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Abstract

Within the vast expanse of computerized language processing, a revolutionary entity known as Large Language Models (LLMs)

has emerged, wielding immense power in its capacity to comprehend intricate linguistic patterns and conjure coherent and

contextually fitting responses. Large language models (LLMs) are a type of artificial intelligence (AI) that have emerged as

powerful tools for a wide range of tasks, including natural language processing (NLP), machine translation, and question-

answering. This survey paper provides a comprehensive overview of LLMs, including their history, architecture, training

methods, applications, and challenges. The paper begins by discussing the fundamental concepts of generative AI and the

architecture of generative pre- trained transformers (GPT). It then provides an overview of the history of LLMs, their evolution

over time, and the different training methods that have been used to train them. The paper then discusses the wide range

of applications of LLMs, including medical, education, finance, and engineering. It also discusses how LLMs are shaping the

future of AI and how they can be used to solve real-world problems. The paper then discusses the challenges associated with

deploying LLMs in real-world scenarios, including ethical considerations, model biases, interpretability, and computational

resource requirements. It also highlights techniques for enhancing the robustness and controllability of LLMs, and addressing

bias, fairness, and generation quality issues. Finally, the paper concludes by highlighting the future of LLM research and the

challenges that need to be addressed in order to make LLMs more reliable and useful. This survey paper is intended to provide

researchers, practitioners, and enthusiasts with a comprehensive understanding of LLMs, their evolution, applications, and

challenges. By consolidating the state-of-the-art knowledge in the field, this survey serves as a valuable resource for further

advancements in the development and utilization of LLMs for a wide range of real-world applications. The GitHub repo for

this project is available at https://github.com/anas-zafar/LLM-Survey
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Abstract

Within the vast expanse of computerized language processing, a revolutionary entity known as Large Language Models
(LLMs) has emerged, wielding immense power in its capacity to comprehend intricate linguistic patterns and conjure coherent
and contextually fitting responses. LLMs are a type of artificial intelligence (AI) that have emerged as powerful tools for a wide
range of tasks, including natural language processing (NLP), machine translation, vision applications, and question-answering.
This survey provides a comprehensive overview of LLMs, including their history, architecture, training methods, applications,
and challenges. We begin by discussing the fundamental concepts of generative AI and the architecture of generative pre-trained
transformers (GPT). We then provide an overview of the history of LLMs, their evolution over time, and the different training
methods that have been used to train them. We then discuss the wide range of tasks where they are used and also discuss
applications of LLMs in different domains, including medicine, education, finance, engineering, media, entertainment, politics,
and law. We also discuss how LLMs are shaping the future of AI and their increasing role in scientific discovery, and how
they can be used to solve real-world problems. Next, we explore the challenges associated with deploying LLMs in real-world
scenarios, including ethical considerations, model biases, interpretability, and computational resource requirements. This survey
also highlights techniques for enhancing the robustness and controllability of LLMs and addressing bias, fairness, and quality
issues in Generative AI. Finally, we conclude by highlighting the future of LLM research and the challenges that need to be
addressed in order to make this technology more reliable and useful. This survey is intended to provide researchers, practitioners,
and enthusiasts with a comprehensive understanding of LLMs, their evolution, applications, and challenges. By consolidating the
state-of-the-art knowledge in the field, this article is anticipated to serve as a valuable resource for learning the current state-of-
the-art as well as further advancements in the development and utilization of LLMs for a wide range of real-world applications.
The GitHub repo for this project is available at Github-Repo.

Index Terms

Large Language Models, Large Vision Models, Generative AI, Conversational AI, LangChain, Natural language processing,
Computer Vision, GPT, ChatGPT, Bard, AI chatbots
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Large Language Models: A Comprehensive Survey
of Applications, Challenges, Limitations, and Future

Prospects

I. INTRODUCTION

Language modeling (LM) is a fundamental task in natural
language processing (NLP) that aims to predict the next word
or a character in a given sequence of text [1], [2]. It involves
developing algorithms and models that can understand and
generate coherent human language. The primary objective of
LM is to capture the probability distribution of words in a
language, which allows the model to generate new text [3],
complete sentences [4], and predict the likelihood of different
word sequences [5], [6]. They are broadly categorized into
statistical language models, machine learning models, deep
learning models, and transformer based models as shown in
Fig. 1. Early language models, such as n-gram models [7],
were based on simple statistical techniques that estimated the
probabilities of word sequences using frequency counts [8],
[9]. However, with the rise of deep learning in NLP [10], the
availability of enormous amounts of public datasets [11], and
powerful computing devices [12] to process these big data
with complex algorithms, has led to the development of large
language models.

Large Language Models (LLMs) [13], sometimes referred
to as "transformative [14]" or "next-generation [15]" language
models, represent a significant breakthrough in NLP [16].
These models leverage deep learning techniques, particularly
transformer architectures [17], to learn and understand the
complex patterns and structures present in language data [18].
A key characteristic of LLMs is their ability to process vast
amounts of data, including unstructured text, and capture
semantic relationships between words and phrases [19]. These
models can also process visual [20], audio [21], audiovi-
sual [22], as well as multi-modal data [23] and learn the
semantic relationships between them. These models have sig-
nificantly enhanced the capabilities of machines to understand
and generate human-like language [24].

The history of LLMs can be traced back to the early de-
velopment of language models and neural networks [25]. The
journey begins with the era of statistical language models [26].
In this stage, researchers primarily relied on probabilistic
approaches [27] to predict word sequences. Classic exam-
ples include n-grams, Hidden Markov Models (HMMs) [28]
and Maximum Entropy Models [29]. N-grams, for instance,
are sequences of adjacent words or tokens that are used
to predict the likelihood of the next word based on the
preceding ones [30]. While rudimentary by today’s standards,
these models marked a crucial starting point in the field of
natural language understanding. They allowed for basic text
generation and word prediction but were limited in their ability

to capture complex contextual relationships [31] [32]. [33].
Then a shift towards more data-driven methodologies has
been witnessed [34]. Researchers began to explore machine
learning algorithms to improve language understanding [35]
These models learned patterns and relationships within large
text corpora. Support Vector Machines (SVMs) is a notable
example from this [36]. Machine learning models brought
a more sophisticated approach to NLP tasks, allowing for
the development of applications like spam detection [37] and
sentiment analysis [38]. Moreover the availability of large-
scale Twitter1 datasets has brought a revolution in real time
sentiment analysis [39].

The emergence of deep learning marked a pivotal moment in
the development of LLMs [40]. Neural networks, particularly
Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks gained prominence [41]. These
deep learning architectures delved deeper into the data, al-
lowing them to capture more intricate features and long-range
dependencies within text. This stage significantly improved the
models’ ability to understand context, making them suitable
for tasks like machine translation and speech recognition
[16], [42]. However, deep learning also faced challenges with
vanishing gradients [43] and long-term dependencies [44],
limiting their effectiveness.

The breakthrough in LLMs came with the introduction of
the Transformer architecture in the seminal work "Attention
is All You Need" by Vaswani et al. in 2017 [45]. The Trans-
former model, based on the self-attention mechanism [46],
enabled parallelization and efficient handling of long-range
dependencies. It laid the foundation for models like OpenAI’s
GPT (Generative Pre-trained Transformer) series [47] and
BERT (Bidirectional Encoder Representations from Trans-
formers) [48] by Google, which achieved groundbreaking
results in a wide range of language tasks. These mechanisms
enabled models to consider the entire context of a sentence
or document, allowing for true contextual understanding [49].
Transformer-based models, often pre-trained on massive text
corpora, can generate coherent and contextually relevant text,
revolutionizing applications like chatbots [50], text summa-
rization [51], and language translation [52].

ChatGPT, Llama, and Falcon are all remarkable variants
of the GPT (Generative Pre-trained Transformer) model [53],
which is developed and pioneered by OpenAI. These models
represent OpenAI’s ongoing efforts to push the boundaries of

1Twitter, as a microblogging platform, allows users to express their thoughts
and opinions in short, concise messages called tweets. These tweets often
contain rich, real-time information about various topics, making Twitter an
excellent source for sentiment analysis
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natural language processing and understanding. They share
a common foundation in their training methodology, which
involves pre-training on vast corpora of text data followed
by fine-tuning for specific tasks. During pre-training, the
models are exposed to diverse internet text to learn grammar,
facts, reasoning abilities, and some degree of common-sense
knowledge [54], [55]. This process equips them with a broad
understanding of language. Subsequently, fine-tuning is carried
out on narrower datasets to specialize the models for particular
applications. ChatGPT, for instance, is fine-tuned for conver-
sational contexts, making it suitable for chatbots and virtual
assistants [56], [57], [58]. Llama and Falcon, though not as
widely known, represent potential advancements or specialized
versions, possibly tailored for specific use cases or research
objectives. These models collectively exemplify the cutting-
edge advancements in natural language processing, enabling
more human-like interactions and understanding through the
power of AI-driven language models [59], [60], [61].

The training process for models like ChatGPT, Llama, and
Falcon consists of several key stages [62], [53]. It begins with a
phase known as pre-training, where these models are exposed
to a vast and varied dataset of internet text, enabling them
to learn grammar, vocabulary, world knowledge, and context
[63]. The underlying architecture, based on the Transformer
model, is crucial for understanding the relationships between
words in sentences. Following pre-training, the models un-
dergo fine-tuning on specific datasets tailored to particular
tasks, such as text generation or conversation in the case
of ChatGPT. Fine-tuning refines their capabilities for these
specialized tasks, with hyperparameter tuning to optimize
performance. Ethical considerations are an integral part of the
process, aiming to minimize harmful or biased outputs. It’s
important to note that this training is an iterative and resource-
intensive endeavor, continually improved and monitored to
enhance both performance and safety [64], [65].

LLMs have undergone several developmental stages, with
models increasing in size and complexity. The GPT series,
starting with GPT-1 and continuing with GPT-2 and GPT-
3 [66], has successively grown in the number of parameters,
starting from hundreds of millions (GPT-1) to 1.7 Trillion
(GPT-4) [67], allowing for more sophisticated language un-
derstanding and generation capabilities [68]. Similarly, BERT-
inspired models have seen advancements in pre-training strate-
gies, such as ALBERT [69] (A Lite BERT) and RoBERTa
[70], which further improved performance and efficiency.

Furthermore, advancements in LLMs have extended to more
specific domains, with models designed for specialized tasks
like medical language processing [71], scientific research [72],
website development [73] and code generation [74]. Moreover,
efforts have been made to address ethical concerns [75],
interpretability [76], and reducing biases in LLMs to en-
sure responsible and equitable use [77]. The development
stages of large models have witnessed a constant quest for
larger models, improved pre-training strategies, and special-
ized domain adaptations [78], [79]. As research continues,
the potential applications and impact of LLMs on various
fields, including education, healthcare, and human-computer
interaction, continue to expand, inspiring further innovations

TABLE I: List of Acronyms and corresponding definitions.

Acronym Definition
AI Artificial Intelligence
AGI Artificial General Intelligence
BBH Big Bench Hard
BERT Bidirectional Encoder Representations from Transformers
CV Computer Vision
ChatGPT A Large Language Model by OpenAI
CTRL Conditional Transformer Language Model
FFF Fused Filament Fabrication
GANs Generative Adversarial Networks
GNMT Google Neural Machine Translation
GPT Generative Pre-Trained transformers
GenAI Generative AI
GPT-3 Generative Pre-trained Transformer 3
GPT-4 Generative Pre-trained Transformer 4
GPUs Graphical Processing Units
GRUs Gated Recurrent Units
LLaMA Large Language Model Meta AI
LLM Large Language Models
LM Language Model
LSTM Long Short-Term Memory
ML Machine Learning
MLM Masked Language Modeling
NSP Next Sentence Prediction
NLP Natural Language Processing
NLTK Natural Language Toolkit
PLMs Pre-trained Language Models
RLHF Reinforcement Learning Human Feedback
RNN Recurrent neural networks
RNNLM Recurrent neural network language model
SLMs Statistical Language Models
T2V Text to video
T5 Text-to-Text Transfer Transformer
TPUs Tensor Processing Units
USMLE United States Medical Licensing Exam
VL-PTMs Vision-Language Pre-trained Models
XLNet eXtreme Language Understanding Network

and advancements.
In summary and as can be seen from Fig 1; LM research

has received widespread attention and has undergone four
significant development stages including: statistical language
models, machine learning models, deep learning models and
transformer-based models2. In this research, we mainly focus
on LLMs and foundation AI models for language and vision
tasks. A list of commonly used acronyms in this article with
definitions is given in Table I.

Modern language model called ChatGPT [80] was devel-
oped by OpenAI [81] and launched in 2022. It is based on
the GPT-3.5 architecture [82] and was trained using a sizable
amount of internet-sourced text data, including books, articles,
wikis and websites (Table II) [83]. ChatGPT is exceptional
at producing human-like responses and having conversations
with users.

In computer vision (CV), researchers are also actively en-
gaged in the development of vision-language models inspired
by the capabilities of ChatGPT. These models are specifically
designed to enhance multimodal dialogues, where both visual
and textual information are important [84]. Moreover, the
advancements in the field have led to the introduction of
GPT-4 [82], which has further expanded the capabilities of
language models by seamlessly integrating visual information

2Due to the dominance of Transformer based models, we consider it a
different stage, not as a subset of deep learning
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Language Modeling

Deep Learning
Models

Neural Network
Systems

RNN
LSTM

BiLSTM

GRU
CNN

Machine
Learning Models

SVM

Naive Bayes

Random Forest

Decision Trees

Variants

RoBERTa

T5

Large Language
Models

GPT 3.5

GPT 4

LLaMa-1

LLaMa-2

Claude

Guanaco

Falcon

PaLM 2

BERT

GPT

XLNet

Transformer-
Based Models

Statistical
Language Models

Hidden
Markov Models

(HMMs)

Maximum Entropy

N-Gram Models

Fig. 1: Types of language modeling. The division of LLMs is categorized into four major blocks: Statistical language models,
Machine learning models, Deep learning models and Transformer-based models.

as part of the input. This integration of visual data empowers
the model to effectively understand and generate responses
that incorporate both textual and visual cues, enabling more
contextually rich and nuanced conversations in multimodal
settings.

A. Survey Motivation

The revolutionary ChatGPT has captivated the attention
of the community, sparking a wealth of fascinating reviews
and discussions on the advancements of LLMs and artificial
intelligence [85], [86], [87], [88], [89], [90], [91]. For
example, the role of ChatGPT in education is evaluated
in [92], healthcare and medicine in [93], [71], protein
sequence modeling in [94] and protein generation in [95].
A survey on generative AI is presented in [96], scientific
text modeling in [97] and text generation in [98]. The use of
LLM in finance is evaluated in [99], impact on labor market
in [100] and supply chain in [101], telecom in [102], on code
writing capabilities in [103], deep fakes in [104], legal aspects
in [105], AI for drug discovery in [106], clinical prediction
with LLM in [107], ML for cancer biomarkers in [108], and

integration of biotechnology and AI applications to address
global challenges in [109]. The advancements in pre-training,
fine-tuning, utilization and capability evaluation of LLMs is
presented in [85] and a survey on autonomous agents in [110].
The recent progress in visio-language pre-trained models is
discussed in [86] and the knowledge graphs construction
and reasoning are explained in [111], selection inference is
in [76], and quantum-inspired machine learning in [112]. The
survey vision language pre-trained models [86] presents an
overview of various techniques for encoding raw images and
texts into single-modal embeddings as a fundamental aspect,
and also discusses prevalent architectures of vision-language
pre-trained models (VL-PTMs), focusing on their ability to
effectively model the interaction between text and image
representations.
Despite the growing number of studies on LLMs, there
remains a scarcity of research focusing on their technical
intricacies and effective utilization. Also, the field is
progressing at a very fast pace, so a review article with
practical applications will contribute a lot to the field.
Therefore we also write this paper in the form of an



4

application oriented review. Our primary objective is to
explore, learn, and evaluate language models across various
domains. We delve into the working principles of language
models, analyze different architectures of the GPT family
and others, and discuss strategies for their optimal utilization.
Furthermore, we provide detailed insights about generative AI,
writing prompts, and visual prompting techniques, leveraging
GPT-plug-ins, and harnessing other AI/LLM tools. These
aspects are generally not covered by the existing related
articles. Our comprehensive examination also encompasses
a discussion on the limitations associated with the LLMs,
including considerations related to security, ethics, economy,
and the environment. In addition, we present a set of
guidelines to steer future research and development in the
effective use of LLMs. We hope that this paper will contribute
to a better understanding and utilization of LLMs.

B. Contributions

The main contributions of this article are as follows:

1) Providing a comprehensive overview of GenAI and
LLMs, including their technical details, advancements,
challenges, capabilities and limitations.

2) Presenting a state-of-the-art analysis and comparison of
different LLMs.

3) Addressing ethical concerns about LLMs, including their
computational requirements and potential for perpetuat-
ing biases. We also discuss the limitations of LLMs;
including, limited understanding of the physical world,
tokenization problems, infomration hallucination, fine-
tuning and risk of foundation models.

4) Offering insights into the future potential of LLMs and
their impact on society and demonstrating the applica-
tions of LLM through four practical use cases in the fields
of medicine, education, finance, law, politics, media,
entertainment, engineering, and others.

5) This article is uniquely presented in a manner to promote
practical usage of LLMs, showcasing the actual LLM
outputs to corroborate the discussions.

The paper is organized as the following sections. Section II
provides an introduction to the role of generative AI, specif-
ically focusing on the fundamentals of new data generation
and variance, as well as its applications. Section III presents
an overview of LLMs, summarizing a brief history of LLMs
and discussing their training and functionality. Taxonomy of
LLMs is presented in Section IV and major applications of
LLM through different use cases is discussed in Section V.
Section VI explores AI-enabled tools that are expected to
shape the future. Section VII discusses the practical use cases
of GPT plugins and their potential to enhance user productivity
and efficiency. Section VIII presents guidelines and working
examples using prompting techniques. Section IX proposes
the limitations and drawbacks of the current state-of-the-art
LLM. Section X presents open questions on the subject matter
and the authors’ perspective on open unanswered avenues.
Section XI concludes the survey paper. The overall structure

TABLE II: Pre-training data. Mixtures of data used for pre-
training LLaMA [15].

Dataset Sampling prop. Epochs Disk size
CommonCrawl 67.0% 1.10 3.3TB

C4 15.0% 1.06 783GB
Github 4.5% 0.64 328GB

Wikipedia 4.5% 2.45 83GB
Books 4.5% 2.23 85GB
ArXiv 2.5% 1.06 92GB

Stock Exchange 2.0% 1.03 78GB

of the article is presented in Fig. 2 for a quick reference at a
glance.

II. GENERATIVE AI

Generative AI (GenAI) [113] is perhaps the most disrup-
tive [114] and generalized technology of this decade [115],
already influenced many industries, including, Media [116],
Marketing [117], Game development and Metaverse [118],
Education [119], Software development [120], and Medi-
cal [121], construction technology [122], and pharmaceuti-
cals [123]. Unlike general AI systems that perform specific
tasks such as data classification [124], clustering [125], object
detection [126] and segmentation [127] or predictions [128];
GenAI can generate meaningful new content of multiple
data modalities [129]; including, text [3], speech [130], im-
ages [131], and videos [132]. Some common examples of
GenAI systems are image generators (Midjourney or stable
diffusion), Chatbots (ChatGPT, Bard, Palm), code genera-
tors (CodeX, Co-Pilot [133]) audio generators(VALL-E)Vall-
e [134], and video generators (Gen-2) [135]

During the past few years, GenAI models size has been
scaled from a few million parameters(BERT [48], 110M)
to hundreds of billions of parameters (GPT [136], 175B).
Generally speaking, as the size of the model (number of
parameters) increases, the performance of the model also
increases [137], and it can be generalized for a variety of
tasks [138], for example, Foundation models [139]. However,
smaller models can also be fine-tuned for a more focused
task [140].

LLMs, such as ChatGPT by OpenAI, Bard by Google, and
Llama by Meta, are a type of GenAI models, specifically
designed to generate human-like language in response to a
given prompt [141]. These models are trained on massive
amounts of data (see Table II), using techniques to learn the
statistical patterns of language. However, many people accord
the capabilities provided by GPT models to “more data and
computing power” instead of “better ML research" [142].

GenAI works by leveraging complex algorithms and statis-
tical models to generate new content that mimics the patterns
and characteristics of the training data [143]. These algorithms
may include probabilistic techniques; such as Autoregressive
model [144] and Variations Auto-encoders [145], or more
recently, Generative Adversarial Networks [146] and Diffusion
models [147] or Reinforcement Learning Human Feedback
(RLHF) [148].

GenAI has captured significant interest in recent years
due to its remarkable performance across an extensive array

https://github.com/enhuiz/vall-e
https://github.com/enhuiz/vall-e
https://research.runwayml.com/gen2
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of applications in text, image, video and generation [149].
Constructed upon the foundation of the transformer archi-
tecture [45], these models exhibit an extraordinary capacity
to process and generate human-like content by leveraging
massive volumes of training data for various topics [150].

A. Data, Generation, Variance, and Performance measures

To comprehend the intricacies of GenAI systems, it is
important to delve into the concepts of data, generation, and
variance, and the interplay between them, as they form the
foundation of generative systems [151].

1) Data: The core of generative AI systems is data.
Training models that can successfully capture the underlying
patterns and structures of the target domain require high-
quality and diverse training data. The generating performance
is influenced by the amount, quality, and representation of
the training data [152], [153]. Furthermore, the availability
of large-scale, labeled datasets allows for the development of
more accurate and coherent samples [154], whereas restricted
or biased training data may yield sub-optimal results [155].

2) Generation Process: GenAI uses the gained knowledge
from the training data to generate samples with similar sta-
tistical patterns [156]. The generative models are designed to
capture the underlying distributions of the training data and
generate reliable and realistic samples with properties consis-
tent with the original dataset [157]. The generating process
involves approaches; such as adversarial training [158], latent
space interpolation [159], and autoregressive modeling [160].

3) Variance: Variance is another important factor in defin-
ing the diversity and quality of generated samples [161],
which shows the variability in the generated samples. A
low variance generative AI system may produce similar or
repetitive samples, resulting in poor generation, whereas, a
high variance, may yield diversified but unrealistic or incoher-
ent samples [162]. Striking a balance between variation and
fidelity is difficult in generative AI [163], since it requires
managing the trade-off between exploring and exploiting the
learnt data distribution [164], [165].

Understanding and regulating the relationship between data,
variation, and generation process, is essential for the develop-
ment of efficient GenAI systems [166]. It entails dealing with
issues; including dataset biases [167], mode collapse [168],
and balancing exploration and exploitation [?]. GenAI systems
may generate high-quality, diversified, and realistic samples
that correspond with the desired aims and applications by re-
fining the training data, optimizing the generation procedures,
and regulating variation [169].3

4) Performance Metrics: Evaluating the quality and diver-
sity of generated samples is critical for assessing the models’
performance [170]. Several strategies for assessing the quality,
diversity, and authenticity of generated samples have been
established. Here are some common evaluation techniques:

• Visual inspection [171], which is a subjective a evalua-
tion method where human experts or users examine the
generated samples and provide qualitative feedback.

3genai meets copyright science paper
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Fig. 3: Generative AI Design Process. Most of the existing generative models can be fine-tuned for any downstream task. First,
you need to define the problem, and whether you can use any existing model or design a new model. Prompt engineering,
where we can inject a series of prompts with the desired outcomes, fine-tuning, or human alignment can be used, to tune
the model, for a specific task. Generative AI models can optimized for a variety of tasks, including, education, healthcare,
entertainment and others.

• Inception Score (IS) [172] a widely used quantitative
evaluation metric for, which measures the quality of
generated samples based on their visual appeal and the
diversity of the generated classes. Higher IS scores indi-
cate better quality and diversity of the generated samples.

• Frechet Inception Distance (FID) [173] compares the
distributions of real and generated samples by calculating
the Fréchet distance between their feature representations
extracted from a pre-trained Inception model.

Other performance metrics for GenAI systems, include PR-
curves [174], coverage metrics [175], user studies and oth-
ers [176].

B. Generative AI Design Cycle

A typical design cycle of Generative AI is shown in Figure.
3 as adopted from [129], [177]. GenAI development cycle
may be broken into four key steps; (i) define the problem,
(ii) model selection or developing from scratch (iii) adapt and
align the model, or fine-tuning if necessary, and (iv) finally
the deployment and optimization stage [178].

The first stage, scope entails deciding the the nature of the
target GenAI model. For e.g., is the target to make it perform
well at multiple tasks or only a single task? The nexts stage
is the selection of a model. In this stage, a GenAI model
developer needs to decide whether to use an existing model
for the application or to pre-train one from scratch [179]. In
this step, the developer can go for general techniques, for e.g.
RNNs, transformers, or pretraining their own model and/or
delve deep into creation methods involving more nuanced
modifications of the model being used [180].

Following the second stage is an iterative phase of aligning
and adapting the model for the scope chosen [181]. This in-
cludes steps of prompt engineering [79], which may consist of
zero-shot learning, one-shot learning, or a few show learning

techniques [182], or even fine-tuning based on the scope [183],
and evaluating the model performance.

The last stage is the optimization and deployment for the
target application [184]. Since prompting is a fundamental
aspect of using and developing GenAI models, we provide
a detailed discussion on prompting techniques in this section.

1) Prompting: LLMs have given rise to whats called
“Prompt Engineering”. Prompts are the instructions provided
to an LLM to make it follow specified rules, automation
of processes and to ensure that the output generated is of
a specific quality or quantity [79], [185]. While there is a
lack of a formal definition, prompt engineering refers to the
designing and wording of prompts given to LLMs so as to get
a desired response from them. Writing a prompt appropriately
is therefore very important if one needs to use LLMs to assist
with tasks in the best manner possible [186].

While some formal techniques such as Explicit instruc-
tion (providing a clear direction to the LLM to do some-
thing) [187], System Specific Instruction (asking a question
from the LLM to answer), Formatting with an example (pro-
viding a sample question and its answer and asking the LLM
to provide an answer in the same manner), Control tokens
(use special keywords in the prompt to help the LLM provide
an answer while considering special provided criteria) [188]
and Interaction and iteration/chaining (interact with model
iteratively to reach to a good answer by fine-tuning on each
reply) have been presented [79].

Several different frameworks have been suggested in lieu of
prompt patterns for LLMs, these are generic prompt patterns
targetting a specific category such as prompt improvement,
input semantics etc [79], [189], [190], or prompting for
software engineering tasks [191], [192], however, in this work,
we aim to present some sets of commands to help users get the
most out of the LLMs capabilities from a generic perspective.
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• Defining the role/context: This should be the first prompt
for the LLM. An example of this prompt could be: “Act
as a secretary to the Chair of the department”, “Act
as a Lawyer” or “Act as my programming tutor for
Python”. By defining a role for the LLM, one can direct
it to provide replies or do tasks as a human would do
when provided information to work on [193]. A similar
first prompt could be providing the context. This can
be performed to give the LLM a background of the
conditions in which the LLM is supposed to work. For
e.g., "We are a company performing mobile application
development for Fortune 500 organizations". This can
then be followed up with aspects like actions, tasks to
perform, steps to follow, etc as mentioned before [194].

• Prompt creation: Another interesting prompt command
is to ask the model to generate prompts for a certain
task [195]. This way, the LLM can be used to generate
optimized prompts for tasks that need to be done. An ex-
ample of this could be: “ You are a large language model
and are an expert in generating prompts for ChatGPT.
Please generate the best prompts on extracting important
information from my time series data”.

• Chain of thoughts: Chain of thoughts prompting [196]
in the context of Language Models (LMs) refers to
the practice of providing a series of related prompts or
partial sentences to guide the generation of coherent and
connected text. Instead of providing a single prompt,
a chain of thoughts prompt involves providing multiple
prompts in succession to encourage the LM to continue
generating text that follows a specific line of thinking or
narrative [197].

• Other interesting directions in which Prompts can be
given are explanation prompts [198] (e.g., “Explain the
concept of infinity”, Instructional Guides (e.g., “How
do I tie my shoe laces”), Extract information (e.g.:
one can paste a passage and ask the model to provide
answers to questions that one might have), Solve Math
problems (e.g., “Find the roots for the quadratic equation,
2x2 + 3x + 10 ”) and Code help (e.g., “Find the syntax
error in the following code”) [199].

One concept within prompt engineering is in-context learn-
ing [200] in terms of the user “teaching” the LLM to act
in a certain manner. The typical prompting scheme in which
the LLM is asked to perform a task is an example of zero-
shot inference [201], that is, within the context of the current
task being worked on, the LLM is asked to perform the task
without providing any sample solution for it. An example
of this type prompt could happen in the task of classifying
tweets. To perform zero-shot inference, a user will have to
just provide the text of the tweet to the LLM and ask it to
classify it as positive or negative in sentiment. Another type
of prompting could be one-shot inference [202]. In such a
case, the user would give an example of a task solution o
the LLM and then ask it to perform the task. In the tweet
sentiment analysis example previously, this would be the user
providing a sample of a tweet and information the LLM that
the sentiment is positive and then providing it a second tweet

to determine the sentiment of. The third type of prompt is few-
shot inference [203], herein, the user provides a few examples
of task solutions to teach the LLM about the kind of operation
the user wants it to do. For the tweet sentiment analysis
example above, it would be providing a tweet/tweets with
a positive sentiment and indicating its sentiment and doing
so with a negative tweet/tweets as well. Finally, the user can
then use the LLM for tweet classification. Using in-context
learning allows a user to “fine-tune” the LLM for the specific
tasks being performed in the application [204].

2) Negative Prompting: Negative prompting [205], [206],
[207] provides directions to the LLM about aspects of the
prompt that it should avoid generating or deliberately exclud-
ing during the generation process [205]. Through the use of
negative prompts, one can fine-tune the results generated by
the LLM in response to a prompt while being able to keep the
prompt generation generic [208]. Another advantage of the
use of negative prompting is that it allows for moderation of
the output content generated by the model thereby preventing
harmful or inappropriate from being generated. "Don’t write
anything that is offensive or harmful, or factually incorrect."
This prompt tells the model to avoid generating text that could
be offensive or harmful to others and inaccurate. Notably,
the authors in [209] conducted experiments for text based
image tranlation and found that negative prompting to be very
useful when working with textureless images. Moreover, this
type of prompting is very useful when working on text to
image generation scenarios and has been incorporated in text
to image generation methods such as Muse [210].

3) Visual Prompting: Visual prompting [211] refers to the
use of visual prompts (such as images or non-visual ones such
as music) when providing directions to a model in addition
to plain text prompts. The aim is to provide the AI model
with a starting point or an example/reference that it can use
for the given generative task. For images, this may be given
to modify the image provided or generate something that is
similar in style, color, or texture etc [212]. This can help in
generating content that is closer to a user’s expectation from
the generative AI being used.

An image-based example of visual prompting could be
providing a picture of an office and asking the AI to generate
a different theme for it, maybe more nature-centric or in a
different color or organizational style [213]. Visual prompting
provides greater control of the generated output and therefore
results in a more accurate result. It should be noted that visual
prompting is not related to images only, this is currently being
explored for a host of different applications, including, text
generation (generating something based on a sample text so
as to copy its style of writing for e.g.) [98], the composition
of music (wherein the supplied music piece can be used as
a reference for the type of music to compose) [214], game
development [215] (where a defined game environment may
be provided to the model as a starting point and the model
is asked to generate new and unique content) and virtual
and augmented reality (wherein a set of augmented/virtual
reality environments can be provided to further populate/create
current/new environments) [216].
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III. OVERVIEW OF LLMS

Large Language models have been a key driver for the
harbinger of the generative AI revolution.

Language Models have transformed the way we interact
with and process language, opening up new possibilities for
natural language understanding, generation, and communica-
tion [217]. They continue to evolve, pushing the boundaries
of what is possible in the realm of language processing and
artificial intelligence [218]. In this Section, we briefly discuss
the history, evolution, and training of LLMs.

A. History of LLM

The history of LLMs can be traced back to the early days
of NLP research [219], [220]. The first language models were
developed in the 1950s and 1960s [221]. These models were
rule-based [222] and relied on hand-crafted linguistic rules
and features to process language [223]. They were limited in
their capabilities and were not able to handle the complexity
of NLP [224].

In the 1980s and 1990s, statistical language models were
developed [31]. These models used probabilistic methods to
estimate the likelihood of a sequence of words in a given
context [225]. They were able to handle larger amounts of
data and were more accurate than rule-based models [226].
However, they still had limitations in their ability to understand
the semantics and context of language [227].

The next major breakthrough in language modeling came
in the mid-2010s with the development of neural language
models [228]. These models used deep learning techniques
to learn the patterns and structures of language from large
amounts of text [10]. The first neural language model was
the recurrent neural network language model (RNNLM) [42],
which was developed in 2010. RNNLM was able to model the
context of words and produce more natural-sounding text than
previous models [229]. In 2015, Google introduced the first
large-scale neural language model called the Google Neural
Machine Translation (GNMT) system [230].

The development of LLMs continued with the introduction
of the Transformer model in 2017 [45]. The Transformer was
able to learn the longer-term dependencies in language and
allowed for parallel training [231] on multiple Graphical Pro-
cessing Units (GPUs), making it possible to train much larger
models [232]. The release of OpenAI’s GPT-1 [233] in 2018,
marked a significant advance in NLP with its transformer-
based architecture. With 117 million parameters, GPT-1 could
generate contextually relevant sentences, demonstrating the
potential of transformers in revolutionizing NLP tasks [234].
While GPT-1 had its limitations, it set the stage for subsequent,
more powerful models, propelling a new era of AI research
and highly-competitive research in LLMs (see Fig. 4).

In 2020, OpenAI released GPT-3 [235], which was able
to generate highly coherent and natural-sounding text [236].
GPT-3 demonstrated the potential of LLMs for a wide range
of NLP tasks [237]. Inspired by the success of GPT-3, OpenAI
released the next iteration of their language model, GPT-
4 [238] with the ability to generate even more coherent and
natural-sounding text. Following GPT-4’s success, Meta also

introduced Llama [15], a family of open-source foundation
models. Google introduced Bard [239], Amazon introduced
AI features in the Alexa [240] models, and Huawei introduced
Pangu models [144], joining the AI race.

B. Training of LLMs

Training large language models involves several key steps
that are fundamental to their successful development [242].
The process typically begins with the collection and pre-
processing of a large amount of text data from diverse
sources [243], such as books, articles, websites, and other
textual corpora (see Table. III). The curated dataset [244]
serves as the foundation for training the LLMs. After the
removal of duplicates [245], noisy and poisonous data [246]
and ensuring privacy reduction [247], the training process
involves unsupervised learning, where the model learns to
predict the next word in a sequence given the preceding
context assuming the language generation as a random process
[248].

Currently, LLMs utilize Transformers which enable them
to model long-range dependencies [249], understand text data
[250] enable them to generate new content in the style
and characteristics of a genre or author [217]. The training
objective is to optimize the model’s parameters to maximize
the likelihood of generating the correct next word in a given
context [85]. This optimization is typically achieved through
an algorithm called stochastic gradient descent (SGD) [251]
or its variants, combined with backpropagation [252], which
computes gradients to update the model’s parameters iter-
atively. Some of the popular transformer-based LLMs are
discussed below.

• Bidirectional Encoder Representations from Transformer
(BERT): BERT [48] is a prominent language model
with significantly advanced NLP tasks. Its training pro-
cess comprises pretraining and fine-tuning stages [253].
During pretraining, BERT learns a general language
representation from large-scale unlabeled text data. It
employs masked language modeling (MLM) [254] and
next-sentence prediction (NSP) tasks [255].
MLM involves masking a portion of input tokens and
training the model to predict the original masked tokens,
fostering bidirectional context understanding [256]. NSP
trains BERT to predict whether a second sentence follows
the first, enhancing coherence comprehension. After pre-
training, BERT undergoes fine-tuning on specific tasks
with labeled data. Fine-tuning tailors BERT’s learned
representations to target tasks, such as sentiment analysis
or named entity recognition [257]. It employs backpropa-
gation and gradient descent optimization to update model
parameters.
Training BERT demands significant computational re-
sources [234], utilizing high-performance hardware like
GPUs or Tensor Processing Units (TPUs) or field pro-
grammable gate arrays (FPGAs) [258], [259], [260].
Techniques such as layer normalization [261], residual
connections [262], and attention mechanisms inherent
in the transformer architecture further enhance BERT’s
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Fig. 4: Illustration of the evolution of Large Language Models (LLMs) over time, highlighting their development across a
range of research and commercial organizations. Starting from the initial advancements made in this field, the figure maps out
the journey of LLMs, outlining the key milestones, breakthroughs, and model iterations along the way.

TABLE III: State-of-the-art for LLM training pipeline [241]. Notations: RM: Reward Modeling, RL: Reinforcement Learning,
SFT: Supervised Fine-tuned.

Stage Pretraining Supervised-
Finetuning

Reward Modeling Reinforcement Learning

Dataset Raw Internet II Demonstration Comparisons Prompts
Algorithm Language Modeling Language Modeling Binary Classification Reinforcement Learning

Model Base Model SFT Model RM Model RL Model
Resources 100s of GPUs

months of training
deployable

1-100 of GPUs
days of training
deployable

1-100 of GPUs
days of training
not deployable

1-100 of GPUs
days of training
deployable

capacity to capture intricate dependencies and long-range
contextual relationships.

• eXtreme Language understanding Network (XLNet): XL-
Net [263] is a generalized autoregressive [264] pre-
training method that surpasses the limitations of tra-
ditional left-to-right or right-to-left language modeling.
XLNet is trained using a permutation-based approach
that differs from traditional autoregressive models [265].
In the training process, rather than predicting the next
word given the previous words in a fixed order, XLNet
considers all possible permutations of the input sequence
and models the probability of each permutation. This
allows XLNet to capture dependencies in both directions,
thus addressing the limitations of sequential left-to-right
or right-to-left modeling [263].
The training of XLNet involves two key steps: unsu-
pervised pretraining and supervised fine-tuning. During
unsupervised pretraining, XLNet learns to predict words
conditioned on the entire input context by maximizing the
expected log-likelihood over all possible permutations.
This is achieved using a variant of the transformer archi-
tecture, similar to models like BERT. The permutation-
based objective function used in XLNet training presents

unique challenges [266]. Unlike traditional autoregressive
models that can rely on the causal order of words for
prediction [267], XLNet needs to consider all possible
permutations, resulting in an exponentially large number
of training instances. This makes the training process
computationally intensive and requires efficient strategies,
such as "factorized sampling," to sample a subset of
permutations during each training iteration.
Another difficulty in training XLNet is the need for large-
scale computing resources [85], [268], [269]. The vast
number of possible permutations and the large model
size contribute to increased memory and computation re-
quirements. Training XLNet often necessitates distributed
training on multiple GPUs or TPUs and can take signif-
icant time [85].

• Text-to-Text Transfer Transformer (T5): T5, developed
by Google, is a versatile language model that is trained
in a "text-to-text" framework [270]. The key innovation
of T5 is the formulation of all tasks as text generation
problems. This means that every task, including text
classification, summarization, translation, and question
answering, is cast into a text-to-text format [271]. For
example, instead of training T5 to answer questions
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directly, it is trained to generate the complete answer
given the question and relevant context. In the pretraining
phase, T5 is trained using a variant of the transformer
architecture. The pretraining objective is typically based
on maximum likelihood estimation, where T5 is trained
to predict the target text given the source text. Once
pretraining is complete, T5 undergoes fine-tuning on
specific downstream tasks [270].

• Conditional Transformer Language Model (CTRL):
CTRL is a language model designed to generate text
based on specific control codes or prompts [272]. One
of the unique aspects of CTRL is its conditioning of
control codes or prompts. These control codes guide
the model’s text generation process, allowing users to
specify the desired style, topic, or other characteristics
of the generated text. The control codes act as explicit
instructions to guide the model’s behavior during both
training and inference. The fine-tuning phase of CTRL
is crucial for adapting the model to specific tasks or
domains [273].

IV. TAXONOMY OF LARGE LANGUAGE MODEL TASKS

LLMs have a wide array of uses for the tasks of processing
natural language including but not limited to writing, summa-
rization, translation, retrieving information as shown in Fig.
5. In this section, the various tasks of LLMs towards working
with developing such systems have been discussed.

A. Question-answering

Question-answering (QA) systems [274] allow users to
obtain direct answers to questions posed in natural language.
LLMs have become a key component in building robust QA
systems [275]. LLMs can be effectively pretrained on large
text corpora and then fine-tuned on QA labeled datasets [276].
This adapts them to extract or generate answers from passages
of text. The broad linguistic knowledge learned during pre-
training allows LLMs to understand the semantics of questions
and use that to reason about potential answers. Fine-tuning
on QA data teaches the models to identify relevant context
passages and output the correct response [274]. Key benefits of
using LLMs include handling complex questions, synthesizing
answers from multiple context documents, and generating clar-
ifying responses when a query is ambiguous. LLM-based QA
systems have achieved high accuracy on benchmark datasets
[277], surpassing previous state-of-the-art methods. They can
be deployed via voice assistants [278], search engines [279],
and other interfaces to provide users with quick access to in-
formation through natural dialog. Ongoing research is focused
on improving reasoning abilities, explainability, and efficiency
of LLM question answering.

B. Text Generation

Text generation is a useful application of large language
models, which can automate the process of generating content
for various purposes [280], such as articles [281], blogs [282],
research papers, social media posts, product descriptions,

source codes, emails, and more. With their ability to compre-
hend and generate natural language, these models can produce
high-quality content that is both accurate and coherent [283].

C. Language Translation

LLMs possess the capability to translate text from one lan-
guage to another with exceptional accuracy and fluency [284].
This feature is beneficial for a range of users, including
language service providers, global companies, and individu-
als, who can utilize these models for real-time translation,
localization, and overcoming language barriers in communi-
cation [285]. The impressive accuracy and fluency of these
models make them a valuable tool for facilitating effective
communication across different languages and cultures [286].
This feature has the potential to enhance global collaboration
and increase access to information, making it an important
area of research and development in the field of NLP [287].

D. Text Classification

In addition to their text generation and translation abilities,
LLMs are also equipped with exceptional organizational capa-
bilities, such as text classification, analysis, and categorization
based on predefined labels or topics [288], [289]. This feature
enables the models to effectively manage large volumes of
textual data, making them highly valuable for a range of tasks
such as sentiment analysis [290], spam detection [291], content
moderation [292], and customer feedback analysis [293]. By
automating these processes, language models can streamline
data management [294], reduce manual labor, and improve the
accuracy and efficiency of analysis [295]. These capabilities
are particularly useful for businesses and organizations that
deal with large amounts of textual data and require effective
methods for organizing and analyzing it.

E. Summarization

LLMs possess the ability to generate concise and coherent
summaries of lengthy texts or documents [296]. This feature is
highly advantageous for a variety of uses, such as summarizing
news articles, research papers, legal documents, and other
types of content where extracting essential information is
crucial. Summarization by language models can save time
and effort while ensuring that the most important points are
captured accurately [297]. This feature has the potential to
enhance the efficiency and effectiveness of content absorption
and subsequent creation, making it a valuable tool for individ-
uals and organizations.

F. Virtual Assistance

In the realm of virtual assistants and chatbots [298], LLMs
play a critical role. These models possess the ability to com-
prehend user queries, provide relevant information, and engage
in natural language conversations. This capability enables
virtual assistants and chatbots to assist with customer support,
offer personalized recommendations, answer questions, and
automate routine tasks, thus enhancing user experiences and
increasing operational efficiency. By leveraging large language
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Fig. 5: Examples of LLM. Prompts can be to write an eassay on X topic, summarize a paragrah, translate into X language etc.

models, virtual assistants and chatbots can provide highly
effective and responsive support to users while also reducing
the workload for human operators [299]. This area of research
and development is of significant importance, as it has the
potential to transform the way users interact with technology
and improve the effectiveness and efficiency of customer
support and service delivery.

G. Information Extraction (IE)
The use of LLMs in IE is significant for populating

knowledge bases. By leveraging fine-tuned LLMs, entities
such as people, organizations, and locations, as well as the
relationships between them, can be accurately extracted from
unstructured text. This process can facilitate the creation of
structured knowledge graphs that can be utilized for various
purposes [300]. In addition, LLMs assist in event extraction,
enabling the identification of key occurrences described in text
documents [301]. This feature has the potential to enhance
the efficiency and accuracy of information extraction, making
it a valuable tool for businesses and organizations that deal
with large amounts of textual data. Further research and
development in this area can lead to improvements in the
quality and effectiveness of IE using LLMs.

H. Dialog systems
In the context of dialog systems, large language models

play a crucial role in facilitating language understanding. The
development of large pretrained models like Google’s Meena
and Microsoft’s Blender has led to significant improvements in
the naturalness and coherence of open-domain chatbots [302].
These models possess the ability to generate informative,
interesting, and harmless responses, making conversational
agents much more usable. The application of LLMs in dialog
systems has the potential to transform the way users interact
with technology, creating more engaging and effective con-
versational experiences [303]. Further research in this area

can lead to improvements in the quality and effectiveness of
dialog systems, making them even more valuable for a range
of applications and industries.

I. Semantic Search

In the field of Semantic Search, query understanding is of
utmost importance, and LLMs are unparalleled in their ability
to discern the underlying intent and meaning of user search
queries [304]. This ability enables next-generation search
capabilities that go beyond simple keyword matching. For
instance, LLMs can recognize that the phrases "best budget
laptop"; and "affordable student computer" convey the same
information need. This feature has the potential to enhance
the accuracy and relevance of search results, making it easier
for users to find the information they need. Further research
and development in the area of Semantic Search can lead to
the creation of more effective and efficient search systems,
making LLMs a valuable tool for a range of applications and
industries [57].

J. Speech recognition

Automated speech recognition is a crucial aspect of voice
interfaces and transcription. While traditional systems relied
on hidden Markov models or Gaussian mixture models, the
emergence of deep learning has seen large neural network
models like LLMs take center stage in state-of-the-art results.
LLMs that are pretrained on massive text corpora offer rich
linguistic knowledge pertaining to language structure, context,
and word relationships. Fine-tuning these models on tran-
scribed speech data using connectionist temporal classification
loss enables them to learn acoustic-to-text mappings. This
leads to significant improvements in the accuracy of auto-
mated speech transcription, even in the presence of accented
speech or domain specific vocabulary [305]. The contextual
knowledge and continual learning abilities of LLMs make
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Fig. 6: Illustration of an interactive framework where LLMs
enable various tasks across healthcare and biomedicine when
trained on multimodal data generated by various sources in
the healthcare ecosystem.

them ideally suited for handling the variability and ambiguity
inherent in speech signals. As LLMs continue to increase
in scale, they are becoming the standard for building high
performance and robust automated speech recognition systems
[306].

To sum up the discussion on different LLMs, Table IV
provides information on the performance of various LLMs on
different reasoning tasks.

V. APPLICATIONS OF LARGE LANGUAGE MODELS

Given LLMs wide range of applications, we provide a
discussion of their use in the fields of medicine, education,
finance, media, law and engineering. The selection of these
fields based on their significance, relevance, and potential
impact within their respective domains. These applications
demonstrate the versatility and potential of LLMs in ad-
dressing complex challenges and supporting human endeav-
ors [260], [315]. An interactive framework for the integration
of LLMs in the healthcare ecosystem is shown in Figure 6.

A. Medical

LLMs like ChatGPT have exhibited remarkable potential
in diverse healthcare applications [316]. They have been suc-
cessfully employed in medical education, radiologic decision-
making, clinical genetics, and patient care [317],[318]. In
medical education, ChatGPT has emerged as an interactive
tool that aids learning and problem-solving [319], [320].
Notably, ChatGPT’s performance in the United States Medical
Licensing Exam (USMLE) was comparable to or exceeded
the passing threshold, without requiring specialized training
or reinforcement [319]. Moreover, ChatGPT’s explanations
displayed a high level of concordance and insightful under-
standing [317].

In [277], introduced MultiMedQA, a new benchmark dataset
for evaluating LLMs on clinical tasks. MultiMedQA combines
six existing medical question-answering datasets spanning
professional medicine, research, and consumer queries. They
introduced the concept of instruction prompt tuning [321],
which can be used to improve the performance of LLMs on
a variety of clinical tasks.

In [322], the potential of ChatGPT in radiologic decision-
making is emphasized, showcasing its feasibility and poten-
tial benefits in enhancing clinical workflow and promoting
responsible utilization of radiology services. Similarly, Kung
et al. [317] concluded in their research that LLMs, including
ChatGPT, have the capacity to enhance the delivery of individ-
ualized, compassionate, and scalable healthcare. These models
can assist in medical education and potentially aid in clinical
decision-making.

In the domain of clinical genetics, Duong and
Solomon [323] found that ChatGPT’s performance did
not significantly differ from humans when answering
genetics-related questions. However, the model demonstrated
better accuracy on memorization-type questions compared to
questions requiring critical thinking. Notably, this study also
highlighted that ChatGPT provided varying answers when
asked the same question multiple times, providing plausible
explanations for both correct and incorrect responses.
Furthermore, Fijacko [324] evaluated ChatGPT’s accuracy in
answering questions related to life support and resuscitation.
The findings revealed that ChatGPT demonstrated the ability
to provide accurate answers to a majority of the questions
on the American Heart Association’s Basic Life Support and
Advanced Cardiovascular Life Support exams.

In neurosurgical research and patient care, LLMs have
been investigated for their potential role in various aspects,
including gathering patient data, administering surveys or
questionnaires, and providing information about care and
treatment [325]. These applications encompass decision sup-
port, NLP, data mining, and machine learning. The authors
underscore the significance of reproducibility in the devel-
opment of AI models and highlight ongoing research issues
and challenges in these domains. Furthermore, AI-powered
chatbots hold the potential to enhance patient outcomes by
facilitating communication between patients and healthcare
professionals. Leveraging NLP, these chatbots can provide
patients with information about their care and treatment in
a more accessible manner [326].

There are several tools already in use that allow the system
to interact with patients such as Ada Health [327], Babylon
Health [328], and Buoy Health [329]. The recent popularity
of LLMs can potentially not only improve patient confidence
in interacting with such chatbots but also improve upon the
services provided. In fact, there are tools developed to assist
medical practitioners. One such tool is XrayGPT [330], it can
be used for automated analysis of X-ray images and have
the user/patient ask questions about the analysis. Through the
chats, the user can get insight into their condition through
an interactive chat dialogue. Another big development is the
segment anything (SAM) model by meta, which may be fine-
tuned for a variety of medical image tasks [331]. In the drug
discovery domain, DrugGPT [332] is developed, which can
be used to design potential ligands, targeting specific proteins,
using text prompts.

1) Foundation models for generalist medical AI: The au-
thors in [333] propose a new paradigm for medical AI called
generalist medical AI (GMAI). GMAI models are trained on
large, diverse datasets of medical data, and they are able to
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TABLE IV: Comparison of LLMs’ Reasoning Performance. Notations: MMLU [307]: high school and college knowledge,
GSM8K: elementary school math, MATH: very hard math and natural science. All current models struggle, BBH [308]: a
collection of 27 hard reasoning problems, HumanEval [309]: a classical dataset for evaluating coding capability, C-Eval [310]:
a collection of 52 disciplines of knowledge test in Chinese, TheoremQA [311]: a question-answering dataset driven by STEM
theorems. [312], [307], [15], [313], [314], [310]

Model Param. Type GSM8K MATH MMLU BBH HumanEval C-Eval TheoremQA
GPT-4 - RLHF 92.0 42.5 86.4 - 67.0 68.7* 43.4
claude-v1.3 - RLHF 81.8* - 74.8* 67.3* - 54.2* 24.9
PaLM-2 - Base 80.7 34.3 78.3 78.1 - - 31.8
GPT-3.5-turbo - RLHF 74.9* - 67.3* 70.1* 48.1 54.4* 30.2
claude-instant - RLHF 70.8* - - 66.9* - 45.9* 23.6
text-davinci-003 - RLHF - - 64.6 70.7 - - 22.8
code-davinci-002 - Base 66.6 19.1 64.5 73.7 47.0 - -
text-davinci-002 - SIFT 55.4 - 60.0 67.2 - - 16.6
Minerva 540B SIFT 58.8 33.6 - - - - -
Flan-PaLM 540B SIFT - - 70.9 66.3 - - -
Flan-U-PaLM 540B SIFT - - 69.8 64.9 - - -
PaLM 540B Base 56.9 8.8 62.9 62.0 26.2 - -
LLaMA 65B Base 50.9 10.6 63.4 - 23.7 38.8* -
PaLM 64B Base 52.4 4.4 49.0 42.3 - - -
LLaMA 33B Base 35.6 7.1 57.8 - 21.7 - -
InstructCodeT5+ 16B SIFT - - - - 35.0 - 11.6
StarCoder 15B Base 8.4 15.1 33.9 - 33.6 - 12.2
Vicuna 13B SIFT - - - - - - 12.9
LLaMA 13B Base 17.8 3.9 46.9 - 15.8 - -
Flan-T5 11B SIFT 16.1* - 48.6 41.4 - - -
Alpaca 7B SIFT - - - - - - 13.5
LLaMA 7B Base 11.0 2.9 35.1 - 10.5 - -
Flan-T5 3B SIFT 13.5* - 45.5 35.2 - - -

perform a wide range of tasks, such as diagnosis, prognosis,
and treatment planning. GMAI models are able to outper-
form traditional medical AI models on a number of tasks,
including diagnosis, prognosis, and treatment planning. They
can produce expressive outputs such as free-text explanations,
spoken recommendations or image annotations that demon-
strate advanced medical reasoning abilities and help medical
professionals.

B. Education

The impact of AI on education has been a topic of much dis-
cussion in recent years since it has emerged as a promising tool
for education, with applications including providing mean-
ingful feedback to students [334], aiding teacher improve-
ment [335], and designing personalized and adaptive learning
experiences tailored to individual students’ needs [336]. How-
ever, implementing tech solutions to effectively scale quality
education inclusively is an immense task. In this context,
general-purpose Large models that are applicable across mul-
tiple tasks and subject areas offer potential solution [337].

Foundation models have already begun improving perfor-
mance in certain educational tasks. For instance, MathBERT
[338] has been utilized for "knowledge tracing" – tracking
a student’s understanding over time based on past responses,
and for the "feedback challenge" – interpreting a student’s
answer to a structured open-ended task. The question is, can
foundation models trigger even more significant changes in
education? And what are the associated risks of applying these
models in an educational context? It’s crucial to initiate the dis-
cussion around these models with ethical considerations [339].

One area where AI is having a significant impact is in the
realm of student assignments and exams. Since the advent

of ChatGPT developed by OpenAI, the way students interact
with educational materials, assignments and coursework has
become different [340] [341] [342]. The accuracy rate for the
exams discussed in [340] was below 70 percent indicating
its inability to pass the AHA exams. However, this conclusion
was drawn due to a design limitation in their study, where they
only generated a single response using ChatGPT, introducing
bias and severely underestimating ChatGPT’s capabilities in
this domain. However, the latest study revealed that ChatGPT’s
accuracy rate increased to 96 and 92.1 percent for the Basic
Life Support (BLS) and Advanced Cardiovascular Life Sup-
port (ACLS) exams, respectively, allowing ChatGPT to pass
both exams with outstanding results [343].

One of the main advantages of using ChatGPT and AI bots
in education is that they can help students complete their
assignments more efficiently [344]. ChatGPT is capable of
generating high-quality responses to a wide range of prompts,
which can save students time and effort when they are working
on assignments. Additionally, AI bots can help to automate the
grading process, which can reduce the workload for teachers
and enable them to provide more detailed feedback to students.
Another advantage of using ChatGPT and AI bots in education
is that they can provide personalized learning experiences
for students. AI bots can analyze a student’s performance on
previous assignments and exams and use this data to generate
personalized recommendations for future work [345].

This can help students identify their strengths and weak-
nesses and focus their efforts on areas where they need to
improve. Khan Academy, a nonprofit educational organization,
has shown interest in utilizing ChatGPT for its business. They
have developed an AI chatbot called Khanmigo, which serves
as a virtual tutor and classroom assistant [346]. The goal
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of incorporating ChatGPT into their platform is to enhance
tutoring and coaching experiences by providing one-on-one
interactions with students. Khan Academy 4 has been an
early adapter of GPT-4 based LLMs working as online tutors,
becoming the largest case study for the evaluations of LLMs in
an educational context in the process.The incorporation of AI
in tutoring and teaching proves that it can be a valuable tool
in reducing negativity, particularly the perception that its main
purpose is for cheating. Undoubtedly, AI technology is still in
its nascent phase, yet it shows great potential in supporting
students and catering to their individual requirements. [347].

However, there are also some potential drawbacks to using
ChatGPT and AI bots in education. One concern is that these
technologies may lead to a loss of creativity and critical
thinking skills among students [348]. If students rely too
heavily on AI bots to complete their assignments and exams,
they may not be developing the skills necessary to think
critically and solve problems on their own [344].

1) Learning in the age of AI: Another major assistance
that these bots such as ChatGPT can offer is the provision of
assistance in designing a course in an academic setting. AI
chatbots can serve as a valuable tool to aid in various aspects
of syllabus preparation [349]. Course objectives can be gen-
erated, relevant topics identified, curricula structured, learning
resources gathered and reviewed, assessment methods defined,
engaging learning activities established, and a well-balanced
course schedule created. The iterative process of interacting
with ChatGPT enables refinement and enhancement of the
syllabus based on the model’s suggestions and insights. It is
important to note that ChatGPT acts as a supportive tool, aug-
menting the expertise and input of experienced educators. The
collaboration between the human and AI in the course syllabus
design process facilitates the development of comprehensive
and effective learning plans that align with desired learning
outcomes.

2) Major issues for AI in Education: One of the major con-
cerns is the utilization of these tools without proper training.
It is crucial to address the issue of inadequate training and
contextual fine-tuning for LLMs, as their potential utilization
without such preparations raises significant concerns [350].
While it is true that LLMs possess the ability to provide
answers to a wide range of questions and assist users in
generating responses effortlessly, it is essential for students
and scientists [351] to receive adequate training specific to
their needs in order to fully harness the capabilities of LLMs.
Neglecting the necessity for context-specific training and fine-
tuning can render these tools less effective and limit their true
potential.

Another concern is that the use of AI bots in education
could lead to increased inequality [352]. Students who have
access to these technologies may have an unfair advantage over
those who do not, which could exacerbate existing inequalities
in education. Additionally, the use of AI bots could lead to
a decrease in the number of teaching jobs available, which
could further widen the gap between those who have access

4https://blog.khanacademy.org/harnessing-ai-so-that-all-students-benefit-a-
nonprofit-approach-for-equal-access/

to education and those who do not [353]. In conclusion, the
use of ChatGPT and AI bots in education has both pros and
cons. While these technologies can help students complete
assignments more efficiently and provide personalized learning
experiences, they may also lead to a loss of critical thinking
skills and increased inequality. As AI continues to transform
the field of education, it will be important to carefully consider
these potential benefits and drawbacks and work to minimize
the discussed negative consequences that may arise.

C. Finance

LLMs are making significant advancements in the finance
industry [354] with applications ranging from financial NLP
tasks [355], risk assessment, algorithmic trading [356], market
prediction [357] and financial reporting [358]. LLM’s such
as BloombergGPT[99], a 50 billion parameter large language
model trained on large diversified financial corpus, has rev-
olutionized financial NLP tasks including but not limited to
news classification, entity recognition and question answering.
By utilizing the huge amount of financial data available, it is
able to enhance customer services drastically by efficiently
handling customer queries and providing them with excellent
financial advisory.

In addition, LLMs are being used for risk assessment and
management, by analyzing past market trends and data, it is
able to identify potential risks and provide mitigation steps
through different financial algorithms. Financial institutions
can use it for better decision making such as credit risk assess-
ment [359], loan approvals and investments [360]. Algorithmic
Trading [361] is another application that can leverage LLMs to
identify potential opportunities in the trading market by using
its predictive and analyzing capabilities.

However, due to the sensitivity of the financial information
and privacy concerns, techniques like data encryption, redac-
tion, and data protection policies should be implemented so
that these LLMs can be used efficiently in accordance with
data protection policies. In this regard, a recent proposition
suggested is FinGPT [362] which is an open-source LLM
tailored for finance. It is expected that more work will be
carried out in this domain.

D. Engineering and similar

LLMs have gained substantial attention across various
fields, and their potential applications in engineering domains
are increasingly being explored [363]. For instance, ChatGPT
has diverse applications in software engineering, including
code generation, debugging, software testing, NLP, documen-
tation generation, and collaboration.

In software engineering, CodeGPT can be employed to
generate code snippets based on natural language descriptions
of desired functionality. This feature saves developers time
and improves overall efficiency, allowing them to focus on
higher-level design aspects [364]. Additionally, CodeGPT can
assist in debugging code by leveraging its language under-
standing capabilities to identify errors and suggest potential
fixes, thereby streamlining the debugging process and reducing
development time.
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The possibility of ChatGPT utilization to various calcu-
lations in mechanical engineering was attempted in [365].
However [365] encountered instances where incorrect proce-
dures, formulas, or results were provided. None of the tasks
yielded an exact solution, leading them to discontinue further
research. Based on this study, it can be concluded that, at
the current stage of AI development, ChatGPT should not
be relied upon for solving engineering practice problems.
Furthermore, caution should be exercised in using ChatGPT
for such applications, as incorrect results can potentially have
severe negative consequences [366].

In manufacturing, Wang et al. [367] conducted an evaluation
of ChatGPT’s capabilities in supporting design, manufactur-
ing, and engineering tasks. The results indicate that ChatGPT
is impressive in providing information, generating coherent
and structured content, and proposing initial solutions. The
authors recommended a technology development roadmap to
successfully integrate ChatGPT into the manufacturing indus-
try. However, it was found that, in manufacturing, ChatGPT
struggles to understand questions sometimes and lacks the
ability to properly use knowledge to generate correct solutions
and it can even fabricate non-existing rules or equations in
order to generate solutions.

Similarly, Badini et al. [368], performed a study in addi-
tive manufacturing troubleshooting and evaluated ChatGPT’s
expertise in technical matters, focusing on the evaluation of
printing parameters and bed detachment, warping, and string-
ing issues for Fused Filament Fabrication (FFF) methods using
thermoplastic polyurethane polymer as feedstock material.
It was found that ChatGPT provided remarkable accuracy,
correctness, and organization in its responses and its approach
to problem-solving offered valuable insights in addressing hur-
dles. The authors recommended integrating ChatGPT into an
Additive Manufacturing software platform to provide real-time
suggestions and optimization for users, which can enhance the
efficiency and quality of the Additive Manufacturing process.

E. Media and Entertainment Industry

The media and entertainment sector is currently undergoing
a transformative phase that revolves around data and prioritizes
consumer-centric experiences [369]. Companies of all sizes
are now striving to introduce groundbreaking innovations
that enable personalized, one-to-one interactions on a large
scale [370], [371]. Moreover, content lies at the core of the
Media and Entertainment industry, and its creation is evolving
with the integration of data, particularly social signals, into
content strategies [372]. LLMs have a transformative role,
revolutionizing how companies leverage data and AI for
content development and curation. LLMs assist in generating
captivating headlines, compelling copy, and providing real-
time content feedback, streamlining production and enhancing
quality. They have come out as a game changer among the
various technologies driving the technological revolution in the
media and entertainment industry. LLMs not only enable the
creation of original content but also demonstrate a profound
grasp of intricate information and the ability to simulate
human-like interactions. This includes MediaGPT, a large

language model for the Chinese media domain which was
presented recently. It can generate high-quality and relevant
outputs for various tasks in the Chinese media domain [373].
Similarly, Robertuito [374] was proposed for Spanish social
media.

Large AI models can also be utilized for generating attrac-
tive advertisements and marketing [100], political speeches,
slogans and social media posts [375], and promotional
videos [117]. Similarly, leading entertainment networks and
applications are using LLM based algorithms that can analyze
user data to offer personalized recommendations for movies,
TV shows, and music. This helps entertainment companies
to retain customers and improve their engagement with their
content [376]. Moreover, LLMs automate content curation fos-
tering user satisfaction, retention, and monetization. Recently,
many companies have developed and offered their services for
media and entertainment purposes. One of the prime examples
of such services is Dolly, an LLM-trained model developed by
databricks Incorporation [377].

The creation of AI-based newscasters [378] is a recent
concept that consists of virtual news presenters or anchors that
are generated using AI technologies, particularly LLMs [379].
In April 2023, a Kuwaiti media outlet unveiled a virtual news
presenter “Fedha” with plans for it to read online bulletins
[380]. At the University of Kent’s Centre for Journalism,
lecturers are grappling with how to prepare the next generation
of reporters for the potentially AI-powered newsrooms of the
future [381]. AI algorithms have the capability to analyze user
data, providing tailored suggestions for movies, TV shows, and
music. This enhances customer retention and boosts engage-
ment with entertainment content. Table V presents the recent
tools and applications that are transforming the entertainment
industry.

F. Role of LLMs in the Future of Legal Practice

With advancements in AI and the development of tools
such as GPT-4, Bard, and Bing, it is aimed that these ad-
vancements will empower lawyers to enhance legal research,
drafting tasks, and decision-making [382]. This has sparked
interest among entrepreneurs developing AI tools [383], law
firms integrating AI into their workflow, and law professors
exploring AI-based techniques for legal aid [384]. A recent
example is Chatlaw [385] model, which is open-source legal
language model. A legal informatics approach was introduced
in [386] to align AI with human goals and societal values. By
incorporating legal knowledge and reasoning into AI systems,
the paper contributes to the research agenda of enhancing the
integration of AI and law.

In [387], the authors propose legal prompt engineering
(LPE) as a means to improve LLM performance in legal
judgment prediction tasks. The effectiveness of this method
has been demonstrated on three multilingual datasets, show-
casing the model’s capability to handle the intricacies of legal
language and reasoning from various sources of information.
LLMs’ transformative potential in the legal field is evident
from their impressive performance in legal exams. GPT-4
scored in the 90th percentile on the Uniform Bar Examination
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TABLE V: Unveiling the AI Revolution in Entertainment: Real-world Illustrations

Tools Function Link
Scriptbook A cutting-edge AI-powered script analysis tool, is har-

nessed by film studios to forecast the commercial tri-
umph of a screenplay. The tool meticulously assesses
the script’s characters, themes, and plot points, drawing
comparisons to the historical performance of comparable
films to foresee its potential box office success.

Scriptbook

Aiva AIVA (Artificial Intelligence Virtual Artist) represents an
AI-driven music composition tool that generates original
music tracks tailored to user preferences. By analyzing
data points such as genre, tempo, and mood, the tool
crafts unique compositions suitable for integration into
films, TV shows, and video games.

Aiva

LyricFind LyricFind takes center stage as an AI-powered lyrics
search engine, empowering users to find song lyrics using
natural language queries. By employing natural language
processing algorithms, the tool comprehends user queries
and delivers precise and relevant results.

LyricFind

Ziva Dynamics Ziva Dynamics showcases an AI-powered software tool
tailored for creating authentic 3D character models in
films and video games. The tool utilizes machine learning
algorithms to simulate muscle and skin movement, result-
ing in character models that boast unparalleled realism
and intricate detailing.

Ziva

DeepMotion DeepMotion introduces an AI-powered animation tool
capable of producing lifelike 3D animations for video
games and films. Leveraging machine learning algo-
rithms, the tool simulates human movement and behavior,
delivering animations with enhanced realism and natural
aesthetics.

DeepMotion

Speechify Speechify is one of the most popular and efficient first AI
Voice Over generators for using famous singer’s voices
for singing differents songs. It also creates human-quality
voice-over recordings in real time. Narrate text, videos,
explainers anything you have and in any style.

Speechify

[61], and ChatGPT autonomously passed four law school final
exams at a top law school [388]. These achievements showcase
the significant impact of AI language models on legal practice.
The authors present Chain-of-Thought (CoT) prompts, which
aid LLMs in generating coherent and contextually relevant
sentences following a logical structure, simulating a lawyer’s
analytical approach [389]. The study shows that CoT prompts
outperform baseline prompts in the COLIEE entailment task
using Japanese Civil Code articles. LLMs have also been
utilized to explore fiduciary obligations [55].

In a recent working paper by Choi et al., the authors
conducted experiments using ChatGPT to generate answers
for four authentic exams administered at the University of
Minnesota Law School [390]. In summary, the authors
concluded that ChatGPT successfully passed all four exams
with an overall average grade of C+. This level of performance
would grant it credit towards a JD degree, but it would
also place the student on academic probation. Interestingly, if
ChatGPT maintained this performance throughout law school,
it would be able to graduate successfully. However, ChatGPT’s
answers exhibited consistent issues and errors, which rendered
its performance significantly poorer compared to the average
student. One of its main challenges was "identifying and
addressing issues" when presented with open-ended prompts,

a crucial skill in law school exams.
Recently in June 2023, in response to fake case citations

generated by ChatGPT and submitted in a court filing, a US
judge has imposed a fine of $5,000 (3,935) on two lawyers,
along with their law firm Levidow & Oberman [391] [392],
due to the fake citations generated by ChatGPT. The fictitious
legal research was utilized in an aviation injury claim, and the
lawyer admitted to inventing six non-existent cases citations.
In Texas, a judge now requires attorneys to verify that no part
of a filing was composed by generative AI or, if it was, that
a human has verified its accuracy [393] [392]. However,
not all judges share the same stance on chatbots in legal
proceedings. For instance, Judge Juan Manuel Padilla, based
in Colombia, acknowledged using ChatGPT’s assistance in a
case concerning an autistic child [393].

In light of these examples and use cases, LLMs indeed
offer numerous benefits, but it is crucial to recognize and
comprehend their limitations. They can serve as a valuable
tool for initial research, explanations, and improving efficiency
in legal practice. However, lawyers must be mindful of its
limitations. While they can provide seemingly convincing
answers, they may still be misleading or inaccurate. Their
reliance on statistical patterns from training data means they
lack human-like reasoning and may not incorporate the most

https://www.scriptbook.io/#!/
https://www.aiva.ai/
https://www.lyricfind.com/
https://zivadynamics.com/
https://www.deepmotion.com/
https://speechify.com//
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recent legal developments. Ethical and confidentiality concerns
also arise due to the storage and potential use of prompts and
information for training purposes, posing risks to sensitive
information. While lawyers will likely need to integrate AI
to remain competitive, it must be done responsibly, upholding
ethical obligations.

G. Marketing

Large language models are crucial in modern marketing,
transforming customer engagement and content delivery [394].
They excel in content generation, creating compelling product
descriptions, ad copy, blogs, and social media posts, saving
time and resonating with audiences [395] [396]. Personal-
ization is a standout feature, allowing marketers to deliver
tailored messages based on customer data, improving satis-
faction and loyalty. Customer support is revolutionized by
chatbots, providing instant assistance 24/7, and reducing the
workload on support teams [397]. In market research, large
language models analyze vast data, including feedback and
social media, offering insights into trends, sentiment, and
competition. They contribute to SEO optimization, identify
keywords, and enhance social media monitoring [396].

The adoption of LLMs and ChatGPT in marketing offers
numerous benefits, but it also comes with potential risks
for marketers, consumers, and other stakeholders [396]. The
similarity and lack of uniqueness in ChatGPT’s responses to
similar prompts from different marketers could undermine the
distinct identity of the marketer or brand. This presents a
challenge for marketers who prioritize creativity and innova-
tion in their strategic decision-making, especially within an
AI-driven environment [398] [395] [399]. AI marketing tools
like ChatGPT may draw information from unreliable sources,
leading to the provision of incorrect information. In the worst-
case scenario, if inaccurate data overwhelms the system, it
can lead to false outcomes [396] [400]. Ethics is a significant
concern as LLMs can generate content that appears human-
generated, raising transparency and disclosure issues [401].

Negative consumer perceptions could arise if AI-generated
content is overwhelming or perceived as inauthentic, leading
to reduced trust in the brand. Compliance with regulations
and data protection laws is crucial to avoid potential legal
consequences [402]. Moreover, marketers may become depen-
dent on third-party AI providers, leading to vendor lock-in or
reliance on external platforms. To mitigate these risks, mar-
keters must use AI responsibly, provide clear disclosure when
AI is involved, and maintain human oversight to verify the
accuracy and appropriateness of AI-generated content [403].
Regular audits, continuous monitoring, risk assessment with
its mitigation, and adherence to AI ethics guidelines can help
ensure that marketers’ use of LLMs and ChatGPT aligns with
best practices and meets consumer expectations. It is at the
interjunction of the risks (market and consumers both) and
ethics where we can balance the scale which opens the window
of opportunity for responsible AI adoption (see Figure 7).

1) Customer Service : Another application that has wit-
nessed a significant impact is customer service. LLM-powered
chatbots and virtual assistants are increasingly being integrated
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Fig. 7: The Tradeoff for Responsible AI: Example of market-
ing.

into customer support systems, providing companies with a
scalable and efficient means of addressing customer inquiries
and concerns [404] [405]. Unlike human representatives,
LLM-powered chatbots can process and respond to inquiries
instantaneously, enhancing the overall customer experience
[406]. The use of LLMs also leads to cost savings for com-
panies [407]. Due to the high cost associated with employing
dedicated customer service agents, an increasing number of
companies are exploring the use of NLP to assist human agents
[408]. NLP enables the auto-generation of responses that can
be directly utilized or modified by agents. In this context,
LLMs emerge as a natural and suitable solution.

In [406], the authors have introduced a cost framework
to evaluate NLP model utility for customer service. They
compare three LLM strategies - prompt engineering, fine-
tuning, and knowledge distillation - using agent feedback.
The system was able to generate dynamic and context-specific
suggestions to assist the customer. Similarly, ChatGPT can be
trained and fine-tuned with customer-specific data, enabling it
to deliver personalized and customized answers for individual
customers.

Furthermore, LLMs and ChatGPT/GPT-4 have exhibited
exceptional potential in customer service, but they also come
with inherent limitations and challenges. Context understand-
ing remains a critical issue, as LLMs and ChatGPT/GPT-4 may
struggle to grasp complex queries fully, resulting in responses
that lack nuance and accuracy. Additionally, emotional intel-
ligence, scalability, and the preference for human interactions
represent further challenges in delivering seamless customer
service experiences [409].

VI. AI-ENABLED TOOLS: THE FUTURE OF EVERYTHING

AI tools are becoming increasingly powerful and versatile.
They can be used to generate text [410], images [411], and
videos [412], translate languages [286], write different kinds
of creative content [413], and answer the users questions in
an informative way [414]. These powerful tools provide a
user-friendly interface for the optimization of daily routine
tasks [85]. One such example is the popular website, "There’s
an AI for THAT" 5, which contains about ˜7K AI tools for ˜2K

5https://theresanaiforthat.com/

https://theresanaiforthat.com/
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different tasks. In this Section, we discuss various AI-enabled
tools based on LLMs or text prompts.

A. Chatbots / ChatGPT

Chatbots are frequently used in customer service applica-
tions where they can respond to queries, offer assistance,
and fix problems [50]. High-tech companies are likely to
become even more interested in using chatbots to improve
their customer experience and grow their businesses. For
example; OpenAI developed ChatGPT [415], Google devel-
oped Bard [416], and Meta launched Llama-2 [15]. Here, we
critically compare these Chatbots in terms of accuracy, ease
of use, cost, integration and others.

1) Comparison between Chatbots: ChatGPT and Google
Bard are two of the most popular LLMs available today [417],
[418]. The third popular LLM being Bing, which is based on
GPT-4. Bard is based on the LaMDA [419] (Language Model
for Dialogue Applications) architecture, while ChatGPT is
based on the GPT-3 (Generative Pre-trained Transformer 3)
architecture. ChatGPT was modified and improved using both
supervised and reinforcement learning methods [420], with
the assistance of human trainers (RLHF) [80]. The learning
includes three steps;(i) supervised fine-tuning [421], reward
model [422], and maximum policy optimization [423]. First,
a pre-trained GPT-3 model is used and fine-tuned with the
help of labelers by creating a supervised dataset. After the
supervised fine-tuning, different input prompts are fed to the
model, and 4 to 7 responses are generated for each response,
the labelers rank each response of the model. The responses
are scalar values, which are used to train the reward model. In
the third step, the model is tested on unseen input sequences,
responses are evaluated by the reward model, and the output
reward is used to fine-tune the parameters of the model, to
incorporate more human-like characteristics and behaviors via
reinforcement learning [424].

LaMDA is a newer architecture (conversational neural
language models) that is specifically designed for dialogue
applications. Bard uses LaMDA, which is a hybrid architecture
that combines batch processing [425] and streaming process-
ing [136]. This allows BARD to handle both historical and
real-time data. It is trained on a massive dataset of text and
code, while ChatGPT is trained on a massive dataset of text,
which means that Bard has a broader understanding of the
world and can generate more comprehensive and informative
responses, while ChatGPT is better at generating creative and
interesting responses.

Both models are capable of generating text, translating
languages, writing different kinds of creative content, and
answering your questions in an informative way. However,
there are some key differences between the two models, such
as ChatGPT is more creative, while Google Bard is more
authentic. Bard is more personalized than ChatGPT, the re-
sponses generated by Bard are more tailored to specific needs,
and it is also more scalable than ChatGPT. A comparison
between ChatGPT, Bard, and BingChat is made in [416] on
VNHSGE [426] dataset, which is a Vietnamese High School
Graduation Examination Dataset for Large Language Models.

The results indicate that BingChat performed better than
Bard, and ChatGPT. All models perform better than the
Vietnamese students [427]. In fact, a comparison between the
three popular LLMs services, namely, ChatGPT, Bard, and
Microsoft Bing has been of interest to researchers and field
practitioners. A recent work by Bhardwaz et. al [428] pro-
vided a general comparison of these three models considering
accuracy, response time, user experience, and engagement.
From their experiments, they found that ChatGPT provided
the most relevant responses and accuracy, Bard provided the
quickest response and Bing provided the best user experience
and engagement. Another comparison by Campello et. al [429]
experimented with four different chatbots (above three and
Quoras Poe [429]) when asked to solve an intelligence test
for recruitment in Brazil found that all four chatbots scored
above the 95th percentile while ChatGPT and Bing scored
99th percentile. These are in addition to comparisons being
made for typical as well as atypical specific use cases such
as news fact-checking (GPT-4 performing the best) [430],
taxes [431] as well as political leaning [432] and more. To
complete the discussion, Table VIII presents a comparison
between ChatGPT, Google Bard, Llama-2, and Microsoft Bing
Chatbots.

B. AI tools for image generation, history, medical, industry
1) Diffusion Models: Diffusion models are a scheme of

generative models that have provided excellent performance in
a variety of applications, most notably the synthesis of images
[433]. Starting from a sample of a target data distribution,
a diffusion model works in two steps, a forward diffusion
process and a reverse diffusion process. The forward diffu-
sion process gradually adds increasing amounts of Gaussian
noise[434] to the sample image successively over time, until
it becomes the Gaussian distribution [435]. The model is then
tasked to start from this noisy image version and undo the
noise addition by going through a reverse process to recreate
the original data [436], [20].

The forward process takes the form of a Markov chain [437]
where the distribution at a given time instant only depends
on the sample from the timestep immediately preceding it.
Therefore, the distribution of the corrupted samples at any
given point with respect to the original sample is the product
of the successive single-step conditionals up till that point.

Moreover, typically the number of passes of noise addition
is in the order of a thousand with the increments each time
being quite small. This is necessary to ensure that the reverse
process of “recovering” the original sample is more achievable
as it has been shown that with infinitely small step sizes,
the reverse form will be able to achieve the same functional
form as the forward process [438]. Diffusion models use this
observation in the forward process.

Similar to the forward process, the reverse run is also set
up as a Markov chain. The model starts from a Gaussian
noise sample and goes through the sample one timestep at
a time to remove noise at each step. In essence, the forward
process is designed to push the sample out of the original data
distribution while the reverse process is designed to learn to
bring it back into the original data distribution.
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A diffusion model can be interpreted as a latent variable
generative model similar to a variational autoencoder (VAE).
The forward process can be thought of as producing latent
from data and the reverse process is as converting latent to
data. However, as opposed to VAEs, the forward process for
diffusion models is typically fixed so that only a single network
needs to be trained that deals with the reverse process. The
objective function is the variational lower bound on the log-
likelihood of the data. It consists of a log-likelihood term
or reconstruction term minus a KL divergence term [439]
also called the regularization term [440]. The log-likelihood
terms [441] encourage the model to maximize the expected
density assigned to the data. The KL divergence term encour-
ages the approximated distribution to the prior distribution
on the latent variable. Moreover, diffusion models can also
be directed to sample conditionally based on a variable of
interest which can be incorporated as an additional input
during training. This has been the reason that diffusion models
have shown better performance than Generative Adversarial
Networks [442] in a variety of image generation tasks includ-
ing perceptual quality ([443], text to image generation ([444],
image inpainting [445] and manipulation of images[446].

2) Image generation: The images contained in this section
were generated by a model incorporating the stable diffusion
process in to existing diffusion models as suggested in [447]
and uses text to generate photorealistic images. This model
was released by stability.ai [448] and was demonstrated to be
capable of generating images which were previously difficult
to generate, such as images of people with accurate facial
features as well as objects with abnormal or impossible shapes.
This capability of being able to generate a diverse set of
images from a text input without requiring a large amount
of data for training and its public availability opened up text-
to-image generation usage for a host of applications. Table
VI showcases the output of image generation using various
prompts.

In total, nine different prompts were used, these required
the AI model to generate humans and natural scenery. The
first four prompts tended to depiction of famous personalities
(sportsmen and politicians in this case), Muhammad Salah,
Lionel Messi, Mike Tyson and Imran Khan. The prompts
used were Mo Salah playing cricket, Lionel Messi playing
tennis, Mike Tyson playing football and Imran Khan as a hero.
The second prompt used was regarding the famous painting
Monalisa. The prompt was "Generate an image of Monalisa
showing her teeth in a wedding ceremony". The third prompt
related to natural scenery and was written as Area of rocks,
deep inside the forest, divine domain. Lastly, the fourth prompt
also centered around the generation of humans. In this case,
three prompts were given, A man kissing a girl, Generate an
image of a guy and Generate an image of a woman.

3) Video Generation using text prommpts: Text-to-video
generation is a challenging task that involves generating video
sequences from textual descriptions or prompts [412]. The
video generation process involves text understanding [449],
video scene generation [450], temporal structure and transi-
tion [451], and video synthesis [452]. One such model is
T2V [453], which is a video generation model using text

Fig. 8: An example of PdfGPT. Upload any PDF document and
start chatting. It helps in summarizing, highlighting, critiquing,
and simplifying the content.

prompts.

C. AI tools for text classification

AI tools are increasingly being used for text classification.
Text classification is the process of assigning a category to a
piece of text [454]. For example, a text classification tool could
be used to classify emails as spam or not spam or to classify
news articles as business, sports, or entertainment. Some
of the popular libraries include Scikit-learn, NLTK [455],
and Spacy [456]. Similarly, Hugging Face’s Transformers
library [457] is the state-of-the-art toolkit for developers to
implement AI text generation capabilities into their appli-
cations; including fine-tune models for sentiment analysis,
language translation, and text summarization.. This library
offers a collection of pre-trained language models, including
GPT-3.5 and various other popular models like Bidirectional
Encoder Representations from Transformers BERT [69] and
RoBERTa [70].

D. AI tools for Literature review Research

AI tools are increasingly being used to assist with literature
review research. These tools can be used to automate tasks
such as: Identifying relevant literature, extracting information,
and summarizing the content [458], [459]. One such tool is
PDFGPT [460], which uses the GPT-3 model to generate
responses to user queries. PDFGPT can be used to extract
information from PDF files, answer questions about the con-
tent of PDF files, and generate summaries of PDF files. An
example of PDFChat is shown in Fig. 8.

Another interesting AI tool is elicit.org, which helps au-
tomate literature reviews. The website offers a variety of
features, including, finding relevant literature, summarizing
and visualizing literature, and extracting relevant information.

1) Fake references: One of the major drawbacks of using
AI tools such as ChatGPT in research is the creation of fake
citations and references [461], [462]. Fake citations is an
inherent consequence of the generation capabilities of LLMs
wherein they may prefer to lean on their generation capabilities
rather than on search. One way to think about this is in
terms of sets where the sample space of there being any
number of possible citations/references, be them fake or real
is large (in terms of word makeup) whereas the pool of real
citations/papers which have been published is only a small
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TABLE VI: Image generation examples
Prompt: Different famous personalities in roles other than their original ones
Negative Prompt: blurry, photorealistic

Generated Images:
a b c d

Prompt: Generate an image of Monalisa showing her teeth in a wedding ceremony
Negative Prompt: blurry, low resolution, artistic

Generated Images:
a b c d

Prompt: Area of rocks, deep inside the forest, divine domain, river, sunset, kids playing
Negative Prompt: artistic, blurry, background

Generated Images:
a b c d

Prompt: A man kissing a girl/ Generate an image of a guy/ woman
Negative Prompt: artistic, blurry, background, young

Generated Images:
a b c d
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subset of the total possible sample space. So, when an LLM is
asked to provide citations, given its inherent generative nature,
it might end up generating text that looks like a research
article/source but in reality, might just be a sequence of words
that are objectively similar in linguistic/language generation
terms [463].

The potential complications that are being created due to
the uncontrolled usage of these tools result in many issues
among which misleading the scientific community carries vital
importance. Fake citations can undermine the credibility of
the author [464]. This can lead to inaccurate conclusions
and potentially harmful decisions being made based on faulty
information. Using fake citations and references can hide the
true sources of information used in the research, making it
difficult for others to replicate or verify the findings. To avoid
these complications, it is important to ensure that any citations
and references used are accurate and reliable and that they have
been properly vetted and sourced. Finally, developers of AI
tools should implement rigorous quality control measures to
ensure that their tools generate accurate and reliable citations
and references [465].
Recently, WebChatGPT 6 is an impressive extension that has
the potential to address the pervasive issue of fake citations.
With the installation of this extension, WebChatGPT becomes
equipped with robust capabilities to detect and eliminate fake
citations. This advanced tool uses sophisticated algorithms to
analyze the authenticity and reliability of citations, ensuring
that only accurate and legitimate sources are included.

E. AI tools for Coding and Development / CodeGPT

AI tools are increasingly being used to help programmers
write code. These tools can be used to automate tasks such
as code completion, refactoring, linting, and testing [466].
GitHub Copilot [467] is an AI-powered code completion
tool developed by GitHub in collaboration with OpenAI. It
utilizes OpenAI’s GPT-3 language model to assist developers
in writing code more efficiently. Meta also released the Code-
Llama [468], a LLM model, that can use text prompts to
generate and discuss code. It has the potential to generate
clean and robust code with well documentation in Python,
c/C++, Java, PHP, Typescript (Javascript), Bash and other
programming languages.

Developers can interact with the LLM by providing prompts
or queries related to their coding needs, and the model
can generate relevant code segments or suggest solutions
to programming problems [469]. LLMs have been used to
develop applications in three primary categories which in-
clude: (a) Question Answering, (b) Creativity (c) Multi-step
planning [469]. These template categories are illustrated in
Fig. 9. In Table VII, we present a list of publicly available
AI/LLM tools for a variety of applications.

VII. GPT-PLUG-INS

GPT-Plugins are a new way to extend the functionality of
ChatGPT. They allow developers to create custom apps that

6https://tools.zmo.ai/webChatGPT

(a) Question & Answering

(b) Creative Applications

(c) Multi-step Planning

Fig. 9: Templates for LLM-based application development.
GPT is taken as an example scenario representing LLMs.

can be integrated into ChatGPT, providing users with new
features and capabilities [479]. GPT-Plugins can be used to
do things, such as access to external data sources, automate
tasks, and enhance user experience [480]. In this Section, we
demonstrate several GPT-Plug-ins.

A. ChatGPT Plug-ins

Arguably, the watershed event in the use of ChatGPT
was the introduction of plugins by OpenAI. Plugins allow
ChatGPT to communicate with third-party sources of data and
knowledge bases, thereby providing a platform to extend Chat-
GPTs capabilities for composition, summarization, nuanced
tasks such as sentiment analysis and more to any resource
on the internet. Moreover, given that ChatGPT has provided
sufficiently acceptable performance for various tasks, plugins
allow for ChatGPT to provide answers to queries with updated
information from the internet which may not be present in its
training dataset [422].

This also has the advantage of providing references for
queries to add credibility to answers. For e.g., Bing, the search
engine by Microsoft works with OpenAI’s ChatGPT through
its API to allow its users to ask questions from its Bing search
system and get answers with references/sources mentioned.
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TABLE VII: Publicly available AI /LLM tools

Tools Function Link Availability
ChatGPT Conversational AI Chatbot ChatGPT Both

RoomGPT Redesign your room in eight different themes RoomGPT Public

HomeGPT Redesign your home and office HomeGPT Subscription based

PDFGPT.IO Turns PDF into the knowledge base for a ChatGPT type
interface

PDFGPT Subscription based

TexGPT Harnesses GPT-3’s power to help you write in Overleaf TexGPT Public

AcademicGPT An AI tool to write and review scientific papers, critical
analysis and explanation of complex concepts

AcademicGPT Public

DiagramGPT An AI tool for creating scientific diagrams and flow
charts of different processes

DiagramGPT Public

BloombergGPT A Large Language Model for Finance BloombergGPT NA

AutoGPT Auto-prompting without the user intervention AutoGPT Public

AgentGPT Autonomous AI agent in the browser AgentGPT Public

HuggingGPT [470] A framework to connect various AI models to solve AI
tasks

HuggingGPT Public

XrayGPT [471] Automated analysis of chest radiographs XrayGPT Public

Video-ChatGPT A vision language model for video understanding and
conservation about videos

Video-ChatGPT Public

ClimateGPT Large language model for a conversation about the cli-
mate in English and Arabic

ClimateGPT Public

CodeGPT An AI assistant for coding CodeGPT Public

Code Llama Open Foundation Models to generate and discuss code Code Llama Public

MiniGPT-4 [280] Multi-modal model for a number of tasks, including im-
age generation and website development, using prompts

MiniGPT Public

BiomedGPT [472] A Unified and Generalist Biomedical Generative Pre-
trained Transformer for Vision, Language, and Multi-
modal Tasks

BiomedGPT Public

SkinGPT [473] An Interactive Dermatology Diagnostic System

PatientGPT An AI engine to transform patient navigation by pro-
viding healthcare organizations and their patients with a
seamless and customized experience

PatientGPT Subscription based

SentimentGPT [474] Exploiting GPT for sentiment analysis SentimentGPT Public

DrugGPT [332] A GPT based model to design potential ligands, targeting
specific proteins

DrugGPT Public

Elicit AI research assistant, automated literature reviews Elicit Public

Citation AI AI research assistant to generate real evidence-based
answers

Citation AI Subscription based

Midjourey AI AI tool to create realistic synthetic images Mid Journey Subscription based

DALL.E2 DALL·E 2 is an AI system that can create realistic images
and art from a text description

Daall-e-2 Subscription based

VALL-E An audio synthesization tool Vall-e Public

Gen-2 Video generation using text, images, and videos Gen-2 Public

AI Avatar Avatar generation AI Avatar Public

Langchain [475] Building applications with LLMs through composability Langchain Public

https://chat.openai.com/
https://www.roomgpt.io/
http://homgpt.com/
https://pdfgpt.io/
https://blog.writefull.com/texgpt-harness-the-power-of-ChatGPT-in-overleaf/
https://github.com/binary-husky/gpt_academic
https://www.eraser.io/diagramgpt
https://www.bloomberg.com/company/press/bloomberggpt-50-billion-parameter-llm-tuned-finance/
https://autogpt.net/
https://agentgpt.reworkd.ai/
https://huggingface.co/spaces/microsoft/HuggingGPT
https://github.com/mbzuai-oryx/XrayGPT
https://github.com/mbzuai-oryx/Video-ChatGPT
https://github.com/mbzuai-oryx/ClimateGPT
https://code-gpt-docs.vercel.app/
https://github.com/facebookresearch/codellama
https://minigpt-4.github.io/
https://github.com/taokz/BiomedGPT
https://www.semalytix.com/patientgpt/
https://github.com/DSAatUSU/SentimentGPT
https://github.com/LIYUESEN/druggpt
https://elicit.org/
https://consensus.app/search/
https://www.midjourney.org
https://openai.com/product/dall-e-2
https://github.com/enhuiz/vall-e
https://research.runwayml.com/gen2
https://ai-avatar-generator.com/
https://github.com/hwchase17/langchain
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TABLE VIII: Comparison of Bard, ChatGPT, Llama-2 and Bing Chat

Feature ChatGPT (GPT 3.5) Bard Bing Chat (GPT - 4) Llama2
Accuracy Not as accurate as Bard Generally more accurate

than ChatGPT
Most accurate least accurate-‘

Versatile Generally more versatile
than Bard

Can generate text, trans-
late languages, and write
different kinds of creative
content

Not as versatile as Chat-
GPT or Bard

Less than ChatGPT and
Bard both better than Bing

Company OpenAI Google Microsoft Meta

Primary Purpose Creative text generation Conversational AI Information retrieval Text generation, answer
questions, language trans-
lation etc

Integration Standalone model Standalone model Integrated with Bing
search engine

Standalone model

Easy to use User-friendly User friendly Not as user-friendly as
ChatGPT or Bard

User-friendly

Access to online data No, trained on data avail-
able till 2021

Yes Yes Yes

Cost GPT 3.5 free / GPT-4 (20
USD per month)

Free Free Free

Availability Publicly available Publicly available Publicly available Publicly available

Architecture Generative pre-trained
transformer [476]

Pathways Language mod-
els (PaLM2) [477]

Next Generation
GPT [478]

Transformer

Plagriasm detector Yes No No Less likely to generate
plagiarised text

Limitations May generate less coher-
ent or incorrect text

Not as creative as Chat-
GPT

May provide limited or in-
complete information

Trained on a smaller
dataset than ChatGPT and
Bard, may not generate
text for some topics

The integration of LLMs in to search engines, thereby allowing
users to get answers to human like queries has spearheaded the
search engine business in to a new direction [481]. Moreover,
this addition of credibility is an important consideration to
enable use of ChatGPT and similar LLMs in other critical
tasks.

While, at the time of this manuscript, OpenAI still hasn’t
rolled out plugin development access to all developers, there
have been several notable use cases that have already come
out. For example, twelve companies have been listed on the
OpenAI website 7, namely, Expedia, FiscalNote, Instacart,
KAYAK, Klarna, Milo, OpenTable, Shopify, Slack, Speak,
Wolfram, and Zapier to have created the first plugins. The
power that plugins provide in terms of flexibility to develop
new applications has drawn a big attention towards plugin de-
velopment. Apart from the above-mentioned early developers,
two notable plugins already made available by OpenAI are the
Code interpreter and the knowledge-based retrieval plugin.

• Code Interpreter: The Code interpreter is a built-in
Python code interpreter which can be used for performing
logical calculations as well as writing code. The inter-
preter can use the language model’s understanding of a
human language description of a problem and use that as
input to develop Python code for the problem’s solution.

7https://openai.com/blog/ChatGPT-plugins

• Knowledge-base retrieval: A knowledge-based retrieval
plugin has also been open-sourced8 which can be used by
developers. This plugin can be used to enable ChatGPT
to access data and then use it to gather useful or relevant
information from the data. These can be files, emails,
notes etc. All this by using queries or questions in normal
human language.

Lastly, third-party plugins are also an option. These can be cre-
ated and have been created by several entities. Fig. 13 demon-
strates the use of two third-party plugins, namely ShowMe
which can be used to generate diagrams and ScholarAI can
be used to access academic journals. Table IX provides a list
of plugins available for ChatGPT.

VIII. GUIDELINES FOR EFFECTIVE USE OF LARGE
LANGUAGE MODELS

In this section, we provide a list of steps as well as
guidelines for effective and responsible use of LLMs [488].

A. Model selection and deployment guidelines

• Identify the task: Determine the task, LLMs can be used
for a wide range of tasks, such as text classification, sen-
timent analysis, question answering, and text generation
[489], [490], [491].

8https://github.com/openai/ChatGPT-retrieval-plugin
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TABLE IX: Some ChatGPT Plugins. This list is not exhaustive and more and more plugins are being developed.

Name Task Example use cases
Language
Translation [286]

Translate between languages This is particularly useful for business, travel, medical science, ed-
ucation and law where documents and information from different
languages might need to be translated and students can use it to learn
new languages

Sentiment
Analysis [482]

Determine tone of text or conver-
sation

This can be used for the task of market research, customer analysis
and social media monitoring

Spell Checker [483] Check and correct spelling mis-
takes

This service can be useful for formal and informal communication
such as emails, word processing and also browsing the web

Question-
Answering [484]

Answer questions for a user query This can find use in education to build learning platforms, search
engines, especially when a more ’understandable’ response is required
and also be used in automated customer service agents

Knowledge
Graph [485]

Find and present information from
a database

Knowledge graphs can be used for improving on search queries (i.e.
search engines), integrating data sources better and of course creating
recommendations.

Speech Recogni-
tion [486]

Understand and transcribe speech
audio

This service can be used in audio based customer service, transcription
services through dictation and also provide services to differently abled
people through audio

Emotion
Detection [487]

Detect emotion from text or audio This service can be used for applications relating to market research
using verbal ques, interaction in vehicles to improve safety, used for
healthcare as well as assessing reactions to games and other media

• Choose the right model: Choose a pre-trained LLM that
is suitable for your task. There are several pre-trained
LLMs available, such as GPT-3, BERT, and RoBERTa.
Each model has different strengths and weaknesses, so
it’s important to choose the one that best fits your needs
[250].

• Fine-tune the model: Fine-tune the pre-trained model on
your specific task. This involves training the model on
your own dataset to adapt it to your specific task. Fine-
tuning involves adjusting the model’s parameters, such
as learning rate, batch size, and number of epochs, to
optimize its performance on your task [492].

• Evaluate the model: Evaluate the performance of the
model on a test dataset. This involves measuring the
accuracy, precision, recall, and F1 score of the model
on the test dataset [493].

• Deploy the model: Deploy the model in your application
or system. This involves integrating the model into your
application or system and exposing it through an API
or user interface. This step also involves setting up
monitoring and logging to track the performance of the
model in production [494].

• Monitor and retrain the model: Monitor the perfor-
mance of the model in production and retrain it as needed.
This involves regularly checking the performance of the
model and identifying any areas for improvement [415].

• Continuously improve the model: Continuously im-
prove the model by incorporating user feedback and up-
dating it with new data. This involves collecting feedback
from users and incorporating it into the model to improve
its performance [495].

B. Ethical guidelines
The following guidelines will help to ensure the responsible

development and use of LLMs focusing on user privacy, bias
mitigation, ethical considerations, transparency, competition,
collaboration, and environmental impact [80].

• Protect User Privacy: LLMs should uphold user privacy
and protect user data. This includes safeguarding user-

generated content, such as emails, messages, and personal
information. Best practices should be followed, such as
data minimization, anonymization, and encryption, to
ensure user privacy is not compromised [496].

• Mitigate Bias: LLMs can inherit and amplify biases
present in the data they are trained on. Developers and
researchers should actively identify and mitigate bias in
their models. This can be achieved through diverse and
inclusive training data, bias detection techniques, and
evaluation metrics [497].

• Address Ethical Implications: LLMs have the potential
to be used for harmful purposes, such as spreading disin-
formation or generating deepfakes [498]. Ethical consid-
erations; including, ensuring accountability, transparency,
and responsibility in the development and deployment of
models must be taken into account [499].

• Foster Transparency: It is crucial that the inner work-
ings of LLMs are transparent and explainable. This
can help build user trust and facilitate understanding of
the model’s behavior. Explainability techniques, such as
attention mechanisms and model interpretation tools, can
be employed to provide insight into the decision-making
process of models [364].

• Promote Competition: The development and deploy-
ment of LLMs should not be monopolized by a small
number of companies or individuals. This can limit in-
novation and negatively affect competition. Collaboration
between academia, industry, and government can foster
competition, while also promoting responsible develop-
ment and use of models [500].

• Encourage Collaboration: Collaboration between re-
searchers, developers, and industry should be encour-
aged to promote the responsible development and use of
LLMs. This includes open sourcing models and data, as
well as facilitating the sharing of research findings and
best practices [501].

• Minimize Environmental Impact: Training LLMs can
require significant computational resources and energy,
which can have negative environmental impacts. De-
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Fig. 10: Demonstration of code generation using ChatGPT

Fig. 11: Demonstration of code debugging using ChatGPT

Fig. 12: Demonstration of the ShowMe plugin.

Fig. 13: Demonstration of the ScholarAI plugin.

velopers should strive to create more energy-efficient
models and explore alternative training methods, such
as model distillation or transfer learning, to reduce the
environmental footprint of models [502], [503].

• Optimization is exploitation: is a statement that holds
particular significance in the context of LLMs and AI
technologies [504]. While these technologies have the
potential to revolutionize the way we live and work, they
also have the potential to perpetuate existing inequalities
and introduce new forms of exploitation [505]. Therefore,
it is important to carefully consider the ethical implica-
tions of optimization in the development and deployment
of LLMs and AI technologies [77].
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IX. CHALLENGES AND LIMITATIONS OF LARGE
LANGUAGE MODELS

Although LLMs have made significant contributions to
various domains, they have significant limitations and chal-
lenges [105], [114]. LLMs are currently perceived as forerun-
ners of Artificial General Intelligence (AGI). However, despite
their phenomenal success in conversational tasks, the state-of-
the-art LLMs still lack in many aspects that makes them less
likely an early manifestation of AGI. We first provide a quick
list of the challenges and limitations of LLMs (Fig. 14) and
then present a more detailed discussion on a few limitations
of critical concerns.

A number of challenges and limitations have been fo-
cused on, including biased data, overreliance on surface-level
patterns, limited common sense, poor ability to reason and
interpret feedback [506], [507]. Other issues include; the need
for vast amounts of data and computational resources [508],
limited generalizability [509], lack of interpretability [510],
difficulty with rare or out-of-vocabulary words, limited under-
standing of syntax and grammar [511], and limited domain-
specific knowledge [512].

The susceptibility to adversarial attacks [242], ethical con-
cerns [75], difficulty with context-dependent language [249],
absence of emotion and sentiment analysis [513], limited
multilingual capabilities [514], limited memory [515], lack
of creativity [413], and restricted real-time capabilities [489]
are also critical concerns. The high costs of training and
maintenance, limited scalability, lack of causality, inadequate
ability to handle multimodal inputs, limited attention span,
limited transfer learning capabilities, insufficient understand-
ing of the world beyond text, inadequate comprehension of
human behavior and psychology, limited ability to generate
long-form text, restricted collaboration capabilities, limited
ability to handle ambiguity, inadequate understanding of cul-
tural differences, limited ability to learn incrementally, limited
ability to handle structured data, and limited ability to handle
noise or errors in input data [516], [517], [518], [519], [520],
[521], [92] are some of the key challenges in safe, responsible,
and efficient deployment of LLMs.

A. Training Data Requirements

Large Language Models (LLMs) require a large corpus
of data for pre-training the model. Collecting and curating
these datasets can be extremely challenging. The size of the
dataset makes it impossible to read or assess the quality of
the dataset making it prone to having duplicates, making the
model biased and degrading its responses [522] [523]. It also
makes it difficult to assess the model as the training data may
contain data similar to testing samples leading to incorrect
evaluation metrics. Since there is no way of checking the
datasets manually, it may contain confidential or personal
information too, such as telephone numbers leading to privacy
leaks during prompting [506]. Due to the fact that the data
distribution and requirements in LLMs is more of a black
box, it remains uncertain what amount of data is required for
different tasks.

Challenges
in LLMs

Computational 
Requirements

Tokenization

Foundation
Models Risks

Fine Tuning

Inference
Latency

Training Data

Limited Context
Length

Knoweldege
Updating and  

Refinement 

Lack of
Explainability

Information
Hallucination

Reasoning
Errors

Prompt
Injection, Jail
Break, Data

Injection

Adversarial
Attacks

Bias

Behavioral
Changes over

time

Spelling,
Counting Errors

Fig. 14: Challenges in LLMs.

B. Tokenization Problems

LLMs heavily rely on tokenization which consists of break-
ing down a sequence of words into tokens for the models input.
Most LLMs use subward tokenization [56], which is used to
create tokens by splitting the words to handle non-familiar
vocabulary and at the same time maintaining the computational
complexity. However, there are some major drawbacks of
tokenization which includes, different combinations of token
can be used to relay the same prompts, which may lead to
unfair pricing for the APIs of these LLMs. In a multilingual
environment it may cause unexpected model responses due to
different spacing in the prompts for languages such Taiwanese
mandarin or Chinese mandarin [524].

C. Computational Requirements

Pre-training LLMs requires significant computational costs
which can be very expensive, both financially and environ-
mentally. Millions of dollars are spent in training these LLMs
with thousands of compute hours and energy consumption.
These are classified as Red AI [525], referring to models
achieving state of the art results due to vast computation.
Scaling these models can also be a challenging task due to
the number of resources invested to train these LLMs. The
concept of Computer Optimal Training [522] was introduced
to address this problem for maximizing the training efficiency
with respect to the corpus and model size. Model parallelism
can also be used to distribute the model and the train it faster.
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D. Fine-Tuning LLMs

Fine-Tuning LLMs is a useful technique to train LLMs
to custom tasks by training further on these task-specific
datasets [48]. However, it requires a high amount of mem-
ory and large compute resources to store model gradients,
parameters and activations, along with storing these fine-tuned
models, limiting its access to a few institutions. Parameter-
Efficient Fine-Tuning is a technique that can be used to
address this problem which consists of updating a subset of
model parameters such as prefix fine-tuning [526], prompt-
tuning [527] and adapters [528]. Although techniques like
Low-Rank Adaptation (LoRA) [529], or LongLora [530], or
QLora [531] can be used to optimize the computation cost,
but still computational demands remain a significant barrier
for Fine-Tuning LLMs.

E. Inference Latency

High inference latency is one of the major challenges of
LLMs which is mainly due to large memory footprints and
lack of model parallelism. Several techniques can be used to
mitigate this problem. Efficient Attention [532] can be used for
accelerating attention through sub quadratic approximations
such as multi-attention query or flash attention. Quantization
[59] can be used to reduce the large memory footprint by re-
ducing the computational precision of activations and weights.
Pruning [533] and cascading [534] are some more techniques
that can reduce the inference latency drastically for efficient
and seamless responses.

F. Limited Context Length

Limited Context Length is one of the crucial aspects of
LLMs, as it is extremely useful for interpretation of differ-
ent prompts and semantic analysis. Without this contextual
information, it can drastically degrade the performance of
LLMs. There are several strategies that can be used to address
this; Positional Embedding Schemas [535], Efficient Atten-
tion [536] and Transformer alternatives. Different Positional
Embedding Schemes can help LLMs to generalize well to
different prompts which may not exist in the training data.
Transient Global [537] and Luna [538] are some efficient
attention mechanisms that can process larger context lengths
effectively. Recurrent Neural Networks (RNNs) [539] and
State Space Models (SSMs) [540] are good alternative for
transformer-based approaches and are effective for addressing
limiting context length.

G. Knowledge Updating and Refinement

Although LLMs are trained on a large corpus of data,
the factual information learned may become outdated over
time. Retraining the models is a costly process and is not
sustainable. To address this, approaches such as model editing
[541] is a technique which uses non-parametric knowledge
resources to alter a model’s behavior, and preserving model
parameters by feeding new weights to modify the model’s
behavior can be used. However, these approaches are found
to have limited generalizability and may only be applicable

to a limited model architecture. On this end, web plugins
and access to the web can alleviate the knowledge updating
problem.

H. Risks of Foundation models

A foundation model refers to a base or core model that
serves as the fundamental architecture for various machine
learning tasks. In [138], a careful assessment of the risks
and benefits of foundation models is done. A review [489]
also highlights the potential threats and benefits of foundation
models in health and education.

• Bias: Language models have the potential to uninten-
tionally demonstrate bias when the training data used in
their development is biased. According to Schramowski
et al. [542], large pre-trained models designed to mimic
natural languages can inadvertently perpetuate unfairness
and prejudices. The manifestations of these biases are
as follows: (i) Training data bias: Language models
typically rely on extensive datasets of human language
for training [543]. If these datasets contain biases related
to factors such as race, gender, or socioeconomic status,
the model may internalize and reproduce these biases in
its responses. For example, if the training data exhibits a
gender bias, the model may generate responses that favor
a particular gender. (ii) User interaction bias: The re-
sponses generated by Chatbots are influenced by the input
received from users. If users consistently pose biased or
prejudiced questions, the model may learn and perpetuate
these biases in its responses. Consequently, if users fre-
quently ask discriminatory questions targeting a specific
group, the model may generate responses that reinforce
such biases. (iii) Algorithmic bias: Biases can also be
introduced through the algorithms employed in training
and operating language models and Chatbots [544].
For instance, if the model is trained to optimize for a
specific metric, such as accuracy or engagement, it may
prioritize generating responses that align with that metric,
even if those responses are biased in some way. (iv)
Contextual bias: Chatbots generate responses based on
the context provided by users. If the context contains
bias associated with factors like the user’s location or
language, the model may generate biased responses [545].

• Information Hallucination: Hallucination in Natural
Language Generation (NLG) is the generation of text
that is nonsensical or unfaithful to the provided source
content [546]. Hallucinations in LLMs are often the result
of the model’s attempt to fill in gaps in knowledge or
context, with assumptions that are based on the patterns
it has learned during training. This can lead to incorrect or
misleading outputs, which can be particularly problematic
in sensitive applications [390].
The cause of hallucinations in LLMs is an area of active
research. Recent advances suggest that it’s a complex
problem related to the model’s training process, dataset,
and architectural design [547]. In particular, LLMs might
be biased towards producing more "interesting" or fluent
outputs, leading to a higher risk of hallucination [548].
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There have been several proposed methods to mitigate
the issue of hallucinations, one approach is to modify
the training process to explicitly penalize hallucinations,
such as in the case of "reality grounding" [549]. Another
is to provide the model with a larger and more diverse
dataset, which might reduce the risk of the model making
incorrect assumptions [77]. In addition to this, researchers
are exploring the use of "verifiable" or "fact-checkable"
data during training, to teach the model to rely more
on facts and less on its own assumptions [550]. This,
however, requires careful consideration of the data and
metrics used.

• Lack of Explainability: No one can explain a model
containing 175 billion parameters, the advent of LLMs
has ushered in unprecedented advancements in NLP
tasks. However, the sheer complexity and scale of these
models present challenges in terms of explainability
[551], [552]. As LLMs continue to grow in size, with
models containing billions of parameters, the ability to
comprehensively explain their decision-making processes
becomes increasingly elusive [553], [554].
This complexity makes it exceedingly difficult for hu-
mans to understand and interpret the decision-making
mechanisms employed by the model [85]. The lack of
transparency [555] hinders the ability to gain insights
into how specific inputs lead to particular outputs [556].
This, in addition to the intricate architecture of LLMs,
often consisting of deep neural networks, exacerbates the
challenge of explainability [557]. The numerous layers
and complex interactions make it challenging to trace
the reasoning process of the model. While techniques
such as attention mechanisms [558] can provide some
insights into the model’s focus, they do not provide a
comprehensive understanding of how the model arrives
at its final output.
Finally, the lack of explainability in LLMs raises concerns
regarding accountability, trust, and ethical considerations
[559]. In critical domains such as healthcare or finance,
where decisions can have significant implications, it is
crucial to have transparency and the ability to explain the
reasoning behind the model’s predictions [555]. Without
explainability, stakeholders may be reluctant to fully trust
and adopt LLMs for sensitive applications.

• Reasoning Errors: LLM can make mistakes in logical
reasoning [560], either because of ambiguities in the
prompt or inherent limitations in its understanding of
complex logical operations. LLMs cannot plan, reason,
and have limited knowledge and commonsense [561]
about the physical world [562]. From a cognitive sci-
ence perspective, Auto-regressive LLMs at their best
can approximate the Wernicke and Broca areas in the
brain [563].

• Prompt Injection, ’Jail Break’ Attacks [564], Data
Poisoning Attacks: GPT-4 is susceptible to various ad-
versarial attacks. For instance, a malicious actor might
inject misleading prompts, perform ’jailbreak’ attacks to
make the model reveal sensitive information, or use data
poisoning strategies to manipulate the model’s output.

Such vulnerabilities have been discussed in [565], [189]
through experiments.

• Adversarial Attacks: Adversarial attacks on large lan-
guage models (LLMs) are a type of security threat that
can be used to manipulate or control the output of an
LLM. These attacks work by deliberately introducing
small changes to the input text, which the LLM then mis-
interprets and produces incorrect or harmful output [566].
One common type of adversarial attack is called a text
injection attack. In this type of attack, the attacker intro-
duces carefully crafted text into the input, which the LLM
then interprets as a command. For example, the attacker
could inject the text "delete all files" into an LLM that is
used to control a computer system. The LLM would then
delete all of the files on the system [567]. Visual-prompt
based models are also being attacked by these corrupted
prompts [568].

• Behavioral Changes over Time Chen et. al. [569]
investigated the performance of GPT 3.5 and GPT 4 over
time, between March 2023 to June 2023, and found that
the performance can greatly vary over time. For example,
In March, GPT-4 had an accuracy of 84%, but in June, its
accuracy dropped to 51%, a decrease of 33%. However,
many experts suggest that the performance decrease is
due to model drift [570] or prompt drift [571], we need
to prompt better for maintaining the performance.

• Spelling and Counting Errors: Some specific tasks,
like identifying and correcting spelling errors, can be
challenging for GPT-4 due to its statistical nature. An-
other such example are counting errors. Counting error
occurs when the model miscounts or misinterprets nu-
merical quantities. For instance, it may provide incorrect
calculations or misplace decimal points when performing
arithmetic operations, and counting the number of words
or characters in long paragraphs [521], [572].

X. OPEN QUESTIONS

In this section, we evaluate the open questions that are faced
by AI researchers from technical, usage and philosophical
standpoints.

A. Environmental and Energy Resources

Studies have revealed that the training process for GPT-
3 alone used up 185,000 gallons of water, equivalent to
what’s needed to fill a cooling tower of a nuclear reactor
[573]. This high consumption of water is primarily due to the
cooling process of data centers, which necessitates a massive
amount of water to regulate the servers’ optimal temperature.
Moreover, it is expected that the development of newer and
advanced version models would need even more significant
amounts of water due to their larger data parameters [238].
This concern has been discussed in [574], which presents a
method to estimate the water footprint of AI language models
and suggests more information transparency in this regard.

Apart from water usage, the training of LLMs demands a
considerable amount of electricity. The training of OpenAI’s
GPT-3 alone resulted in the release of 502 metric tons of
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carbon, which could provide energy to an average American
household for hundreds of years [575]. The amount of energy
consumed by AI tools during training can be staggering,
with some estimates suggesting that it can take hundreds of
thousands or even millions of kWh to train a single large-
scale model like GPT-3 [576], [577]. This electricity usage
also contributes to indirect water consumption through power
generation for data centers located off-site which should be
taken into account, leading to carbon emissions [578].

The energy consumption of AI training has significant
implications for the environment, particularly in terms of
greenhouse gas emissions and climate change [579]. The
energy required to train AI models is often generated from
fossil fuels, such as coal and natural gas, which emit large
amounts of carbon dioxide and other greenhouse gases into the
atmosphere. This can contribute to global warming and other
environmental impacts [580]. As AI becomes more pervasive
in our daily lives, it is important to consider the energy re-
quirements of these systems and develop strategies to mitigate
their impact on the environment [581]. One such solution is for
data centers to adopt more eco-friendly cooling systems, such
as using recycled water or implementing advanced cooling
technologies [582].

Additionally, renewable energy sources, such as solar or
wind power, can be utilized to power data centers, thereby
reducing carbon emissions. Limiting the size and intricacy of
LLMs is another potential solution, as smaller models require
less data, resulting in reduced energy and water consumption
[578]. Another study by Chien et. al [583] found that with
models like ChatGPT, inference services dominated the power
consumption and the power emissions for one year were equiv-
alent to 25 times the training power of GPT3. They suggested
the use of request direction approaches as a promising manner
of reducing power consumption in LLMs. Another approach
which can be explored is to develop more energy-efficient
algorithms and models, which can reduce the amount of energy
required to train AI systems.

While, given that generative AI in general has exhibited high
emissions during training/inference as mentioned previously,
a study found that AI-generated emissions were several times
less than the emissions a human would make for writing and
illustration tasks [584]. This finding indicates to the need to
approach this problem in a more nuanced manner.

B. Ethical Considerations

Inadvertently, LLMs may perpetuate biases inherent in the
training data, resulting in outputs that are biased or discrimina-
tory [585] as discussed previously. The challenge lies in iden-
tifying and mitigating such biases to ensure fair and equitable
treatment across diverse user groups and disciplines [586]. In-
corporating robust data authenticity and consent mechanisms,
data anonymization techniques, and data retention policies into
the development and deployment of LLMs can help ensure the
responsible and ethical handling of user data.

1) Humans VS LLMs: Human interactions offer a deep
level of empathy, emotional intelligence, and the ability to
understand complex nuances in everyday life-situations. Hu-

mans responses are not only based on the current situation
(prompt), but also considers other factors [195].

On the other hand, chatbots powered by AI have their
advantages. They can operate 24/7, handle large volumes of
inquiries simultaneously, and provide quick and consistent
responses [587]. Chatbots excel in scenarios where efficiency,
scalability, and rapid information retrieval are essential. They
can assist with routine tasks, answer common questions,
and provide instant access to information and are becoming
increasingly autonomous [588]. They are now able to make
their own decisions and to take action without human input.
In [589], the authors investigatethe differences between AI-
generated scientific text and human-written scientific text.
They found that AI-generated texts are informative, specific,
objective and coherent, but also repetitive, generic, and bor-
ing [590].

There is also a need to develop new performance metrics
for measuring the intelligence of AI systems, as traditional
methods of assessing intelligence, such as IQ tests [317], are
not well-suited for AI systems, as they are designed to measure
human intelligence [591].

2) Interpretability: Despite their impressive capabilities,
LLMs often lack transparency, making it difficult to under-
stand their decision-making process as has been mentioned
previously. Enhancing the interpretability of LLMs holds
importance for several reasons [592]. It fosters trust and
transparency by enabling users to understand the reasoning
behind a model’s specific response. It aids in identifying and
addressing potential biases, errors, or unethical behavior.

3) Data Efficiency: Data efficiency refers to the efficient
use of training data for developing LLMs [204]. LLMs are
typically trained using extremely large amounts of data to gain
a performance that is acceptable or "human-like". Several tech-
niques which are being explored are data augmentation [593]
and data selection [594], knowledge distillation [595], transfer
learning [596], meta-learning [597], and others [598].

4) Training data contamination from AI-generated content:
Data sources for training large models are typically scraped
from the internet. With the increasing popularity of generative
AI, it is possible that data present on the internet will have a
significant component generated by AI models and therefore,
reduce the human creativity aspect of the training data. Mod-
els, if trained on such data might end up trying to copy the
generation aspects of previous AI models rather than humans
only. One solution to this could be to use AI detection en-
gines [599] that can determine content generated by AI before
passing it through the model during the training process. There
is a need to develop a dependable mechanism [497] to perform
this task and retain the integrity of data.

5) The future as we perceive it: Large Language has vast
potential for practical applications, particularly when com-
bined with human oversight and judgement.

• Use in Low Stakes Applications, Combine with Hu-
man Oversight: LLMs are best suited for low stakes
applications, where errors or inaccuracies can be toler-
ated. Moreover, combining LLMs with human oversight
can significantly mitigate the risk of errors, biases, and
other issues [600], [601].
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• Source of Inspiration, Suggestions: LLMs can serve as
an invaluable source of inspiration and suggestions, help-
ing users brainstorm ideas [602], create content [603], and
make decisions [604].

• Copilots Over Autonomous Agents: Given its limita-
tions, LLMs are better suited as a ’copilot’ that provides
assistance and suggestions, rather than an autonomous
agent that acts without human input or oversight [605],
[606].

• Artificial General Intelligence - AGI Artificial general
intelligence (AGI [607]) is a hypothetical type of artificial
intelligence that would have the ability to learn and
perform any intellectual task. In [312], GPT-4 is found
to have sparks of artificial general intelligence. GPT-4 is
able to perform a variety of tasks; such as solving math
problems, writing creative contents, writing poems and
poetry [608] and answering questions in an informative
way.
However, in our opinion, realizing the dream of AGI is
still far away, despite of the rapid progress in the LLMs
development. The key challenges include; understanding
natural intelligence [609], developing adaptable fully au-
tonomous models [610], and being safe and reliable with
the understanding of the physical world [611], [612].

• Democratizing AI Democratizing AI [613] is a cru-
cial movement that seeks to make artificial intelligence
accessible and inclusive for a wide range of individu-
als and organizations. By breaking down barriers and
providing user-friendly tools, democratization empowers
diverse communities to leverage the power of AI to
solve problems and drive innovation. It emphasizes the
importance of open data, transparency, and accountability,
ensuring that AI systems are unbiased, understandable,
and ethically grounded.
No-code AI platforms [614] may also assist in democra-
tizing AI initiatives [615], by providing a user-friendly
interface that allows users to build and deploy ML
models without any coding experience [616]. No-code
AI can be used to leverage machine learning operations
(MLOps) [617], to ensure models are deployed and man-
aged effectively in production. Through democratization,
we can harness the transformative potential of AI for the
benefit of all, promoting a more inclusive and equitable
future.

XI. CONCLUSION

In this survey, we provided a comprehensive exploration
of LLMs, their implications, technical concepts, and practical
learning and usage. We discussed the potential benefits and
risks of LLMs, and explored the different ways in which they
can be used. We also provided a number of examples of how
LLMs are being used in practice; such as generating images,
chatting with pdf files, and also discussed GPT plug-ins. A
comparision of popular chatbots; such as, ChatGPT, Bard, and
Bing Chat is also provided.

We particularly explored the applications of LLMs in
medicine, engineering, education, finance, media, law, and the

entertainment industry. A list of popular LLM-based open-
source applications for a variety of tasks is also presented.
By delving into the technical intricacies, effective utilization,
and future potential of LLMs, the survey will contribute to
a deeper understanding and usage of these models within
the research community. The survey has shed light on the
key elements that drive the success of large language models
through an examination of their working principles, diverse
architectures, guidelines for prompting, AI-enabled tools and
plug-ins, optimal strategies for employing LLMs, as well
as advancements in pre-training, fine-tuning, and capability
evaluation. A thorough comparison between popular chatbots
has been provided as well.

Furthermore, the survey has also highlighted the importance
of the safe and ethical use of AI tools like ChatGPT and
others. It recognizes the need for developing guidelines and
regulations to address concerns related to security, ethics, the
economy, and the environment. Ensuring the responsible inte-
gration of LLMs in healthcare, academia, and other industries
is critical, as it enables these tools to effectively support
and enhance human endeavors while upholding the values of
integrity, privacy, and fairness. In our opinion, A technology
X can replace a technology Y on a task Z, and can also
help increase the productivity of humans on several tasks.
LLMs have a great potential to transform many fields and
bring positive impact on humans and society .

As the field of LLMs continues to evolve and progress,
future research and development efforts should focus on
improving the accuracy and performance of these models,
addressing their limitations, and exploring new ways to use
them. By adopting the guidelines presented in this survey,
researchers and practitioners can contribute to the ongoing
advancement of LLMs and ensure that they are used in a
responsible and beneficial manner.
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“Recurrent neural network based language model.,” in Interspeech,
vol. 2, pp. 1045–1048, Makuhari, 2010.

[43] S. Hochreiter, “Recurrent neural net learning and vanishing gradient,”
International Journal Of Uncertainity, Fuzziness and Knowledge-Based
Systems, vol. 6, no. 2, pp. 107–116, 1998.

[44] S. Hihi and Y. Bengio, “Hierarchical recurrent neural networks for
long-term dependencies,” Advances in neural information processing
systems, vol. 8, 1995.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[46] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative
position representations,” arXiv preprint arXiv:1803.02155, 2018.

[47] B. Ghojogh and A. Ghodsi, “Attention mechanism, transformers, bert,
and gpt: tutorial and survey,” 2020.

[48] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[49] Q. Liu, M. J. Kusner, and P. Blunsom, “A survey on contextual
embeddings,” arXiv preprint arXiv:2003.07278, 2020.

[50] E. Adamopoulou and L. Moussiades, “Chatbots: History, technol-
ogy, and applications,” Machine Learning with Applications, vol. 2,
p. 100006, 2020.

[51] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B.
Gutierrez, and K. Kochut, “Text summarization techniques: a brief
survey,” arXiv preprint arXiv:1707.02268, 2017.

[52] Y. Ge, W. Hua, J. Ji, J. Tan, S. Xu, and Y. Zhang, “Openagi: When
llm meets domain experts,” arXiv preprint arXiv:2304.04370, 2023.

[53] K. I. Roumeliotis, N. D. Tselikas, and D. K. Nasiopoulos, “Llama
2: Early adopters’ utilization of meta’s new open-source pretrained
model,” 2023.

[54] A. Baladn, I. Sastre, L. Chiruzzo, and A. Ros, “Retuyt-inco at bea 2023
shared task: Tuning open-source llms for generating teacher responses,”
in Proceedings of the 18th Workshop on Innovative Use of NLP for
Building Educational Applications (BEA 2023), pp. 756–765, 2023.

[55] J. J. Nay, “Large language models as fiduciaries: A case study toward
robustly communicating with artificial intelligence through legal stan-
dards,” 2023.



32

[56] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” arXiv preprint arXiv:1508.07909,
2015.

[57] T. Y. Zhuo, Z. Li, Y. Huang, Y.-F. Li, W. Wang, G. Haffari, and F. Shiri,
“On robustness of prompt-based semantic parsing with large pre-
trained language model: An empirical study on codex,” arXiv preprint
arXiv:2301.12868, 2023.

[58] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng,
S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and E. P. Xing,
“Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt
quality,” March 2023.

[59] Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He,
“Zeroquant: Efficient and affordable post-training quantization for
large-scale transformers,” Advances in Neural Information Processing
Systems, vol. 35, pp. 27168–27183, 2022.

[60] A. Zou, Z. Wang, J. Z. Kolter, and M. Fredrikson, “Universal and
transferable adversarial attacks on aligned language models,” arXiv
preprint arXiv:2307.15043, 2023.

[61] D. M. Katz, M. J. Bommarito, S. Gao, and P. Arredondo, “GPT-4
Passes the Bar Exam,” March 2023.

[62] A. Byrd, “Truth-telling: Critical inquiries on llms and the corpus texts
that train them.,” Composition Studies, vol. 51, no. 1, pp. 135–142,
2023.

[63] X. Zhang, B. Yu, H. Yu, Y. Lv, T. Liu, F. Huang, H. Xu, and Y. Li,
“Wider and deeper llm networks are fairer llm evaluators,” arXiv
preprint arXiv:2308.01862, 2023.

[64] I. Yildirim and L. Paul, “From task structures to world models: What
do llms know?,” arXiv preprint arXiv:2310.04276, 2023.

[65] H. Jin, X. Han, J. Yang, Z. Jiang, C.-Y. Chang, and X. Hu,
“Growlength: Accelerating llms pretraining by progressively growing
training length,” arXiv preprint arXiv:2310.00576, 2023.

[66] R. V. P. Marcel, B. E. M. Fernando, and Y. V. J. Roberto, “A
brief history of the artificial intelligence: chatgpt: The evolution of
gpt,” in 2023 18th Iberian Conference on Information Systems and
Technologies (CISTI), pp. 1–5, IEEE, 2023.

[67] E. Y. Chang, “Examining gpt-4: Capabilities, implications, and future
directions,” 2023.

[68] M. Zhang and J. Li, “A commentary of gpt-3 in mit technology review
2021,” Fundamental Research, vol. 1, no. 6, pp. 831–833, 2021.

[69] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language represen-
tations,” arXiv preprint arXiv:1909.11942, 2019.

[70] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[71] A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F.
Tan, and D. S. W. Ting, “Large language models in medicine,” Nature
Medicine, pp. 1–11, 2023.

[72] H. Wang, T. Fu, Y. Du, W. Gao, K. Huang, Z. Liu, P. Chandak, S. Liu,
P. Van Katwyk, A. Deac, et al., “Scientific discovery in the age of
artificial intelligence,” Nature, vol. 620, no. 7972, pp. 47–60, 2023.

[73] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
testing with large language model: Survey, landscape, and vision,”
arXiv preprint arXiv:2307.07221, 2023.

[74] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming,
pp. 1–10, 2022.

[75] J. Cabrera, M. S. Loyola, I. Magaña, and R. Rojas, “Ethical dilem-
mas, mental health, artificial intelligence, and llm-based chatbots,”
in International Work-Conference on Bioinformatics and Biomedical
Engineering, pp. 313–326, Springer, 2023.

[76] A. Creswell, M. Shanahan, and I. Higgins, “Selection-inference: Ex-
ploiting large language models for interpretable logical reasoning,”
arXiv preprint arXiv:2205.09712, 2022.

[77] E. Ferrara, “Should chatgpt be biased? challenges and risks of bias in
large language models,” arXiv preprint arXiv:2304.03738, 2023.

[78] K. Tirumala, D. Simig, A. Aghajanyan, and A. S. Morcos, “D4:
Improving llm pretraining via document de-duplication and diversi-
fication,” arXiv preprint arXiv:2308.12284, 2023.

[79] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. El-
nashar, J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern
catalog to enhance prompt engineering with chatgpt,” arXiv preprint
arXiv:2302.11382, 2023.

[80] P. P. Ray, “Chatgpt: A comprehensive review on background, appli-
cations, key challenges, bias, ethics, limitations and future scope,”
Internet of Things and Cyber-Physical Systems, 2023.

[81] A. Sudmann, “On the media-political dimension of artificial intelli-
gence: Deep learning as a black box and openai,” Digital Culture &
Society, vol. 4, no. 1, pp. 181–200, 2018.

[82] A. Koubaa, “Gpt-4 vs. gpt-3.5: A concise showdown,” 2023.
[83] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,

C. Zhang, S. Agarwal, K. Slama, A. Ray, et al., “Training language
models to follow instructions with human feedback,” Advances in
Neural Information Processing Systems, vol. 35, pp. 27730–27744,
2022.

[84] S. Huang, L. Dong, W. Wang, Y. Hao, S. Singhal, S. Ma, T. Lv,
L. Cui, O. K. Mohammed, Q. Liu, et al., “Language is not all
you need: Aligning perception with language models,” arXiv preprint
arXiv:2302.14045, 2023.

[85] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong, et al., “A survey of large language
models,” arXiv preprint arXiv:2303.18223, 2023.

[86] Y. Du, Z. Liu, J. Li, and W. X. Zhao, “A survey of vision-language
pre-trained models,” arXiv preprint arXiv:2202.10936 , year=2022.

[87] G. Mialon, R. Dessì, M. Lomeli, C. Nalmpantis, R. Pasunuru,
R. Raileanu, B. Rozière, T. Schick, J. Dwivedi-Yu, A. Celikyil-
maz, et al., “Augmented language models: a survey,” arXiv preprint
arXiv:2302.07842, 2023.

[88] R. Qureshi, M. Irfan, H. Ali, A. Khan, A. S. Nittala, S. Ali, A. Shah,
T. M. Gondal, F. Sadak, Z. Shah, et al., “Artificial intelligence and
biosensors in healthcare and its clinical relevance: A review,” IEEE
Access, 2023.

[89] Q. Al-Tashi, M. B. Saad, A. Sheshadri, C. C. Wu, J. Y. Chang,
B. Al-Lazikani, C. Gibbons, N. I. Vokes, J. Zhang, J. J. Lee, et al.,
“Swarmdeepsurv: swarm intelligence advances deep survival network
for prognostic radiomics signatures in four solid cancers,” Patterns.

[90] S. Mohamadi, G. Mujtaba, N. Le, G. Doretto, and D. A. Adjeroh,
“Chatgpt in the age of generative ai and large language models: A
concise survey,” arXiv preprint arXiv:2307.04251, 2023.

[91] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman,
N. Barnes, and A. Mian, “A comprehensive overview of large language
models,” arXiv preprint arXiv:2307.06435, 2023.

[92] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. Dementieva,
F. Fischer, U. Gasser, G. Groh, S. Günnemann, E. Hüllermeier, et al.,
“Chatgpt for good? on opportunities and challenges of large language
models for education,” Learning and Individual Differences, vol. 103,
p. 102274, 2023.

[93] M. Sallam, “The utility of chatgpt as an example of large language
models in healthcare education, research and practice: Systematic
review on the future perspectives and potential limitations,” medRxiv,
pp. 2023–02, 2023.

[94] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, A. dos Santos Costa,
M. Fazel-Zarandi, T. Sercu, S. Candido, et al., “Language models of
protein sequences at the scale of evolution enable accurate structure
prediction,” BioRxiv, vol. 2022, p. 500902, 2022.

[95] A. Madani, B. McCann, N. Naik, N. S. Keskar, N. Anand, R. R. Eguchi,
P.-S. Huang, and R. Socher, “Progen: Language modeling for protein
generation,” arXiv preprint arXiv:2004.03497, 2020.

[96] Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun, “A
comprehensive survey of ai-generated content (aigc): A history of
generative ai from gan to chatgpt,” arXiv preprint arXiv:2303.04226,
2023.

[97] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language model
for scientific text,” arXiv preprint arXiv:1903.10676, 2019.

[98] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “Pretrained
language models for text generation: A survey,” arXiv preprint
arXiv:2201.05273, 2022.

[99] S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann,
P. Kambadur, D. Rosenberg, and G. Mann, “Bloomberggpt: A large
language model for finance,” arXiv preprint arXiv:2303.17564, 2023.

[100] T. Eloundou, S. Manning, P. Mishkin, and D. Rock, “Gpts are gpts:
An early look at the labor market impact potential of large language
models,” arXiv preprint arXiv:2303.10130, 2023.

[101] B. Li, K. Mellou, B. Zhang, J. Pathuri, and I. Menache, “Large
language models for supply chain optimization,” arXiv preprint
arXiv:2307.03875, 2023.

[102] L. Bariah, Q. Zhao, H. Zou, Y. Tian, F. Bader, and M. Debbah, “Large
language models for telecom: The next big thing?,” arXiv preprint
arXiv:2306.10249, 2023.

[103] M. Chen and T. et. al., “Evaluating large language models trained on
code,” arXiv preprint arXiv:2107.03374, 2021.



33

[104] S. Salman, J. A. Shamsi, and R. Qureshi, “Deep fake generation and
detection: Issues, challenges, and solutions,” IT Professional, vol. 25,
no. 1, pp. 52–59, 2023.

[105] Z. Sun, “A short survey of viewing large language models in legal
aspect,” arXiv preprint arXiv:2303.09136 , year=2023.

[106] R. Qureshi, M. Irfan, T. M. Gondal, S. Khan, J. Wu, M. U. Hadi,
J. Heymach, X. Le, H. Yan, and T. Alam, “Ai in drug discovery and
its clinical relevance,” Heliyon, 2023.

[107] O. B. Shoham and N. Rappoport, “Cpllm: Clinical prediction with large
language models,” arXiv preprint arXiv:2309.11295, 2023.

[108] Q. Al-Tashi, M. B. Saad, A. Muneer, R. Qureshi, S. Mirjalili, A. She-
shadri, X. Le, N. I. Vokes, J. Zhang, and J. Wu, “Machine learning
models for the identification of prognostic and predictive cancer
biomarkers: A systematic review,” International journal of molecular
sciences, vol. 24, no. 9, p. 7781, 2023.

[109] A. Holzinger, K. Keiblinger, P. Holub, K. Zatloukal, and H. Müller,
“Ai for life: Trends in artificial intelligence for biotechnology,” New
Biotechnology, vol. 74, pp. 16–24, 2023.

[110] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen,
J. Tang, X. Chen, Y. Lin, et al., “A survey on large language model
based autonomous agents,” arXiv preprint arXiv:2308.11432, 2023.

[111] Y. Zhu, X. Wang, J. Chen, S. Qiao, Y. Ou, Y. Yao, S. Deng,
H. Chen, and N. Zhang, “Llms for knowledge graph construction and
reasoning: Recent capabilities and future opportunities,” arXiv preprint
arXiv:2305.13168, 2023.

[112] L. Huynh, J. Hong, A. Mian, H. Suzuki, Y. Wu, and S. Camtepe,
“Quantum-inspired machine learning: a survey,” arXiv preprint
arXiv:2308.11269, 2023.

[113] E. Brynjolfsson, D. Li, and L. R. Raymond, “Generative ai at work,”
tech. rep., National Bureau of Economic Research, 2023.

[114] P. Samuelson, “Generative ai meets copyright,” Science, vol. 381,
no. 6654, pp. 158–161, 2023.

[115] I. Chiang, Unleashing the Power of Generative AI: The Race for
Advancement and the Global Ramifications. PhD thesis, Massachusetts
Institute of Technology, 2023.

[116] S. Wang, S. Menon, T. Long, K. Henderson, D. Li, K. Crowston,
M. Hansen, J. V. Nickerson, and L. B. Chilton, “Reelframer: Co-
creating news reels on social media with generative ai,” arXiv preprint
arXiv:2304.09653, 2023.

[117] S. Mayahi and M. Vidrih, “The impact of generative ai on the future
of visual content marketing,” arXiv preprint arXiv:2211.12660, 2022.

[118] S.-C. Chen, “Multimedia research toward the metaverse,” IEEE Multi-
Media, vol. 29, no. 1, pp. 125–127, 2022.

[119] A. Zentner, “Applied innovation: Artificial intelligence in higher edu-
cation,” Available at SSRN 4314180, 2022.

[120] J. Sun, Q. V. Liao, M. Muller, M. Agarwal, S. Houde, K. Talamadupula,
and J. D. Weisz, “Investigating explainability of generative ai for code
through scenario-based design,” in 27th International Conference on
Intelligent User Interfaces, pp. 212–228, 2022.

[121] J. Morley, N. J. DeVito, and J. Zhang, “Generative ai for medical
research,” 2023.

[122] P. Ghimire, K. Kim, and M. Acharya, “Generative ai in the
construction industry: Opportunities & challenges,” arXiv preprint
arXiv:2310.04427, 2023.

[123] H. Cui, C. Wang, H. Maan, K. Pang, F. Luo, and B. Wang, “scgpt:
Towards building a foundation model for single-cell multi-omics using
generative ai,” bioRxiv, pp. 2023–04, 2023.

[124] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine learn-
ing: a review of classification and combining techniques,” Artificial
Intelligence Review, vol. 26, pp. 159–190, 2006.

[125] A. Pérez-Suárez, J. F. Martínez-Trinidad, and J. A. Carrasco-Ochoa,
“A review of conceptual clustering algorithms,” Artificial Intelligence
Review, vol. 52, pp. 1267–1296, 2019.

[126] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with
deep learning: A review,” IEEE transactions on neural networks and
learning systems, vol. 30, no. 11, pp. 3212–3232, 2019.

[127] C. Chen, C. Qin, H. Qiu, G. Tarroni, J. Duan, W. Bai, and D. Rueckert,
“Deep learning for cardiac image segmentation: a review,” Frontiers in
Cardiovascular Medicine, vol. 7, p. 25, 2020.

[128] A. A. de Hond, A. M. Leeuwenberg, L. Hooft, I. M. Kant, S. W.
Nijman, H. J. van Os, J. J. Aardoom, T. P. Debray, E. Schuit,
M. van Smeden, et al., “Guidelines and quality criteria for artificial
intelligence-based prediction models in healthcare: a scoping review,”
NPJ digital medicine, vol. 5, no. 1, p. 2, 2022.

[129] C. Zhang, C. Zhang, S. Zheng, Y. Qiao, C. Li, M. Zhang, S. K. Dam,
C. M. Thwal, Y. L. Tun, L. L. Huy, et al., “A complete survey on

generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need?,”
arXiv preprint arXiv:2303.11717, 2023.

[130] C. Zhang, C. Zhang, S. Zheng, M. Zhang, M. Qamar, S.-H. Bae,
and I. S. Kweon, “A survey on audio diffusion models: Text to
speech synthesis and enhancement in generative ai,” arXiv preprint
arXiv:2303.13336, vol. 2, 2023.

[131] L. Wang, W. Chen, W. Yang, F. Bi, and F. R. Yu, “A state-of-the-art
review on image synthesis with generative adversarial networks,” IEEE
Access, vol. 8, pp. 63514–63537, 2020.

[132] N. Aldausari, A. Sowmya, N. Marcus, and G. Mohammadi, “Video
generative adversarial networks: a review,” ACM Computing Surveys
(CSUR), vol. 55, no. 2, pp. 1–25, 2022.

[133] S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot: How
programmers interact with code-generating models,” Proceedings of the
ACM on Programming Languages, vol. 7, no. OOPSLA1, pp. 85–111,
2023.

[134] D. Zhang, S. Li, X. Zhang, J. Zhan, P. Wang, Y. Zhou, and
X. Qiu, “Speechgpt: Empowering large language models with intrinsic
cross-modal conversational abilities,” arXiv preprint arXiv:2305.11000,
2023.

[135] S. Hong, J. Seo, S. Hong, H. Shin, and S. Kim, “Large language models
are frame-level directors for zero-shot text-to-video generation,” arXiv
preprint arXiv:2305.14330, 2023.

[136] Ö. AYDIN and E. KARAARSLAN, “Is chatgpt leading generative ai?
what is beyond expectations,” What is Beyond Expectations, 2023.

[137] B. Kim, H. Kim, S.-W. Lee, G. Lee, D. Kwak, D. H. Jeon, S. Park,
S. Kim, S. Kim, D. Seo, et al., “What changes can large-scale language
models bring? intensive study on hyperclova: Billions-scale korean
generative pretrained transformers,” arXiv preprint arXiv:2109.04650,
2021.

[138] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al.,
“On the opportunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[139] Y. Yuan, “On the power of foundation models,” in International
Conference on Machine Learning, pp. 40519–40530, PMLR, 2023.

[140] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[141] A. Jo, “The promise and peril of generative ai,” Nature, vol. 614, no. 1,
pp. 214–216, 2023.

[142] H. Bansal, K. Gopalakrishnan, S. Dingliwal, S. Bodapati, K. Kirchhoff,
and D. Roth, “Rethinking the role of scale for in-context learning: An
interpretability-based case study at 66 billion scale,” arXiv preprint
arXiv:2212.09095, 2022.

[143] M. Mariani, “Generative artificial intelligence and innovation: Concep-
tual foundations,” Available at SSRN 4249382, 2022.

[144] W. Zeng, X. Ren, T. Su, H. Wang, Y. Liao, Z. Wang, X. Jiang, Z. Yang,
K. Wang, X. Zhang, et al., “Pangu-alpha: Large-scale autoregressive
pretrained chinese language models with auto-parallel computation,”
arXiv preprint arXiv:2104.12369, 2021.

[145] L. Mescheder, S. Nowozin, and A. Geiger, “Adversarial variational
bayes: Unifying variational autoencoders and generative adversarial
networks,” in International conference on machine learning, pp. 2391–
2400, PMLR, 2017.

[146] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath, “Generative adversarial networks: An overview,”
IEEE signal processing magazine, vol. 35, no. 1, pp. 53–65, 2018.

[147] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion
models in vision: A survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023.

[148] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma,
D. Drain, S. Fort, D. Ganguli, T. Henighan, et al., “Training a
helpful and harmless assistant with reinforcement learning from human
feedback,” arXiv preprint arXiv:2204.05862, 2022.

[149] A. Muneer and S. M. Fati, “A comparative analysis of machine learning
techniques for cyberbullying detection on twitter,” Future Internet,
vol. 12, no. 11, p. 187, 2020.

[150] H. Hassani and E. S. Silva, “The role of chatgpt in data science: how
ai-assisted conversational interfaces are revolutionizing the field,” Big
data and cognitive computing, vol. 7, no. 2, p. 62, 2023.

[151] K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F.-Y. Wang, “Gen-
erative adversarial networks: introduction and outlook,” IEEE/CAA
Journal of Automatica Sinica, vol. 4, no. 4, pp. 588–598, 2017.

[152] J. N. Kather, N. Ghaffari Laleh, S. Foersch, and D. Truhn, “Medical
domain knowledge in domain-agnostic generative ai,” NPJ digital
medicine, vol. 5, no. 1, p. 90, 2022.



34

[153] I. Solaiman, “The gradient of generative ai release: Methods and
considerations,” in Proceedings of the 2023 ACM Conference on
Fairness, Accountability, and Transparency, pp. 111–122, 2023.

[154] S. Tan, Y. Shen, and B. Zhou, “Improving the fairness of deep gen-
erative models without retraining,” arXiv preprint arXiv:2012.04842,
2020.

[155] K. Wach, C. D. Duong, J. Ejdys, R. Kazlauskaitė, P. Korzynski,
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[440] J. Kukačka, V. Golkov, and D. Cremers, “Regularization for deep
learning: A taxonomy,” arXiv preprint arXiv:1710.10686, 2017.

[441] A. Sedghi, L. J. O’Donnell, T. Kapur, E. Learned-Miller, P. Mousavi,
and W. M. Wells III, “Image registration: Maximum likelihood, min-
imum entropy and deep learning,” Medical image analysis, vol. 69,
p. 101939, 2021.

[442] X. Pan, A. Tewari, T. Leimkühler, L. Liu, A. Meka, and C. Theobalt,
“Drag your gan: Interactive point-based manipulation on the generative
image manifold,” in ACM SIGGRAPH 2023 Conference Proceedings,
pp. 1–11, 2023.

[443] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780–8794, 2021.

[444] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew,
I. Sutskever, and M. Chen, “Glide: Towards photorealistic image gen-
eration and editing with text-guided diffusion models,” arXiv preprint
arXiv:2112.10741, 2021.

[445] C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet,
and M. Norouzi, “Palette: Image-to-image diffusion models,” in ACM
SIGGRAPH 2022 Conference Proceedings, pp. 1–10, 2022.

[446] G. Kim, T. Kwon, and J. C. Ye, “Diffusionclip: Text-guided diffu-
sion models for robust image manipulation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2426–2435, 2022.

[447] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in neural information processing systems, vol. 33,
pp. 6840–6851, 2020.

[448] S. AI, “Stablediffusion2.1 release.” https://stability.ai/blog/stablediffu
sion2-1-release7-dec-2022, 2022. Accessed on August 3, 2023.

[449] C. Ju, T. Han, K. Zheng, Y. Zhang, and W. Xie, “Prompting visual-
language models for efficient video understanding,” in European Con-
ference on Computer Vision, pp. 105–124, Springer, 2022.

[450] H. Lin, A. Zala, J. Cho, and M. Bansal, “Videodirectorgpt: Consistent
multi-scene video generation via llm-guided planning,” arXiv preprint
arXiv:2309.15091, 2023.

[451] A. Munoz, M. Zolfaghari, M. Argus, and T. Brox, “Temporal shift
gan for large scale video generation,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 3179–3188,
2021.

[452] M.-Y. Liu, X. Huang, J. Yu, T.-C. Wang, and A. Mallya, “Generative
adversarial networks for image and video synthesis: Algorithms and
applications,” Proceedings of the IEEE, vol. 109, no. 5, pp. 839–862,
2021.

[453] U. Singer, A. Polyak, T. Hayes, X. Yin, J. An, S. Zhang, Q. Hu,
H. Yang, O. Ashual, O. Gafni, et al., “Make-a-video: Text-to-video
generation without text-video data,” arXiv preprint arXiv:2209.14792,
2022.

[454] T. Reddy, R. Williams, and C. Breazeal, “Text classification for ai
education.,” in SIGCSE, p. 1381, 2021.

[455] E. Loper and S. Bird, “Nltk: The natural language toolkit,” arXiv
preprint cs/0205028, 2002.

[456] Y. Vasiliev, Natural language processing with Python and spaCy: A
practical introduction. No Starch Press, 2020.

[457] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al., “Huggingface’s trans-
formers: State-of-the-art natural language processing,” arXiv preprint
arXiv:1910.03771, 2019.

[458] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A. Abra-
ham, “A systematic literature review on software defect prediction
using artificial intelligence: Datasets, data validation methods, ap-
proaches, and tools,” Engineering Applications of Artificial Intelli-
gence, vol. 111, p. 104773, 2022.

[459] E. A. Van Dis, J. Bollen, W. Zuidema, R. van Rooij, and C. L. Bockting,
“Chatgpt: five priorities for research,” Nature, vol. 614, no. 7947,
pp. 224–226, 2023.

[460] K. Nguyen-Trung, A. K. Saeri, and S. Kaufman, “Applying chatgpt
and ai-powered tools to accelerate evidence reviews,” 2023.

[461] N. Gleason, “Chatgpt and the rise of ai writers: How should higher
education respond?,” Times Higher Education, 2022.

[462] G. Cooper, “Examining science education in chatgpt: An exploratory
study of generative artificial intelligence,” Journal of Science Education
and Technology, vol. 32, pp. 444–452, 2023.

[463] Z. Epstein, A. Hertzmann, I. of Human Creativity, M. Akten, H. Farid,
J. Fjeld, M. R. Frank, M. Groh, L. Herman, N. Leach, et al., “Art and
the science of generative ai,” Science, vol. 380, no. 6650, pp. 1110–
1111, 2023.

[464] L. Skavronskaya, A. H. Hadinejad, and D. Cotterell, “Reversing the
threat of artificial intelligence to opportunity: a discussion of chatgpt in
tourism education,” Journal of Teaching in Travel & Tourism, vol. 23,
no. 2, pp. 253–258, 2023.

[465] J. Huang and K. C.-C. Chang, “Citation: A key to building re-
sponsible and accountable large language models,” arXiv preprint
arXiv:2307.02185, 2023.
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