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Abstract

This paper generalizes two recently proposed opinion dynamics models with control. The generalized model is made up of a

standard model of agents interacting with each other, to which affine controls are added. The controls, influencing opinions

of agents, are exercised by entities called players, who specify targets, possibly conflicting, for agents. Three play procedures,

sequential, parallel and asynchronous are defined. Each player has knowledge of the current state of all agents, but \textit{no

other information about the other players}. We design the player controls using one step ahead optimization leading to the

following novel results: easily computable controls for each player only dependent on its own information; conditions for

convergence to the Nash equilibrium, and formulas for the latter.
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Opinion Dynamic Games under One Step Ahead
Optimal Control

Gabriel Gentil, Amit Bhaya

Abstract—This paper generalizes two recently proposed opin-
ion dynamics models with control. The generalized model is made
up of a standard model of agents interacting with each other,
to which affine controls are added. The controls, influencing
the opinions of agents, are exercised by entities called players,
who specify targets, possibly conflicting, for agents. Three play
procedures, sequential, parallel, and asynchronous are defined.
Each player has knowledge of the current state of all agents,
but no other information about the other players. We design the
player controls using one step ahead optimization leading to
the following novel results: easily computable controls for each
player only dependent on its own information; conditions for
convergence to the Nash equilibrium, and formulas for the latter.

Index Terms—Opinion dynamics, De Groot model, Friedkin-
Johnsen model, Hegselmann-Krause model, control, dynamic
game, Jacobi iteration, parallel iteration, Gauss-Seidel iteration,
sequential iteration, randomized Gauss-Seidel iteration, asyn-
chronous iteration, one step ahead optimal control

I. INTRODUCTION

DUE to globalization and the ease of interpersonal inter-
actions, such as online social networks and the Internet

of Things (IoT), individual opinion constantly changes with
the increase in the information received. This constant change
affects not only the individual as a single point but the entire
network around him. Understanding the dynamics involved
in this kind of change is a fundamental process to analyzing
society’s interest in a subject, consequently opening up the
possibility of carrying out control. The study of opinion
dynamics and its models is widely used in several areas,
including finance, group decision-making, and politics.

The literature on opinion dynamics models is extensive,
starting with French [1], modeling the influence of interper-
sonal relationships of individuals on their opinions. In 1974,
DeGroot [2] generalized this model to one in which each
agent or individual has its own opinion, and is linked to
other agents or nodes of a weighted graph G = (V,E) that
represents the social network connecting these agents. The
weights model the extent of influence of each agent’s neigh-
bors. At each step, agent i interacts with neighboring agent
j and updates its opinion based on a weighted average of its
current opinion and the current neighbor’s opinion with weight
pij . In the last decade, several models have been discussed,
such as Hegselmann-Krause (HK) model [3], Friedkin-Johnsen
(FJ) model [4], Altafini model (antagonistic interactions) [5],

Manuscript created June 28, 2023. The authors are with the Dept. of Elec-
trical Engineering, Federal University of Rio de Janeiro, PEE/COPPE/UFRJ,
PO Box 68504, Rio de Janeiro, RJ 219945-970, Brazil. E-mail:
amit@nacad.ufrj.br (Corresponding author).

DeGroot-Friedkin model [6], continuous opinions and discrete
actions (CODA) models [7], informed agent models [8], and
Markovian agent models [9]. Insightful presentations of the
main opinion dynamics models and basic theory can be found
in [10] and [11]. A comprehensive survey on modeling and
analysis of dynamic social networks was carried out in [12],
[13] and, more recently, [14] discusses recent trends and future
challenges.

More recently, there has been interest in game-theoretic
models of external control of opinion dynamics in social
networks. These models introduce a network of agents, with
opinions subject to one of the well known dynamic models,
typically the de Groot model, and, in addition, a (smaller)
number of entities, called players. Each player influences some
or all of the agents, attempting to move some or all of the
opinions to pre-specified target values. Veetaseveera et al. [15]
introduce a model of opinion dynamics in which the opinion
of agents in a social network is influenced by other agents, as
usual, but also by two players (called marketers) who compete
with each other. Varma et al. [16] in a related paper, describe
a model in which opinion dynamics in a social network of two
populations (called conformists and contrarians) with opposite
beliefs (opinions) are influenced by an external entity called
a marketer. Along these lines, Jiang et al. [17] introduce a
game-theoretic model of opinion dynamics with control. Each
agent (node) is associated with a (possibly empty) subset of
players trying to influence the agent’s opinion. The overall
dynamics, considering the evolution of agent opinions under
the influence of players, is assumed to be linear. Each player
also has a payoff (objective function). The goal of control is
to make the final opinion of all agents as close to the desired
one as possible with minimum control costs.

This paper makes the following contributions: (i) it proposes
a unified model of opinion dynamics with control that includes
the models studied in [15]–[17]; (ii) it proposes the use of one
step ahead optimal control (OSAOC) (recently introduced in
[18]) with a quadratic performance index, showing that this
approach provides a simple feedback control, that is tractable,
analytically (for the de Groot and FJ models) as well as
computationally (for the de Groot, FJ and HK models); (iii)
it proposes a control in which each player uses only its own
information to compute its optimal strategy, in contrast with
[15]–[17] which all use the Riccati framework and require
knowledge of the best response strategies of all adversaries;
(iv) it highlights the importance of clearly defining the game
playing procedure, showing the differences between the Jacobi
and Gauss-Seidel procedures, studied in a general dynamic
game context in [19], [20], and also introduces the more
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realistic randomized Gauss-Seidel procedure.

II. OPINION DYNAMICS GAMES AND ONE STEP AHEAD
OPTIMAL CONTROL

In order to make this paper self-contained, the definitions
of opinion dynamics models, dynamic games and one step
ahead optimal control are briefly recapitulated. We begin with
a general model of opinion dynamics (between n agents)
with control being exercised by p players who influence the
opinions of selected agents.

A. General opinion dynamics model

A model of opinion dynamics consists of n agents, modeled
as nodes of a directed graph, with the edges representing
connections between pairs of agents. The weight of each edge
incident on a node (agent) models the extent to which this node
takes the opinions of neighbors into account when updating
its own opinion. In order to encompass the most popular
models, we denote the vector of agent opinions at instant k
as x(k) ∈ Rn and write the opinion updating dynamics as
follows.

x(k + 1) = f(x(k)) (1)

where f : Rn → Rn is a function defined in accordance with
the model that we wish to describe (details will appear below).
Generalizing [15], [17], we now define opinion dynamics with
affine control u ∈ Rp as follows.

x(k + 1) = f(x(k)) +Bu(k) (2)

where B = (bij) ∈ Rn×p represents the existence and strength
of the influence exerted by players on agents. Specifically,
bij > 0 implies that player j who chooses control uj

influences the opinion of the ith player by the term bijuj .
In the sequel, the entries bij will all be assumed to belong to
the interval [0, 1], while the controls uj can take positive or
negative values.

B. Dynamic Games

Informally, a dynamic game consists of the following:
1) State Variables: These variables describe the current

state of the game, which evolves as players make de-
cisions. In this paper, the state at instant k is the vector
x(k) of agent opinions.

2) Control Variables: These are variables that describe the
decisions made by the players in the game. In this paper,
the controls are the entries of the vector u.

3) Outcome Variables: These are variables that describe
the overall outcome of the game, which is typically
determined by the state of the game after all players have
made their decisions. In this paper, outcome variables
are payoffs (performance indices) of each player.

4) Information structure: This details the information which
each player has about agent states and, possibly, about
the controls of the other players, at the instant it has to
compute its next control.

5) Game playing procedure: This describes the order of
play in which each player computes and applies its
control.

Three procedures, with different information structures, are
studied in this paper: parallel or Jacobi (J), in which all players
have the same information about the previous states of all
other agents and apply their controls simultaneously, causing
all agent states to be updated; sequential or Gauss-Seidel (GS)
in which an order is specified, and each player has access to the
updated states of agents resulting from the preceding players in
the specified order, when it computes its controls and updates
all agent states; and finally, asynchronous or randomized
Gauss-Seidel (RGS), in which the order is specified randomly,
for each round of updates, from one iteration to the next.

The following notation is introduced to describe a general
opinion dynamics game with n agents and p players. At instant
k, the vector x(k) = (xi(k)) ∈ Rn is the vector of agent
opinions, u(k) = (um(k)) ∈ Rp is the vector of player
controls, fm(x(k),u(k)), describes the opinion dynamics of
the mth agent, and Jm(x, um) is the payoff or performance
index of the mth player. Player m is required to choose his
controls from a feasible set Um. If the players are labeled 1
through p, then, for Gauss-Seidel procedures, a permutation
π of the integers 1 through p defines a play order, with the
ith player in the order being the one who has label π(i). A
fixed play order can be defined for the entire game (standard
Gauss-Seidel), or, a different play order πk for the kth round
of updates of the p players (randomized Gauss-Seidel).

More formal descriptions of dynamic games can be found
in [18], [19].

C. One Step Ahead Optimal Control (OSAOC)
One step ahead optimal control (OSAOC), as defined in

[18], can be described in the current dynamic game context
as follows. Given the current value of the agent states, each
player, in the order specified by the information structure and
play procedure, computes its optimal control by optimizing
the performance index only for the next step, as shown in
(3). This control is then applied to the system, generating
the updated state. This process continues with each player
updating its state, until the end of the time horizon is reached.
Since the updated state from each player is incorporated
into the optimization of the subsequent states, this defines a
state feedback scheme, unlike the traditional optimal control
approach, in which the optimal controls are computed over the
entire time horizon. In fact, the state feedback proposed in [15]
is computed from an infinite horizon model, iteratively using
the Riccati equation. Similarly, in [17], the infinite horizon
approach with discounting and the resulting feedback control
from the Riccati equation is used. The play procedure is not
specified, but appears to be a Jacobi one (i.e., simultaneous
update of all agent states by all players). In what follows,
specific comparisons will be made, but we observe here that
the proposed one step ahead optimal control approach is
considerably simpler, both conceptually and computationally.
In the standard control context (i.e., not in a game-theoretic
setting), one step ahead optimal control was introduced under
the name greedy control in [21].
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D. Opinion dynamic game under OSAOC

Mathematically, the general description of an opinion dy-
namics game, with n agents and p players, for a fixed play
order π, can be written as follows, for the mth player to update,
at instant k:

minimize Jπ(m)(x(k + 1), uπ(m))

s.t. x(k + 1) = f(x(k), uπ(m)(k))

uπ(m)(k) ∈ Uπ(m), ∀k ≥ 0,

(3)

When all p players have updated, in parallel, in the Jacobi
case; or in some (random) sequential order in the (randomized)
Gauss-Seidel case, one round of the game is said to have been
completed and the iteration proceeds from the kth to the (k+
1)th instant.

Finally, we observe that the Jacobi game playing procedure
is not very realistic, since it assumes that all agents simultane-
ously update their states as a function of player inputs. Thus, in
this paper, although we will derive results for both the Jacobi
and Gauss-Seidel cases, we will emphasize the Gauss-Seidel
procedure in the numerical examples and present the Jacobi
case, only in comparison with earlier results in the literature,
which all use only the Jacobi procedure.

III. THE DE GROOT MODEL WITH CONTROL (DGC)

We start with an analysis of the de Groot model with control.
Let A be a given n × n row stochastic matrix. Suppose
that the influence of p players on the opinion xi of the ith
agent (i = 1, . . . , n) is given by an n × p matrix denoted
B, the columns of which are denoted bi, i = 1, . . . , p and
the vector of agent opinions is denoted x = (x1, x2, . . . , xn).
Each player’s influence or control action is denoted by ui and
the vector of control actions by u ∈ Rp. Then the generalized
de Groot opinion dynamics game involving n agents being
influenced by p players is given by:

x(k + 1) = Ax(k) +Bu(k) (4)

where A ∈ Rn×n,B ∈ Rn×p.
Equation (4) can also be written as:

x(k + 1) = Ax(k) +

p∑
i=1

biui (5)

which makes it clearer that there are p players that compete
to influence the agents’ opinions. This formulation is the one
used in the context of general dynamic games in [22].

We assume that the ith player has a set of targets or goals
that he wishes each agent to attain, denoted by the vector gi.
We denote the n× p matrix which has columns gi as G.

For the Jacobi game playing procedure, we assume that,
at instant k, player i has access to all agent states at instant
k. The one step ahead index for the ith player at instant k,
denoted Ji(k), is then defined in the standard way for quadratic
indices, with γi being the control weight:

Ji(k) = (x(k + 1)− gi)
T (x(k + 1)− gi) + γiu

2
i (6)

Remark 1: In [17], the assumption is that each player
defines the same target for every agent that he influences,

i.e., if we denote this single target by x̄i, then gi looks like
(0, . . . , x̄i, x̄i, 0, 0, x̄i, . . .), where the targets x̄i are placed at
the positions of the agents influenced by player i. In [15],
a distinction is made between uniform broadcasting (B is a
matrix of ones and all agents receive the same control and
player i wishes to impose the target x̄i on all agents, or the
case of targeted broadcasting, in which B is the identity matrix
and the control can be designed for each agent. Note that all
the cases discussed in [15], [17] can be modeled using the
proposed model (4), (6) with appropriate choices of B,gi.

A. The dGc model under OSAOC: Jacobi procedure

In order to proceed with the computation of the one step
ahead optimal control, we define the Jacobi procedure. In this
procedure, we assume that the ith player optimizes its index Ji
using the same state vector x(k), for all i. When all players
have computed their optimal controls ui, the control vector
u = (u1, . . . , up) is applied to the right hand side of (4) and
the next state computed, to be used in the next round of the
Jacobi game.

The following notation is needed to state the main result.

P̃bi
=

bib
T
i

bT
i bi + γi

(7)

AJ
cl =

(
I−

p∑
i=1

P̃bi

)
A. (8)

The main result for the dGC model under the Jacobi
procedure can now be stated.

Theorem 1: If AJ
cl has spectral radius strictly less than one,

then the de Groot model dynamics (4) using OSAOC (3),
under the Jacobi game playing procedure, is asymptotically
stable and opinions converge to the Nash equilibrium point
x∗ defined as follows.

x∗ =
(
I−AJ

cl

)−1

(
p∑

i=1

P̃bi
gi

)
(9)

Proof: The partial derivatives of Ji are as follows.

∂Ji
∂ui

= 2bT
i (Ax+ biui − gi) + 2γiui (10)

Setting all partial derivatives to zero yields the one step ahead
optimal control:

uos
i (k) =

bT
i (gi −Ax(k))

bT
i bi + γi

(11)

Substituting uos = (uos
i ) into (4), yields the closed-loop
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dynamics:

x(k + 1) = Ax(k) +Buos(k) (12)

= Ax(k) +

p∑
i=1

bT
i (gi −Ax(k))

bT
i bi + γi

bi (13)

= Ax(k) +

p∑
i=1

bib
T
i

bT
i bi + γi

(gi −Ax(k)) (14)

= Ax(k)−
p∑

i=1

(
P̃bi

Ax(k)
)
+

p∑
i=1

P̃bi
gi (15)

=

(
I−

p∑
i=1

P̃bi

)
Ax(k) +

p∑
i=1

P̃bigi (16)

The fixed point version of (16) immediately yields (9) and
the assertion that the stable equilibrium is a Nash equilibrium
follows from [19]. 2

We now interpret theorem 1. If γi = 0, then P̃bi
is

the orthogonal projector, denoted Pbi onto the ith control
direction bi of the ith player. The expression gi − Ax(k)
represents the deviation of the next open-loop state (Ax(k))
from the ith player’s desired goal gi. Thus, if γi = 0, then
the second term on the right hand side of (14) represents the
sum of p projections of “residual error” ri := gi − Ax(k)
onto the respective control direction bi. If γi is small, then
the interpretation is approximately true and γi > 0 small
means that the ith player can use control inputs with only
a small penalty. If γi = 0, then player i can use impulsive
control, which is not possible in real applications. We refer to
P̃bi , with small γ, as an approximate projection operator. The
equation (14) can be written as

x(k + 1) = Ax(k) +

p∑
i=1

P̃bi
ri (17)

which, in words, means that one step ahead optimal control
modifies the open-loop dynamics (x(k + 1) = Ax(k)) by
adding, to the right hand side of the open-loop dynamics, the
sum of approximate projections of the tracking errors ri onto
the respective control directions bi.

The steady-state residual error r∗i = x∗−gi, under one step
ahead optimal control applied by each player can be computed
as follows:

r∗i =

(
I−

(
I−

p∑
i=1

P̃bi

)
A

)−1( p∑
i=1

P̃bigi

)
− gi (18)

The following lemma will be useful in interpreting the be-
havior of OSAOC, especially in the case of the Gauss-Seidel
procedure.

Lemma 1: Assume that player i influences only agent i and
sets a target only for this agent. For γi sufficiently small,
starting from any state x(k), if only the ith player applies
its control, then the ith component of the next state x(k+1),
denoted xi(k + 1), is approximately equal to the target gi.
Proof: The assumptions are that bi = biei, where ei is the
ith canonical basis vector (1 as the ith entry, zero otherwise),

and gi = giei. Substituting these values in (13), for any x(k),
yields:

xi(k + 1) =
γi

b2i + γi
aTi x(k) +

b2i
b2i + γi

gi ≈ gi (19)

for γi sufficiently small, and bi sufficiently large. 2

Lemma 2: Assume averaging dynamics on a complete graph
connecting n agents. Suppose that for i = 1, . . . , q ≤ p, player
i influences only agent i (i.e., bi ̸= 0) and sets a target only
for this agent. Then, under OSAOC, for γi sufficiently small
and bi sufficiently large, the opinions of the influenced agents
(i ≤ q) tend to their stipulated targets, while the opinions
of uninfluenced agents (i > q) tend to a common consensus
value.
Proof: In this case, A = 1

n11
T , bi = biei, gi = giei and,

denoting the average as x̄(k), and ηi = γi

b2i+γi
, (19) can be

written as:

xi(k + 1) = ηix̄(k) + (1− ηi)gi, i ≤ q (20)
xi(k + 1) = x̄(k), i > q (21)

Thus the closed-loop dynamics in matrix form is:

x(k + 1) = DAx(k) +w (22)

where D = diag(η1, . . . , ηq, 1, . . . , 1), and w = ((1 −
η1)g1, . . . , (1− ηq)gq, 0, . . . , 0). Using Cor. 3, it follows that
ρ(DA) < 1, guaranteeing convergence to the closed-loop
Nash equilibrium. The remaining assertions follow from (20),
(21). 2

B. The dGc model under OSAOC: Gauss-Seidel procedure

In the Gauss-Seidel procedure, first an update order is
established. If the players are labeled 1 through p, then the
update order is a permutation π of the positive integers 1
through p. The Gauss-Seidel update procedure stipulates that,
at iteration k, following the given update order, the first player
with label π(1) updates the state x(k) applying one step ahead
optimal control - in other words, applies the control defined in
(11). This state is passed onto the next player π(2), who also
uses (11) (with the state updated by the previous player), until
player π(p) is reached. Then, since all p players have updated,
the next iteration (k + 1)th is started. In order to express
this mathematically, the following notation is introduced. State
updates at iteration k are subscripted by (k) and superscripted
by the label of the player updating the state. Observe that one
update step of the Gauss-Seidel procedure for the ith player
has the same form as (16). Thus, starting at state x(k) at
iteration k, one round of Gauss-Seidel updates, leading to the
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next state x(k + 1) can be written as follows:

x
π(1)
(k) = (I− P̃bπ(1)

)Ax(k) + P̃bπ(1)
gπ(1) (23)

x
π(2)
(k) = (I− P̃bπ(2)

)Ax
π(1)
(k) + P̃bπ(2)

gπ(2) (24)

x
π(3)
(k) = (I− P̃bπ(3)

)Ax
π(2)
(k) + P̃bπ(3)

gπ(3) (25)

... =
...

x
π(p−1)
(k) = (I− P̃bπ(p−1)

)Ax
π(p−2)
(k) + P̃bπ(p−1)

gπ(p−1)

(26)

x
π(p)
(k) = (I− P̃bπ(p)

)Ax
π(p−1)
(k) + P̃bπ(p)

gπ(p) (27)

x(k + 1) = x
π(p)
(k) (28)

We define

AGS
cl =

(
p∏

i=1

[(I− P̃bπ(i)
)A]

)
(29)

dGS =

p−1∑
m=1

(
m∏
i=1

[(I− P̃bπ(p−i+1)
)A]

)
P̃bπ(p−m)

gπ(p−m)

+ P̃bπ(p)
gπ(p) (30)

Theorem 2: If AGS
cl has spectral radius strictly less than

one, then the de Groot dynamics (4) using OSAOC (3), under
the Gauss-Seidel game playing procedure, is asymptotically
stable and opinions converge to the Nash equilibrium point
x∗ defined as follows.

x∗ =
(
I−AGS

cl

)−1
dGS (31)

Proof: From (23)-(28) it follows that the closed-loop dynamics
is given by:

x(k + 1) = AGS
cl x(k) + dGS (32)

The fixed point version of (32) immediately yields (31) and
the assertion that the stable equilibrium is a Nash equilibrium
follows from [19]. 2

Remark 2: Since matrix multiplication is not commutative,
the spectral radius of the closed loop matrix depends on the
permutation π, i.e., on the order of the Gauss-Seidel updates.
For a fixed horizon, the proof of theorem 2 can be adapted
for the randomized GS procedure, using permutations π(k)

dependent on iteration k.

C. The dGc model under OSAOC: Randomized Gauss-Seidel
procedure

We will use a simple game consisting of 2 agents and 2
players to illustrate the importance of permutation in the RGS
procedure. Consider:

- Two agents with averaging dynamics: A = 1
211

T .
- Two players {1,2}: b1 = e1 and b2 = e2.
- Control cost γi = 0.01, i = 1, 2.
- Target values: g1 = 0.8b1, g2 = 0.1b2, i.e., g1 =
0.8, g2 = 0.1.

- Initial opinions: x0 = (0.5, 0.5).
Without permutation (i.e., in the order (12)), player 2 evaluates
its control after player 1 makes its move (modifying the state

x(k)). By Lemma 1, for small γ2, player 2, acting on this
modified state, makes the second coordinate approximately
equal to g2. Figure 1 shows this: player 2 almost achieves
its target, while player 1 does not.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Op
in
io
ns

 x
i, 
i=

1,
2

Time plot of opinions

x1
x2
g1
g2

Figure 1. Opinion Dynamics for 2 agents and 2 players, using the sequential
Gauss-Seidel procedure with fixed sequential update order 1,2.

Since adversarial players are unlikely to coordinate their
actions in the real world, the use of the RGS procedure is
more realistic. In fact, Figure 2 shows that, under RGS, agent
opinions oscillate near the stipulated targets, with oscillations
arising from the randomization of the order of play.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

0.1

0.2

0.3

0.4
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Op
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i, 
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1,
2

Time plot of opinions

x1
x2
g1
g2

Figure 2. Opinions for 2 agents with RGS procedure. The randomized play
order is (12)(21)(21)(12)(21)(12)(21)(21)(21)(12)(21)(12)(21) for the
first thirteen rounds.

As shown in the inset of the phase plane plot in Figure 3,
starting from the initial state x0, when round one in order (1,2)
is complete, the second player reaches its target for agent 2.
For round 2, in order (2,1) target 1 is attained, and so on. After
a few rounds, opinions approach a limit cycle of high order,
alternating between points on the two dotted target lines (but
not attaining the intersection point of these lines), as shown
in the main plot in Figure 3.
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Phase plane plot: 2 players, 2 agents
g1
g2
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Figure 3. Phase plane plot for 20 instants, showing the approach to a high
order limit cycle. The inset shows the initial portion of the randomized play
order, i.e., (12)(21)(21)(12).

IV. THE FRIEDKIN-JOHNSEN MODEL WITH CONTROL
(FJC)

The Friedkin-Johnsen model with affine control (FJc) is a
generalization of the de Groot model (dGc), written as follows.

x(k + 1) = (I−Θ)Ax(k) +Θx0 +Bu(k) (33)

where A ∈ Rn×n is row stochastic, B ∈ Rn×p, x0 is the
vector of initial opinions and Θ is the diagonal stubbornness
matrix. In the absence of control, the FJ model uses a convex
combination of the usual de Groot update rule and the initial
opinion vector. In case θi = 1, then the i-th agent will always
hold the same opinion (i.e., is completely stubborn); if θi = 0,
the agent update rule is the same as the de Groot model; if
θi ∈ (0, 1), the agent is said to be partially stubborn and the
update occurs according to the convex combination.

We define

AFJ = (I−Θ)A (34)

AFJ
cl =

(
p∑

i=1

P̃bi

)
AFJ (35)

dFJ =

(
I−

p∑
i=1

P̃bi

)
Θx0 +

p∑
i=1

P̃bi
gi (36)

Theorem 3: If AFJ
cl has spectral radius strictly less than

one, then the FJc dynamics (33) using OSAOC (3), under the
Jacobi game playing procedure, is asymptotically stable and
opinions converge to the Nash equilibrium point x∗ defined
as follows.

x∗ =
(
I−AFJ

cl

)−1
dFJ (37)

The proof is entirely analogous to that of Theorem 1 and is
omitted here. The theorem for FJc under OSAOC using the
Gauss-Seidel procedure is also similar to Theorem 2 and is
omitted here for brevity.

V. THE HEGSELMANN-KRAUSE MODEL WITH CONTROL
(HKC)

The well-known Hegselmann-Krause (HK) model [3] as-
sumes that each agent has a certain level of confidence in
its own opinion and is willing to change it to try to match
the opinions of neighboring agents. In terms of the adjacency
matrix A with entries aij , the HK model with affine control
(HKc) can be written, for the ith agent, as follows.

xi(k + 1) = xi(k) +
1

ϑi

N∑
j=1

aij [Φ(xi, xj)(xj − xi)] + biui,

(38)
where Φ(xi, xj) is a threshold indicator function (a pulse)
that dictates whether the opinion of agent j is close enough
to that of agent i to be considered in the update, and ϑi =∑

Φ(xi, xj), and B,u are defined as in the previous section.
The presence of the function Φ(·, ·) causes the model to

become nonsmooth, so we define a smooth sigmoid-based
function (that approximates Φ well and facilitates the use of
numerical optimization to compute OSAOC) as follows.

Φ(xi, xj) =

(
1− 1

1 + eµ(dij+wi)

)(
1

1 + eµ(dij−wi)

)
,

(39)
where µ ∈ R+ is the slope of the sigmoid function, dij ∈ R is
the difference between opinions of agents j and i at that instant
(xj(k) − xi(k)), and wi ∈ R+ is the confidence bound, i.e.,
|d| > wi → Φ = 0 and Φ = 1 otherwise, for sufficiently large
µ. It is possible to consider asymmetry between positive and
negative differences. To do so, just consider w−

i for the lower
limited confidence bound (first term) and w+

i for the upper
one (second term), and if the confidence bound is the same
for both, w−

i = w+
i = wi.

For the HKc model under OSAOC, analytical expressions
for the closed-loop system and its equilibrium point are
difficult to derive, but the OSAOC nonlinear program (3) is
just as easy to implement as its versions for the de Groot and
FJ models, leading to the numerical examples presented in
subsequent sections.

VI. NUMERICAL EXAMPLES

This section gives some numerical examples of each of the
three types of models under OSAOC, using the Jacobi and
Gauss-Seidel procedures, respectively.

A. Comparison with the model of Jiang et al. [17]

Jiang et al. [17, sec.4.1] give an example of a 10 agent, 4
player game with the following data:

- Ten identical agents form a social network which is a
complete graph on 10 nodes with averaging dynamics
(i.e., A = 1

1011
T )

- Players 1, 2, 3, 4 influence agents 1, 4, 6, 9, i.e., b1 =
e1,b2 = e4,b3 = e6, b4 = e9.

- Control cost γ = 0.01 for all players.
- Target values are (0.5, 0.7, 0.2, 0.3), i.e., g1 =
0.5e1,g2 = 0.7e4,g3 = 0.2e6, g4 = 0.3e9.
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- Init. opinions: (0.5, 0.7, 0.4, 0.4, 0.8, 0.7, 0.9, 0.6, 0.3, 0.5)
- Final opinions: (1.909, 0.425, 0.425, 5.967, 0.425,−4.028,
0.425, 0.425,−2.049, 0.425).

For the purposes of comparison, this example is revisited,
using the proposed OSAOC method and the Figures 4, 5
should be compared with [17, Figs.1-3]. Note that, in the
initialization in [17, sec.4.1], the opinions of agents 1 and
9 are already at the desired target values, so in this paper, the
initial opinions of these agents were changed to xinit

1 = 0.1
and xinit

9 = 0.9

Desired targets 0.5 0.7 0.2 0.3
Equil.values [17] 1.91 5.97 −4.03 −2.05
Equil.values (this paper) 0.5 0.7 0.2 0.3
Equil. controls [17] 1.8 5.8 −4.2 −2.2
Equil. controls (this paper) 0.07 0.27 −0.22 −0.12

Table I
COMPARISON OF RESULTS FOR EXAMPLE IN [17, SEC.4.1]. THE TARGETS
AND THE EQUILIBRIUM VALUES IN ROWS 1 THROUGH 3 OF TABLE I ARE

FOR AGENTS 1, 4, 6, 9 AND THE CONTROLS FOR PLAYERS 1, 2, 3, 4.

From Table I, it is clear that the OSAOC method proposed
in this paper is able to drive agent opinions very close to the
desired targets (which follows from lemma 1), as opposed to
the method proposed in [17]. Moreover, the control effort used
is lower by an order of magnitude. In [17], agents without
direct player influence (e.g., 2,3,5,7,8,10) reach a consensus
value 0.425, and the same result is achieved using OSAOC.
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Figure 4. Opinion Dynamics for the example [17, sec.4.1] using OSAOC and
Jacobi procedure.
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Figure 5. OSAO Controls of players for DeGroot model and Jacobi procedure.

B. FJc and HKc dynamics under OSAOC: Jiang et al.[17]
example

For this section, the model used in subsection (VI-A)
is used again for simulations with FJc and HKc. For
FJc, the stubbornness matrix was chosen as Θ =
diag(0.8, 0.2, 0.4, 0, 0.8, 0, 0.3, 0.4, 0.5, 0). Figure 6 shows the
evolution of the agent opinions.

Unlike the DeGroot model, the FJ model contains stubborn
agents whose opinions do not converge due to players’ influ-
ence in the absence of control. However, OSAOC is able to
drive opinions to their respective targets (see Table II).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Op
in

io
ns

 x
i

Time plots of opinions: FJc, Jacobi procedure

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

Figure 6. Opinion Dynamics for FJ model with OSAOC and Jacobi procedure.

For the HK model, the parameters of Φ were chosen as
µ = 90 and w = 0.3, leading to the evolution of opinions
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shown in Figure 7. The opinions take longer to converge to
equilibrium with these values, and, once again, all stipulated
targets are achieved. When the parameter w is changed to
0.4, the opinions dynamics have a short transient into five
clusters of opinions (see Figure 8). Despite the differences in
dynamics between this example (HKc) and the previous one
(FJc), players in both cases drive the opinions to the desired
targets (Table II), the only difference is in their control efforts.
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Figure 7. Opinion Dynamics for HK model with OSAOC, with w = 0.3,
and Jacobi procedure
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Figure 8. Opinion Dynamics for HK model with OSAOC, with w = 0.4,
and Jacobi procedure

C. Comparison with the results of Veetaseveera et al. [15]
In [15], the example in Fig. 9 is introduced and studied

in cases referred to as targeted advertising (when controls

Desired targets 0.5 0.7 0.2 0.3
Equil.values for FJc 0.50 0.69 0.20 0.30
Equil.values for HKc 0.49 0.69 0.20 0.30
Equil.values for HKc 0.49 0.69 0.20 0.30
Equil. controls for FJc 0.00 0.18 −0.31 −0.10
Equil. controls for HKc 0.12 0.10 −0.12 −0.03
Equil. controls for HKc 0.07 0.24 −0.19 −0.11

Table II
COMPARISON OF RESULTS FOR FJC AND HKC

and targets can be chosen for each agent in the network) and
uniform broadcasting (in which all agents in the network
receive the same control). In [15, p.257], it is stated that
targeted advertising has an advantage if nodes with higher
centrality are prioritized (the first four are, in order, for Fig. 9,
nodes 1,5,9,2). They also state that if there are two players and
both apply targeted advertising, with player 2 having control
weight twice as large as player 1, then opinions converge to
(2.48, 0.96, 0.55, 0.42, 1.69, 0.02,−0.86, 0.2055, 1.19,−0.14).
Parameters are specified in [15] as follows.
- The initial condition is x0 = (1, 2,−3, 0, 6,−5, 4, 3,−2, 4)
- The targets are 2 for player 1 and −2 for player 2.
In our approach to this problem, we used the following
parameters: - γ1 = 0.01, γ2 = 2γ1 (as specified in [15]).
- Player 1 targets nodes 5 and 9, i.e., b1 = e5 + e9.
- Player 2 targets nodes 1 and 2, i.e., b2 = e1 + e2.
- The target vectors chosen as g1 = 2b1, g2 = −2b2, with
these choices based on the centrality measures given above.
With this choice of parameters, the results of applying the RGS
procedure are shown in figure 10. Note that each player is able
to drive the targeted agent opinions to mean values close to the
desired target values (2 for agents 5 and 9 and −2 for agents
1 and 2. The untargeted agent opinions go to a consensus
close to −2. This is to be contrasted with convergence to
(2.48, 0.96, 0.55, 0.42, 1.69, 0.02,−0.86, 0.2055, 1.19,−0.14)
cited in [15].

Figure 9. Directed graph of ten agents – redrawn based on [15, Fig. 1] for
comparison.

For this example, the Jacobi procedure drives the agents
5 and 9 to a neighborhood of 1 and all other agents to a
consensus of 0.
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Figure 10. Opinion dynamics for targeted advertising on example in [15],
using the randomized Gauss-Seidel procedure.

In addition, it is worth pointing out that the optimal control
derived in [15] for each player depends on complete knowl-
edge of the other player’s control strategy, as well as the
repeated solution of two algebraic Riccati equations, since
each optimal control depends on these solutions. This is
to be contrasted with each player’s OSAOC strategy which
depends only on the knowledge of its own parameters (targets
gi, and influence coefficients bi) and does not need any
information at all about the strategies of its adversaries. In
addition, the OSAOC computation is based on matrix-vector
products, which is much simpler and faster than solving
Riccati equations repeatedly.

D. Inversion of polarization in a two cluster network

This section considers a two player, ten agent network with
two clusters of five agents, shown in Figure 11. Agents 1 to 5
in cluster 1 have initial opinions positive and close to 1, while
agents 6 to 10 have initial opinions negative and close to −1.
Player 1 influences nodes 1 to 5 as well as node 7, while player
2 influences nodes 6 to 10, as well as node 3. The disputed
nodes were chosen based on the out-degree centrality of the
graph, with these nodes 3 and 7 being the largest using this
centrality parameter. The objective of each player is to flip the
opinion of the nodes it influences, thus player 1 has target −2
for nodes 1 through 5 and 7, while player 2 has target 2 for
nodes 4, and 6 to 10. Results for the FJc using the RGS and
GS procedures are presented below.

Figure 11. Directed graph of ten polarized agents in 2 clusters: agents
{1, 2, 3, 4, 5} have initial opinions close to 1 and agents {6, 7, 8, 9, 10}
have initial opinions close to −1. Two players target these clusters with the
objective of flipping the polarization.

The parameter values described above are as follows.

- x0 = (1, 0.7, 1, 0.9, 1,−1,−0.8,−1,−0.8,−1)
- b1 = e1 + e2 + e3 + e4 + e5 + e7
- b2 = e6 + e7 + e8 + e9 + e10 + e3
- Goals: g1 = −2b1, g2 = 2b2

- Control cost γi = 0.01, i = 1, 2.

For the FJc model with RGS procedure,
the stubbornness matrix used was Θ =
diag(0.5, 0.3, 0, 0.7, 0, 0.1, 0, 0.3, 0, 0.6). Figure 12 shows
the evolution of opinions over time. Note that both players
are reasonably successful in flipping cluster opinions. As
expected, agents 4 and 7 have the most significant oscillations
in opinions since both players are disputing these agents.

For the FJc model with the Jacobi and Gauss-Seidel pro-
cedures, using the same stubbornness matrix, opinions evolve
smoothly to the targeted inverted polarization (the Figures are
not shown here for lack of space, but are available on the
GitHub site (see sec. VII).
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Figure 12. Opinion Dynamics for FJc model with OSA control and RGS
procedure.
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VII. CODES AND GITHUB

All codes are available on GitHub for download and ex-
perimentation by the interested reader. Extra comparisons not
included here for lack of space can also be found on the
GitHub site.

VIII. CONCLUDING REMARKS

This paper has shown that a one step ahead optimal control
approach with a sequential, parallel or asynchronous game
playing procedure leads to easily computable and effective
controls for players who influence agents’ opinions connected
by a weighted directed graph. To implement the proposed
control, each player needs only global state information which
is a standard assumption in all existing methods, but no infor-
mation on the policies of other players. This result substan-
tially improves existing results which use a Riccati equation
framework and thus require much more computation and also
require each player to have full knowledge of the controls
used by its adversaries. Another novel feature introduced in
this paper is the introduction of asynchronous game playing
procedures which are more realistic than the synchronous
parallel procedures, or sequential procedures following a fixed
update order. Future work will investigate the use of delayed
and noisy information, as well as the use of norms other than
the 2-norm in the player performance indices.

IX. BACKGROUND MATERIAL ON NONNEGATIVE
MATRICES

Let A,B ∈ Rn×n. The following notation is used through-
out the appendix. B > 0 (≥ 0) if al bij > 0 (≥ 0),A > (≥)B,
if A−B > (≥)0.

The following well known theorem [23] has a corollary
which will also be useful.

Theorem 4: Let A,B ∈ Rn×n. Then

|A| ≤ B ⇒ ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Three corollaries of theorem 4 are as follows.
Corollary 1: If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B).
Corollary 2: If A ≥ 0 and Ã is any principal submatrix of

A, then ρ(Ã) ≤ ρ(A).
Corollary 3: If 0 ≤ A < B, then ρ(A) < ρ(B).

Corollaries 1 and 2 are easily proved. We prove corollary 3.
Proof of corollary 3: There exists α > 1, such that:

0 ≤ A ≤ αA < B.

If ρ(A) ̸= 0, the conclusion follows by corollary 1. If ρ(A) =
0, the conclusion follows by corollary 2. 2
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