An Adaptive Security Governance Architecture based on Smart
Contracts for Syntactically Interoperable Services in Smart Cities

Shahbaz Siddiqui !, Sufian Hameed !, Syed Attique Shah !, and Dirk Draheim !
! Affiliation not available

October 31, 2023

Abstract

An Adaptive Security Governance Architecture based on Smart Contracts for Syntactically Interoperable Services in Smart

Cities

An Adaptive Security Governance Architecture
based on Smart Contracts for Syntactically
Interoperable Services in Smart Cities

Shahbaz Siddiqui, Sufian Hameed, Syed Attique Shah, Senior Member, IEEE, Dirk Draheim, Member, IEEE

Abstract—Smart cities have emerged as a promising paradigm
for improving the quality of life for citizens through advanced
infrastructure and technological innovations. Collaborative ser-
vices play a pivotal role in fostering seamless cooperation and
interaction among diverse entities within smart cities, includ-
ing government agencies, businesses, and individuals, leading
to improved community outcomes. However, the management
of syntactically interoperable services for collaborative tasks
poses administrative challenges, particularly in terms of data
security and privacy when sharing sensitive information across
heterogeneous IoT devices. Furthermore, authentication, autho-
rization, and trust management across several different smart
city services emerge as important research topics. This research
proposes an innovative adaptive security governance framework
designed specifically for smart cities to address these challenges.
The framework leverages dynamic security policies implemented
through smart contracts to ensure data security and privacy dur-
ing the interoperation of smart services. Real-world collaborative
smart city use cases are presented to validate the effectiveness of
the framework, integrating multi-chain blockchain technology,
smart services APIs, and Software-Defined Networking (SDN).
The implementation demonstrates the framework’s ability to
enhance the security and efficiency of collaborative services
in smart cities. This research contributes to advancing secure
and efficient collaborative services in smart cities, with a focus
on mitigating administrative challenges and prioritizing data
security and privacy. By leveraging the proposed framework,
smart cities can elevate the standard of living for their residents
while addressing critical security concerns in a dynamic and
evolving environment.

Index Terms—Smart city, blockchain, Software-Defined Net-
working, Internet of Things, multi-chain blockchains, Multi-
Chain, collaborative services, interoperability, security adapta-
tion

I. INTRODUCTION

MART cities are rapidly emerging as a transformative

model for urban living, capitalizing on cutting-edge tech-
nologies to improve the well-being of residents. At the core
of these cities, smart services and applications are being
developed with interoperability in mind, enabling seamless
communication and collaboration among diverse systems and
devices [1]. Deploying interoperability in smart cities has the

Shahbaz Siddiqui and Sufian Hameed, are with the Department of Com-
puter Science, National University of Computer and Emerging Sciences
(NUCES-FAST), Karachi, Pakistan. (e-mail: shahbaz.siddiqui @nu.edu.pk, su-
fian.hameed @nu.edu.pk)

Corresponding author: Syed Attique Shah is with the School of Computing
and Digital Technology, Birmingham City University, STEAMhouse, Belmont
Row, B4 7RQ, Birmingham, United Kingdom. (email: syed.shah2 @bcu.ac.uk)

Dirk Draheim is with the Information Systems Group, Tallinn University
of Technology, 12618 Tallinn, Estonia. (e-mail: dirk.draheim@taltech.ee)

potential to revolutionize various sectors and their services, in-
cluding transportation, energy, healthcare, waste management,
and public safety, by facilitating synchronized and efficient
operations. For instance, the implementation of smart trans-
portation systems allows for optimized traffic flow through
the analysis of data from multiple sources, including real-time
information from sensors, traffic cameras, and public trans-
portation schedules [2]. Leveraging this data, traffic signal tim-
ings can be dynamically adjusted, vehicles can be redirected,
and personalized travel advice can be provided to commuters,
leading to a reduction in congestion and an improvement in
overall mobility [3], [4]. Figure 1 illustrates a representative
depiction of a smart city consisting of interoperable services.

Despite the numerous advantages offered by the interoper-
ability of smart services, there are significant concerns that
need to be addressed, with data security as the most crucial
aspect. In a networked environment where systems and devices
exchange data for collaborative tasks, ensuring the security,
integrity, and accessibility of data becomes of paramount im-
portance. The potential risks associated with data breaches or
cyberattacks are a major challenge that can jeopardize private
information, disrupt services, and compromise the security and
privacy of residents [5]. Malicious entities, such as hackers,
can exploit vulnerabilities within interconnected systems to
gain unauthorized access or manipulate data, leading to severe
consequences. Therefore, it is imperative to establish robust
security measures to protect against such threats and safeguard
critical information and infrastructure within smart cities.

In addition to data security, another obstacle to achieving
effective interoperability is the need for data governance and
standardization. With multiple systems and devices exchang-
ing data, standardized data formats, protocols, and security
measures are essential to ensure seamless communication and
mitigate the complexities associated with data integration [6],
[7]. The absence of standardization can result in challenges
related to data integration, data quality, and potential security
vulnerabilities [8]. To address these challenges, collabora-
tive efforts among policymakers, researchers, and industry
stakeholders are required. Comprehensive frameworks and
guidelines need to be developed, encompassing robust security
measures, standardized protocols, and data governance frame-
works, to ensure secure and efficient data exchange between
systems and devices within smart cities.

Blockchain technology has emerged as a promising solution
for addressing the data security challenges associated with
interoperable smart services in smart cities [9], [10]. By

. 1 S

& @ O L~

i H . Management /
0 Disaster . . .
2 §~ . Management , \ = al
-7 WomoY N . ~ - - .4 ~ o
. e ni? ' J .
R I@ lifh .
R .\./. . r .

. Transport ’

*. Service : g e

Heathcare

Service L : Waste

o

Service

Fig. 1. Illustration of enabling interoperability between multiple smart
services in a smart city network.

providing a distributed and decentralized ledger, a blockchain
offers a secure and transparent method for recording and ver-
ifying transactions, making it an ideal solution for enhancing
data security in interconnected systems. A key characteristic
of blockchains is their use of cryptographic techniques to
ensure data integrity and immutability, thereby preventing
unauthorized access and manipulation [11]. This feature makes
blockchains well-suited for securing sensitive data, including
personal information, financial transactions, and critical infras-
tructure data. Through consensus among network participants,
a blockchain ensures that data cannot be modified without
detection, enhancing the overall security of the system. In
the context of interoperable smart services, blockchain tech-
nology plays a crucial role in improving data governance
and standardization. Smart contracts, which are self-executing
contracts stored on a blockchain, can establish rules and
protocols for data exchange. This enables the enforcement
of uniform data formats, protocols, and security measures
across multiple systems and devices [12]. By leveraging smart
contracts, smart cities can promote seamless communication
and interoperability while ensuring data integrity and security.

Furthermore, blockchain technology empowers residents in
smart cities by enhancing data privacy and control. With a
blockchain, individuals can have ownership and control over
their data, determining how it is accessed and utilized. This
capability enables residents to maintain their privacy and make
informed decisions about data sharing and utilization within
the smart city ecosystem [13]. Using blockchain technology to
address data security challenges in interoperable smart services
holds significant promises. Its inherent security, transparency,
data governance capabilities, and potential for increased pri-
vacy and trust make it an appealing solution for ensuring se-
cure and accountable data exchange within smart city environ-
ments [14]. However, the adoption of blockchain technology
in smart cities requires careful consideration of various factors
such as scalability, interoperability, and regulatory compliance
[15]. Scaling blockchain networks to handle the large volume

of transactions in smart cities is a challenge that needs to be
addressed to ensure its effectiveness. Interoperability among
different blockchain platforms and other existing systems is
equally essential for seamless integration and communication.
Additionally, adherence to relevant regulations and compliance
frameworks is crucial to ensure the legally correct and ethical
use of blockchain technology in smart city applications.

Software-defined networking (SDN) is a cutting-edge com-
munication framework that utilizes a programmatic approach
to enable the execution of communication mediums. SDN
controllers consist of control and data planes, which offer high
customizability and efficient packet-forwarding capabilities. In
the deployment of network infrastructure for smart cities, SDN
is a valuable tool. However, certain limitations of SDN pose
significant challenges to its utilization in smart cities, with
the risks introduced by single points of failure [16] as an
important example. In contrast, blockchain technology, as a
distributed ledger, offers a means to create a tamper-proof
and secure network [17]. By integrating blockchain technology
with SDN, network administration tasks can be decentralized
across multiple nodes, increasing the system’s resilience to
external interference. With its decentralized and tamper-proof
nature, blockchain technology provides an additional layer of
security to the network [18]-[20].

The combination of blockchain technology and SDN per-
mits the distribution of network control across multiple nodes,
thereby enhancing the network’s resistance to assaults and
malfunctions. The deployment of communication infrastruc-
ture in smart cities can effectively resolve security concerns by
utilizing the inherent security features of blockchain, such as
immutability and consensus mechanisms [21]. This integration
has the potential to yield benefits as it decentralizes network
control and leverages blockchain’s security features, resulting
in a more resilient, transparent, and secure system. These
innovations mitigate the risks associated with cyberattacks,
unauthorized access, and data manipulation, which are cru-
cial factors for the communication infrastructure of smart
cities [22]. While this integration bears promise, additional
research and development are required to address challenges
such as scalability, performance, and interoperability to en-
sure practicable implementation in real-world smart city en-
vironments. Blockchain and SDN together show considerable
potential for delivering adaptive security solutions in smart
cities. Blockchain technology offers safe and transparent trans-
actions, while SDN provides a dynamic and adaptable network
architecture capable of adapting to changing security needs.
Together, these technologies may improve the interoperability
of smart services in smart cities while also ensuring system
security [23], [24].

A. Motivation

The increasing number of smart city services/applications
across different domains presents a challenge in maintaining
consistent security measures and enforcing dynamic gover-
nance policies. To address these challenges and ensure data
security and privacy during collaborative tasks in heteroge-
neous smart cities, this research aims to propose an adaptive

TABLE I

SUMMARY OF IDENTIFIED RESEARCH GAPS THROUGH AVAILABLE LITERATURE.

Research questions

Summary

Challenges

What are the essential security prerequisites
to establish a secure communication mech-
anism for syntactically interoperable smart
services?

A secure communication mechanism for smart
service interoperability must possess certain im-
portant characteristics to ensure the confidential-
ity, integrity, and availability of sensitive informa-
tion shared between different entities. Authenti-
cation and trust management are two fundamental
characteristics that must be considered [25]-[28]

Ensuring trust is essential in implementing se-
curity requirements for the interoperability of
smart services. However, achieving seamless in-
teroperability and authentication becomes chal-
lenging when diverse services utilize authenti-
cation mechanisms that do not adhere to shared
syntactic standards, encompassing data formats,
message structures, and protocols [29], [30].

What is the feasibility of utilizing blockchain
technology for achieving the syntactic inter-
operability of smart services?

In the context of interoperability, blockchain
technology enables direct interaction and secure
data exchange among heterogeneous systems
without intermediaries or centralized authorities.
Its key features, including data consistency, data
integrity, and smart contract execution, contribute
to a secure mechanism for syntactically interop-
erable smart services [31], [32].

Blockchain technology offers benefits for smart
service interoperability, but it also presents chal-
lenges such as scalability, security, and regulatory
compliance. As the blockchain grows, scalabil-
ity issues arise, impacting transaction process-
ing speed in interoperability. A blockchain-based
regulatory mechanism is necessary to govern
security rules in smart service interoperability.
Previous studies have explored the evolution of
blockchain and its potential in enhancing security
during interoperation of smart services [33], [34].
Resolving these challenges is crucial for lever-
aging blockchain effectively in achieving secure
and efficient smart service interoperability.

What are the characteristics and capabilities
of SDN that make it a viable communication
architecture for achieving syntactic interop-
erable services in a smart city?

SDN serves as a feasible communication ar-
chitecture for achieving syntactically compatible
services in smart cities. Through its central-
ized management and dynamic policy enforce-
ment, SDN enables the enforcement of syntactic
standards and uniform communication protocols.
This simplifies tasks such as message translation,
protocol conversion, and traffic segmentation,
particularly for services with diverse syntactic
forms. Previous studies have explored the integra-
tion of SDN in smart city contexts, highlighting
its potential in enhancing interoperability and
communication efficiency [35]-[38]. Leveraging
SDN as a communication architecture contributes
to the establishment of syntactically compatible
services in smart cities.

The implementation of dynamic policy enforce-
ment in SDN to achieve syntactic interoperability
of smart services presents a complex challenge.
It requires the development and configuration
of policies that effectively capture the desired
behavior of interoperable services. However, ad-
dressing this challenge in SDN is challenging,
as it involves ensuring accurate policy definition
and configuration. Previous research studies have
explored various approaches to tackle this issue,
such as the use of Learning-based Security Au-
tomation (LSA) and data-driven methods [39]-
[41].

Is there an adaptive security solution, utiliz-
ing smart contracts, available for addressing
the syntactic interoperability of smart ser-
vices in a smart city?

The availability of an adaptive security solution
utilizing smart contracts for addressing the syn-
tactic interoperability of smart services in smart
cities is yet to be determined and requires fur-
ther investigation. Existing literature provides ev-
idence of solutions for achieving interoperability
among devices in IoT networks. For instance, Ali
et al. [42] introduced xDBAuth, a decentralized
access control framework based on Blockchain
and smart contracts for cross-domain IoT de-
vices. Wang et al. [43] discussed blockchain in-
teroperability for data exchange, considering four
variabilities: Atomicity, Consistency, Isolation,
and Durability. Villarreal et al. [44], and Lin et al.
[45] proposed frameworks specifically designed
for the IoT environment and services.

Existing literature also highlights the absence
of an adaptive security solution for achieving
interoperability of smart services in smart cities
[46], [47]. However, blockchain technology, with
its smart contract capabilities, holds promise for
providing such an adaptive security solution [27],
[42], [48]. Further research is needed to explore
the potential of blockchain-based adaptive secu-
rity mechanisms in enabling secure and interop-
erable smart services in smart city environments.

security framework that leverages smart security contracts. To
identify the research gap, four research questions related to
collaborative service security were identified. The summarized
version of the literature based on these research questions is
presented in Table I. Upon examining the existing literature, it
becomes evident that ensuring secure and reliable communi-
cation among diverse intelligent services during interoperation
in collaborative tasks requires consideration of the following
factors:

1) Scalable Communication Infrastructure: Smart cities’
interoperable services require a communication infras-
tructure that is capable of dealing with diverse smart city
applications to provide collaborative tasks efficiently.
This infrastructure should be scalable to accommodate
the growing number of services and devices.

2) Integration of Blockchain Technology: The adaptation
of blockchain technology is essential in smart city so-
lutions. The decentralized nature of blockchain allows
for safe and transparent transactions among numerous
parties in a smart city ecosystem. Moreover, the scala-
bility and versatility of blockchain make it a suitable
choice for various sectors of smart city automation,
enabling customized solutions to meet specific use case
requirements.

3) Comprehensive Security Solution: A complete security
solution for smart cities’ interoperable services should
encompass several security components, including au-
thentication, authorization, access control, encryption,
and monitoring. Additionally, the security solution needs
to be dynamic and adaptable, capable of quickly recog-
nizing and addressing new security challenges that may
arise in the evolving smart city landscape.

By addressing these factors, the proposed adaptive security
framework utilizing smart security contracts aims to enhance
the security and privacy of collaborative tasks in smart cities.
The integration of scalable communication infrastructure,
blockchain technology, and comprehensive security measures
can contribute to the effective and secure functioning of smart
city services across diverse domains [49]-[51]. Our research
contributes to the ongoing efforts of advancing secure and
efficient collaborative services in smart cities, aiming to elevate
the standard of living for citizens while addressing critical
security concerns in a dynamic and evolving environment.
By mitigating administrative challenges and prioritizing data
security and privacy, the proposed framework represents a
significant step towards the realization of smart cities’ full
potential in improving the lives of their residents.

B. Contributions
The main contributions of this paper are outlined as follows:

1) We propose a novel decentralized adaptive security
governance management mechanism for enforcing rules
and regulations for smart services interoperability within
smart cities. The mechanism ensures that security poli-
cies are dynamically adjusted to address evolving secu-
rity challenges and to maintain the integrity of collabo-
rative tasks.

2) We introduce an adaptive security policy engine based
on smart contracts, which enables the secure execution
of interoperable smart services in smart cities. The smart
contracts ensure that security measures are consistently
enforced and provide a transparent and auditable frame-
work for verifying compliance with security policies.

3) We demonstrate the feasibility of the proposed solution
by implementing a use-case scenario that showcases the
interoperability between decentralized services within a
smart city environment. This implementation serves as a
practical demonstration of how the proposed framework
can be applied to real-world scenarios.

4) We conduct an evaluation of the proposed framework
using performance metrics such as throughput, access
time delay, and running time complexity for each service
security smart contract. Additionally, the evaluation in-
cludes an analysis of the impact of varying ECC (Elliptic
Curve Cryptography) key lengths on the performance of
the security framework.

5) We perform an adaptive security assessment to evaluate
the adaptiveness of the proposed security framework.
This assessment involved analyzing the framework’s
ability to detect and respond to security threats, adapt
security policies based on changing conditions, and
ensure the overall resilience and effectiveness of the
system.

The rest of the paper is organized in the following manner.
Section II examines the literature related to security concerns
in smart city frameworks and explores the concept of adaptive
security governance based on smart contracts in smart cities.
Section III provides insights into the integration and operation
of SDIoT, multi-chain blockchain technology, and smart con-
tracts within the architecture. Section IV provides an overview
of the security framework by describing the submodules of
the overall architecture. Section V discusses the execution of
smart contracts in the engines for enacting smart governance.
In Section VI, we discuss the description of the use case.
Section VII provides the implementation details about the test
bed used. Section VIII presents the evaluation results of the
comparative system performance of the proposed framework.
Section IX presents the experiments conducted for adaptive
security assessment and finally we finish the paper with a
conclusion in Section. X.

II. RELATED WORK

The existing literature has extensively examined the concept
of enhancing the intelligence of smart cities by integrating
collaborative services. Various domains such as “smart living,”
“smart environment,” “smart people,” “smart economy,” “smart
mobility,” “smart tourism,” and “smart governance” have been
identified as key areas for collaborative interaction within
smart cities [52]-[54]. These domains encompass a wide
range of sectors and highlight the multidimensional nature
of smart city development. Understanding the collaborative
dynamics within these domains is crucial for the successful
implementation and management of smart city initiatives.

Rathee et al. [55] propose a trust formation method aimed
at establishing a secure and safe communication environment

LENT3

in smart cities. Their approach involves the integration of mul-
tiple technologies, including IoT, Al, drones, and robots, with
the utilization of a trust mechanism. By incorporating trust-
based mechanisms, their method aims to enhance the reliability
and security of communication networks within smart cities,
enabling the seamless integration and collaboration of diverse
technological components. This approach has the potential to
contribute to the establishment of a robust and trustworthy
communication infrastructure in smart city environments.

The authors in [56]-[58] extensively discuss the security
and privacy challenges associated with achieving syntactic
interoperability in smart cities. Maciel et al. [59] highlight
the importance of interoperability in the context of regulatory
policies, addressing the limited adoption of commercial smart
city technologies. On the other hand, The authors in [60]-
[65] present a comprehensive methodology for evaluating
semantic interoperability solutions, examining their strengths,
weaknesses, and potential future directions in the context of
smart cities. Additionally, Msahli et al. [66] specifically focus
on the privacy protection mechanisms for sensitive data during
interoperation in a V2X environment, including the identifica-
tion of fake identities or certificates. These studies contribute
valuable insights into the various aspects of security, privacy,
and regulatory considerations surrounding interoperability in
smart city environments.

Rahman et al. [67] propose a hierarchical blockchain-
based platform called Blockchain-of-Blockchains (BoBs) to
address data management, integrity, traceability, and trans-
parency challenges in IoT interoperability across smart city
organizations. Karumba et al. [68] present the Blockchain
Agnostic Interoperability Framework (BAILIFF), focusing on
notary services and cross-chain attestation for verification. In
[69], [70], the authors explore interoperable services for drone
tracking in smart city networks. Basheer et al. [71] discuss the
integration of Fog Computing, IoT, and MANETS to achieve
interoperable systems in sustainable cities. Chen et al. [72]
present Vehicle as a Service (VAAS) as an interoperable
service for vehicles. Batayneh et al. [73] highlights the lack
of proper security governance in smart city development and
its impact on collaborative tasks. Dua et al. [74] propose
a secure message transmission system using elliptic curve
cryptography for interoperable cars in smart cities. Reegu
et al. [75] emphasize the role of blockchain in healthcare
and its challenges in achieving syntactic interoperability. The
authors in [76]—[78] analyze security and privacy challenges in
syntactically interoperable services using blockchain in smart
cities. Bellavista et al. [79] discuss the role of blockchain
technology in the fourth industrial revolution (Industry 4.0)
and highlight issues with interoperation between blockchains.
Villarreal et al. [44] focus on blockchain’s potential for in-
teroperability and security of healthcare information. These
studies contribute valuable insights into various aspects of
interoperability, security, and privacy in the context of smart
cities and blockchain technology.

Flanagan et al. [80] propose a decentralized protocol and
data exchange framework for human-driven and connected au-
tonomous vehicles to achieve interoperability in intersections.
Xu et al. [81] introduce BlendCAC, a decentralized capability-

based access control mechanism for large-scale interoperable
IoT systems using smart contracts. Gilani et al. [82] propose
a vertical SDN-based framework to enhance reliability and
stability in smart home interoperable services. Rana et al. [83]
focus on ensuring compatible and effective communication
in the IoT during interoperation utilizing SDN-based archi-
tectures. Shamsudheen et al. [84] discuss the challenges of
SDIoT in emergency services for disaster management. Abid
et al. [85] explore the potential of SDN and NFV solutions
for implementing interoperable IoT services. Banerjee et al.
[86] propose a secure and scalable scheme for data collection
and access control in IIoT using blockchain technology. Latif
et al. [23] emphasize the importance of interoperability of
blockchains and SDN in addressing energy and security issues
in IoT networks. Kozhevnikov et al. [87] present a multi-
agent system prototype that enables adaptive planning for the
interoperable services of gas, water, and energy resources in
smart cities. They also highlight the need for future research in
the area of adaptive security to enhance the proposed system.
This work contributes to the development of intelligent and
efficient resource management in smart cities, addressing the
challenges of interoperability and security.

Recently [88], [89], we have suggested the architecture of
the multi-chain technology Alphabill, a blockchain platform,
which allows for universal asset tokenization, transfer and
exchange as a global medium of exchange. Alphabill has
been designed, genuinely, for the purpose of universal asset
tokenization [88]. As such, it shares objectives with other
multi-chain blockchain technologies such as Polkadot [90],
[91]. In service of universal asset tokenization, the Alphabill
platform [88] aims at offering 1) systematic support for joining
a transaction system to the platform, 2) systematic features
for the interaction of hosted tokens, and, last but not least,
3) uncapped scalability. The key difference between Alphabill
and Polkadot is in their approach to decomposition: Polkadot
is a federation of multiple blockchains, whereas Alphabill is a
single-partitioned blockchain. The Alphabill platform is cur-
rently under development and will be published as open-source
software [88]. However, up to today', no open implementation
of Alphabill is available. Therefore, we have decided to utilize
the multi-chain blockchain technology MultiChain [92], [93]
as the technological basis for the security framework that we
propose in this paper.

III. SYSTEM OVERVIEW

Our research proposes an architecture that addresses the
security requirements associated with collaborative tasks in
smart cities and interoperable services. This architecture is
built upon the integration of three key technologies: Software-
Defined Internet of Things (SDIoT), multi-chain blockchain
technology, and smart contracts. By combining these tech-
nologies, our approach aims to establish a highly secure and
resilient system capable of effectively managing potential se-
curity threats that may arise during the interoperation of smart
services in smart city networks, particularly for collaborative
tasks. Authentication and access control represent the core

Tune 2023

A v M
L W, M. ’_.
Global Policy Engine N Context Engine 1
L Service Contract L Contract Contract

o X # :

X 9 @9
(Service Security W [Context Engine

Contract Contract

—
Service Agreement
Contract

Contract

Local
Adaptive Security Engine

{ Policy Engine)

A
o
-
Py
-
J Neeeeean

LService Security | (Context Engine ‘

Contract

Contract

Service Agreement
Contract

Policy Engine)
Contract

auibug Ajunoag aAndepy
|eso]

J)

o Smart Service -A

~* [Services API HServiceSecurity

SDN Wise Key

SDIoT Architecture
Layer

)

loT N@fjgs
N

loT Nodes 7

Perception Layer

“JoT Nod
<|3\3;7 odes

Smart Service -A

e ﬁ
3‘:‘\: (Services APIW ServiceSecurity

(7]
) Key S
,,,,,,,, SDNWise | Management 3
-
Controller Layer 2 5
o=
X 22
- [1']
2
: c
S - s
(/ Perception Layer o1 Noé
x(ffb’T Nodes ° \e\s
AN loT Nodes)
I J—

Fig. 2. Proposed security framework for collaborative services.

security components carefully incorporated into our proposed
security framework. These components play a critical role in
ensuring that only authorized entities are granted access to
the system and its resources, thereby enhancing the overall
security of the system.

In the following sections, we will provide a detailed dis-
cussion of the technologies and core components involved in
our proposed security framework, as illustrated in Figure. 2.
This discussion will offer insights into the integration and
operation of SDIoT, multi-chain blockchain technology, and
smart contracts within the architecture.

A. SDIoT (Software-Defined Internet of Things)

The Software-Defined Internet of Things (SDIoT) is a
technology that makes it possible to build a dynamic and
adaptive network of networked IoT devices, sensors, and other
elements of the infrastructure for smart cities [94]. Smart city
service nodes may be readily integrated and linked by SDIoT,
enabling real-time data interchange, analytics, and decision-
making. The architecture of SDIoT is based on the idea of
SDN, which divides the control plane and the data plane of
network devices to provide greater flexibility and programma-
bility in controlling and running the network. We use SDIoT
architecture [95] in our proposed framework in order to build
a smart city network that enables interoperability between
various smart services for collaborative tasks. The framework
of SDIoT consists of three layers: the application layer, the

controller layer, and the perception layer. In our proposed
framework, Figure. 3 depicts the usual SDIoT architecture.
1) Application Layer: The application layer is a crucial
component of the SDIOT architecture that enables the deploy-
ment of various smart city services [96]. By leveraging the
application layer, cities can easily integrate and network smart
services for seamless data exchange and real-time decision-
making. This layer provides a flexible and scalable platform
for developing and deploying innovative smart city services
that can improve the quality of life for citizens. In our proposed
framework, we take advantage of the application layer to inte-
grate the open APIs of multiple smart city services, enabling
us to implement a use case of interoperability between these
services for collaborative tasks. By allowing different services
to communicate with each other, our framework facilitates
more efficient and effective delivery of smart city services.
2) Controller Layer: At the controller level, we have SDN-
WISE controllers that are responsible for communication
features and SDN programming benefits such as managing
heterogeneity and scalability [16]. SDN-WISE is built on the
IEEE 802.15.4 physical and MAC layers, and the Forwarding
(FWD) layer processes incoming packets in accordance with
the WISE Flow Table, which is changed by the Control
Plane based on settings. The typical SDN-WISE architecture
includes the default network module of SDN-WISE commu-
nication standards such as IEEE 802.15.4 for wireless nodes,
topology discovery, packet processing, and the flow-wise [97].

@

Smart Services

Application Layer

....................................

Control Plane

‘ Controller Laye

..................................

Sensor Nodes
Sensor Nodes

Sensor Nodes

Smart Services
Sensing Nodes

Fig. 3. Typical SDIoT architecture.

3) Perception Layer: The perception layer comprises the
smart sensors and devices in our proposed framework that are
working as sensing nodes for smart services. These sensing
nodes are integrated into different smart city services and
applications, enabling the city to collect real-time data and
provide valuable insights for improving public safety and the
quality of life of its citizens [98].

B. Multi-Chain Blockchain Technology

Multi chains such as Polkadot [90], [91], Alphabill [88],
[89] and MultiChain [92], [93] are an advanced concept of
blockchain technology that enables the creation of multiple
interconnected and parallel blockchains within a single net-
work. Multi chains are designed to address the limitations of
traditional blockchain networks, such as scalability, interop-
erability, and privacy, by allowing multiple chains to operate
independently and interact with each other. A multi-chain net-
work typically consists of multiple interconnected chains, each
with its own set of nodes, consensus mechanisms, and smart
contracts. These chains can be customized to suit specific
requirements, such as varying levels of trust, privacy, and
performance, making them highly adaptable to different use
cases. Multi chains are currently emerging with Web3 [99]-
[103] (not to be confused with Web 3.0 [104], [105]), which
takes blockchain to a next level by turning disintermediation
ubiquitous — establishing disintermediation not only for basic
payments, but also for a wide range of financial services, dig-
ital identities, data and business models [88], [102]. As such,
the Web3 vision is about consolidating and integrating the
fragmented landscape of specific blockchain visions expressed
in the many initial coin offering (ICOs) that we have seen over
the last decade; and multi chains are the natural fit to form
the technological basis of Web3.

In our proposed framework, we integrate the open API [93]
of the multi-chain technology, MultiChain [92] with the SDIoT

architecture (see Sect. III-A) and a series of adaptive engines.
We create a client-server relationship between the local chains
and the global chain called a multi-chain client and server
agent responsible for maintaining the validation attributes in
the local blockchain and in the global blockchain. Following
are the validation chains in client and server multi chain:

1) Registration: The registration validation chain is respon-
sible to maintain the authenticity attributes of SDIoT
architecture and local and global adaptive engines. It
ensures secure and trustworthy interactions between
them through the authenticity of their public keys,
digital signatures, etc. during the interoperation of smart
services in smart cities.

2) Service Security Contract: The service security contract
validation chain is a critical component that ensures the
integrity and security of the global and local service
security contracts within the blockchain ecosystem. This
validation chain is responsible for verifying and validat-
ing new security rules before they are implemented in
the blockchain. It ensures that the security contracts ad-
here to the predefined criteria, policies, and regulations
and that they are compatible with the overall security
framework of the blockchain system.

3) Global Service Agreement: The agreement validation
chain plays a pivotal role in the storage and management
of agreements between diverse services within smart
city ecosystems. It serves as a reliable repository for
storing and safeguarding the local and global transac-
tion agreements associated with service security smart
contracts. These agreements are established between
two smart services and serve as the foundation for
collaborative tasks undertaken within smart cities. By
diligently maintaining the local and global transaction
agreements, the agreement validation chain ensures the
coherence and consistency of service security smart
contracts. This, in turn, facilitates seamless coordination
and interoperability between smart services, thereby en-
hancing the efficiency and effectiveness of collaborative
endeavors within smart cities.

C. Smart Contracts

A smart contract is a self-executing and autonomous agree-
ment that is coded as a computer program and runs on a
blockchain platform [106]. It defines and enforces the rules
and conditions of an agreement between parties without the
need for intermediaries. Once deployed on the blockchain, a
smart contract automatically executes and enforces its prede-
fined logic when certain conditions are met, without the need
for human intervention [107]. In our proposed security frame-
work we implement four types of security smart contracts
in local and global adaptive engines. Multi-chain blockchains
utilize these smart contracts to provide security automation
during the interoperation of smart services in fulfillment of
collaborative tasks.

1) Service Agreement Contract: is responsible for generat-

ing an agreement between service to the local adaptive
engine and service to the global adaptive engine for

collaborative tasks between the interoperability of smart
services in a smart city.

2) Service Security Contract: is a crucial component in
ensuring the secure interoperability of smart services in
collaborative tasks. It is responsible for creating local
and global security contracts that outline the security
requirements for the services involved. These security
requirements typically encompass authentication, autho-
rization, and access control mechanisms to protect the
confidentiality, integrity, and availability of the services
and their data.

3) Policy Engine Contract: is responsible for creating local
and global policies for the interoperability of smart
services based on local and global service security con-
tracts, such as a policy to access collaborative messages
between services.

4) Context Engine Contract: is responsible for executing
the service security contract for local and global adaptive
engines required during service interaction for collabo-
rative tasks.

IV. PROPOSED SECURITY FRAMEWORK

The proposed security framework for collaborative tasks in
smart cities is based on the integration of SDIoT architecture,
a local adaptive engine, and a global adaptive engine. These
components work together to ensure adaptive security during
interoperation of smart services. The SDIoT architecture pro-
vides the foundation for dynamic and adaptable networking of
IoT devices, sensors, and smart city infrastructure. The local
adaptive engine and global adaptive engine, implemented as
part of the blockchain, leverage smart contracts to automate
security measures.

In the following subsections, we will provide an overview
of the security framework by describing the submodules of
the overall architecture. This includes the authentication and
access control components that ensure the secure and resilient
operation of the system. The local adaptive engine and global
adaptive engine utilize the multi-chain blockchain and smart
contracts to enforce security measures and ensure the integrity
and confidentiality of data exchanged between different smart
services in a collaborative task environment.

A. Key and Session Management

In our proposed security framework, we implement a key
and session management module in the SDIoT architecture. It
is responsible for providing digital identity to the IoT nodes
of smart services in terms of key pairs and session keys. It is
also responsible for storing it in the local repository in order to
validate security attributes during the interoperation of smart
services. Algorithm-1 outlines the implementation of the key
management module, where the module will create Public key
and Private key pairs for SDN controllers, IoT nodes, and
smart services in the SDIoT architecture to provide them with
digital identities.

We used the Elliptic Curve Cryptography (ECC) crypto-
graphic algorithm for generating these key pairs. ECC is
known for its strong security and smaller key sizes compared

to traditional cryptographic algorithms, making it well-suited
for resource-constrained IoT devices. We are using different
key lengths such as ECC (128, 192, 256) in order to provide
variation in authentication between different interoperable
services.

Algorithm 1 : Key and Session Management

Require: node;; Where i,j is communicating nodes
Ensure: Session id for communicating nodes
Generate keys for controllers, IoT nodes for
Key Length 128, 192, 256 bit
1: Publickey;;= Openssl.generatePublic (ECC)
2: Privatekey;;= Openssl.generatePrivate (ECC)
3: Store in Key in repository accordingly
Binding identities of nodes with smart service
4: Initialize Service JSON
5: Read the Keys from the repository accordingly
6: Service ISON=Publickey;;, Publickey;;

After generating the key pairs, the key management module
generates session keys in order to provide secure communica-
tion between IoT nodes during collaborative tasks through the
controller. Following is the high-level overview to distribute
the session key from the key management module to IoT nodes
securely,

1) At the beginning of the system, when IoT nodes are
initialised, they need to join the network in the SDIoT
architecture. IoT nodes will initiate the process by
sending the encrypted joining request message through
the SDN controller’s public key and signing it with their
own private key. We assumed the SDN controller and
IoT nodes knew each other’s public keys in the system.

2) SDN controller decrypts the message with its private key
and the IoT node’s public keys. After a successful veri-
fication process, the Key management module generates
session keys.

3) Key management modules then use Elliptic Curve
Diffie-Hellman (ECDH) to distribute session keys se-
curely to IoT nodes from an SDN controller by encrypt-
ing the session key with the public keys of IoT nodes
and signing it with the controller’s private key.

4) IoT nodes after successfully decrypting the message,
IoT nodes are able to use session keys for secure
communication in order to provide confidentiality to the
collaborative message during the interoperation of smart
services.

B. Smart Service Management

Developing sustainable and effective urban environments
requires smart services that can work together. To accomplish
this, we created a dynamic application module in the SDIoT
architecture responsible for integrating multiple smart service
APIs into the security framework in order to provide collabora-
tive tasks during the interoperation of different smart services.
We also introduced the trust factor associated with smart
services in the application layer to ensure that trustworthy
and reliable smart services are used for collaborative tasks

between IoT nodes. Algorithm-2 refers to the implementation
of the Smart Service management module in the application of
the SDIoT layer. We implement the module in such a manner
that enables us to integrate as many smart service APIs into
the application layer. After the API attaches to the SDIoT
application layer, the Service security module is responsible
to provide security requirements with the help of the key
management module along with the trust variable. We used
trust variables for smart services in order to make trustworthy
interoperability possible for collaborative tasks.

keys and session keys, while access control is determined
based on the service trust factor threshold. After creating the
service security rules for smart services, multi-chain client
agents are responsible for creating a transaction in order to
upload the latest service security rule for validation to the local
blockchain and the server blockchain in the global adaptive
engine. It is also responsible for receiving the updated service
security rule called the global service security rule from the
server blockchain of the global adaptive engine in the policy
engine.

Algorithm 2 : Smart Service Management

Algorithm 3 : Rule Engine

Require: Service APIs
Ensure: Add Trust values to smart services
For adding multiple smart APIs
1: Service JSON[[Service APIs= APIs]
2: API= Number of smart APIs
3: while API>= 0 do
4 Service= API
5: Key Management (Service JSON)
6 Append Service JSON[[Trust= 0]
7 API= API-1
8: end while

C. Adaptive Security Engines

Adaptive engines are software components that facilitate the
integration of the SDIoT architecture and the local and global
blockchain. The engine is responsible for providing adaptive
security solutions for distributed, decentralised smart services
and collaborative task context execution during the interop-
eration of smart services. The adaptive engine is composed
of a rule engine and a context engine. The rule engine is
responsible for creating adaptive rules based on the security
features of smart services such as authentication, authorization,
and access control, also called service security contracts.
The context engine is responsible for executing the crucial
processes of authentication, authorization, and access control
during collaborative tasks between different smart services.

In order to integrate the local and global blockchains with
SDIoT architecture, there is a need for digital identity binding
with the local and global blockchains; therefore, we used
the blockchain’s own key management modules in order to
generate digital identities in the form of key pairs. The
adaptive engine is responsible for sharing the public identities
(public keys) of the local and blockchain systems with the
SDIoT architecture through the same procedure as we did in
the SDIoT architecture.

1) Rule Engine: The rule engine is responsible for generat-
ing security rules, both local and global, based on the dynamic
security requirements of smart services during collaborative
tasks in interoperability scenarios. Algorithm-3 outlines the
implementation of service security contracts, which involves
using an array of dictionary objects to add new security
requirements for smart services, including authentication, au-
thorization, and access control mechanisms. In our proposed
framework, authentication requirements are met using public

Require: Authentication, Authorization, Access
Ensure: Local Service Security Contract
For Local Adaptive Engine
1: Define Authentication JSON object
Read the SDN Controller Public Keys (128,192,256) bits
Read the Local Blockchain Public Keys (128) bits
Read the Global Blockchain Public Keys (128) bits
2: Define Authorization JSON object
Service Trust= Define the Trust Parameter;
3: Define Access JSON object
Adding Collaborative Service;
4: Compile the JSON as Local Service Security
5: GLobalService= MultichainClient(JSON)

2) Policy Engine: The policy engine in our proposed se-
curity framework defines as a set of rules, guidelines, or
principles based on the combination of local and global
security rules during the interoperation of smart services for
the collaborative task in a smart city. The Rule engine is
responsible to provide the Local security rule, and the global
adaptive engine provides the mechanism through the global
blockchain in order to enforce the global security rule to the
local security rule. The Policy Engine is responsible to fetch
the latest updated service security from the Global Adaptive
Engine server Blockchain and convert it into JSON Format as
shown in the Algorithm 4. In order to execute of Policy the
module is responsible to forward the policy to the Execution
Engine. The engine has its own policy management operations
(such as adding, deleting, and appending new policies) in
order to provide flexibility during the interoperation of smart
services.

Algorithm 4 : Policy Engine
Require: Fetch the service security from the Blockchain
Ensure: Send the JSON Contract to the Execution Engine
1: Fetch the contract from the Blockchain
2: Convert the contract in JSON format
3: Initialize Global Service, JSON=[]
4: a= Use Multichain command to fetch the contract
5: Append Global Service, JSON= a

3) Context Engine: The context engine is responsible for
executing the crucial processes of authentication, authoriza-
tion, and access control for the collaborative task during the
interaction of multiple services by fetching the service security

contracts from the local rule engine and global rule engine.
Algorithm-5 refers to the implementation of the context engine
where authentication of the identities of the SDN controller,
blockchain, and communicating nodes through the local and
global blockchain is the first step. After successful verification
of authentication, the authorization is completed with the help
of trust assessment in order to access the collaborative task
during the interoperation of smart services.

For trust assessment we are using a modified version of Boa
et al. [108] as defined in Definition. 1.

Definition 1 (Trust Assessment): Given two smart services
1 and 7, a time point ¢, a time difference to a previous trust
assessment AT, a direct trust assessment D;j(t) € [0,1] at
time point ¢, and a trust factor o € [0, 1] (indicating how much
the trust assessment depends on direct assessment), we define
the trust assessment of service interaction (between smart
services ¢ and j at time point ¢), denoted by T;;(t) € [0,1]
(with O called untrusted, 0.5 called semi-trusted, and 1 called
trusted) as follows:

Ty(t) = aDy(t) + (1-a) Tyt — AT) (1)

Algorithm 5 : Local Context Engine
Require: Authentication, Authorization,Access
Ensure: Context Execution

1: Trust=0

2: while True do

3: Bool=Verfication of Authentication Variable
4 if Bool == “T'rue” then

5: z=1—«

6: ServiceTrust= x * Trust + a*0.001

7 Trust= Service Trust

8: Send the Service Trust to Blockchain

9: if Trust >= “PragramaticalVariable” then
10: Access = Grant

11: Call collaborative task

12: end if

13: end if

14: end while

V. WORKFLOW OF SMART CONTRACT EXECUTION

In this section, we discuss the execution of the smart
contracts present in the engines for enacting smart governance
in a smart city. We implement the concept of smart governance
in a global adaptive engine responsible for enforcing the smart
city governance rule on the smart services running in the smart
city. Smart contracts are self-executing programs that run on
adaptive engines in our proposed security framework, designed
in a way to provide automation for security. We implement the
smart contract with the help of a Python script that integrates
with “multi chain” APIs. Following is the workflow of smart
contract execution involved in the interoperation of smart
services and smart governance in a global adaptive engine:

1) Generation session token

2) Adding local service security contract

3) Adding global service security contract

4) Governance execution process

] A Hf
A ") ‘.’ g ’i

Local Local Service

Security

" —
+ [SDN Public Local
' K
) (Y ___ Registration
[Session
1 Token
B L Y
H = Multichain Client
1 [10T Nodes
1| Public Keys
L)

Global Service
A

3 Verification Attributes

Message
Parsing

Local Adaptive Engine

Local Adaptive

Agent Session Tokens

1.Request Session Km <: KA\
il SDN Controller Application Agent
&.Security
Verification
i No 7.Token
P Yes Acceptance Process

Multichain Agent

12.Store Session

SDIoT Architecture

No

8.Token
SO accepted
£l Verification Process f7~X.
Not Allowed
NS
Multichain Client
Agent

Fig. 4. Workflow of session token generation.

A. Generation Session Token

In the proposed security framework, we used session keys
in conjunction with private and public keys for communi-
cation between SDIoT architecture and adaptive engines on
blockchain in order to provide additional data security features
during a collaborative task. Figure 4 represents the workflow
to generate a secure session token for communication. The
following are cryptographic steps involved to generate a secure
session token for communication

1) The SDN-wise controller generates key pairs and sends

a request message by including the public identities of
nodes in the message as node; ;(pub) and the hash of the
SDN controller public key. The request message is then
encrypted with the public keys of the local blockchain
and signed with the controller’s secret key. Equation (2)
shows the structure of the request message. It is assumed
that the local global blockchain and SDN controllers
have already shared their public keys with each other
by sharing the hash of their public keys.

Messagep,, = [(node;; (pUb)|‘haSh(SDN[’ub))sk]pb 2

2) The local adaptive engine receives a request message
from the controller and decrypts the received message
through the private key of the local blockchain and
the public key of the SDN controller as shown in
Equation (3).

Message,,. = [(nOdeij (pub)| |ha5h(SDNpub)>])

3) After successfully decrypting the request message, the
adaptive engines first verify the legitimacy of the SDN

controller by fetching the SDN controller’s public key
from the validation chain of the local blockchain.

4) After successful validation of the SDN public key from
the local blockchain, local adaptive engines call smart
contracts for session token generation. We implement it
with the help of multi-signature, this requires the public
keys of the local blockchain, along with the public key
of IoT nodes as shown in Equation (4).

Session;p = [(Multisig(node;;(pub), (chainyy))] (4)

5) Multi-signature protocol returns the session id which
then stores in the validation chain of local and global
chains and forwarded to the SDN-wise controller.

6) The Encrypted Session;q, then send back to the con-
troller by encrypting with the public key SDN controllers
and signing it with the Local and the global blockchain
private key. Equation (5) shows the sent message struc-
ture.

SessionContractg,, = [(SeSSionsk)] pb)

7) The SDN controller verifies the legitimacy of the re-
ceived message.

8) Session token acceptance process is started.

9) If the session token is accepted, the legitimacy of the
session token security attribute will be again verified
through the multichain client agent.

10) After successful verification of the security attribute of
the session token from the multichain client agent, the
session token is stored in the local repository.

11) After successfully validating of session;q from the local
and global validation chains, the session;q is stored in
the local repository of the controller. In last the controller
call the key distribution module in order to distribute the
session key to the IoT nodes for secure communication
during the interoperation of smart services during a
collaborative task.

B. Adding Local Service Security Contract

Interoperability between services have require an agreement
when adding new security requirements to the service of a
smart city. In our proposed framework we create a smart
contract for adding new security requirements that generate
a service-level agreement for interoperability. For access to
collaborative tasks, interoperable services should agree on
the service-level agreement. Figure 5 shows the workflow
steps. The cryptographic steps involved in the execution of
the workflow are given below,

1) The application agent sends the request message to
the SDN controller. The SDN controller is responsible
to provide integrity, and confidentiality through ECC
cryptographic suit by adding a security tag of session-
id to the requested message and encrypting the request
message with the public keys of the local blockchains.
After providing confidentiality and integrity to the re-
quested message SDN controller signed the message
with the secret key of the IoT nodes and will send it

Local Adaptive Engine

SDIoT Architecture

2)

3)

4)

@ 2.Security Verification

'
of] oF 1
o oy " " '
] ’ 1
2 Global Service Local Service :
< Agreement Security Il
s !
H '
S s |0 SO SSnesEEseERe ssEs S8Ee Snae sEE '
3 Policy Engine Context H
S it i omex Execution —L—
=

'
'
1 Contract Engine Contract
'
'

Successful
Verification

Multichain Client

Message
Agent

Parsing

Local Adaptive
Agent

1.Adding Service

Security %

SDN Controller Application Agent

6.Security
Verification

Stoy ho * 7.Agreement
d Yes Acceptance Process

Multichain Agent

No

8.Agreement
accepted

12.Store Service
Agreement

9.Agrrement

[ot Alowod gl Verification Process @

Multichain Client
Agent

Workflow of adding local service security.

to the Local adaptive engine. Equation (6) shows the
structure of the request message. It is assumed that
the local global blockchain and application agent have
already shared their public keys with each other by
sharing the hash of their public keys.

Messagey,, = [(Request\|Hash(SessionKey))sk}pb (6)

The local adaptive engine receives a request message
from the application agent and decrypts the received
message through the private key of the local blockchain
and public key of IoT nodes as shown in Equation (7)
as,

Message,,. = [(Request||Hash(SessionKey))] (7)

After successfully decrypting the request message, local
adaptive engines verify the legitimacy of the session
keys by fetching the session key from the validation
chain of local blockchains and then comparing its hash
with the received hash of the session key in the de-
crypted message.

After successful validation of the hash of the session
key from the local blockchain, The rule engine module is
responsible to added new local security requirements for
smart applications based on authentication, authoriza-
tion, and access control also called local service security
contracts. The “multi chain” client agent generates a
transaction of Local service security contract in the local
blockchain and sends it to the global adaptive engine in

Fig. 6. Workflow of global service security contract.

order to add administrative security requirements to the
local service security.

In the next step, the policy engine module fetches the
updated global service security contract from the “multi
chain” client agent along with the contract transactional
Id also called the Service agreement. The policy engine
sends the service agreement message to the context
engine in order to provide confidentiality, and integrity
to the service-level agreement message. Context Engine
encrypts the message with the public keys of the SDN
controller and provides integrity by integrating the mes-
sage with the hash of the session id. Equation-8 shows
the send message structure,

5)

Contractg,, = [(Contract||Hash(SessionKey)) x| ob

®)

The application agent is responsible to decrypt the
received agreement message from the local adaptive
agent.

After successfully decrypting the message, the agree-
ment message is forwarded to the acceptance process.
If the agreement is accepted then again the verification
process is performed in order to confirm the legitimacy
of the service agreement token with the help of “multi
chain” client agent.

After successful validation of the service agreement
token, the service agreement token is accepted and
stored in the local repository.

6)

7)

8)

9)

C. Adding Global Service Security Contract

The global security requirements for smart services entail
combining the local service security requirements of smart
services with the administrative service security requirements
for collaborative tasks. These requirements must align with the
service requester’s specifications for service interoperability.
In our proposed security framework we integrate the global

1

! 1
1 s o ™ i
! o M) [M 1
' g]] ’ '
1 = 1
1 2 Global Local Global Service Local Service 1
: = Registration Security Security .
. B .
1 Ll Y T Y e R R ~ 1
: 5 | Locals Context P
1 o 1 ocal service Ontex i 1 1
: = 1 Agreement Engine B EEE 1

] 1 1
1 1 g 5
' Vel Y N SPolicy Engine Contract __ _____ S
f Verification |
1
- L& :
1
1 Multichain Server Agent '{,‘_{f :
! Multichain Server Agent 1
D iMutichainClient | | s e e e e e e acaaaaaaaa w8
1 Agent Message ! 1 :

! 1
: > 2.Security Verification : Authentication ~—> Authorization —> Access Control : :
1 1
i 1 2 = 1
- GLobal Adaptive O, i i o T A
, Agent Global Service :
! 1

Security Contract

adaptive engine with the local adaptive engine through a “multi
chain” client agent. Figure 6 shows the pictorial view Adding
Global Service security contract.

The Global adaptive engine is responsible to create smart
city administrative service security contracts in order to en-
force smart city administrative security policies during the in-
teroperation of smart services. It is also responsible to receive
a message from a “multi chain” client agent through a global
adaptive agent. Following are the cryptographic steps involved
in the making of global security rules for collaborative tasks
during the interoperation of smart services.

1) The local adaptive engine incorporates “multi-chain”
client agents to facilitate the creation of transactions
for local service security contracts. These transactions
are intended for storing the most recent local service
security contract within both the local blockchain and
the global blockchain, utilizing a client-server architec-
ture. Once the transaction is generated, the “multi-chain”
client agent within the local adaptive engine encrypts the
message using the public key of the global blockchain
and signs it with the private key of the IoT nodes. To
ensure data integrity, the message is integrated with the
hash of the session ID of the IoT nodes. The structure
of the received message is depicted in Equation 9 as,

€))

Mg = [(Agreementy,,||Hash(Session)) s ob

2) The global adaptive engine decrypts the received mes-
sage through the private key of the global blockchain
and the public key of IoT nodes’ public key as shown

in (10) as,

Moo = [(Agreementhid|\(Hash(Session))] (10)

3) After successfully decrypting the request message,
global adaptive engines verify the legitimacy of the
session keys by fetching the session keys from the global

blockchain.

1
1

1

|

: Global

1 Service Security Contract
1

1

1

1

1

1

1

Service Agreement
Request

1.Global Service
ISecurity|[Message
Request

Not Allowed \
4.Trust Verification
Not Allowed

Send Collaborative
Message

Send Agreement Send
Agreement

Token

Message
Parsing

Global

Service Security Contract Qultichain Server Agent

Not Allowed \
4.Trust Verification
Not Allowed

Send Gollaborative

Yes

Fig. 7. Workflow of context engine.

4) Once the transactional ID is successfully validated, the
global adaptive agent retrieves the most recent service
security contract from the global blockchain using this
ID. Subsequently, the global adaptive agent merges
this local service security contract with a smart city
administrative security contract to form a global service
security contract. The structure of the global service
security contract message is represented by Equation 11,
where A represents the local service security contract
and B represents the administrative security contract of
the smart city.

Global Contract = [Al|B] (11)

5) Subsequently, the context engine initiates the genera-
tion of global service security transactions to store the
global security contract in both the local and global
blockchains. The context engine securely forwards the
transaction ID to the local adaptive engine for validation
purposes. This is accomplished by encrypting the trans-
action ID using the public key of the local blockchain
and signing it with the secret key of the IoT nodes.

D. Governance Execution Process

The governance execution process is facilitated by the
context engine, which plays a crucial role in coordinating
and executing collaborative tasks between smart services. One
of the key processes within the local adaptive engine is the
execution of the context execution contract, which enables the
execution of collaborative tasks. Within the context engine, we
have implemented two sub-smart contracts that respond to dif-
ferent message requests. The first sub-smart contract handles
requests for service agreement collaboration, while the second
sub-smart contract handles requests for executing collaborative
messages after the agreement has been established. Figure 7
shows the workflow of the context engine execution process.
Following are the steps involved in the execution of the context
engine,

1) The request message is forwarded to the context en-
gine after successful security verification from the local
blockchain. At the beginning of the context engine, the
requested message authenticity will verify first.

2) After successful verification of the authenticity of the re-
quested message, the trust assessment process is started.
The trust assessment process is based on an iterative pro-
cedure in which the trust assessment value will increase
continuously as an incentive if authenticity is verified.
When the required threshold for collaborative trust is
reached, the message is forwarded to the execution
process.

3) In the execution process collaborative response message
is created. We are implementing two types of response
messages based on the request message such as a Service
agreement token response message and a collaborative
message response (Access grant, Access not grant). The
execution process is also responsible to provide security
requirements to respond to messages.

VI. DESCRIPTION OF THE USE CASES

The demand for emergency response systems in smart cities
has significantly increased due to factors such as the rapid
growth of urban populations and the escalating risks associated
with emergencies and disasters [109], [110]. As smart city
technologies continue to advance, there is a growing need for
interconnected services to operate seamlessly and collabora-
tively, particularly in emergency situations. The effectiveness
of a collaborative emergency response system within a smart
city hinges on its ability to swiftly and efficiently execute
responses to actual or anticipated emergency situations, taking
into account the interoperation of multiple smart services.
The timely and coordinated execution of emergency response
actions is vital in ensuring the safety and well-being of citizens
and minimizing the impact of emergencies on infrastructure
and resources. The speed at which a collaborative emergency
response system can execute is of utmost importance. It
determines the system’s ability to gather and analyze relevant

Ambulance Service

Responsible to receive alert messages from the weather service
and the disaster management service in order to plan their routes
more efficiently and avoid delays

Send

Checking of Trigger
condition

Yes
Message: Send
Location
Not Trusted

By
Compute the Service Message : Alert

Trust Conditions

4

Message : Send
Location

NO

Disaster Management Service

Disaster Management service is responsible to provide disaster
alert messages to Ambulance units and smart citizens for
taking precautionary measures in the situation of
natural or local disasters

Receive

il

Verification of

Legitamate Source

Yes

te the Service

Compu
Trust

NO
Not Trusted

Weather Service

The Smart Weather service is responsible for gathering
real-time weather related information for
smart citizens based on their respective
longitude and latitude positions

Receive

)

Legitamate Source
Weather |\
Conditions
Not Trusted

Yes

.

.

\

: I

' Verification of
.

:

.

\

.

NO

Fig. 8.

data, assess the severity of the situation, and coordinate
response efforts across multiple services and stakeholders.
By ensuring a fast and efficient execution process, smart
cities can enhance their emergency preparedness and response
capabilities, ultimately safeguarding the lives and properties
of their residents.

In order to evaluate the feasibility of our proposed secu-
rity framework, we consider the use case of collaborative
emergency response services in a smart city, as shown in
Figure. 8, where three services interact with each other in order
to execute disaster emergency response systems. Following
is the detailed information of the three interoperable services
involved in the execution of emergency response systems.

1) Smart Disaster Management Service: In our research,
we have developed a disaster management service using
Python socket programming to establish a server-client
code structure. This service operates as a server node
that collaborates with other smart services. To facil-
itate collaborative request tasks during interoperation,
we have implemented two distinct functions: send and
receive. The receive function plays a crucial role in
acquiring essential data for disaster management. It
receives weather data from the weather service, en-
abling the system to monitor current weather conditions.
Furthermore, it receives the current location data of
ambulance users from the ambulance services, provid-
ing real-time information on the location of potential
victims. Conversely, the send function is responsible
for transmitting alert messages based on the received
weather data from the weather service to the ambulance
service. This allows the ambulance service to proactively
respond to potential emergencies by taking necessary
precautionary measures. Additionally, the send function
also relays the current location of the disaster server to
the weather service, facilitating effective coordination

2)

I I

:

.

H

' Compute the Service
H Trust

.

| f

1

\

Communication workflow of interoperable services for smart emergency response.

between the two services. Through the integration of
these functionalities, our disaster management service
enhances the interoperation between various smart ser-
vices, enabling real-time data exchange and collabora-
tive decision-making during emergency situations.
Smart Weather Service: This service plays a vital role
in collecting real-time weather-related information for
smart citizens based on their respective longitude and
latitude positions. To implement this service, we inte-
grate publicly available Openweather APIs, which offer
various attributes. For our purposes, we focus on the
weather.id feature, which provides current and predicted
information about rainfall based on the smart citizen’s
geographical coordinates. The weather.id feature classi-
fies weather conditions into three distinct ranges: 800,
indicating “locally drizzling”; 900, indicating a predic-
tion of “locally heavy rain”; and 1000, indicating a
prediction of “urban flood.” By utilizing this feature, we
can effectively determine the intensity of rainfall in a
given location.

In addition to API integration, we have developed
two essential functions: send and receive. The receive
function is responsible for acquiring data from the
weather API, allowing us to retrieve real-time weather
information. It also receives the current location of the
Ambulance user from the ambulance service, enabling
us to monitor their geographical position. On the other
hand, the send function handles the task of sending
alert messages to both the disaster services and am-
bulance services when the weather API data indicates
“locally heavy rain predicted,” “urban flood predicted,”
or “drizzling” conditions. This proactive communication
ensures that the appropriate authorities and services
are promptly alerted to potential risks or emergencies.
By implementing these functions and integrating the

Openweather APIs, the Smart Weather service enhances
the overall coordination and response capabilities of
smart city systems, ensuring that citizens and relevant
services are well-informed and prepared for weather-
related events.

3) Smart Ambulance service: This service ensures effective
communication and efficient response during emergency
situations. By actively exchanging information with the
disaster services and the smart weather service, the
Smart Ambulance service can provide timely assistance
and contribute to the overall safety and well-being
of smart city residents. The smart ambulance service
is a crucial component of our system, implemented
using Python socket programming in a server-client
code structure. As a client node, it interacts with both
the disaster services and the smart weather service to
facilitate collaborative task requests. To achieve this, we
have developed two distinct functions: send and receive.
The receive function of the smart ambulance service
plays a pivotal role in receiving alert messages from the
disaster service and the smart weather service. These
alert messages provide valuable information about po-
tential emergencies or weather-related events that require
the attention of the ambulance service. By receiving
and processing these messages, the smart ambulance
service can quickly respond to critical situations. Con-
versely, the send function is responsible for sending bea-
con messages to the connected services. These beacon
messages serve as updates or status reports from the
Smart Ambulance service, allowing other services to
stay informed about its current activities and availability.
This facilitates seamless coordination and collaboration
among the different components of the system.

Table IV presents the distinct security policies employed by
each service involved in our proposed emergency response
system during the interoperation of smart services in the smart
city. Moving forward, the subsequent section will focus on the
testbed scenarios meticulously crafted to assess the efficacy
of the proposed security framework. We will explore the
evaluation parameters utilized to gauge the performance of
the security framework across various scenarios.

TABLE 11
SYNTACTICALLY INTEROPERABLE SECURITY RULES FOR
COLLABORATIVE TASK BETWEEN SMART SERVICES.

Smart Ambulance

Service

Smart Weather Ser-
vice

Smart Disaster Man-
agement Service

-Authentication with
128-bit ECC Keys
-Trust 0.003

-IEEE 802.15.4

-.Authentication with
192-bit ECC Keys
-Trust 0.003

-IEEE 802.15.4

-Authentication with
256-bit ECC Keys
-Trust 0.003

-IEEE 802.15.4

VII. TESTBED AND IMPLEMENTATION DISCUSSION

We simulate a smart city network using the COOJA network
simulator, which is an open-source tool based on the Contiki
operating system [111]. COOJA is widely used for simulating

wireless sensor networks and IoT networks [112]. The archi-
tecture of Contiki is built having multiple modules that offer
features like process management, memory management, and
inter-process communication to the IoT nodes or motes It also
supports network protocols such as IPv6, RPL, 6LoWPAN,
and CoAP for low-power, lossy networks [113]. We integrate
the Contiki operating system with the SDN-Wise controller
for SDIoT architecture. SDN-Wise is middleware it offers a
programming abstraction that lets programmers build high-
level Internet of Things services and applications while con-
cealing the intricate network architecture that underlies them.
The SDIoT network architecture and traffic flows are managed
centrally by the SDN-Wise controller [114].In order to build
the proposed security framework, we combine the “multi
chain” blockchain with the SDN-WISE Contiki framework, in
order to provide a secure mechanism during the interoperation
of smart services for collaborative tasks in smart city.

To assess the effectiveness of our proposed security frame-
work, we examine its system performance as well as the
execution time performance of the smart contract implemented
in the adaptive engines that utilize blockchain technology.
The performance of the proposed framework is significantly
dependent on the “multi chain” memory pool and the SDN
controller’s memory capacity during the collaborative re-
quests/response messages flow. The “multi chain” memory
pool temporarily stores unconfirmed transactions before they
are published to the blockchain. However, as the number of
collaborative requests/response messages from SDN-WISE to
“multi chain” increases, the memory pool may become a
bottleneck, leading to reduced system performance. In addition
to this, the memory capacity of the SDN controller is critical
to the performance of the framework as it tracks network
topology and traffic flows.

Our testbed is designed to focus on the four critical pro-
cesses of message flow necessary for achieving interoperability
of services in smart cities. To evaluate the system’s perfor-
mance, we gradually increase the number of collaborative
smart services and IoT nodes in the smart city. We apply
varying message flow loads, ranging from 100 to 5000, with
corresponding delay differences of 600ms, 120ms, 60ms,
30ms, 15ms, and 5ms. This allows us to accurately measure
and analyze the system’s performance under different scenar-
ios and workloads. We are focusing on the following three
workflows during the interoperation of services for emergency
collaborative tasks in a smart city,

1) Service-level agreement between interoperable services.

2) Sending and receiving an emergency request during
interoperation of services.

3) End-end message sending and receiving.

The testbed for our system was implemented across four
distinct machines. Among these, three machines function as
decentralized smart services client blockchain nodes, while the
remaining machine operates as the server blockchain node,
referred to as the global blockchain. The configuration details
of each machine are provided in Table-III, which outlines the
specifications and settings of the hardware used. To realize
the network infrastructure required for our use case, we have

Global Blockchain

CYT

Smart City Administrative System

Fig. 9. An illustrative network architecture of the proposed use case.

presented an illustrative network architecture as depicted in
Figure 9.

TABLE III

HARDWARE CONFIGURATION OF THE FOUR PHYSICAL MACHINES.

Physical Machines 1, 2, 3, 4

CPU (Processor) | Intel® 7th Gen Intel® Core™ i7 (6700)
Memory 16 GB DDR

Chipset Intel® H110 Chipset

Hardrive 256 GB Solid State Drive SATA

A. Service-Level Agreement Request between Interoperable
Services

In order to achieve interoperability between smart services,
it will be necessary to establish service agreements between
them. The first step towards achieving interoperability is to
generate a global service agreement that encompasses all
relevant smart services. Figure 10 illustrates the workflow for
generating and accepting the agreement for interoperability
between these services

1y

2)

3)

4)

Service A is sent the request through the application
agent to the SDN controller in the SDIOT architecture.
The message structure of the request message is shown
in (12) (where X represents the name of the interoper-
able service such as Service A).

Mgpe = [(Request|\X||Hash(Sessi0nKey))s/€}pb (12)

The Local Adaptive agent receives the encrypted request
from the SDIOT architecture. The Local Adaptive agent
first verifies the message authenticity along with the au-
thenticity of IoT nodes with the help of local blockchain
validation chains.

After successful verification of the authenticity of Iot
nodes and request messages. The request is forwarded
to the rule engine.

From the rule engine first the local security rule is
generated in JSON format and sent to the “multi chain”

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

client agent in order to store the latest local service
security transaction to the Local blockchain.

As we implemented “multi chain” as client and server
nodes in the proposed security framework. After creat-
ing a transaction of local service security in the local
blockchain it will send a copy to the global blockchain
in the global adaptive engine through the global adaptive
agent in Step 5. The sent message structure is shown in
(13) where Agreement Txid is the transactional id of the
local service security.

Mpne = [(Agreementy,| |Hash(Sessi0nKey))sk]pb
(13)

After security verification of the session id from the
global blockchain, the request is forwarded to the Global
rule engine. The global rule is responsible to enforce
administrative security for local services in smart cities.
After the generation of the global security rule in JSON
format from the rule engine, the Transaction is generated
with the help of a “multi chain” server agent and
forwarded to the execution engine of the global adaptive
security engine.

The execution engine first searches the local service
security contract with the help of the transactional id
of the local service contract and then concatenates the
contract with the global service contract in the context
engine and forwarded it to the execution process.
Through the execution process, the global service se-
curity contract transaction ID is returned to the “multi
chain” client agent through the global adaptive agent.
In Step-10, the Global security contract will be fetched
from the local blockchain. Now the Local Execution
engine incorporates the local security requirement along
with the administrative security requirement and con-
verts it into JSON format in order to forward the request
to the local context engine.

The Local Context engine verifies the legitimacy of
global service security contracts. Figure-7 shows the
workflow of verification of global service security con-
tracts and forwards it to the local execution process.
The Local execution process is responsible to forward
the request to the requested service.

Service-B on receiving a request perform the same
operation as was performed in steps 2-14 for service-
A.

After successful security verification, the local adaptive
agent sends the message back to the application agent
of Service A in Step-13.

The application agent forwards the message to the SDN
controller for security verification.

After successful security verification of the received
message, the process of acceptance of the service agree-
ment is started.

If the agreement is accepted, the legitimacy of the
service level agreement security attribute will be again
verified through the multichain client agent in Step-16.
The service level agreement after successful security
verification is stored in the local repository.

Successful
Verification

Multichain Server Agent [Message

Parsing

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
| 5.Multichain Client
| Agent Message

'

'

T

N 6.Security Verfication

GLobal Adaptive

9.Global Service Security
Agent

”]
. «ww e v
H ’ ’ ’
2 Global Local Global Service Local Service
2 Registration Security Security
H
8| () meeemeeeeeeeeeecceccceeaeeaa- s
£ Not Allowed '
g Local Security Context —> Execution [
> Contract Engine
'
'

Authentication

Execution Engine

Multichain Server Agent

—> Authorization — Access Control

el

Rule Engine

Transaction id

G - - - e eeeemeeeeeeeeemmeeeeeemmeeemmmmmmeeemmmemmE————————— [y —————— R S S ——

] ! ' |

\ !

' A) pu__ ¥ ' ' 5 pu_ |

' L L WLy : i .y L {

' ’] ’ ' ! ’ 4 |

H Local Global Service Local Service ') Local Global Service Local Service {

' ” Registration Agreement Security : I " Registration Agreement Security |

\ 2) 3

' H ') < i

" 2 9.Feteh the Global ') 2 9.Feteh the Global [

g ' z Service Security Contract ' ' 2 Service Security Contract | E

=N <) = —

o | El e e e L P e e T NI ' = e T ~ | =
c | g ' 11.Context v ' g ' 11.Context [

K 10.Policy Engine ' g 10.Policy Engine \

ﬁ ' 3 : Comace — Engine Contract —» 12Execution 1— | ! H s Contract > Engine Contract —» 12Execution 1 | T}

\ Z ' ') ' | =

.; ' " Execution Engine 1 L] © 5 Execution Engine 1 : g_
=N Succeeeflil, = SESI= SESE Sinslc Snsis Sosls SRR S5 4 ' ! Successful Bl RS S {

) ; ©

S Verification 4.Service Security Contract]|Service Agreement : ' Verification, 4.Service Security Contract||Global Service Agreement | | g

\ I

<, ~ ') I

T ' Multichain Client Message Wl H ! Multichain Client Message H

o | Parsing Multichain Client . ! R Multichain Client ‘8

e ' : Agent | 5
------------------------------ N PR . S R B

\ ' v |+ 13.5end Global Service) ' AR

H | Authentication — Authorization — Access Gontrol § |_L Aaeement ! | Authentication —» Authorization —> Access Control + | |

' 2.Security Verification ! L 2.Securlty Verification ! IR

\ T

' N P ' N oo

\ _) v

| Local Adaptive LS, RuleEngine _ ________. oo | Local Adaptive (. Rule Engine __________. am

v Agent : | OAGERE smpmmsneeREERREEGS i

\)

' H) 13.Agreement Token :
Y, e e e R R R R TR R R R TR R e Vit i S i S e S i S e i i ST e S
T . 2

' = . | i

' N . '

‘ oy ' O——& |

: _ - - P ' Agreement Token Relay ' . !

! SE—— SDN Controller Application Agent ! ! SDN Controller Application Agent !

' 14.Securty ' ' i

14.Security

' . '

(<N * Verification . 0 Verification)

- =

% : - No 15.Agreement : ! Sin No 15.Agreement | 2
. Yes Acceptance Process . ! Yes Acceptance Process | °
g o . ! Lo '8
s 4 Multichain Agent : : Multichain Agent } =
[. ' e
< ' | 3
' ' I <
= i
Ak No : ! o |5
Q| 18store Senice X St - | 18.Store Service 4% 'a
0|, Agreement - - i Agreement 4=)
: Yes ' ! Yes I
. | I

. . ' i

: 17.A ¢ St : \ 16 Agreement i

grrement accepted accepted |

! Fail Vericaion Process e ' ! Fail et Py |

¢ (i Alowsd &) : ' (otAtowed erification Process — :

' 1] o 1

' Multichain Client ' ' Multichain Client i

. ' i
W e e e S S SR R S SR ST R S e e o o i i mimimim imimim mimimim i mimimim =it —imimim mimimim Simimim mimimim =imimim

Smart Service-A

Fig. 10. Service-level agreement between interoperable services.

By analyzing the data presented in Table IV, we observed a
notable increase in throughput when three services interacted
to request a service-level agreement, particularly when each
service was equipped with 50 sensing nodes. This indicates
that the system was able to handle a higher volume of
transactions and process them more efficiently. The improved
throughput of the system had a direct impact on the execution
time of smart contracts in both execution engines. With the
increase in throughput, the execution time of smart contracts
significantly improved, demonstrating the enhanced perfor-
mance of the execution engines, particularly when faced with a
dense influx of collaborative request messages. We noticed that
the received request message delay from the global adaptive
engine to interoperable service had also improved with the
increased throughput of the system which actually represents
the responsiveness of our proposed security framework. We
also noticed that at the maximum number of requests, the
performance matrix of the system goes down. Figure 11 shows

Smart Service-B

the graphical representation of the tabular result. In the second
experiment, the performance matrix is evaluated by increasing
the number of sensing devices during the seamless interaction
of smart services for service-level agreement requests. From
Table V we noticed that the performance matrix is getting
worst when the number of IoT nodes is increased if we
compared it with the previous result, this depicts the SDIoT
architecture plays a vital role in the performance matrix
of the security framework. Figure 12 depicts the graphical
representation of the performance matrix as the number of IoT
nodes increases. This performance matrix provides valuable
insights into the system’s behavior and efficiency.

B. Sending and Receiving Emergency Request Process During
Interoperation of Services
In the process of collaborative message sending and receiv-

ing during the interoperation of smart services, we consider
the case where for collaborative interoperability, service-level

TABLE IV
PERFORMANCE MATRIX DURING SERVICE-LEVEL AGREEMENT WITH

INCREASED NUMBER OF REQUESTS.

Number of re- | Throughput Contract exe- | Receive
quests (per second) cution (ms) request delay
(ms)
100 0.41 1.66 2.66
500 3.63 1.55 2.33
1000 5.25 1.29 1.67
2000 8.29 1.21 1.33
5000 6.27 2.68 2.66
TABLE V

18

of the particular process is decreased. Figure 14 shows the
graphical result of system performance when increasing the
number of IoT nodes in smart services for interoperability.
We also noticed that in both results of this particular process,
throughput is decreased when we increase the number of
IoT nodes along with an increased number of collaborative
requests at maximum numbers

TABLE VI
PERFORMANCE MATRIX OF SENDING AND RECEIVING EMERGENCY
REQUEST PROCESS DURING INTEROPERATION OF SERVICES WITH AN
INCREASED NUMBER OF REQUESTS

PERFORMANCE MATRIX DURING SERVICE-LEVEL AGREEMENT WITH
INCREASED NUMBER OF NODES.

Number of | Throughput Contract exe- | Receive

nodes (per second) cution (ms) request delay
(ms)

100 0.21 1.82 2.98

500 1.63 1.68 2.5

1000 3.65 1.32 2.0

2000 6.95 2.1 2.2

5000 3.2 23 2.8

agreement is already shared between interoperable services.
Figure 13 shows the pictorial steps of sending and receiving an
alert message between interoperable services. Table VI shows
the performance matrix of the proposed security framework
through increasing the number of collaborative alert request
messages between interoperable services We noticed that the
performance of the proposed framework is improved from the
first two experiments in which the involvement of a global
adaptive engine adds some time complexity to the running
performance of the proposed framework. The execution time
of a smart contract is much more improved due to less smart
contract execution as compared to the first two experiments.
From Table VII we find out that the performance matrix

BEN Execution Engine in ms
23 Request Recived in ms

p
n

[
°
o

Time in Millisecond
w w
o Cd

w Ao
Throughput/Second

e
«

e
°

1000
Number of Requests

Fig. 11. Performance result with the increased number of requests.

BN Execution Engine in ms

B2 Request Recived i
e e Throughput/Second

Time in Millisecond

1000
Number of Nodes

Fig. 12. Performance matrix during service-level agreement with increased
number of nodes.

Number of re- | Throughput Contract exe- | Receive
quests (per second) cution (ms) request delay
(ms)
100 1.65 0.98 1.68
500 7.12 0.86 0.98
1000 13.23 0.76 0.82
2000 26.53 0.72 0.79
5000 22.77 14 1.56
TABLE VII

PERFORMANCE MATRIX OF SENDING AND RECEIVING EMERGENCY
REQUEST PROCESS DURING INTEROPERATION OF SERVICES WITH AN
INCREASED NUMBER OF IO0T NODES

Number of | Throughput Contract exe- | Receive

nodes (per second) cution (ms) request delay
(ms)

100 0.49 1.69 1.91

500 6.12 0.92 1.4

1000 11.21 0.82 1.31

2000 20.53 0.93 1.1

5000 21.77 0.92 2.5

C. End-End Message Sending and Receiving Process

In the context of collaborative message sending and receiv-
ing, we examine the scenario where interoperable services en-
gage in bidirectional communication by sending and receiving
collaborative messages. This specific use case emphasizes the
significance of our proposed security framework in handling
substantial workloads during the interoperation of smart ser-
vices. Figure 16 shows the workflow of end-to-end sending
and receiving alert messages during the interoperation of smart
services. The workflow of the specific use case follows the
following steps

1) Smart service-A prompted the alert message condition
and the application agent generates the message which
will broadcast to the connected services through the
SDN controller by providing the required security re-
quirement to the generated message.

2) The local adaptive agent is responsible to take the mes-
sage from the SDN controller and performed security
verification in order to verifiy the legitimacy of received
message.

3) The security verification is performed with the help of
the Local blockchain in order to fetch the validation
attribute from the local blockchain and compare it with
the received message.

4) After security verification the decrypted message is
forwarded to the execution engine.

Local Adaptive Engine

(]
5
58
o2
w £
o

S
<

'

'

& P " C
oy @y ™ '
. v v i
Local Global Service Local Service '
Registration Agreement Security H
'

'

6.Context)

8.Policy Engine _, Engine Contract —» 7-Execution

3.Verification Attributes

Successful
Verification

Multichain Client

9

Local Adaptive
Agent

4.Fetch the Global

Service Security Contract
2.Security Verification Y

Multichain Client

Collaborative Alert Messagel| Service-B|
Global Service Agreement

SDN Controller

Smart Service-A

Fig. 13. Collaborative alert sending and receiving message process.
BEE Execution Engine in ms
16 23 Request Recived in ms 25
1.4
20
% 12 Throughput/Second
é 1.0
E] 15
E 0.8
£ o 10
0.4
5
0.2

0.0-

Fig. 14.

1000
Number of Request

Performance matrix of sending and receiving emergency request

process with an increased number of requests.

2.5| EBE Execution Engine in ms
@2 Request Recived in ms
2:0 Throughput/Second
°
§
E
g 1.0
£
0.5
0.0
1000
Number of Nodes
Fig. 15. Performance matrix of sending and receiving emergency request

process with increased number of nodes.

5)

6)

7)

8)

At the execution engine first the Policy engine fetches
the global security contract from the Local blockchain
with the help of the service agreement transaction ID
and converts it into JSON format in order to execute the
policy in the context engine.

In the context engine, the authenticity of the global
security verification is performed then the trust value
is associated with the message and forwarded to the
execution process.

In the execution process, The threshold of trust value
in the alert message is continuously verified in order to
forward it to the other service-B.

In end to end communication, service-B will perform

19

T e e |
'
'
'
i . 5 ™ !
1 ww L 2"\)
! v g b
H Local Global Service Local Service l
' " Registration Agreement Security K
')
£ '
H 8l e e e :
2 . ~
d 2 ' 6.Context ' o
5.Policy Engine - '
H § : Contaa™® = engine Contract —» 7-Execution 1 ! :E,’
l S 1 '
2 " " 1 c
! H Not Allowed [Execution Engine | i
! H g
=
' Successful k=
H Verification I o
] L T
] L <<
' Multichain Client Message =
\ B [
! ger arsing T
' L o
! 4 Ftch the Global P
" Service Security Contract '
'
'
y "
'
'
1 Local Adaptive Multichain Client '
' gent K
'
'
Y I AN
[l At e St o)
d [
! Collaborative Alert Message]| Service-B| 5
| Global Service Agreement 55
'
=0
'
' o2
' [
' 2
d <
'
... ()

Smart Service-B

the same process from Step-1 to Step-7 in response to
the request message in order to provide an update to the
requester service.

The performance of the specific operation deteriorated com-
pared to the previous experiment, as observed from Table VIII.
This decline can be attributed to increased computation work-
load in the End-to-End interaction, specifically the cryp-
tographic encryption and decryption processes. Figure VIII
provides a graphical representation of the performance matrix
as the number of requests increases. Additionally, Table IX
presents a tabular overview of the performance matrix as
the number of nodes in the services increases. Notably, the
throughput of the process decreased due to the increased
number of nodes in the SDIoT architecture. Figure 19 visually
depicts the performance matrix of the security framework
when the number of requests is incrementally increased.

TABLE VIII
PERFORMANCE MATIX END-TO-END MESSAGE SENDING AND
RECEIVING PROCESS WITH INCREASED NUMBER OF REQUEST

Number of re- | Throughput Contract exe- | Request
quests per second cution (ms) response delay
(ms)
100 1.35 1.28 1.91
500 5.12 1.12 2.12
1000 7.23 0.86 1.62
2000 13.53 1.26 2.12
5000 11.77 1.4 2.3
TABLE IX

PERFORMANCE MATIX END-TO-END MESSAGE SENDING AND
RECEIVING PROCESS WITH INCREASED NUMBER OF I0T NODES

Number of | Throughput Contract exe- | Response de-
nodes per second cution (ms) lay (ms)

100 0.21 1.72 2.5

500 3.12 1.52 2.3

1000 5.21 1.13 1.8

2000 7.53 1.53 2.3

5000 4.77 1.92 2.5

Collaborative Alert Message|| Service-B|
Global Service Agreement

SDN Controller

SDloT
Architecture

Smart Service-A

Fig. 16. End-to-End alert message workflow.

PI7 Service Level Agreement Request Operation
B88 Message Sending/Receiving Operation
25 mmm End to End di

- N
a 5]

Comparative Throughput/sec
=
=)

500 2000

000
Number Of Request
(R)

Fig. 17.

BB Execution Engine in ms
@78 Request Recived in ms

Throughput/Second

Time in Millisecond

1000
Number of Request

Fig. 18. Performance Matrix of End-End message sending and receiving
with the increased number of requests.

VIII. COMPARATIVE SYSTEM PERFORMANCE OF THE
PROPOSED SECURITY FRAMEWORK

The system performance of our proposed security frame-
work in the collaborative disaster management and response
use cases in smart cities is evaluated based on the comparative

D e T
'
|
'
'
' S | . A
' L ¥ L 4 L H
' () i) L :
\ Local Global Service Local Service '
' . Registration Agreement Security '
o | H !
S | 2 pm e e mm e e eem e eeeeem————————— 5
— = e &
D = i i 6.Context !
5.Policy Engine '
ol £ orrag” > Engine Contract —> 7-EXeculion ey
] g T
g d s Execution Engine [
= = I e R el R -
s, ° '
-g : Successful :
Verification '
= :
© '
e ! Multichain Client 5
- | '
H '
H '
' 4 Fetch the Global !
'
' @ 2.Security Verification SRS S !
'
'
' .
1 Local Adaptive Multichain Client 5
' Agent H
'
H '
'

T3.Send
Agreement Token Relay

Comparative Throughput/sec

20

1 ke om0 o o 35 o 1 o)
u‘v u‘v L
L4 L v
Local Global Service Local Service
Registration Agreement Security

5.Policy Engine 6.Context
i(mg Engine Contract —» 7-Execution

Execution Engine

3 Verification Attributes.

Successful
Verification

Multichain Client
Agent

Local Adaptive Engine

4.Fetch the Global
Service Security Contract

2.Security Verification

Local Adaptive

'
' Multichain Client
1 Agent

'

'

-
'

: Collaborative Alert Message|| Service-B||
0 Global Service Agreement
'
'
'
'
'
'
'

SDloT
Architecture

Smart Service-B

EZA service Level Agr op

20.0

@88 Message Sending/Receiving Operation
BN End to End Message Sending/Receiving

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0 500 1000
Number Of Nodes
(B)

Comparative system performance result with (A) increased number of requests and (B) increased number of nodes.

EEA Execution Engine in ms

@7 Request Recived in ms Throughput/Second

Time in Millisecond

1000

Number of Nodes.

Fig. 19. Performance result with the increased number of nodes.

throughput of all processes during the interoperation of smart
services, as depicted in Figure 17. It is observed that the
throughput during the process of fetching the service-level
agreement is initially low due to the involvement of the
global security adaptive engine with the local adaptive security

engine. However, once the service-level agreement is obtained,
the throughput of all processes demonstrates improved results.
This finding highlights the effectiveness of our proposed
security framework, particularly in supporting delay-sensitive
applications. In the SDIoT architecture, the memory pool has a
significant impact on throughput compared to the memory pool
of the “multi-chain” blockchain. When we increase the number
of nodes in the SDIoT architecture while keeping the request
messages constant, the throughput of the security framework
decreases. However, the opposite happens when we increase
the number of request messages while keeping the number of
IoT nodes constant.

TABLE X
TRUST CONVERGENCE BY CHANGING THE NUMBER OF REQUESTS
Number of re- | Trust con- | Trust con- | Trust con-
quests vergence/sec vergence/sec vergence/sec
ECC(128 bit) ECC(192 bit) ECC(256 bit)
100 0.0035 0.0028 0.001
500 0.0052 0.0031 0.0026
1000 0.0072 0.0042 0.0028
2000 0.0091 0.006 0.004
5000 0.0062 0.003 0.002
TABLE XI

TRUST CONVERGENCE BY CHANGING THE NUMBER OF NODES

Number of re- | Trust con- | Trust con- | Trust con-
quests vergence/sec vergence/sec vergence/sec
ECC(128 bit) ECC(192 bit) ECC(256 bit)
100 0.0025 0.0019 0.0001
500 0.0045 0.0022 0.0015
1000 0.0062 0.0042 0.0018
2000 0.0071 0.0062 0.0041
5000 0.003 0.002 0.0022
0.009 RC T - @ Trust Convergence/sec at ECC-128bit
Trust Convergence/sec at ECC-192bit
0.008] . ~& - Trust Convergence/sec at ECC-256bit
§ 0.007 o
8 0.006) .
g 0.005 A:..
g 0.004 A~
& . el S
50.003‘ - P ~—— o
0.002 x4 e
A
0001/ «
100 500 1000 2000 ' ’ 5000

Number Of Reauest

Fig. 20. Trust convergence by changing the number of requests.

IX. ADAPTIVENESS SECURITY ASSESSMENT

In order to evaluate the effective adaptability of smart
services with different security policies during interoperation,
we conduct adaptive security assessment experiments. The
experiment aims to measure the speed and effectiveness of
the service’s adaptive capabilities. We created three syntactic
security policies for each service that needs to be agreed
upon during the interoperation of smart services. We utilized
programmable trust conditions and ECC cryptographic suites
of varying key lengths (128, 192, and 256) for authentication

21

0.007 e
(2
5 0.006 T
c
]
@
«» 0.005
g b
© 0.004 o *~. -
g v 4 ~.
~.
/ ~
 0.003 / Pt o
> B ~.
5 ® / =
o /' ‘e
0.002
] .
2 /'/
5
0.001 J - @+ Trust Convergence/sec at ECC-128bit
./ Trust Convergence/sec at ECC-192bit
0.000 / —&- Trust Convergence/sec at ECC-256bit
100 500 1000 2000 5000 !
Number Of Nodes
Fig. 21. Performance result with the increased number of nodes.

and trust binding to highlight the adaptiveness of the secu-
rity framework for interoperable services involved in disaster
management services. We set a common programmable col-
laborative service trust value of 0.003 for each interoperable
service, which means each interoperable service is able to
send and receive a message when its collaborative service trust
attribute is converged up to the threshold value. Table X shows
the result of trust convergence when the number of the request
message is increased, we noticed the pattern of slow trust con-
vergence per second during the smart service interoperations of
the third process when authentication requirements change in
terms of ECC cryptographic keys (128,192,256) bits. Figure 20
shows the graphical representation of trust convergence when
the number of the request message is increased. We also
noticed the same pattern in Table XI with more slow trust
convergence per second as compared with the previous result
that reflects the importance of value programmable value of
the trust. Figure 21 shows the graphical representation of trust
convergence when the number of IoT nodes is increased.

X. CONCLUSION

Smart cities strive to improve people’s quality of life by
integrating various aspects of urban life through intercon-
nected smart services. To build new housing complexes, urban
areas are already embracing the notion of smart cities. To
accomplish this aim, they are deploying a variety of linked
smart services, such as smart transportation systems, water
management, waste management, E-governance, etc. However,
this integration poses significant security risks, especially
when it comes to collaborative services provided by multiple
connected smart services. One key challenge is the need for
adaptive security policies to ensure interoperability between
these services. Our main motive for this article is to address
these security issues through our proposed security framework.
We present a use case focusing on emergency response in
a smart city, where multiple services with different security
policies exchange request and response messages for col-
laborative emergency tasks, exposing security vulnerabilities.
Furthermore, we explore how smart contract-based systems
can provide adaptive security in a unique manner. Our evalu-
ation results prove that the proposed framework is scalable in

terms of multiple smart services integration in a smart city
and also adaptive in nature through the interoperability of
diverse security policies between smart services ensuring that
the security measures could adapt to changing security threats,
without impacting the functioning of the individual services. In
our research, we explore the utilization of smart contract-based
systems to provide adaptive security in a distinctive manner.
By leveraging smart contracts, we can achieve adaptive se-
curity, where security policies and measures can dynamically
adjust to changing conditions and emerging threats. Further-
more, our evaluation indicates that the SDN (Software-Defined
Networking) controller and the Blockchain memory pool are
crucial components in ensuring scalability of the proposed
security framework. The SDN controller allows for centralized
management and control of the network, facilitating efficient
communication and coordination between smart services. The
Blockchain memory pool, on the other hand, provides a dis-
tributed and tamper-proof ledger that ensures the integrity and
immutability of security-related transactions and data. Looking
ahead, we recommend the integration of a privacy management
module during the interoperation of smart services as a future
direction. By incorporating a privacy management module, we
can establish robust mechanisms to protect user privacy, ensure
data confidentiality, and comply with privacy regulations.

REFERENCES

[1] A. Kirimtat, O. Krejcar, A. Kertesz, and M. F. Tasgetiren, “Future
trends and current state of smart city concepts: A survey,” IEEE Access,
vol. 8, pp. 86448-86467, 2020.

[2] P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and A. Mouza-
kitis, “A taxonomy and survey of edge cloud computing for intelligent
transportation systems and connected vehicles,” IEEE Transactions on
Intelligent Transportation Systems, 2021.

[3] M. M. Rathore, A. Paul, S. Rho, M. Khan, S. Vimal, and S. A. Shah,
“Smart traffic control: Identifying driving-violations using fog devices
with vehicular cameras in smart cities,” Sustainable Cities and Society,
vol. 71, p. 102986, 2021.

[4] M. M. Rathore, S. Attique Shah, A. Awad, D. Shukla, S. Vimal,
and A. Paul, “A cyber-physical system and graph-based approach for
transportation management in smart cities,” Sustainability, vol. 13,
no. 14, p. 7606, 2021.

[5] G. Viale Pereira, M. A. Cunha, T. J. Lampoltshammer, P. Parycek, and
M. G. Testa, “Increasing collaboration and participation in smart city
governance: A cross-case analysis of smart city initiatives,” Information
Technology for Development, vol. 23, no. 3, pp. 526-553, 2017.

[6] O. Bello and S. Zeadally, “Toward efficient smartification of the Inter-
net of Things (IoT) services,” Future Generation Computer Systems,
vol. 92, pp. 663-673, 2019.

[7]1 S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the Internet
of Things: A standardization perspective,” IEEE Internet of Things
Journal, vol. 1, no. 3, pp. 265-275, 2014.

[8] S. Singh, P. K. Sharma, B. Yoon, M. Shojafar, G. H. Cho, and I.-H. Ra,
“Convergence of blockchain and artificial intelligence in IoT network
for the sustainable smart city,” Sustainable Cities and Society, vol. 63,
p. 102364, 2020.

[9] M. J. Islam, A. Rahman, S. Kabir, M. R. Karim, U. K. Acharjee,

M. K. Nasir, S. S. Band, M. Sookhak, and S. Wu, “Blockchain-sdn-

based energy-aware and distributed secure architecture for iot in smart

cities,” IEEE Internet of Things Journal, vol. 9, no. 5, pp. 3850-3864,

2021.

D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun,

“A review on consensus algorithm of blockchain,” in 2017 IEEE

international conference on systems, man, and cybernetics (SMC).

IEEE, 2017, pp. 2567-2572.

B. Bhushan, C. Sahoo, P. Sinha, and A. Khamparia, “Unification

of blockchain and Internet of Things (BIoT): requirements, working

model, challenges and future directions,” Wireless Networks, vol. 27,

pp. 55-90, 2021.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

22

I. Makhdoom, I. Zhou, M. Abolhasan, J. Lipman, and W. Ni,
“Privysharing: A blockchain-based framework for privacy-preserving
and secure data sharing in smart cities,” Computers & Security, vol. 88,
p. 101653, 2020.

H. Mora, J. C. Mendoza-Tello, E. G. Varela-Guzman, and J. Szymanski,
“Blockchain technologies to address smart city and society challenges,”
Computers in Human Behavior, vol. 122, p. 106854, 2021.

D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne,
“Blockchain for 5G and beyond networks: A state of the art survey,”
Journal of Network and Computer Applications, vol. 166, p. 102693,
2020.

J. Xie, H. Tang, T. Huang, F. R. Yu, R. Xie, J. Liu, and Y. Liu, “A survey
of blockchain technology applied to smart cities: Research issues and
challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3,
pp. 2794-2830, 2019.

L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution
for wireless sensor networks,” in 2015 IEEE conference on computer
communications (INFOCOM). 1EEE, 2015, pp. 513-521.

F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control:
Survey, taxonomy, and challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 333-354, 2017.

P. K. Sharma, S. Singh, Y.-S. Jeong, and J. H. Park, “Distblocknet:
A distributed blockchains-based secure SDN architecture for IoT
networks,” IEEE Communications Magazine, vol. 55, no. 9, pp. 78-85,
2017.

J. Zhou, H. Jiang, J. Wu, L. Wu, C. Zhu, and W. Li, “SDN-based
application framework for wireless sensor and actor networks,” IEEE
Access, vol. 4, pp. 1583-1594, 2016.

T. Ali, M. Irfan, A. S. Alwadie, and A. Glowacz, “loT-based smart
waste bin monitoring and municipal solid waste management system
for smart cities,” Arabian Journal for Science and Engineering, vol. 45,
no. 12, pp. 10 185-10 198, 2020.

A. Yazdinejad, R. M. Parizi, A. Dehghantanha, Q. Zhang, and K.-
K. R. Choo, “An energy-efficient SDN controller architecture for
IoT networks with blockchain-based security,” IEEE Transactions on
Services Computing, vol. 13, no. 4, pp. 625-638, 2020.

G. S. Aujla, M. Singh, A. Bose, N. Kumar, G. Han, and R. Buyya,
“BlockSDN: Blockchain-as-a-service for software defined networking
in smart city applications,” IEEE Network, vol. 34, no. 2, pp. 83-91,
2020.

S. A. Latif, F. B. X. Wen, C. Iwendi, F. W. Li-li, S. M. Mohsin, Z. Han,
and S. S. Band, “Ai-empowered, blockchain and SDN integrated
security architecture for IoT network of cyber physical systems,”
Computer Communications, vol. 181, pp. 274-283, 2022.

W. Igbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash,
“An in-depth analysis of IoT security requirements, challenges, and
their countermeasures via software-defined security,” IEEE Internet of
Things Journal, vol. 7, no. 10, pp. 10250-10276, 2020.

E. Ismagilova, L. Hughes, N. P. Rana, and Y. K. Dwivedi, “Security,
privacy and risks within smart cities: Literature review and development
of a smart city interaction framework,” Information Systems Frontiers,
vol. 24, no. 2, pp. 393-414, 2022.

S. H. Alsamhi, O. Ma, M. S. Ansari, and F. A. Almalki, “Survey
on collaborative smart drones and Internet of Things for improving
smartness of smart cities,” IEEE Access, vol. 7, pp. 128 125-128 152,
2019.

B. Tang, H. Kang, J. Fan, Q. Li, and R. Sandhu, “IoT passport: A
blockchain-based trust framework for collaborative internet-of-things,”
in Proceedings of the 24th ACM symposium on access control models
and technologies, 2019, pp. 83-92.

A. O. Khadidos, S. Shitharth, H. Manoharan, A. Yafoz, A. O. Khadidos,
and K. H. Alyoubi, “An intelligent security framework based on
collaborative mutual authentication model for smart city networks,”
IEEE Access, vol. 10, pp. 85289-85304, 2022.

S. Siddiqui, S. Hameed, S. A. Shah, A. K. Khan, and A. Aneiba,
“Smart contract-based security architecture for collaborative services
in municipal smart cities,” Journal of Systems Architecture, vol. 135,
p- 102802, 2023.

L. P Zarko, S. Mueller, M. Plociennik, T. Rajtar, M. Jacoby, M. Pardi,
G. Insolvibile, V. Glykantzis, A. Antoni¢, M. Kusek, et al., “The
symbloTe solution for semantic and syntactic interoperability of cloud-
based IoT platforms,” in 2019 Global IoT Summit (GIloTS). IEEE,
2019, pp. 1-6.

M. Asif, Z. Aziz, M. Bin Ahmad, A. Khalid, H. A. Waris, and
A. Gilani, “Blockchain-based authentication and trust management
mechanism for smart cities,” Sensors, vol. 22, no. 7, p. 2604, 2022.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

B. Bhushan, A. Khamparia, K. M. Sagayam, S. K. Sharma, M. A.
Ahad, and N. C. Debnath, “Blockchain for smart cities: A review
of architectures, integration trends and future research directions,”
Sustainable Cities and Society, vol. 61, p. 102360, 2020.

S. Hameed, S. A. Shah, Q. S. Saeed, S. Siddiqui, I. Ali, A. Vedeshin,
and D. Draheim, “A scalable key and trust management solution for IoT
sensors using SDN and blockchain technology,” IEEE Sensors Journal,
vol. 21, no. 6, pp. 8716-8733, 2021.

J. Sun, J. Yan, and K. Z. Zhang, “Blockchain-based sharing services:
What blockchain technology can contribute to smart cities,” Financial
Innovation, vol. 2, no. 1, pp. 1-9, 2016.

A. Rahman, A. Montieri, D. Kundu, M. Karim, M. Islam, S. Umme,
A. Nascita, A. Pescapé, et al., “On the integration of blockchain
and SDN: Overview, applications, and future perspectives,” Journal
of Network and Systems Management, vol. 30, no. 4, pp. 1-44, 2022.
C. Tselios, I. Politis, and S. Kotsopoulos, “Enhancing SDN secu-
rity for IoT-related deployments through blockchain,” in 2017 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). IEEE, 2017, pp. 303-308.

D. V. Medhane, A. K. Sangaiah, M. S. Hossain, G. Muhammad, and
J. Wang, “Blockchain-enabled distributed security framework for next-
generation IoT: An edge cloud and software-defined network-integrated
approach,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6143—
6149, 2020.

O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers:
A comparative study,” in 2016 18th mediterranean electrotechnical
conference (MELECON). 1EEE, 2016, pp. 1-6.

F. Ullah, J. Wang, M. Farhan, S. Jabbar, M. K. Naseer, and M. Asif,
“Lsa based smart assessment methodology for SDN infrastructure
in IoT environment,” International Journal of Parallel Programming,
vol. 48, pp. 162-177, 2020.

S. Z. Marshoodulla and G. Saha, “Data heterogeneity handling in SDN-
based IoT infrastructure,” NeuroQuantology, vol. 20, no. 14, pp. 805—
812, 2022.

S. Benkhaled, M. Hemam, and M. Maimour, “SDN-based approaches
for heterogeneity and interoperability in Internet of Things: An
overview,” Distributed Sensing and Intelligent Systems: Proceedings
of ICDSIS 2020, pp. 489-499, 2022.

G. Ali, N. Ahmad, Y. Cao, S. Khan, H. Cruickshank, E. A. Qazi, and
A. Ali, “xdbauth: Blockchain based cross domain authentication and
authorization framework for Internet of Things,” IEEE Access, vol. 8,
pp. 58 800-58 816, 2020.

G. Wang, Q. Wang, and S. Chen, “Exploring blockchains interoper-
ability: A systematic survey,” ACM Computing Surveys, 2023.

E. R. D. Villarreal, J. Garcia-Alonso, E. Moguel, and J. A. H.
Alegria, “Blockchain for healthcare management systems: A survey
on interoperability and security,” IEEE Access, vol. 11, pp. 5629-5652,
2023.

K. Lin, J. Gao, G. Han, H. Wang, and C. Li, “Intelligent blockchain-
enabled adaptive collaborative resource scheduling in large-scale indus-
trial Internet of Things,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 12, pp. 9196-9205, 2022.

H. D. Zubaydi, P. Varga, and S. Molndr, “Leveraging blockchain
technology for ensuring security and privacy aspects in Internet of
Things: A systematic literature review,” Sensors, vol. 23, no. 2, p. 788,
2023.

J. Koo and Y.-G. Kim, “Interoperability requirements for a smart
city,” in Proceedings of the 36th Annual ACM Symposium on Applied
Computing, 2021, pp. 690-698.

A. Imteaj, A. R. Shahid, and S. Zaman, “Leveraging blockchain inter-
operability for interdependent networks,” IEEE Consumer Electronics
Magazine, 2023.

J. Huang, D. Fang, Y. Qian, and R. Q. Hu, “Recent advances and
challenges in security and privacy for v2x communications,” IEEE
Open Journal of Vehicular Technology, vol. 1, pp. 244-266, 2020.
M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, “Toward
adaptive and scalable openflow-SDN flow control: A survey,” IEEE
Access, vol. 7, pp. 107 346-107 379, 2019.

G. S. Aujla, A. Singh, M. Singh, S. Sharma, N. Kumar, and K.-K. R.
Choo, “Blocked: Blockchain-based secure data processing framework
in edge envisioned v2x environment,” I[EEE Transactions on Vehicular
Technology, vol. 69, no. 6, pp. 5850-5863, 2020.

A. P. Balcerzak, E. Nica, E. Rogalska, M. Poliak, T. Kliestik, and O.-
M. Sabie, “Blockchain technology and smart contracts in decentralized
governance systems,” Administrative Sciences, vol. 12, no. 3, p. 96,
2022.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

23

G. V. Pereira, P. Parycek, E. Falco, and R. Kleinhans, “Smart gover-
nance in the context of smart cities: A literature review,” Information
Polity, vol. 23, no. 2, pp. 143-162, 2018.

A. Meijer and M. P. R. Bolivar, “Governing the smart city: a review
of the literature on smart urban governance,” International review of
administrative sciences, vol. 82, no. 2, pp. 392408, 2016.

G. Rathee, A. Kumar, C. A. Kerrache, and R. Igbal, “A trust-based
mechanism for drones in smart cities,” IET Smart Cities, 2022.

P. Antonios, K. Konstantinos, and G. Christos, “A systematic review
on semantic interoperability in the ioe-enabled smart cities,” Internet
of Things, p. 100754, 2023.

T. K. Hui, R. S. Sherratt, and D. D. Sanchez, “Major requirements
for building smart homes in smart cities based on internet of things
technologies,” Future Generation Computer Systems, vol. 76, pp. 358—
369, 2017.

P. M. Rao and B. Deebak, “Security and privacy issues in smart
cities/industries: Technologies, applications, and challenges,” Journal
of Ambient Intelligence and Humanized Computing, pp. 1-37, 2022.
R. S. P. Maciel, J. M. N. David, D. Claro, and R. Braga, “Full
interoperability: Challenges and opportunities for future information
systems,” Sociedade Brasileira de Computagdo, 2017.

R. Sanchez-Corcuera, A. Nuiiez-Marcos, J. Sesma-Solance, A. Bilbao-
Jayo, R. Mulero, U. Zulaika, G. Azkune, and A. Almeida, “Smart cities
survey: Technologies, application domains and challenges for the cities
of the future,” International Journal of Distributed Sensor Networks,
vol. 15, no. 6, p. 1550147719853984, 2019.

E. Zadobrischi and M. Dimian, “Vehicular communications utility in
road safety applications: a step toward self-aware intelligent traffic
systems,” Symmetry, vol. 13, no. 3, p. 438, 2021.

J. Koo and Y.-G. Kim, “Resource identifier interoperability among het-
erogeneous 0T platforms,” Journal of King Saud University-Computer
and Information Sciences, vol. 34, no. 7, pp. 4191-4208, 2022.

M. Ibrar, L. Wang, N. Shah, O. Rottenstreich, G.-M. Muntean, and
A. Akbar, “Reliability-aware flow distribution algorithm in SDN-
enabled fog computing for smart cities,” IEEE Transactions on Ve-
hicular Technology, 2022.

P. Agbaje, A. Anjum, A. Mitra, E. Oseghale, G. Bloom, and H. Olu-
fowobi, “Survey of interoperability challenges in the internet of vehi-
cles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 12, pp. 22 838-22861, 2022.

M. Tosic, F. A. Coelho, B. Nouwt, D. E. Rua, A. Tomcic, and S. Pesic,
“Towards a cross-domain semantically interoperable ecosystem,” in
Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining, 2022, pp. 1640-1641.

M. Msahli, H. Labiod, and G. Ampt, “Security interoperability for
cooperative its: Architecture and validation,” in 2019 10th IFIP In-
ternational Conference on New Technologies, Mobility and Security
(NTMS). IEEE, 2019, pp. 1-6.

M. S. Rahman, M. Chamikara, I. Khalil, and A. Bouras, ‘“Blockchain-
of-blockchains: An interoperable blockchain platform for ensuring
IoT data integrity in smart city,” Journal of Industrial Information
Integration, vol. 30, p. 100408, 2022.

S. Karumba, R. Jurdak, S. Kanhere, and S. Sethuvenkatraman, “Bailif:
A blockchain agnostic interoperability framework,” in Proceedings of
the 5th IEEE International Conference on Blockchain and Cryptocur-
rency, Dubai, UAE, May, 2023. Institute of Electrical and Electronics
Engineers Inc., 2023.

I. Guvenc, F. Koohifar, S. Singh, M. L. Sichitiu, and D. Matolak,
“Detection, tracking, and interdiction for amateur drones,” IEEE Com-
munications Magazine, vol. 56, no. 4, pp. 75-81, 2018.

N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based Internet of Things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899-922, 2016.

H. Basheer and M. Itani, “Zero touch in fog, IoT, and manet for
enhanced smart city applications: A survey,” Future Cities and En-
vironment, vol. 9, no. 1, p. 5, 2023.

X. Chen, Y. Deng, H. Ding, G. Qu, H. Zhang, P. Li, and Y. Fang, “Vehi-
cle as a service (vaas): Leverage vehicles to build service networks and
capabilities for smart cities,” arXiv preprint arXiv:2304.11397, 2023.
R. M. Al Batayneh, N. Taleb, R. A. Said, M. T. Alshurideh, T. M.
Ghazal, and H. M. Alzoubi, “It governance framework and smart
services integration for future development of dubai infrastructure
utilizing ai and big data, its reflection on the citizens standard of living,”
in Proceedings of the International Conference on Artificial Intelligence
and Computer Vision (AICV2021). Springer, 2021, pp. 235-247.

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]
[90]
[91]

[92]
[93]

[94]

[95]

[96]

[97]

[98]

A. Dua, N. Kumar, A. K. Das, and W. Susilo, “Secure message com-
munication protocol among vehicles in smart city,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 5, pp. 4359-4373, 2017.

F. A. Reegu, H. Abas, A. Jabbari, R. Akmam, M. Uddin, C.-M. Wu,
C. Chin-Ling, and O. I. Khalaf, “Interoperability requirements for
blockchain-enabled electronic health records in healthcare: A system-
atic review and open research challenges,” Security and Communication
Networks, vol. 2022, 2022.

M. Sookhak, H. Tang, Y. He, and F. R. Yu, “Security and privacy of
smart cities: a survey, research issues and challenges,” IEEE Commu-
nications Surveys & Tutorials, vol. 21, no. 2, pp. 1718-1743, 2018.
S. Kharche and P. Dere, “Interoperability issues and challenges in 6g
networks,” Journal of Mobile Multimedia, vol. 18, no. 5, pp. 1445—
1470, 2022.

Y. Alshboul, A. A. R. Bsoul, M. Al Zamil, and S. Samarah, “Cyberse-
curity of smart home systems: Sensor identity protection,” Journal of
Network and Systems Management, vol. 29, no. 3, pp. 1-27, 2021.

P. Bellavista, C. Esposito, L. Foschini, C. Giannelli, N. Mazzocca, and
R. Montanari, “Interoperable blockchains for highly-integrated supply
chains in collaborative manufacturing,” Sensors, vol. 21, no. 15, p.
4955, 2021.

S. A. Knowles Flanagan, “Cooperative connected intelligent vehicles
and infrastructure for road safety applications,” Ph.D. dissertation,
Aston University, 2022.

R. Xu, Y. Chen, E. Blasch, and G. Chen, “Blendcac: A smart contract
enabled decentralized capability-based access control mechanism for
the IoT,” Computers, vol. 7, no. 3, p. 39, 2018.

S. M. M. Gilani, M. Usman, S. Daud, A. Kabir, Q. Nawaz, and
O. Judit, “SDN-based multi-level framework for smart home services,”
Multimedia Tools and Applications, pp. 1-21, 2023.

B. Rana and Y. Singh, “Interoperable agile IoT,” Agile Software
Development: Trends, Challenges and Applications, pp. 51-70, 2023.
S. Shamsudheen, G. Karthik, A. Anoop, and P. Gobinathan, “Internet-
of-things in emergency services: Architecture, applications, and re-
search challenges,” in 2023 Ist International Conference on Advanced
Innovations in Smart Cities (ICAISC). 1EEE, 2023, pp. 1-6.

M. A. Abid, N. Afaqui, M. A. Khan, M. W. Akhtar, A. W. Malik,
A. Munir, J. Ahmad, and B. Shabir, “Evolution towards smart and
software-defined Internet of Things,” Al, vol. 3, no. 1, pp. 100-123,
2022.

S. Banerjee, B. Bera, A. K. Das, S. Chattopadhyay, M. K. Khan, and
J. J. Rodrigues, ‘“Private blockchain-envisioned multi-authority cp-abe-
based user access control scheme in I[IoT,” Computer Communications,
vol. 169, pp. 99-113, 2021.

S. KOZHEVNIKOV, M. SVITEK, and P. SKOBELEV, “Smart grid
system for real-time adaptive utility management in smart cities,”
in IMCIC 2022-13th International Multi-Conference on Complexity,
Informatics and Cybernetics, Proceedings, 2022, pp. 4-9.

A. Buldas, D. Draheim, M. Gault, R. Laanoja, T. Nagumo,
M. Saarepera, S. A. Shah, J. Simm, J. Steiner, T. Tammet, and A. Truu,
“An ultra-scalable blockchain platform for universal asset tokenization:
Design and implementation,” IEEE Access, vol. 10, pp. 77 284-77 322,
2022.

https://alphabill.org/, [last accessed: 07 June 2023].
https://polkadot.network/, [last accessed: 07 June 2023].

G. Wood, “Polkadot: Vision for a heterogeneous multi-chain
framework, Draft 1,7 2016, [last accessed: 3 Feb 2022]
https://polkadot.network/PolkaDotPaper.pdf.
https://www.multichain.com/, [last accessed: 07 June 2023].
https://github.com/MultiChain/multichain-api-libraries/, [last accessed:
07 June 2023].

L. EL-Garoui, S. Pierre, and S. Chamberland, “A new SDN-based
routing protocol for improving delay in smart city environments,” Smart
Cities, vol. 3, no. 3, pp. 1004-1021, 2020.

L. Ogrodowczyk, B. Belter, and M. LeClerc, “IoT ecosystem over
programmable SDN infrastructure for smart city applications,” in 2016
Fifth European Workshop on Software-Defined Networks (EWSDN).
IEEE, 2016, pp. 49-51.

T. Li, J. Chen, and H. Fu, “Application scenarios based on SDN: an
overview,” in Journal of Physics: Conference Series, vol. 1187, no. 5.
IOP Publishing, 2019, p. 052067.

H. Mostafaei and M. Menth, “Software-defined wireless sensor net-
works: A survey,” Journal of Network and Computer Applications, vol.
119, pp. 42-56, 2018.

H. Mrabet, S. Belguith, A. Alhomoud, and A. Jemai, “A survey of IoT
security based on a layered architecture of sensing and data analysis,”
Sensors, vol. 20, no. 13, p. 3625, 2020.

[99]

[100]

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

24

T. Stackpole, “What is Web3?” Harvard Business Review, vol. 10 May,
2022, https://hbr.org/2022/05/what-is-web3.

L. Jin and K. Parrott, “Web3 is our chance to make a bet-
ter Internet,” Harvard Business Review, vol. 10 May, 2022,
https://hbr.org/2022/05/web3-is-our-chance-to-make-a-better-internet.
J. Esber and S. D. Kominers, “Why build in Web3,” Harvard Business
Review, vol. 16 May, 2022, https://hbr.org/2022/05/why-build-in-web3.
G. Edelman, “Paradise at the cryto arcade,” Wired, vol. June, 2022.
A. Buldas, D. Draheim, M. Gault, and M. Saarepera, “Towards a foun-
dation of Web3,” in Proceedings of FDSE’2022 — the 9th International
Conference on Future Data and Security Engineering, ser. CCIS, vol.
1688. Berlin Heidelberg New York: Springer, 2022, pp. 3-18.

T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web — a
new form of Web content that is meaningful to computers will unleash
a revolution of new possibilities,” Scientific American, vol. 17 May,
2001.

https://www.w3.org/standards/semanticweb/, [last accessed: 07 June
2023].

W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng,
Z. Chen, and B. Xu, “Smart contract development: Challenges and
opportunities,” IEEE Transactions on Software Engineering, vol. 47,
no. 10, pp. 2084-2106, 2019.

S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-
Hani, “Blockchain smart contracts: Applications, challenges, and future
trends,” Peer-to-peer Networking and Applications, vol. 14, pp. 2901-
2925, 2021.

F. Bao, R. Chen, and J. Guo, “Scalable, adaptive and survivable
trust management for community of interest based internet of things
systems,” in 2013 IEEE 11th International Symposium on Autonomous
Decentralized Systems (ISADS). 1EEE, 2013, pp. 1-7.

S. A. Shah, D. Z. Seker, M. M. Rathore, S. Hameed, S. B. Yahia, and
D. Draheim, “Towards disaster resilient smart cities: Can internet of
things and big data analytics be the game changers?” IEEE Access,
vol. 7, pp. 91 885-91903, 2019.

S. A. Shah, D. Z. Seker, S. Hameed, and D. Draheim, “The rising role
of big data analytics and IoT in disaster management: recent advances,
taxonomy and prospects,” IEEE Access, vol. 7, pp. 54595-54614,
2019.

C. Thomson, I. Romdhani, A. Al-Dubai, M. Qasem, B. Ghaleb, and
I. Wadhaj, Cooja Simulator Manual, Version 1.0. Edinburgh Napier
University, 2016, https://www.napier.ac.uk//media/worktribe/output-
299955/cooja-simulator-manual.pdf [last accessed: 08 June 2023].

G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and
N. Tsiftes, “The contiki-ng open source operating system for next
generation IoT devices,” SoftwareX, vol. 18, p. 101089, 2022.

Y. B. Zikria, M. K. Afzal, F. Ishmanov, S. W. Kim, and H. Yu, “A
survey on routing protocols supported by the contiki Internet of Things
operating system,” Future Generation Computer Systems, vol. 82, pp.
200-219, 2018.

C. Durmaz, M. Challenger, O. Dagdeviren, and G. Kardas, “Modelling
contiki-based IoT systems,” in 6th symposium on languages, appli-
cations and technologies (SLATE 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

Shahbaz Siddqui received MS Degree in Telecom-
munication from Hamdard University Karachi, Pak-
istan. He is pursuing his Ph.D. in Computer Sci-
ences from the National University of Computer and
Emerging Sciences, Karachi. He currently works as
an Assistant professor at the Department of Com-
puter Science at the National University of Computer
and Emerging Sciences in Karachi Pakistan. His
research interests include the Internet of Things,
SDN, and blockchain.

Sufian Hameed received the Ph.D. degree in net-
works and information security from the University
of Gottingen, Germany. He works as an Associate
Professor at the Department of Computer Science at
the National University of Computer and Emerging
Sciences, Pakistan. He also leads the IT Security
Labs at NUCES. The research lab studies and
teaches security problems and solutions for different
types of information and communication paradigms.
His research area includes network security, web
security, mobile security, and security architectures

and protocols for Cloud and IoTs.

Syed Attique Shah received the Ph.D. degree from
the Institute of Informatics, Istanbul Technical Uni-
versity, Istanbul, Turkey. During his Ph.D., he stud-
ied as a Visiting Scholar at the University of Tokyo,
Japan, the National Chiao Tung University, Taiwan,
and the Tallinn University of Technology, Estonia,
where he completed the major content of his thesis.
He has worked as an Associate Professor and the
Chairperson at the Department of Computer Science,
BUITEMS, Quetta, Pakistan. He was also engaged
as a Lecturer at the Data Systems Group, Institute of

Computer Science, University of Tartu, Estonia. Currently, he is working as a
Lecturer in Smart Computer Systems, at the School of Computing and Digital
Technology, Birmingham City University, United Kingdom. He is a Senior
Member, IEEE. His research interests include big data analytics, the Internet
of Things, machine learning, network security, and information management.

Dirk Draheim received the Ph.D. degree from Freie
Universitidt Berlin and habilitation degree from Uni-
versitit Mannheim, Germany. Currently, he is a full
professor of information systems and the head of the
information systems group at Tallinn University of
Technology, Estonia. The information systems group
conducts research in large and ultra-large-scale IT
systems. He is also an initiator and a leader of
numerous digital transformation initiatives.

25

