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Abstract

To realize a dense object placement into a container, we propose a robotic packing motion planner by pushing objects to the

side of other objects. Our method comprises three planning strategies, i.e., object placement planning, robotic packing-action

planning, and action sequence planning. Object placement planning generates objects’ placement into a container without gaps

between objects. Based on the planned placement, the robotic packing-action planner selectively uses two action strategies

where one is to directly place the object in the desired location of a container by using a pick-andplace approach, and the

other is to first place the object at a certain distance from the surrounding object and then push it to achieve the placement

without gaps. Finally, the action sequence planning plans the order of selected manipulation strategies. Through experiments,

we confirmed that the robot efficiently packs multiple objects into a container by effectively using object pushing.
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Planning Dense Object Packing by Pushing Objects

Kazuki Iwao1, Takao Nishi1, Takuya Kiyokawa1, Damien Petit1, Weiwei Wan1 and Kensuke Harada1,2

Abstract— To realize a dense object placement into a con-
tainer, we propose a robotic packing motion planner by pushing
objects to the side of other objects. Our method comprises three
planning strategies, i.e., object placement planning, robotic
packing-action planning, and action sequence planning. Ob-
ject placement planning generates objects’ placement into a
container without gaps between objects. Based on the planned
placement, the robotic packing-action planner selectively uses
two action strategies where one is to directly place the object
in the desired location of a container by using a pick-and-
place approach, and the other is to first place the object at
a certain distance from the surrounding object and then push
it to achieve the placement without gaps. Finally, the action
sequence planning plans the order of selected manipulation
strategies. Through experiments, we confirmed that the robot
efficiently packs multiple objects into a container by effectively
using object pushing.

I. INTRODUCTION

In recent years, with the rise of e-commerce, the expec-
tation to fully automate the logistic processes is increasing.
In particular, packing multiple types of goods into a single
container (packing operation) is required when sending a
required number of goods stored in a warehouse to retailers
or consumers. However, this operation is still performed
manually despite its heavy workload.

In order to automate the packing process with a robot,
we have to solve two planning problems, i.e., one is to plan
the object placement, where the location of objects placed
in a container is planned, and the other is to plan the robot
motion, where the object placement is realized with a robot.
Object placement planning is known to be the knapsack
problem of NP-hard. Approximate methods [1] and deep-
learning-based method [2] have been proposed. Nevertheless,
even if the object placement problem can be solved, it
is not easy to realize the planned object arrangement by
a robot, especially when a dense object arrangement is
planned. To achieve such an object arrangement, a robot
must insert the grasped object into a narrow gap between
two surrounding objects or beside a container’s surface. The
task is challenging since even with a small position error of
the inserted object, the insertion may fail due to the collision
between objects or between the robot’s gripper and an object.

To cope with such a problem, we propose a method for
robotic motion planning for packing objects into a container.
Our method can realize the dense object placement with no
gap between objects. Instead of directly placing objects in the
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pushing

Fig. 1. Dense object packing into a container by pushing an object to the
side of another object.

target place, our method first places the grasped object at a
certain distance from other objects which have already been
placed in a box. Then the robot pushes the target object to
the side of another object to realize the object placement
without gaps as shown in Fig.1. During the process, the
motion planning has to be performed under some constraints.
First, the area on the bottom surface of a container used for
this motion planning should be as small as possible. Second,
the number of motion sequences used to realize the dense
object placement should be as small as possible. For this
purpose, our motion planning problem includes the sequence
planning problem which plans the order of objects to be
pushed.

Specifically, we first determine the placement of each
object on the bottom surface of a container by extending the
Bottom-Left (BL) method [1] assuming the arbitrary order
of objects to place. Then, we select the order of objects to
place occupying the minimum area on the bottom surface
of the container. To plan the object-packing action, one of
the following three actions is selected to place each object:
(1) directly placing the object in the target position, (2)
placing the object at a certain distance from other objects and
then pushing it to realize the object placement without gap,
and (3) placing multiple objects at a certain distance from
others and then simultaneously pushing multiple objects to
realize the dense object placement. A set of actions where
the robot realizes the object placement which consumes the
minimum area on the bottom surface of the container with
minimum number of action sequences without causing the
collision with the container wall is selected. Finally, among
the possible sequence of actions, the action sequence which
avoids collisions between objects is determined.

We performed real experiments by using a robotic manip-
ulator with two-fingered gripper attached at the tip. Through
experiments, we confirmed that using our method the robot
realizes dense object placement with no gap between objects.
In addition, by utilizing the object pushing, the length of
action sequence could be effectively reduced. Furthermore,



our method can reduce the area on the bottom surface used
by the pushing operation.

The remainder of the paper is organized as follows: we
introduce the related works in Section II and present the
proposed method in Section III. Experiments are conducted
in Section IV. The results are discussed in Section IV-C.
Finally, we present our conclusions and future perspectives
in Section V.

II. RELATED WORKS

In this section, we review previous works on object pack-
ing problem planning and robotic motion planning related to
object packing.

A. Object packing

The object packing problem can be classified into two
categories, i.e., online and offline ones. Online packing is
the problem of sorting all objects according to various rules
and determining the position of each object in a box in
the sorted order. Since the packing problems are known to
be NP-hard, approximate solutions have been proposed. For
example, the Bottom-Left (BL) method for 2D or Deepest-
Bottom-Left (DBL) method for 3D bin-packing problem with
the computational complexity of O(N3 logN ) have been
proposed [1]. Richa et al. [3] improved the computing speed
of the bin-packing problem by using deep reinforcement
learning. Zhao et al. [2] used deep learning to place the object
in a position where the next object is easy to place. Hauser
et al. [4] achieved a robotic packing method that considers
the stability of each object based on the BL method.

In contrast to online packing, offline packing incrementally
improves the quality of the solution by changing the object
position. Tanaka et al. [5] converted the packing problem
into a linear programming problem and applied the greedy
method after relaxing the constraints to obtain the optimal
solution. Kobatake et al. [6] reduced the computation time
of a 3D packing problem by representing the positions of
all the objects in a 3D slice tree. The genetic algorithm
has been used for 1D [7] and 3D [8]–[10] offline bin-
packing problems. Hauser et al. [11] proposed a method for
inserting irregular 3D objects into containers, independent
of the arrival order. Yasuda et al. [12] applied the particle
swarm optimization for offline packing.

However, the conventional methods on the object packing
problem do not consider the feasibility of robot motion.
When the filling rate is increased, a collision may occur with
the gripper, container wall, and/or objects. In this regard,
we propose a novel approach of robotic packing-motion
planning by utilizing object pushing.

B. Manipulation planning

There have been a number of works on task and motion
planning for robotic manipulation [13], [14]. For retrieving
an object from clutter, there have been a number of robotic
manipulation planning approaches, such as relocating sur-
rounding objects [15]–[18] and using bimanual manipulation
[19], [20]. However, there has been no research on robotic

manipulation planning for dense object packing into a con-
tainer by utilizing object pushing.

III. PROPOSED METHOD

A. Definition and method overview

Our method is developed under the assumption where
many rectangular objects of several sizes are placed on a
table and the position and orientation of each object are
known. Fig.2 shows the overview of our proposed method.
It comprises three planning strategies, i.e., object placement
planning, robotic packing-action planning, and action se-
quence planning. We first carry out the object placement
planning to plan the pose of objects densely placed in a con-
tainer. Next, we plan the robotic packing actions by assigning
one of the two placing methods to each object, i.e., the direct
and indirect placing methods. The direct placing method
directly places the object to the target position by pick-and-
place. On the other hand, the indirect placing method once
places the object at a certain distance from other objects.
According to the number of objects pushed simultaneously,
we can further classify the indirect placing into two methods,
i.e., (1) placing the object at a certain distance from other
objects and then pushing it to reach the target position, and
(2) placing multiple objects at a certain distance from others
and then simultaneously pushing multiple objects to reach the
target position. When indirect placing is used, the number of
action sequences increases significantly if only one object is
pushed at each sequence, which worsens the task efficiency.
Therefore, in our packing-action planning, we first try to
push multiple objects simultaneously in the same direction.
The object placing method is determined for each object
from direct placing, indirect placing for a single object,
and indirect placing for multiple objects, to minimize the
length of action sequences and to avoid collisions between
gripper and container. In addition, our action planning works
to reduce the area on the bottom surface of the container
consumed by the object pushing. Furthermore, The action
sequence planning plans the order of objects to place that
minimizes the travel distance of the gripper.

B. Object placement planning

Our method on object placement planning is a simple and
heuristic one to provide an object placement near maximum
density without gaps between two objects. It extends the BL
method by assuming arbitrary order of objects to realize
the dense object placement. In addition, the dense object
placement can also be realized by maximizing the contact
area between two objects and between an object and the
container wall.

Let us consider N objects placed on the table where each
object is named as O1, O2, · · · , ON according to the order of
objects defined in the BL method where the different name
is assigned to each object if the order of objects to place
changes. ΣC denotes the coordinate system attached at the
front-left corner of the container’s bottom surface where z
axis is perpendicular to the bottom surface. Fig.3 shows the
overview of the object placement planning method. First, we
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Fig. 2. Overview of the proposed packing method.
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Fig. 3. Overview of object placement planning.

find the surface S1,1 of O1 with the largest area. We place
O1 in the container such that S1,1 contacts the y − z plane
of the container wall. Next, the object O2 is placed next
to O1 based on the BL method such that the surface S2,1

of O2 where the contact area between two O1 and O2 is
maximized contacts the surface of O1 on the opposite side
of S1,1. The above procedure is repeated until all the objects
are placed in the container, and determine the placement pose
of all objects. Furthermore, we iterate this object placement
process by randomly changing the order of objects. Finally,
we select the object placement with minimum area of objects
occupied on the bottom surface of the container. This object
placement planning is an extension of the BL method where
we added the determination of the object orientation and
order of objects to the original BL method.

In this way, we construct an object placement without gap
between two objects. In our method, the contact area between
two adjacent objects is maximized since it likely generates
the dense object placement with minimum area of objects
occupied in the bottom surface of the container as shown in
Fig.4.

120 80 40

Optimum

Location

Surface sum

… …

Fig. 4. Improvement of object density placed in a container.

Fig. 5. Direct placing method. (Pick-and-place the object to target position)

C. Robotic packing-action planning

The following section introduces robotic packing-action
planning by utilizing direct and indirect placing methods.
Overview of the direct and indirect placing methods are
shown in Figs.5 and 6, respectively. In indirect placing,
objects are placed at distance d in x or y direction from the
neighboring object and then pushed to the target position.
Here, the minimum value of d is the thickness of the finger.
We call the pushing in the x and y directions as the row
pushing (Fig.7) and the column pushing (Fig.8), respectively.

We first explained how to choose a placing method in III-
C.1. Then, our indirect placing method utilizes the object
pushing, an objects-pushing method including the simulta-
neous pushing of multiple objects is introduced in III-C.2.

In these subsections, we assign a placing action to each
object and do not determine the action order. The action
sequence is planned in the next subsection by constructing
the action graph.



Fig. 6. Indirect placing method. (Pick-and-place and push to target position)

Fig. 7. Row pushing.

Fig. 8. Column pushing.

1) Choosing packing actions: We first explain the method
for assigning an action to each object. The action of each
object is planned such that the collision between two objects
and between the robot and surrounding objects is avoided.

The pseudo-code of the packing-action planning is shown
in algorithm 1. In this algorithm, we define the in-
puts as objPoselist: the list of objects’ placement pose,
objNamelist: the list of objects’ names (number), and
the outputs as minSeqSize: the minimum size of action
sequences, endNode: the solution node of the action graph
obtained by Algorithm 2. In addition, we use the variables
Directlist: the list of objects names where the direct placing
is assigned and Indirectlist: the list of objects where the
indirect placing is assigned. The node of the action graph
defined in Algorithm 2 includes cost: travel distance of the
gripper from the root to the node, depth: depth of the node,
Actorder: order of actions. Using these variables, the func-
tion planPushDir outputs PushDirlist: the list of pushing
direction of each object and Area: area used in the direct and
indirect placing actions at the bottom surface of the container.
If the pushing directions of adjacent objects are the same,
we check whether the multiple objects can be simultaneously
pushed by using the method shown in subsection III-C.2. If
Col: a boolean value determining if the collision occurs is
true while pushing, the pushing action is judged as failure.
Otherwise, we use the function countSeqSize to obtain
SeqSize: the sum of the total number of placing actions,

Algorithm 1 Robotic Packing-Action Planning
Input: objPoselist: List of objects’ placing poses,
objNamelist: List of object names(numbers)

Output: minSeqSize, endNode
Struct Node

cost
depth
Actorder

end
for i← 0 to N do
Directlist ← NCi

for j ← 1 to NCi do
Indirectlist ← objNamelist −Directlist
for k ← 1 to 2N−i do

(PushDirlist, Area)←
planPushDir(objPoselist, Indierctlist,
Directlist)

if Col then
continue

end if
SeqSize← countSeqSize(Indirectlist,

Directlist, objPoset, PushDirlist)
(Actlist, ActCostlist) ←

createActionList(Indirectlist, objPoselist,
Directlist, PushDirlist)

if (SeqSize > minSeqSize) | ((SeqSize =
minSeqSize) & (Area > minArea)) then

continue
end if
minSeqSize← SeqSize
minArea← Area
planActSeq(curNode,Actlist, ActCostlist,

minSeqSize,minNode)
if minNode.cost < endNode.cost then
endNode← minNode

end if
end for

end for
end for

and calculate the number of indirect placing actions. Then,
we create Actlist: the list of actions and ActCostlist: the list
of costs associated with the actions based on Indirectlist,
objPoselist, Directlist, and PushDirlist.

If SeqSize is larger than the current minimum, an-
other placing action is assumed. If SeqSize is equal to
minSeqSize and if Area is larger than its current minimum,
another placing action is assumed. Otherwise, substitute
SeqSize to minSeqSize and Area to minArea. Then,
the function planActSeq is executed to determine the order
of actions associated with object placement. The function
planActSeq will be explained in details in the algorithm
2, where minNode.cost: the node with minimum cost is
obtained. If minNode.cost is smaller than the preserved



one, information on the preserved Node is replaced by the
information on the minNode.

2) Pushing multiple objects: In this research, a robot
may simultaneously push multiple objects to reduce the
length of action sequences. We use a method introduced for
simultaneously pushing multiple objects [21] . The overview
of the method is shown in Fig.9. A robot pushes an object by
closing the fingers and using the finger’s back surface. When
pushing a single object by using the translational motion of
the finger, relative motion between the object and finger does
not occur if the contact force is included strictly inside the
friction cone and if the line of action passes strictly inside the
contact segment. When simultaneously pushing two objects,
we consider the situation where the finger contacts object 2,
and object 2 contacts object 1. Consider the contact between
two objects. The relative motion between two objects does
not occur if the contact force is included strictly inside the
friction cone of the contact and if the line of action of the
contact passes strictly inside the contact segment. Similarly,
consider the contact between object 1 and the finger. The
relative motion between object 1 and the finger does not
occur if the contact force is included strictly inside the
friction cone of the contact and if the line of action of
the contact and the finger passes strictly inside the contact
segment. Here, under the quasi-static assumption, the contact
force can be obtained by integrating the normalized velocity
multiplied by the friction coefficient over the contact area.
In addition, the line of action passes through the center
of friction. For simplicity, we assume the uniform friction
distribution with known friction coefficient. In this case, the
center of friction coincides with the geometrical center.

Object1

Object2

Finger

Center of friction

Line of action

Friction angle

Object1

Object2

Finger

Center of friction

Line of action

Friction 
angle

(a) Condition for preventing relative 
motion between object 1 and object 2

(b) Condition for preventing relative 
motion between object 2 and finger

Fig. 9. Mechanical relation of multiple objects pushing.

D. Action sequence planning

In this section, we present the action sequence planning
by using the packing action planned for each object. We
search for the minimum number of action sequences without
making collisions between the container wall, the object,
and between objects. Here, the order of action is determined
by constructing the tree structure [22] and searching for it.

Algorithm 2 Action Sequence Planning
Input: curNode: current node, Actlist: list of action as-

signed to each object, ActCostlist: list of action cost,
leafDepth: depth of leaf node, minNode: node with
minimum cost
if curNode.depth = leafDepth then

if curNode.cost < minNode.cost then
minNode← curNode

end if
return

end if
if curNode.cost > minNode.cost then

return
end if
for i← 0 to N do

for k ← 0 to curNode.depth do
if Col then

continue
end if

end for
curNode.Actorder,k ← Actlist,i
curNode.cost← curNode.cost+ActCostlist,i
curNode.depth++
planActSeq(curNode,ActCostlist, Actlist,

leafDepth,minNode)
delete(curNode.Actorder,k)
curNode.cost← curNode.cost−ActCostlist,i
curNode.depth−−

end for

The details of the action sequence planning algorithm 2 are
described in the following where its maximum computational
complexity is O(N !).

The algorithm is a recursive structured method that imple-
ments a tree-structured action graph where each node stores
the total cost from the root, the depth, and the order of action
from the Root. The weight of an edge is the action cost where
the action cost is the total travel distance of the gripper from
the hand’s current position to the placement position of the
object.

We define the inputs as curNode: current node,
leafDepth: depth to the leaf node, ActCostlist: the list
of action costs, minNode: the node with minimum cost.
If the current node is the leaf node and the travel distance
of the gripper is smaller than the cost of the current node,
minNode is replaced by the current node. On the other hand,
if the cost of the current node is larger than minNode.cost,
the algorithm terminates after pruning branches to reduce the
number of searches. Next, for the action Actlist,i is applied
to the k-th element of the list curNode.Actorder. If there is
no collision, the information on the current node is updated
and recursively executes algorithm 2 again. In this way, we
search for the action graph until the last leaf node. Using this
tree structure, it is possible to determine the order of action



with the computational cost less than O(N !), since branch
pruning is performed in the case of collisions or when the
tentative minimum cost is exceeded.

IV. EXPERIMENT

In this section, we carry out two experiments to confirm
the effectiveness of the proposed method. In the first one,
two kinds of four objects are to be placed in a container. In
the second one, four kinds of eight objects are to be placed
in a container.

A. Experimental setup

The three planning problems including object placement
planning, robotic packing-action planning and action se-
quence planning are implemented on the software platform
Choreonoid [23]. We used the robot named Nextage devel-
oped by Kawada Robotics Inc. for the experiment, where a
two-fingered gripper is attached at each arm tip. The robot
pushes the object by using the back surface of the closed
finger.

B. Experiment results

In the first experiment, the proposed method was applied
for packing two types of four rectangular objects into a
container. The size and initial state of each object are shown
in Fig.10 and these objects are made by 3D printer. Objects
with the same number have the same size.

18

24

4 2
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5

１

１
２

２

Fig. 10. Initial state of experiment on packing two kinds of four objects.

The total number of action sequences was calculated as 6:
one simultaneous pushing of two objects, one pushing, three
indirect placings, and one direct placing. The sequence of
motions was: object2 (indirect placing) → object2 (indirect
placing) → object2 and object2 (simultanelous pushing) →
object1 (direct placing) → object1 (indirect placing) → ob-
ject1 (pushing). Fig.11 shows the obtained action sequence.

Next, we performed an experiment of packing four types
of eight rectangular objects into a container. The size and
initial state of each object is shown in Fig.12. The objects
1 and 4 are made by 3D printer while the objects 2 and 3
are made in wood. Objects with the same number have the
same size.

In this experiment, the total number of action sequence
was calculated as 13: two simultaneous pushing, three push-
ing, seven indirect placings, and one direct placing. The

PickPick

Push Direct 

Pick

PushPick

Fig. 11. Experimental results of packing two kinds of four objects.
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Fig. 12. Initial state of experiment on packing four kinds of eight objects.

sequence of motions was: object4 (indirect placing) → ob-
ject1(indirect placing) →object1 and object4 (simultanelous
pushing) → object4 (indirect placing) → object4 (pushing)
→ object2 (direct placing) → object3 (indirect placing) →
object2 (indirect placing) → object3 (indirect placing) →
object4 (indirect placing) → object2 and object4 (simultane-
lous pushing) → object3 (pushing) → object3 (pushing). The
sequence of actions of this experiment is shown in Fig.13.

C. Discussion

We first discuss how densely the objects can be placed
in our proposed method. The experimental result of packing
two kinds of four objects is compared to our previous work
[24] as shown in Table I where it showed better performance
by providing a reduced area on the bottom surface of the
container occupied by objects. The method used in our
previous work [24] does not consider multiple placement
states while our method does.

Next, the length of the action sequence for the exper-
iment of four kinds of eight objects is shown in table
II. The length of the action sequence was 13 when using
the proposed method, while the length was 14 without
using direct placing, in addition, the length was 15 without
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Fig. 13. Experimental results of packing four kinds of eight objects.

TABLE I
OBJECT PLACEMENT IN PACKING TWO KINDS OF FOUR OBJECTS

Placement method surfacesum(cm2)
Proposed 138

Previous [24] 210

using simultaneous multiple-object pushing. Furthermore,
the length of action sequence using neither direct placing

TABLE II
COMPARED WITH THE LENGTH OF ACTION SEQUENCE IN PACKING FOUR

KINDS OF EIGHT OBJECTS

Motion method Motion count
Ours 13

w/o direct placing 14
w/o pushing multiple objects 15

w/o direct placing and pushing multiple objects 16

17cm

Hand

2cm

18cm

(a) Area occupied by
objects during the packing

action.

13cm

17cm

(b) Area where the objects
are finally placed.

Fig. 14. Area of placed objects in the experiment of packing four kinds
of eight objects.

nor simultaneous multiple-object pushing was 16. From
these results, we can see that the length of action sequence
was successfully reduced by using both direct placing and
simultaneous multiple-object pushing. Thus, the proposed
method successfully determines the action sequence which
can be obtained without causing collision.

Fig.14 (a) shows the area on the bottom surface of a
container occupied by objects during the packing action.
On the other hand, Fig.14 (b) shows the area where objects
were finally placed. These results show that our proposed
method can provide minimum area on the bottom surface of
the container used by object pushing action. This contributes
to reducing the size of containers used for packing objects.

V. CONCLUSION

In this paper, we proposed a robotic packing motion
planner by pushing objects to the side of other objects to
realize a dense object placement into a container. Our method
selectively uses two action strategies, i.e., direct placing of
objects in the desired location and indirect placing where the
objects are placed at a certain distance from the surrounding
object and then pushed to achieve the placement without
gaps. From experimental results, we confirmed that, by using
our proposed method, a robot could realize a dense object
placement placed into a container compared to our previous
method. In addition, by using both the direct placing and
multiple-object pushing, the length of action sequence could
be effectively reduced. Furthermore, our method can reduce
the area on the bottom surface used by the pushing operation.

In the future, we plan to ensure enough gap between
two objects when the object is first placed. In addition, we
plan to implement a system that recognizes the position of
objects. Furthermore, we plan to extend the proposed method



to create a placement state for each object for an irregularly
shaped object and to realize automatic box-packing operation
using various robotic motion plans, such as simultaneous
pushing.
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