, while packet-
based features are extracted directly from the packet data.
There are many limitations to the flow-based NIDS. (i)
They analyze traffic once the flow between the sender and
receiver is completed to identify any malicious activity,
making them suitable for offline network traffic analysis [1].
(ii) They mainly extract features from lower levels of the
transmission control protocol (TCP)/ internet protocol (IP)
model, making it challenging to detect higher-level attacks
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that target the application layer [2]. For example, a dis-
tributed denial-of-service (DDoS) attack such as SYN flooding
targets network packet header data, whereas a SQL injection
attack injects anomalous code into the SQL queries (i.e., at a
packet payload level) [3]. (iii) They identify attacks based on
extracted flow features, which do not capture the functional
behavior of network traffic in the packets. (iv) With different
ways of extracting flow-based features, including the use
of CIC Flowmeter [4] and Zeek (Bro) [5], the feature set
used to train the intrusion detection models also varies
among different network environments, making it difficult
to benchmark the trained model’s performance in a new
target environment (domain adaptability).

Packet-based NIDS, on the other hand, are more suitable
for real-time detection as features are extracted directly from
the packet data. However, there are challenges with the
packet-based approach. (i) Categorizing packets as benign
or malicious is non-trivial. Not all packets have a malicious
intent in an attack. For e.g., packets such as TCP three-
way handshakes represent normal network characteristics
in both benign as well as malicious traffic. (ii) Most packet-
based NIDS do not consider the sequential functioning of
packets in a flow and instead treat them as independent
packets. As a result, the temporal correlations among the
packets belonging to the flows are not captured [6], which
may result in an incorrect classification by the NIDS (iii)
They do not consider the direction of packets due to inde-
pendence assumptions. However, the direction of a packet
in a flow (forward or backward) can provide significant
information in identifying attacks. For instance, network
attacks like Distributed Denial-of-Service (DDoS) and Port
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Scan often exhibit substantial differences in forward and
backward packet patterns compared to normal traffic [7].
Our study addresses these limitations in flow-based and
packet-based approaches for a timely detection of network
attacks. We propose a novel methodology that combines
both these approaches to preserve the temporal-spatial as-
sociation between packets and their features for prompt
detection of different attacks on packet header and payload
data. Our method extracts features from high-level and low-
level packet information and utilizes them sequentially.

The contributions of this study are as follows. The pri-
mary contribution is the development of a novel method-
ological framework that leverages AI techniques for (near-
)real-time detection of network attacks. This AI-enabled
framework overcomes the limitations of traditional packet-
based NIDS by considering both header and payload data
and analyzing temporal connections among packets. An-
other novel aspect of our method is the unique represen-
tation of the network traffic data. The sequential pack-
ets in a communication flow are transformed into a two-
dimensional image, enabling the application of convolu-
tional neural network (CNN) for intrusion detection. This
representation allows the development of an optimized
CNN-based network intrusion detection model that cap-
tures the underlying patterns and features associated with
the network attacks. Other relevant contributions to the
cybersecurity research community include the insights from
the conducted experiments and their subsequent analyses.
The study found that malicious intent can be detected
early in a network communication during an attack. The
transmission of the fourth to the ninth packet in a two-way
communication was sufficient to detect malicious activity
with high accuracy. This early detection capability is a
paradigm shift in reducing response time to network attacks
compared to flow-based approaches that typically require
analysis of a large number of packets before making a
detection. Our methodology has shown promising results of
being deployable in diverse environments without requiring
complete retraining, enhancing flexibility and efficiency for
cybersecurity teams. Our sequential packets image-based
network intrusion detection system (SPIN-IDS) framework
also demonstrated robustness against adversarial examples,
accurately detecting network attacks even with carefully
crafted packet perturbations, unlike other ML/DL-based
NIDS with high false negative rates.

The remainder of this paper is structured as follows.
Section 2 reviews the literature on flow-based and packet-
based NIDS that utilize ML/DL algorithms and identifies
research gaps. Section 3 offers a detailed description of
the proposed methodology, covering packet-based feature
extraction, image representation of ongoing traffic, and de-
velopment of the network intrusion detection model. In
Section 4, the numerical experiments are discussed, while
the results and analysis of these experiments conducted
using our framework are presented in Section 5. Finally, Sec-
tion 6 provides the conclusions of this study and potential
directions for future research.

2 LITERATURE REVIEW

Over the past decade, significant research has been con-
ducted on integrating ML/DL algorithms into the develop-
ment of anomaly-based NIDS. ML/DL-enabled NIDS can
be developed using features extracted from network flows
as well as from the information obtained directly from
the packets. Below we provide a summary of literature
pertaining to both these approaches.

2.1 Flow-based NIDS
The predominant approach used in building NIDS is
through a flow-based feature extraction process, which en-
tails analyzing a network communication (or a flow) and
aggregating information from its packets. Packet header
data is typically used to obtain flow-based features [1], using
publicly available tools like CIC FlowMeter [4]. ML/DL
models are then trained using these features to identify
anomalies in network traffic.

Deep neural network (DNN), a fundamental DL struc-
ture with multiple layers, including input, hidden, and
output layers, is used to model complex nonlinear func-
tions [8], such as the ones that map network traffic data
to benign or malicious categorical labels. Authors in [9]
proposed a NIDS using DNN with four hidden layers. Their
experiments showed a superior performance of their DL
model against other ML classifiers, while noting a lower
detection accuracy for the user to root (U2R) attack class.
The performance was benchmarked using older intrusion
detection evaluation data sets such as KDD Cup’99 [10]
and NSL-KDD [11]. Recurrent neural networks (RNNs), as
an extension of traditional feed-forward neural networks,
have also been proposed by cybersecurity researchers for
the development of NIDS [12]–[14]. Yin et al. [12] presented
an RNN-based NIDS for binary and multiclass classification
of samples in the NSL-KDD data set. Their NIDS was
shown to outperform the ML classifiers. Higher computa-
tional processing was required to train their model and the
experiment results using their trained model indicated a low
detection rate for some attack types such as remote to local
(R2L) and U2R attack classes. Xu et al. [13] proposed an
RNN-based NIDS using gated recurrent units (GRU). Their
study used older data sets for validation and their model
had lower accuracy in detecting the minority attack class
samples. Naseer et al. [14] compared different DL and ML
algorithms for detecting intrusions and found that a cou-
pled model of long short-term memory (LSTM) and CNN
achieved better accuracy compared to other approaches. The
validation in this study was performed using the older and
almost obsolete data set, NSL-KDD.

Autoencoder (AE) is a DL technique that uses an un-
supervised learning approach, in which the input data sam-
ples do not have any labels associated with them [15]. Shone
et al. [16] proposed a NIDS based on deep AE and random
forest (RF) algorithm, which showed improved efficiency
compared to the deep belief network (DBN) approach used
in [17] . Yan et al. [18] proposed a NIDS using stacked sparse
autoencoder (SSAE) and support vector machine (SVM) to
achieve superior performance. Yang et al. [19] proposed a
NIDS model based on supervised variational autoencoder
(VAE) with regularization and DNN (SAVAER-DNN) that
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was effective in detecting low frequency and new attacks.
However, all of these AE-based models were evaluated on
older data sets, KDD Cup ’99 and NSL-KDD, and showed
lower accuracy in detecting samples belonging to minority
attack classes.

CNN is commonly used for image classification and
object detection tasks due to its ability to capture spatial
information through convolutional filters. Flow-based fea-
tures do not contain spatial relations. Hence, CNN is often
used in hybrid systems with RNN, in which the CNN
model acts as a feature extractor and the output is classified
with RNN [20]–[22]. Yu et al. [23] proposed a NIDS model
based on few-shot learning, which uses DNN and CNN as
embedding functions for feature extraction and dimension
reduction. The aforementioned models were evaluated us-
ing KDD Cup’99, NSL-KDD, and UNSW-NB15 data sets,
and their detection accuracies were found to be lower for
the minority attack classes.

2.2 Packet-based NIDS

An alternative method of developing ML/DL-enabled NIDS
is by extracting features directly from each packet in a
flow and then training the model on these packet-based
features. Recent literature studies examining the use of
packet-based features for NIDS are as follows. An RNN
method with an attention mechanism (ATPAD), proposed
in [24], utilizes word embedding and RNN to extract fea-
tures that capture the correlation between detection results
and potential bytes of the payload. The proposed method
uses binary classification and is trained using the CICIDS-
2017 data [25]. Another study, [26], also uses the same
data set to construct a block sequence using the packet
payload data. This approach captures short-term and long-
term dependency relationships among the malicious bytes
in the payload data. A tool named payload-byte is proposed
in [27] to extract the packet payload bytes from publicly
available data sets containing raw packet capture (pcap)
files. Using the extracted packets, DNN-based models are
then trained to detect different attack types. With the results
from their experimental study, the authors concluded that
packet-based NIDS are as effective as flow-based NIDS.
However, these studies [24], [26], [27] are limited to only
capturing payload features. However, the maliciousness of
some attacks lies in the packet header data [2]. Additionally,
these studies only consider packets with payload data and
do not develop a structure for sequentially capturing pack-
ets belonging to the same flow, making it difficult to identify
malicious attacks in real-time.

The authors in [28] proposed a unified packet represen-
tation that employs raw packet information to fingerprint
host operating systems and devices. To evaluate its efficacy,
they tested the proposed method on ten distinct data sets.
Although the proposed approach was found to be suitable
for fingerprint host operating systems, it is not applicable
to network traffic data classification. This approach incor-
porates all bytes from the raw packet file, including headers
that contain information about IP addresses and ports. Such
an all-inclusive approach to packet analysis may result in
the model being trained to recognize specific IP addresses
that generate malicious traffic or frequently attacked ports.

Zhang et al. [29] proposed a method for creating grey-scale
images of packets without performing feature extraction. In
their study, each packet was assumed to have 1518 bytes of
hexadecimal payload data padded with 0s. The p-zigzag
encoding scheme was used to create a grey-scale image,
which was then transformed using inverse discrete cosine
transform to create a pattern texture image for classifica-
tion. However, the spatial-temporal relationship of packets
belonging to the same flow was ignored, as the images
only represented individual packets. In addition, similar to
the approach in [28], their method is all-inclusive and thus
training can be biased towards certain header information,
such as IP addresses and ports. Yu et al. [30] proposed
a CNN-based IDS named PBCNN. Their method involves
capturing the raw packet data and creating a single image
that comprises all packets belonging to a flow/session.
This approach demonstrates high efficiency when analyzing
modern data sets, such as CICIDS-2017 and CICIDS-2018.
However, their method is unsuitable for real-time attack
detection since it captures a fixed number of packets within
a session/flow (20 packets) before providing a prediction
(similar to flow-based methods). By using a fixed number of
packets to generate images from network flows will result
in missing out on network flows which contain only a few
number of packets, such as DDoS attacks. Also, they create
greyscale images from the packets in a flow which ignores
how forward and backward packets are transmitted in the
network. As a result, the patterns in forward packets sent by
the attacker is not captured. Additionally, keeping network-
specific features from the packet data, such as source ports,
destination ports, and protocol will add bias towards this
information in the model.

2.3 Research gaps in literature

In summary, packet-based NIDS are well suited for detect-
ing network attacks in (near-)real-time as they reflect the
network’s current state and can detect anomalies as they
emerge. However, the current packet-based approaches for
creating ML/DL-based NIDS make two strong assumptions.
First, all packets that are a part of an attack (malicious flow)
are categorized as malicious during the training of these
models. Clearly, not all packets are malicious in the entire
network communication, in which an attack is orchestrated.
Second, each packet is evaluated independently for its ma-
liciousness without considering its dependency on other
packets in the respective flow. In a real-world implementa-
tion, this approach will result in false positives as the trained
model will classify many harmless packets as malicious,
resulting in a high volume of alerts for security analysts
to investigate in a resource-constrained environment. At the
same time, such an approach will also miss out on detecting
malicious attacks, resulting in false negatives. In addition to
the aforementioned impacts of these assumptions, tracing
back a packet to the actual flow for investigation will add
more complexity to the intrusion detection and mitigation
process, thereby requiring more processing time. It is also
to be noted that most of the packet-based NIDS proposed
in literature only capture payload data, thereby leaving out
significant information from the packet headers. Although
some studies [28], [29] have explored the use of both header
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Fig. 1: Framework for the Sequential Packets Image-based Network Intrusion Detection System (SPIN-IDS)

and payload data, the incorporation of all header data can
introduce bias into the model training process and impact
the model’s accuracy when deployed in a different network
environment.

3 AI-ENABLED METHODOLOGICAL FRAMEWORK

The objective of this research study is to address the afore-
mentioned gaps by developing an accurate and quick intru-
sion detection mechanism that can detect a network attack
with a high confidence by analyzing a minimum number
of packets in an ongoing flow. Our proposed AI-enabled
framework, shown in Figure 1, aims to achieve this objective
by taking into account both header and payload data of
the sequential packets in an evolving flow and transforming
them into a two dimensional (2D) image representation. The
sequential packets image-based network intrusion detection
system (SPIN-IDS) framework consists of three components:
(i) a packet parser, (ii) an image builder, and (iii) a network
intrusion detector. The first component extracts packet-
based features from the raw network traffic data. The second
component preprocesses the extracted feature data to gen-
erate 2D images. Finally, the third component determines if
the network traffic is malicious or not. Next, we describe
each of these components in detail.

3.1 Packet parser
To understand packet-based feature extraction from a raw
packet file, it is essential to know the structure in which
packets are stored. The TCP/IP model is the standard model
used in network communication to regulate the procedure
of information sharing across the internet. It consists of four
layers: the network access layer (also known as the host-
to-network layer), the internet layer, the transport layer,
and the application layer. The transmission control protocol
is responsible for breaking the message into TCP segment
packets and reassembling them at the destination. Figure 2

displays the different TCP/IP layers, along with the number
of information bytes at each layer. Network traffic data is
stored in the libpcap (pcap) format, which is considered
to be the de facto standard for network packet capture
and widely used in packet sniffers and analysis tools like
Wireshark [31].

The packet parser component takes the network traf-
fic (in real-time or pcap files) as input data. Each packet
transmitted through the TCP contains up to 1594 infor-
mation bytes. Information related to the environment and
protocols can bias the model and make it less applicable
to different environments. Hence, to remove this bias, the
Ethernet (ETH) header information (14 bytes), the IP ver-
sion (one byte), the differentiated services field (1 byte),
the protocol (one byte), and the source and destination
IP addresses information (four bytes each) from the IP
header are eliminated. The source and destination ports
information bytes (two bytes each) from the TCP header
of each packet data are also removed. Additionally, the IP
options and TCP options, which can cause misalignment
between two packets of the same flow and introduce noise
in the model, are removed. Misalignment occurs when the
bytes in two feature representations of packets with and
without options are not aligned, leading to a decrease in
model performance and interpretability [28]. To encode
temporal relationship between packets in the same flow,
a delta time feature is introduced that calculates the time
difference between two packets of the same flow using the
epoch time of each packet. After removing these information
bytes (a total of 109 bytes, shown in red in Figure 2) and
encoding the temporal correlation feature into the feature
space, the resulting packet-based feature representation,
Vpacket, contains a maximum of 1486 bytes of information.
Each byte represents a feature in the packet-based feature
representation. Next, a byte-wise transformation is applied
to the packet-based features, converting the hexadecimal
byte values to the respective decimal values. The decimal
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Fig. 2: TCP/IP model layers with information byte details

Fig. 3: Auxiliary and packet-based features representation

value ranges from 0 (for 00 byte) to 255 (for ff byte),
which is suitable for an image representation of the packet
data. Since the number of bytes varies depending on the
packet type, zero-padding is applied to the feature space to
maintain a standard structure, resulting in a fixed number
of features (N ) for each packet.

There are attacks aimed at keeping the destination
(server) busy and consume its resources by sending mul-
tiple null packets with no particular malicious data (e.g.,
SYN flooding) [32]. It becomes important to differentiate
between forward (attacker to server) and backward (server
to attacker) packets. Hence, the direction of each packet is
encoded as an auxiliary feature in the packet representation
scheme. In total, seven auxiliary features are captured from
each packet, which are used in the image creation process
in the image builder component. These features include
source IP address (SrcIP), destination IP address (DstIP),
source port (SrcPort), destination port (DstPort), protocol
(Proto), epoch time, and direction of the packet. Figure 3
shows the packet-based feature scheme. The output of the
packet parser is a packet-based data which contains seven
auxiliary features and a total of 1486 packet-based features.
The direction and delta time features are initially set to null
values for each packet. The direction and delta time features
are computed in the image builder component. Algorithm 1
presents the packet parser process.

Algorithm 1 Algorithm for the packet parser process
Input: Real-time network data/captured network data (pcap)

files.
Output: Transformed packet data
/* Set the packet-based features length to N for all packets. */
for each packet do

Obtain the packet header and payload data
Do feature selection from the header and payload data
Do byte-wise transformation to convert hexadecimal bytes

to decimal values (0-255)
Assign transformed data to packet feature vector Vpacket

Add the delta time feature to Vpacket /* Set to Null */
Do zero-padding if length(Vpacket) ̸= N
Capture and add the auxiliary features to Vpacket

end

3.2 Image builder

To capture the temporal-spatial relationships among the
packets within a flow, we develop a 2D (P × Q) image
builder that uses sequential packets to generate snapshots
of the evolving flow as new packets arrive. The transformed
packet-based data obtained from the packet parser compo-
nent serves as an input to the image builder component.
With the help of the auxiliary features, the packets belong-
ing to the same flow are extracted, and delta time and
direction information is computed. Delta time is encoded
as a feature, and the same-flow packets are stacked across
the P dimension of the image to capture the temporal
relationships. The spatial and semantic correlations in the
packets are preserved by constructing a static representation
of packet features across the Q dimension of the image. The
P dimension can be determined by the security team of an
organization and can be derived using statistical measures
such as the mean or the median number of packets found in
each flow in their respective network environment. The Q
dimension is the length of the packet-based feature vector
(1486), as defined in the packet parser component. It is to be
noted that the construction of an image does not require all
P number of packets from an ongoing flow.

The packet-based features are stored using an image
with three channels, red (R), green (G), and blue (B). We
propose using an RGB image because the current state of the
forward and backward packets is essential in identifying the
underlying patterns in network attacks. Using a grey-scale
mode would damage this pattern in the data. Instead, the
RGB channels provide information about how the forward
and backward packets are played out in the flow. The
forward packet information is stored in the R channel of
the images, and the backward packet information is stored
in the G channel of the images. The third channel, B, is
zero-padded to maintain the same structure for all images
generated by the image builder component. This process is
conducted sequentially, and every time a packet arrives, the
direction of the packet is checked, and the feature vector
values are assigned to the respective channel, leaving the
other two channels blank. For training the network intrusion
detector (the third component in the framework), historical
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Fig. 4: Schematic of the image builder process showing
generation of the first two images in a flow

data sets available in the organizations can be used to create
the training data. Alternatively, the training data can be
created from the modern and preferred publicly available
network intrusion data sets, such as those provided by the
Canadian Institute of Cybersecurity (CIC) (CICIDS-2017 [25]
and CICIDS-2018 [4]). Each image created using the image
builder component for the training phase is assigned the
label of the network flow found in the historical/publicly
available data. For instance, an image created from the
packet data in CICIDS-2017 data set will belong to one of the
15 different labels, including one benign and 14 attack types
found in that data set. Figure 4 illustrates the image builder
process for an instance of an evolving flow with five packets.
The first packet is transmitted in the forward direction.
Consequently, the feature values of this packet are stored
in the R channel of the image representation, while zero-
padding the G and B channels for the first row. Conversely,
the second packet is transmitted in the backward direction,
and thus its feature values are assigned to the G channel
of the image representation. In this case, we zero-pad the
R and B channels for the second row of the image. This
process continues until all the five packets are represented
in this image. Algorithm 2 presents the pseudo-code for the
image builder process.

Algorithm 2 Algorithm for the image builder process
Input: Packet-based data (from Algorithm 1), P .
Output: Image data

for each packet in packet-based data do

Obtain the flow packets as follows:

Identify packets with same tuple
(SrcIP, DestIP, SrcP ort, DestP ort, P roto) and 
label them forward packets

Identify packets with same tuple
(DestIP, SrcIP, DestP ort, SrcP ort, P roto) and 
label them backward packets

Store the flow packets based on epoch time

for each packet in flow do
(delta time)packet = (epoch time)packet -
(epoch time)previous packet

Transform (delta time)packet between [0, 255]

Encode (delta time) in the packet-based feature vec-
tor (Vpacket)

end

Set the image dimension to (P × 1486× 3)

zero-pad red (R), green (G), and blue (B) channels

p ← 0 /* enumerates row of images for sequential
process*/

for each packet in flow do

if p ≥ P then
break

else if packet direction is forward then
Assign feature vector of packet to row p of R
channel

else
/* the packet direction is backward*/
Assign feature vector of packet to row p of G
channel

end
Create the image of p packets in the flow

p++

end
Remove flow packets from packet-based data

end
return Image data

3.3 Network intrusion detector
The objective of the network intrusion detector is to deter-
mine whether an image, obtained from the image builder
component, contains benign or malicious traffic. To achieve
this objective, we pose the problem of intrusion detection
as a binary image classification problem. We propose the
use of a CNN architecture for the development of the
detector. CNN models are well known for their superior
performance in classifying image data as well as their fast
inference time [33]. They have a distinct multilayer neural
network architecture compared to the feedforward models.
In particular, CNNs consist of an input layer, an output
layer, and multiple hidden layers, typically comprising
of convolutional, pooling (such as maxpooling), and fully
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connected layers. The core operations in the CNN model
include convolution and sampling processes [34]. During
the convolution process, various filters are applied to the
original data or feature map and a bias is added. The
convolution process for an input image sample is based
on the following equation, in which L represents the input
image’s length, K is the kernel size, Z denotes the amount
of zero-padding added to both ends of the image dimension,
and S is the stride of the kernel on a convolution layer.

L′ =
(L−K + 2Z)

S
+ 1 (1)

Algorithm 3 Algorithm for training and validating the
network intrusion detector
Input : Training image data, validation image data, hyper-

parameter set, CNN model architecture.
Output: Optimized model
while Training ̸= done do

for every hyperparameter selection do
For each epoch in epoch range

Create image batches from the training and vali-
dation image data

Train the CNN model with training image
batches

Evaluate the model performance with validation
image data

if EarlyStopping is True break else continue
Record hyperparameter selection and model per-
formance on validation image data

end
end

end
Choose the best hyperparameter selection for the model
return Optimized model

Although using multiple convolution layers can po-
tentially lead to better learning of images with complex
features, the number and performance of these layers are
not always proportional. Hence, an ideal architecture must
be selected during the training phase from a wide range of
possibilities, such as from shallow (with only one convo-
lutional layer) to deep (with multiple convolutional layers)
architectures along with different padding and stride strate-
gies. An appropriate loss function and activation function
must also be selected that suits the problem type (binary
classification), along with the optimal tuning of other hy-
perparameters. During the training phase, different images
are created from each flow, with an incremental number
of sequential packets observed in that communication. The
objective, through experimentation, is to find image data
with an appropriate number of packets that will help the
detector learn patterns in the network communication to
produce a higher accuracy in malicious traffic detection.
The training and validation process of the network intrusion
detector model is outlined in Algorithm 3.

3.3.1 Evaluation

The performance of the detector is evaluated using a range
of metrics, commonly employed for intrusion detection

models. These metrics are calculated using the following
model prediction values on the testing data samples:

• True positives (TP): number of data instances cor-
rectly classified as an attack

• False negatives (FN): number of attacks incorrectly
classified as benign traffic

• False positives (FP): number of benign samples in-
correctly classified as an attack

• True negatives (TN): number of data instances cor-
rectly classified as benign traffic

Below are the various metrics used in the experiments to
evaluate the model performance:

• Accuracy: It is the ratio of the total number of cor-
rectly classified samples of both classes and the total
number of samples, as given below:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

• Precision: It is the ratio of the number of correctly
classified attacks and the total number of samples
predicted as attacks by the model, as given below:

Precision =
TP

TP + FP
(3)

• True positive rate (TPR) or Recall: It is also known
as the detection rate (DR) and is the ratio of correctly
classified attack samples and the total number of
attack samples, as given below:

TPR (Recall) =
TP

TP + FN
(4)

• F1 score: It is the harmonic mean of precision and re-
call values for examining the accuracy of the model,
as given below:

F1 = 2× Precision×Recall

Precision+Recall
(5)

• True negative rate (TNR): It is the ratio of the
number of correctly classified benign samples and
the total number of benign samples, as given below:

TNR =
TN

TN + FP
(6)

• False negative rate (FNR): It is the ratio of the
number of incorrectly classified attack samples and
the total number of attack samples, as given below:

FNR =
FN

TP + FN
(7)

• False positive rate (FPR): It is also known as the
false alarm rate (FAR) and is the ratio of incorrectly
classified benign samples and the total number of
benign samples.

FPR (FAR) =
FP

FP + TN
(8)
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TABLE 1: CICIDS-2017 pcap file details

Day/Date File
Size Activity

Monday/
July 3, 2017 11 GB Benign

Tuesday/
July 4, 2017 11 GB Brute Force and Benign

Wednesday/
July 5, 2017 13 GB DoS and Benign

Thursday/
July 6, 2017 7.7 GB Web Attack, Infiltration,

and Benign
Friday/

July 7, 2017 8.2 GB Botnet, Port Scan, DDoS,
and Benign

4 NUMERICAL EXPERIMENTS

This section presents an overview of the numerical ex-
periments conducted to assess our methodology. We, first,
provide details of the network traffic data used in the ex-
periments, followed by the process of creating image repre-
sentation of the data. We describe how we split the data into
training, validation, and testing data sets to develop the net-
work intrusion detector. The experiments were conducted
using a 12th Generation Intel Core i9-12950HX processor
(30 MB cache, 24 threads, 16 cores). In order to speed up the
training process, NVIDIA RTX A5500 graphics card (16GB
GDDR6 SDRAM) was utilized with the latest installation
of CUDA, a universal parallel computing framework, and
cuDNN, a deep neural network acceleration library.

4.1 Data description

We conducted numerical experiments using the raw pcap
files from two well-known network intrusion detection data
sets, namely CICIDS-2017 [25] and CICIDS-2018 [4]. These
data sets comprise both benign and attack communications
and offer a more practical representation of contemporary
network traffic in comparison to older network intrusion
data sets such as NSL-KDD and KDD-CUP [35]. The pcap
files for CICIDS-2017 contain network traffic data for five
consecutive days (Monday to Friday), each featuring dis-
tinct attack types and sizes, as shown in Table 1. We used
Python-based dpkt [36] and Scapy [37] to parse the raw
network traffic and create the packet-based feature data
set, as described in Section 3. Table 2 presents the number
of forward and backward packets that we extracted for
each attack type. We validated the output of the packet
parser component for each attack type using the corrected
version of the public NetFlow CSV files for the CICIDS-2017
data [38].

To assess the transferability of the trained network intru-
sion detector model on distinct network traffic data (domain
adaptability characteristic), we utilized CICIDS-2018 data.
The CICIDS-2018 data features various attack types and
sizes of pcap files, as shown in Table 3. To demonstrate the
adaptability of our AI-enabled SPIN-IDS framework with
the trained network intrusion detector, we extracted packets
for the following attack types, DoS, Web Attack, Infiltration,
and Brute Force, from these large pcap files. The number of
forward and backward packets extracted for these attacks is
presented in Table 4.

TABLE 2: Packet details per attack type in CICIDS-2017

Attack Type Number of Packets

Forward Backward

DoS GoldenEye 66795 39382
DoS Hulk 1246802 1000016

DoS Slowhttptest 32635 7027
DoS Slowloris 37236 10350

DDoS 754735 510922
Heartbleed 28412 20884
SSH Patator 65695 97616
FTP Patator 43507 67229

Botnet 4788 5083
Infiltration 29881 29873
Port Scan 162630 160677

Web Attack-Brute force 19755 10304
Web Attack-XSS 6361 3277

Web Attack-SQL Injection 67 59

TABLE 3: CICIDS-2018 pcap file details

Day/Date File
Size Activity

Wednesday/
Feb 14, 2018 40 GB SSH and FTP Patator,

and Benign
Thursday/

Feb 15, 2018 41.3 GB DoS GoldenEye, DoS Slowloris,
and Benign

Friday/
Feb 16, 2018 38.6 GB DoS Slowhttptest, DoS Hulk,

and Benign
Thursday/

Feb 22, 2018 50.3 GB Web Attack and Benign

Friday/
Feb 23,2018 60 GB Web Attack and Benign

Wednesday/
Feb 28, 2018 53.3 GB Infiltration and Benign

TABLE 4: Packet details per attack type in CICIDS-2018

Attack Type Number of packets

Forward Backward

DoS GoldenEye 154774 98976
DoS Hulk 1028619 107067
Infiltration 236560 86054
FTP Patator 193360 193360

Web Attack-Brute force 20735 14158
Web Attack-XSS 22289 11586

4.2 Image data creation

After extracting packet-based feature data from both
CICIDS-2017 and CICIDS-2018 pcap files, the image builder
component was utilized to create image data sets following
the procedure outlined in Section 3. We used the CICIDS-
2017 data for the development of the network intrusion
detector in our framework. The CICIDS-2018 data, rep-
resenting a different network environment, was used to
generate images to evaluate the transferability of the trained
detector. It is to be noted that the objective of our approach
is to detect maliciousness in a network communication as
early as possible. By keeping the value of P (indicating
number of sequential packets in the same flow) small, we are
able to create a smaller dimensional image. Table 5 shows
the flow-related statistics for each attack type in CICIDS-
2017 data, from which we obtain the value of P .

The table displays different statistics, including average,
median, and mode for the number of packets in those flows.
We selected the median number of packets per attack type
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TABLE 5: Flow statistics per attack type in CICIDS-2017

Attack Type Activity Label Total Flow Average Packets Median Packets Mode Packets

Benign 0 103138 85.76 15 14
DoS Slowloris 1 1554 30.62 10 7

DoS Slowhttptest 2 1586 25.07 13 2
DoS Hulk 3 128566 17.47 14 14

DoS GoldenEye 4 6704 15.83 14 14
Heartbleed 5 1656 29.76 21 6
FTP-Patator 6 475 233.13 6 4
SSH-Patator 7 457 357.35 6 4

Web Attack-Brute Force 8 222 135.45 17 2
Web Attack-XSS 9 69 139.68 3 2

Web Attack-SQL Injection 10 2 63 63 63
Infiltration 11 4254 14.04 6 2

Botnet 12 736 13.41 9 9
PortScan 13 7674 42.13 22 6

DDoS 14 167232 7.56 2 2

Average 28288.33 80.68 14.73 10.06

TABLE 6: Data sets (image representations) of generated images with different number of packets

Number of samples per image representation
Activity Label 1 pkt 2 pkt 3 pkt 4 pkt 5 pkt 6 pkt . . . 11 pkt 12 pkt 13 pkt 14 pkt 15 pkt

0 103138 102889 102688 101637 101547 101320 . . . 92548 89580 83490 74974 61159
1 1554 1529 1522 1342 1331 1269 . . . 769 721 651 606 585
2 1586 1581 1296 1109 1093 1074 . . . 883 830 796 774 737
3 128566 128339 128207 127508 127457 127297 . . . 120492 116460 102844 83426 53841
4 6704 6607 6580 6539 6484 6312 . . . 5852 5645 4864 3849 2301
5 1656 1656 1652 1650 1642 1632 . . . 1334 1304 1271 1245 1211
6 475 464 461 437 275 260 . . . 121 106 96 93 89
7 457 457 454 420 265 254 . . . 142 135 126 120 115
8 222 221 166 160 147 144 . . . 135 133 131 130 127
9 69 66 41 27 21 19 . . . 17 16 16 15 15
10 2 2 2 2 2 2 . . . 2 2 2 2 2
11 4254 3798 3334 2921 2550 2253 . . . 1203 1057 933 834 743
12 736 736 736 736 736 736 . . . 116 45 45 44 44
13 7674 7671 7506 7386 7306 7284 . . . 5953 5813 5730 5633 5466
14 167232 167118 33812 33507 33073 32996 . . . 30490 28721 25573 20575 15636

to determine the value of P for image construction as it
can be observed that there is a significant variation in the
average number of packets in the flows per attack type. This
fluctuation is due to the presence of outliers in some of the
attack types with a large number of packets. We used the
average median value of 15 for P and set the dimension of
the images to be generated in the image builder component
to (15 × 1486 × 3). For each flow, we created various
images ranging from one packet to P number of sequential
packets, resulting in up to P number of images per flow. The
average image generation process time per image was 0.04
milliseconds. The resulting image data set from the image
builder component is presented in Table 6. Each column
in this table denotes an image representation with a fixed
number of packets extracted from the flows belonging to
various network activities (one benign and 14 attack types).
For instance, the last column (15 pkt) represents the image
data containing 61159 images belonging to the benign class
(label 0) and 15636 images belonging to the DDoS class (label
14), along with images from other classes as shown in that
column. All these images (in the last column) contain the
first 15 sequential packets found in the communication of
the respective flows. Figure 5 shows some samples of the
image data (with truncated width).

Next, we created three separate data sets, one each
for training, validating, and testing the network intrusion
detector. We took the following into account while splitting

the image data:

• To ensure that our CNN-based network intrusion
detection model is trained effectively, we excluded
the Web Attack-XSS, Web Attack-SQL Injection, and
Botnet attack classes since there were small numbers
of images for these classes across the different data
sets, as shown in the highlighted rows of Table 6.

• To ensure that the model is not biased towards
any particular representation, we sampled the same
number of images during training from each repre-
sentation (1 pkt to 14 pkt) as found in the last data
set (15 pkt).

• To ensure that the model is not validated or tested
using different image representations of the same
flows that were used during its training, we created
three data sets (training, validation, and testing),
each containing all P image representations of dis-
tinct flows.

• To ensure that the model is trained with a balanced
data set, we sampled (near-)equal number of images
from each attack type in a way that the total number
of images belonging to the malicious class (i.e., all
attack types combined) matches that of the benign
class. In particular, we sampled 100 same flow im-
ages from each attack type, except for the FTP-Patator
class, for which we sampled 89 images from each of
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(a) Benign

(b) DDoS

(c) Heartbleed

Fig. 5: Image samples generated using image builder com-
ponent with 15 sequential packets

the 15 representations.

Finally, after taking the aforementioned factors into con-
sideration, the samples were divided into three data sets,
training (70%), validation (15%), and testing (15%).

4.3 Network intrusion detection model development

We tested various CNN architectures such as shallow (with
only one convolutional layer) to deep (with seven convolu-
tional layers) architectures along with different padding and
stride strategies. Also, different pooling layer strategies, in-
cluding maximum and average pooling were experimented
to find the optimal architecture of the CNN model for net-
work intrusion detector. The resulting optimal structure is
depicted in Figure 6. The convolutional layers in the model
use same padding strategy so that the output image size is
the same as the input size for each convolutional layer, and
the stride was set to the default value of S = (1, 1). To
speed up the learning process and improve stability, a batch
normalization layer was used after the first pooling layer. To
prevent overfitting, two dropout layers with a drop rate of
20% were included during training.

Since the CNN model is used for binary classification
(benign or malicious), we used Binary Crossentropy as the
loss function and the Sigmoid activation function in the
last dense layer to produce output values in the range of
[0, 1]. We optimized the important hyperparameters of the
CNN architecture using the training and validation data
sets. To achieve this, we implemented the CNN model in

Fig. 6: Architecture of the CNN model for network intrusion
detector

(a) Accuracy

(b) Loss

Fig. 7: Learning curves of the optimized model

Tensorflow [39] and utilized KerasTuner [40] and Tensor-
Board for hyperparameter optimization. Table 7 shows the
hyperparameter values used in our experiments and the
best values selected for the model. The number of epochs
for training was set to 100 for all trials. The learning curves
for the best parameter values are shown in Figure 7. We
then used this optimized model on the testing data set to
evaluate the performance of our approach using different
test case scenarios.

5 RESULTS AND ANALYSIS

This section presents the results and analysis of the exper-
iments conducted using our AI-enabled SPIN-IDS frame-
work. We first demonstrate the efficacy of our approach
using the test data set (CICIDS-2017). We analyze the perfor-
mance across the different image representations and extract
insights into the potential timing of malicious informa-
tion transmission. We then assess the detection capabilities
across the different types of network attacks and perform
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TABLE 7: Hyperparameter values for the CNN-based network intrusion detector model

Hyperparameter Hyperparameter Values Best Value

Activation function [ReLU, tanh, LeakyReLU] ReLU
Kernel initializer [GlorotNormal [41], HeNormal [42], RandomUniform] GlorotNormal

Convolutional layer 1 filter (min value=16, max value=128, step=16) 96
Convolutional layer 1 kernel [(3, 3), (4, 4), (5, 5)] (5, 5)
Convolutional layer 2 filter (min value=32, max value=256, step=32) 128

Convolutional layer 2 kernel [(3, 3), (4, 4), (5, 5)] (5, 5)
Convolutional layer 3 filter (min value=32, max value=512, step=32) 192

Convolutional layer 3 kernel [(3, 3), (4, 4), (5, 5)] (3, 3)
Convolutional layer 4 filter (min value=32, max value=512, step=32) 384

Convolutional layer 4 kernel [(3, 3), (4, 4), (5, 5)] (4, 4)
Dense layer 1 units (min value=16, max value=128, step=16) 64

Batch size [64, 128, 256, 512] 256
Learning rate [1e-2, 1e-3, 1e-4] 0.001

Optimizer [SGD, RMSprop, Adam] RMSprop

statistical analysis to detect deviations from benign behavior
during network attack communications. We also validate
the resilience of our approach against adversarially crafted
examples and examine the adaptability of the trained net-
work intrusion detector in a new target network environ-
ment (CICIDS-2018). Finally, we compare our approach with
other packet-based methods from recent literature.

5.1 Performance across different image representa-
tions

As described in Section 4, the test data samples comprise of
images from 15 different image representations for the same
flows, i.e., from one packet to 15 sequential packets obtained
from the same network flow in the respective images. We
used each of the 15 representations as a subset of the test
data. Subset 1 consisted of images generated from the first
packet of the flows, subset 2 contained images created from
the first and second packets of the same flows, and subse-
quent subsets with images in the same sequential pattern for
the first 15 packets. In each of these 15 subsets, we kept near-
equal number of samples from each attack type, all of which
constituted the malicious class. Also, we selected near-equal
number of samples from the benign class to keep the balance
with malicious class samples. Each subset contained 328
images, with 165 belonging to the benign class and 163 to
the malicious class.

Table 8 shows the model’s performance on these subsets
of images using different metrics. It can be observed that the
performance improves as the number of packets in flows
increases, as evidenced by all the metric values. The best
performance across all the metrics is observed with nine
sequential packets in the image data with a TPR of 98.77%.
Figure 8 provides a visual of the performance improvement
with the increase in the number of packets in the images.
The performance is shown to plateau after nine packets in
the image representation, indicating that the maliciousness
in network traffic can be identified with high accuracy
within the first nine sequential packets of the evolving flow.
It can also be observed that the model cannot accurately
identify malicious patterns in images when only the first
packet of malicious traffic is transmitted, as indicated by the
TPR of 52.76%. This result indicates that the first packet of
the communication may not have malicious intent and that
the malicious packets are transmitted later in the commu-
nication. Remarkably, the model achieves a TPR of 92.02%

TABLE 8: Model performance on different image represen-
tations of CICIDS-2017 test data

Subset Accuracy Precision F1 TNR FNR TPR (Recall) FPR (FAR)

1 0.7439 0.9247 0.6719 0.9576 0.4724 0.5276 0.0424
2 0.8933 0.9638 0.8837 0.9697 0.1840 0.8160 0.0303
3 0.9177 0.9658 0.9126 0.9697 0.1350 0.8650 0.0303
4 0.9543 0.9868 0.9524 0.9879 0.0798 0.9202 0.0121
5 0.9665 0.9872 0.9655 0.9879 0.0552 0.9448 0.0121
6 0.9787 0.9815 0.9785 0.9818 0.0245 0.9755 0.0182
7 0.9787 0.9815 0.9785 0.9818 0.0245 0.9755 0.0182
8 0.9817 0.9758 0.9817 0.9758 0.0123 0.9877 0.0242
9 0.9878 0.9877 0.9877 0.9879 0.0123 0.9877 0.0121
10 0.9817 0.9816 0.9816 0.9818 0.0184 0.9816 0.0182
11 0.9817 0.9816 0.9816 0.9818 0.0184 0.9816 0.0182
12 0.9817 0.9816 0.9816 0.9818 0.0184 0.9816 0.0182
13 0.9817 0.9816 0.9816 0.9818 0.0184 0.9816 0.0182
14 0.9817 0.9816 0.9816 0.9818 0.0184 0.9816 0.0182
15 0.9817 0.9816 0.9816 0.9818 0.0184 0.9816 0.0182

Fig. 8: Visual of model performance on different image
representations

after the transmission of only four packets. This result indi-
cates that typically there is no maliciousness in the first three
packets, as they are a part of the TCP three-way handshake
used to establish a reliable connection. Experiment results
show that our methodology is able to accurately detect
malicious activity early in the communication, within the
first nine packets compared to flow-based approaches that
have to wait for, on an average, 80 packets to be transmitted
(see Table 5). Next, we present the performance of the
model in detecting images belonging to the various types
of network attacks.
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TABLE 9: Detection analysis per attack type

Attack Size Accuracy Precision F1 TNR FNR TPR FPR

DoS Slowloris 1728 0.9838 0.9860 0.9838 0.9861 0.0185 0.9815 0.0139
DoS Slowhttptest 1680 0.9875 0.9858 0.9875 0.9857 0.0107 0.9893 0.0143

DoS Hulk 164735 0.9787 0.9936 0.9855 0.9819 0.0223 0.9777 0.0181
DoS GoldenEye 11864 0.9729 0.9612 0.9733 0.9602 0.0143 0.9857 0.0398

Heartbleed 2670 0.9843 0.9850 0.9843 0.9850 0.0165 0.9835 0.0150
FTP-Patator 150 1 1 1 1 0 1 0
SSH-Patator 134 1 1 1 1 0 1 0

Web Attack-Brute Force 78 0.9872 0.9750 0.9873 0.9744 0 1 0.0256
Infiltration 2854 0.9926 0.9951 0.9926 0.9951 0.0098 0.9902 0.0049
PortScan 12492 0.9789 0.9796 0.9789 0.9797 0.0218 0.9782 0.0203

DDoS 64512 0.9854 0.9812 0.9851 0.9820 0.0110 0.9890 0.0180

5.2 Performance in detecting different network attacks

For this experiment, we considered all the remaining images
with nine sequential packets from all attack types that
were not used during testing and validation of the network
intrusion detection model. Table 9 shows the performance
metric values obtained using the trained model with the
nine sequential packets image data for each attack type. The
average TPR or recall score across all attack types exceeds
98.5%, indicating that the model successfully identified the
underlying malicious patterns for the attacks. The model
was able to attain 100% accuracy in detecting both SSH-
Patator and FTP-Patator attack images, among other results.
The findings indicate that our SPIN-IDS framework with
the CNN-based network intrusion detector and image rep-
resentation with nine sequential packets performs very well
in detecting all types of network attacks and keeping the
false negative and positive values significantly low.

Next, we perform a statistical analysis to determine
when the deviation in benign behavior occurs in the ma-
licious flows. We use a statistical measure for image com-
parison to assess how malicious traffic varies compared
to a normal (benign) traffic flow. For this, a representative
image is created for each attack type by averaging the pixel
values of all sample images that belong to a specific image
representation (one packet, two packets, ..., 15 packets) of
the flow. Likewise, a representative image is generated for
the corresponding image representation of normal traffic.
The two representative images are then compared using the
peak signal-to-noise ratio (PSNR) similarity metric [43]. The
PSNR score is determined using the following equation:

PSNR = 10 log10
(2d − 1)2PQ∑P

i=1

∑Q
j=1(p[i, j]− p′[i, j])2

(9)

where d refers to the number of channels in the images,
Q and P represent the width and height of the images,
respectively, and p[i, j] and p′[i, j] denote the pixel values
in the i-th row and j-th column of the normal and malicious
representative images, respectively. A PSNR score of 1 indi-
cates that the two images are the same, while a score of 0
implies complete dissimilarity between the two images.

We conducted our analysis using all 15 subsets (image
representations) for each attack type. We present our find-
ings for the four attack types, namely, SSH-Patator, DoS
Slowloris, DoS Slowhttptest, and Infiltration. Figure 9 shows
the PSNR scores obtained for these attack types relative to
the benign image. Figure 10 shows the recall scores or the
detection rate for the four attack types using each of the
subsets for a correlation analysis. We also observed similar
patterns for the other attack types.

Fig. 9: PSNR scores for different image representations of
various attack types compared to benign traffic

Fig. 10: Recall scores for different image representations of
various attack types

The recall and PSNR score graphs presented for each
attack type reveal a strong correlation between specific
packets and the model’s performance, consistent with the
PSNR scores. For example, the recall score for the DoS
Slowloris attack type for the subset containing only one
packet is the lowest (33.3%) compared to other attack types.
From the PSNR score, it is apparent that there are significant
similarities between the representative image of the DoS
Slowloris attack type with one packet and that of the benign
class. However, when the second packet is added to the DoS
Slowloris flow, the recall score improves sharply to 78.7%,
which is the steepest increase, and the PSNR score decreases
significantly to 60.6%, which is the steepest decline in the
PSNR graph. Similar observations can be made for other
attack types. Though the first three packets are a part of
the TCP three-way handshake, there are certain bytes in
packet headers relaying critical information that help in
identifying ongoing traffic’s maliciousness such as time-to-
live (TTL) value, IP flags, urgent pointer, and window size
bytes. Our approach captures both the header and payload
data, and hence, the network intrusion detector is able to
detect deviations from a benign network communication
in such samples. Importantly, it is observed that the PSNR
and recall scores plateau after nine sequential packets have
been transmitted for each attack type, strongly indicating
that packets with malicious intent were a part of this initial
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transmission in the evolving flow. Next, we evaluate the
robustness of our approach against adversarial examples
crafted for deceiving the NIDS.

5.3 Performance against adversarial examples

Adversarial examples are created with an objective of evad-
ing the NIDS detection mechanism. These can be gener-
ated by making subtle modifications to legitimate network
traffic or by carefully crafting malicious traffic that fools
the underlying ML/DL algorithms. These modifications,
which include changing packet bytes or perturbing their
timing/order, can exploit vulnerabilities in the NIDS, lead-
ing to false negative decisions. This can enable attackers to
infiltrate networks undetected and disrupt operations.

To evaluate the robustness of our approach, we crafted
samples with multiple valid perturbations drawing on do-
main knowledge, literature studies [44], [45], [46], and in-
sights from security experts at a collaborating cybersecurity
operations center. Since the adversary’s control in an eva-
sion attack is limited to network packets sent from a single
direction (i.e., the source), perturbations are applied to the
forward network packets of each attack type. Adversarial
examples are crafted, while preserving their communication
functionality. Table 10 presents details on the perturbations,
their corresponding values, and the specific packet bytes
requiring modification to maintain packet functionality. We
generated adversarial examples from the nine-sequential
packets data set for each attack type using the above-
mentioned perturbations. We present two different pertur-
bation use cases, among various others that we examined.
(i) We perturbed half of the forward packets in each flow
(containing nine sequential packets) by applying all five
perturbation methods on each of the selected packets. (ii)
We perturbed all the forward packets in each flow using the
five perturbation methods.

To compare the performance of our approach, we tested
the perturbed samples against the packet and flow-based
NIDS used in recent literature studies [47], [46], which
included decision tree, random forest, support vector ma-
chine, k-nearest neighbor, and deep neural network models.
The evasion rate (ER) against these ML/DL-based NIDS
ranged from 70% to 99% across different attack types. In
contrast, using our approach, the ER of these samples was
significantly reduced to a maximum of 2.04%, which was ob-
served only for certain attack types, including DoS Slowloris,
DoS Hulk, Infiltration, and Port Scan. Table 11 shows the
results from our approach using the SPIN-IDS framework
for these two cases, demonstrating strong resilience against
evasion attacks.

5.4 Performance in a new target environment

To gauge the domain adaptability of our trained model,
we conducted experiments using data from a new network
environment. We used CICIDS-2018 data, which was pro-
cessed using the SPIN-IDS framework. First, the packet
parser component extracted packet-based features from the
pcap files, which was followed by the generation of images
using the image builder component. These images were
then passed through the network intrusion detector model,

which was trained using CICIDS-2017 image data. Our ex-
periments involved a similar setup as used with the CICIDS-
2017 data. We considered various image representations
with different numbers of sequential packets extracted from
the flows for evaluating the performance of the model. Ta-
ble 12 presents the results from these experiments showing
a similar performance of the trained model on a new target
network environment data set as observed on the source
environment data set. The image representations with eight
and nine sequential packets have the highest performance
metric values among others, thereby strongly indicating that
the malicious intent can be accurately detected early in a
network communication. Table 13 shows the performance of
the trained network intrusion detector in detecting images
with nine sequential packets belonging to a sample set
of network attack types in the CICIDS-2018 data set. The
results show that despite being trained only on the CICIDS-
2017 image data set, our model was able to achieve a good
performance in detecting attacks in a different environment.
Our approach using the SPIN-IDS framework has shown
that the network intrusion detection model can perform
well on data from a different target environment without
the need to retrain and hence, reinforcing its potential as
an effective intrusion detection tool for cybersecurity opera-
tions centers.

5.5 Performance comparison with other methods
The primary goal of our SPIN-IDS framework is to accu-
rately detect malicious network traffic in (near) real-time
by examining a minimum number of packets within the
ongoing traffic flows. It is to be noted that the comparison
of SPIN-IDS with other state-of-the-art approaches is not
straightforward due to differences in methodology and data
representation. Despite this, we compare results obtained
using our approach with other existing methods in the
literature that leveraged packet information in their pro-
posed NIDS, using the same data set (CICIDS-2017) and
key performance metrics. Table 14 presents the performance
metrics of our methodological framework and those re-
ported by the state-of-the-art DL-based models, namely,
AEIDS [48], HAST-II [49], PL-RNN [50], Packet2Vec [51],
PayloadEmbeddings [52], and PBCNN [30]. The table also
shows each model’s training time and testing (inference)
time per unit in milliseconds, where a unit represents either
a packet or an image, based on the data format used in
the respective method. As indicated in the table, SPIN-IDS
outperforms the other methods in terms of key performance
metric values and testing time.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this study, we proposed an AI-enabled SPIN-IDS frame-
work, aimed towards (near-)real-time detection of network
attacks. Our methodology addressed the current limitations
in packet-based NIDS by analyzing header and payload
data and considering temporal connections among packets
of the same communication as they are transmitted through
the network. The sequential packets in an evolving flow are
transformed into a two-dimensional image, and then passed
through the CNN-based intrusion detector in our frame-
work to detect maliciousness. The results demonstrated
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TABLE 10: Summary of the perturbation methods used for generating adversarial examples

Perturbation method Description Affected packet bytes

Adding payload data Injecting 40 bytes of dead payload bytes such as 0xFF at the end of
the original packet payload.

It affects payload bytes and TCP checksum bytes from the TCP
header (byte number 17 and 18).

Changing delta time The delta time feature of the selected packet in a flow is increased
by adding a delay, e.g., 0.001 ms.

It only changes the temporal relationship between packets of a flow
and does not affect the packet bytes.

Changing window size Increasing or decreasing (+/- 256) the window size bytes. Any
valid perturbation to these bytes will result in a final window size
value between 1-65535.

It changes the following bytes from the TCP header: window size
bytes (byte number 15 and 16) and TCP checksum bytes (byte
number 17 and 18).

Changing time-to-live (TTL) Decreasing or increasing (+/- 1) the TTL of the packets in the range
of 0-255 (The range for TTL is from 0 to 255 and a recommended
initial value for TTL is 64 ).

It changes the following bytes from the IP header: TTL byte (byte
number 9) and IP checksum bytes (byte number 11 and 12).

Modifying fragmentation Modifying the fragmentation bytes from do not fragment to do
fragment. This perturbation can be applied to packets where
fragmentation is turned off.

It changes the following bytes from the IP header: fragmentation
bytes (byte number 7 and 8), TTL byte (byte number 9), and IP
checksum bytes (byte number 11 and 12).

TABLE 11: Model performance against adversarial attacks

Attack
Percentage of forward packets perturbed

50% 100%

ER (%) ER (%)

DoS Slowloris 0 2.04
DoS Slowhttptest 0 0

DoS Hulk 2.04 2.04
DoS GoldenEye 0 0

Heartbleed 0 0
FTP-Patator 0 0
SSH-Patator 0 0

Web Attack-Brute Force 0 0
Infiltration 0 2.04
PortScan 0 2.04

DDoS 0 0

TABLE 12: Domain adaptability results using different im-
age representations of CICIDS-2018 data

Subset Size Accuracy Precision F1 TNR FNR TPR FPR

1 230650 0.8207 0.9371 0.8171 0.9399 0.2756 0.7244 0.0601
2 185787 0.8462 0.9348 0.8034 0.9604 0.2956 0.7044 0.0396
3 178059 0.9004 0.9519 0.8725 0.9701 0.1946 0.8054 0.0299
4 175466 0.9524 0.9481 0.9432 0.9627 0.0617 0.9383 0.0373
5 174967 0.9625 0.9619 0.9549 0.9729 0.0519 0.9481 0.0271
6 174397 0.9687 0.9676 0.9624 0.9769 0.0427 0.9573 0.0231
7 171170 0.9719 0.9717 0.9669 0.9791 0.0379 0.9621 0.0209
8 169967 0.9743 0.9736 0.9699 0.9804 0.0339 0.9661 0.0196
9 160211 0.9744 0.9721 0.9677 0.9817 0.0368 0.9632 0.0183
10 158801 0.9740 0.9727 0.9671 0.9822 0.0385 0.9615 0.0178
11 140846 0.9746 0.9696 0.9627 0.9844 0.0442 0.9558 0.0156
12 136870 0.9742 0.9726 0.9622 0.9858 0.0480 0.9520 0.0142
13 130653 0.9750 0.9788 0.9649 0.9883 0.0487 0.9513 0.0117
14 121919 0.9737 0.9831 0.9652 0.9898 0.0520 0.9480 0.0102
15 107890 0.9724 0.9869 0.9675 0.9904 0.0511 0.9489 0.0096

TABLE 13: Detection analysis per attack type (CICIDS-2018)

Attack Size Accuracy Precision F1 TNR FNR TPR FPR

DoS Slowloris 6186 0.9510 0.9664 0.9505 0.9672 0.0650 0.9350 0.0328
DoS GoldenEye 36513 0.9714 0.9665 0.9699 0.9698 0.0267 0.9733 0.0302

SSH-Patator 84921 0.9782 0.9709 0.9782 0.9707 0.0143 0.9857 0.0293
Web Attack-Brute Force 545 0.9450 0.9542 0.9434 0.9567 0.0672 0.9328 0.0433

Web Attack-XSS 325 0.9508 0.9321 0.9497 0.9349 0.0321 0.9679 0.0651
Infiltration 2181 0.9431 0.9616 0.9389 0.9668 0.0829 0.9171 0.0332

that our SPIN-IDS framework with the network intrusion
detector and nine sequential packet image representation
of the data set performs very well in detecting network
attacks. The recall score ranged between 97.7% to 99%
across all attack types, indicating that the model successfully
identified the underlying malicious patterns of the attacks.
The findings indicate that the malicious intent can be de-
tected with a very high accuracy by the transmission of the

TABLE 14: Comparison of SPIN-IDS with other packet-
based approaches

Performance Metrics
Methods Accuracy Precision Recall F1 Training Time Testing Time

PL-RNN 0.6825 0.8335 0.5638 0.6934 720000 2.91
Packet2Vec 0.6625 0.8435 0.7284 0.6273 515000 3.54

HAST-II 0.6423 0.8856 0.6898 0.7498 676000 4.2
AEIDS 0.7736 0.6325 0.5872 0.6182 275800 2.65

PayloadEmbeddings 0.9538 0.9536 0.9535 0.9534 355000 2.73
PBCNN 0.9821 0.9831 0.983 0.9835 368000 7.89

SPIN-IDS 0.9878 0.9877 0.9878 0.9878 314800 0.12

ninth packet in the two-way communication. Thereby, the
malicious activity can be detected very early compared to
flow-based approaches that, on an average, would have to
wait for 80 packets or more to be transmitted for analysis.
The trained network intrusion detector model demonstrated
a high transferability property with an average recall or
detection rate of over 95% on a new target data set, enabling
cybersecurity teams to potentially deploy the trained model
in different environments without the need for training
from scratch. The SPIN-IDS framework was found to be
robust against adversarial examples. The network intrusion
detector was able to accurately detect network attacks with
multiple carefully crafted perturbations in the packets com-
pared to other ML/DL-based NIDS, which consider these
packets independent during evaluation, resulting in a high
false negative rate.

To further advance the research and benefit practition-
ers, the effectiveness of the SPIN-IDS framework could be
evaluated in a real-world network environment, while per-
forming a red team evaluation using AI-enabled adversarial
agents. Such an evaluation would provide valuable insights
into the resilience of the framework and shed light on the
level of sophistication required for circumventing its intru-
sion detection mechanism through adversarial evolution.
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