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Abstract

In this paper, we propose an optimized lightweight Federated Deep Learning (FDL) method for botnet attack detection in

smart critical infrastructure. First, an optimization method is developed to determine the most appropriate combination of

model hyperparameters for local Deep Learning (DL) at the edge nodes. Then, an oversampling algorithm is combined with the

optimal DL model to improve the classification performance when the training data is highly imbalanced, without a significant

increase in the overall computation time. Furthermore, a feature dimensionality reduction method is used to reduce the amount

of memory space required to store the network traffic data at the edge nodes.
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Abstract—The potentials of federated learning are currently
being explored for privacy-preserving intrusion detection in
smart critical infrastructure. However, previous works did not
consider the determination of optimal model hyperparameters,
class imbalance in the training data, high memory space require-
ment for network traffic data storage in resource-constrained
edge nodes, and zero-day botnet attack scenarios. In this paper,
we propose an optimized lightweight Federated Deep Learning
(FDL) method for botnet attack detection in smart critical infras-
tructure. First, an optimization method is developed to determine
the most appropriate combination of model hyperparameters
for local Deep Learning (DL) at the edge nodes. Then, an
oversampling algorithm is combined with the optimal DL model
to improve the classification performance when the training
data is highly imbalanced, without a significant increase in the
overall computation time. Furthermore, a feature dimensionality
reduction method is used to reduce the amount of memory
space required to store the network traffic data at the edge
nodes. Experiments are performed using the Bot-IoT and N-
BaIoT datasets, and the FDL model achieved high classification
performance with low memory space requirement.

Index Terms—cybersecurity, Internet of Things, botnet detec-
tion, intrusion detection, deep learning, federated learning

I. INTRODUCTION

THE Internet of Things (IoT) is one of the main tech-
nologies of smart critical infrastructure in the fourth

industrial revolution (Industry 4.0) [1]. However, IoT has
become the primary target of malicious botnet operators due
to its proliferation and distributed nature [2]. A malicious
botnet is a network of compromised computers known as
bots. Hackers use this complex hacking technique to propagate
malware and launch cyber attacks against IoT-enabled systems.

In a typical botnet, a cyber attacker, also known as a
botmaster, controls the activities of the bots remotely using a
Command and Control (C&C) communication channel. The
life cycle of a botnet involves five phases, namely initial
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injection, secondary injection, connection, malicious activities,
and maintenance and upgrading [3]. First, the botmaster infects
IoT devices with malware. Then, the infected devices down-
load malware binary files from a specific network database
using Internet Relay Chat (IRC), File Transfer Protocol (FTP),
Hypertext Transfer Protocol (HTTP) or Peer-to-Peer (P2P)
communication protocols. The new bots establish connections
with the C&C server to receive instructions and updates. The
botmaster instructs the bots to perform malicious activities.
Finally, the botmaster maintains its hold on the bots by up-
dating the malware frequently. A P2P botnet has no dedicated
C&C server, while a hybrid botnet combines both centralised
and P2P architectures. Botnets have significantly widened the
attack vulnerability landscape of IoT [4].

Federated Learning (FL) is a privacy-preserving Artifi-
cial Intelligence (AI) method, and researchers have started
exploring its application to cyber-attack detection in smart
critical infrastructure [5], [6]. Although FL methods have
been proposed to detect cyber attacks in different application
domains, there are still some challenges that need to be
addressed, which include the determination of optimal model
hyperparameters, low classification performance due to imbal-
anced sample distribution in the training set, and high memory
space requirement for training data storage. In this paper, we
propose a Federated Deep Learning (FDL) method for efficient
botnet attack detection in smart critical infrastructure. The
main contributions of the paper are as follows:

1) A hyperparameter optimization method is used to deter-
mine the most appropriate combination of the numbers
of hidden layers and hidden units, the learning rate, the
optimizer, the activation function, the batch size, and the
number of epochs for local Deep Learning (DL) at the
IoT edge nodes.

2) A framework, which combines Synthetic Minority Over-
sampling Technique (SMOTE) with a Bidirectional
Long Short-Term Memory (BLSTM) architecture, is
proposed to improve the classification performance of
the DL-based botnet attack detection models when the
network traffic data in the training set is highly imbal-
anced.

3) A hybrid DL method, which employs LSTM Autoen-
coder (LAE) and BLSTM architectures, is proposed
to reduce the feature dimensionality of the network
traffic data without any significant adverse effect on the
classification performance. Consequently, the amount of
memory space required to store the training data is
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reduced.
4) A FDL method, which combines FL and LAE-BLSTM

algorithms, is proposed for zero-day botnet attack detec-
tion in IoT edge nodes to reduce data transmission cost,
reduce network latency, and preserve the privacy of IoT
network users.

5) Extensive experiments are performed to evaluate the
effectiveness of the DL and FDL methods based on
accuracy, precision, recall, F1 score, training time, and
testing time using the Bot-IoT and N-BaIoT datasets.

II. REVIEW OF RELATED WORKS

In this section, we review the most recent FL methods
that were proposed for cyber-attack detection in IoT and IoT-
enabled critical infrastructure. Table I shows that none of
the previous works addressed all the four challenges namely
the determination of optimal model hyperparameters, class
imbalance in the training data, high memory space requirement
for network traffic data storage in resource-constrained edge
nodes, and zero-day botnet attack scenarios.

TABLE I
REVIEW OF RELATED WORKS

Ref. Model Dataset(s) A1 B2 C3 D4

[7] ANN NSL-KDD ✗ ✗ ✗ ✗
[8] CNN-GRU GPWST ✗ ✗ ✗ ✗

[5] DNN,
RNN, CNN

Bot-IoT,
MQTTset,
TON_IoT

✗ ✗ ✗ ✗

[9] CNN NSL-KDD,
UNSW-NB15 ✗ ✗ ✗ ✗

[10] LAE-GRU ToN_IoT ✗ ✗ ✓ ✗
[11] ANN UNSW-NB15 ✗ ✓ ✗ ✗
[12] ANN-RF MQTT ✗ ✗ ✗ ✗
[13] CNN Private ✗ ✗ ✗ ✗
[14] Transformer ToN_IoT ✗ ✗ ✗ ✗
[15] DNN Edge-IIoTset ✓ ✓ ✗ ✗

[16] GRU-SVM
KDD-Cup99,
CICIDS2017,
WSN-DS

✗ ✗ ✗ ✗

[17] AE-ANN GPWST ✗ ✗ ✓ ✗
[18] LR ToN_IoT ✗ ✗ ✗ ✗
[19] ANN Bot-IoT ✗ ✗ ✓ ✗
[20] GRU-RF Modbus ✗ ✗ ✗ ✗
[21] DQN, DNN CICIDS2017 ✗ ✗ ✗ ✗

[22] DNN Bot-IoT,
NBaIoT ✗ ✗ ✗ ✓

This
paper

LAE-
BLSTM

Bot-IoT,
NBaIoT ✓ ✓ ✓ ✓

1 Hyperparameter optimization method
2 Class balance method
3 Feature dimensionality reduction method
4 Zero-day IoT botnet attack scenarios

Rahman et al [7] proposed a FL method for intrusion
detection in IoT. This method uses Artificial Neural Network
(ANN) model architecture, which has a single hidden layer
with 288 hidden units, for binary classification. Li et al [8]
proposed a FDL method for intrusion detection in industrial
Cyber-Physical System (CPS). A hybrid of Convlutional Neu-
ral Network (CNN) and Gated Recurrent Unit (GRU) architec-
tures were used for local model training in multiple industrial
agents. The CNN model comprised three convolutional blocks,
while the GRU model had two hidden layers. The outputs

of the two models were concatenated and fed into an Multi-
Layer Perceptron (MLP) module, which comprised two hidden
layers. Ferrag et al [5] proposed a FDL method for cyber-
attack detection in IoT. In this method, Deep Neural Network
(DNN), Recurrent Neural Network (RNN), and CNN model
architectures were used for local model training. Kumar et
al [10] proposed a deep privacy-encoding-based FL frame-
work for data security and privacy in smart agriculture. In
this method, a perturbation-based encoding (feature mapping
and feature normalisation) and an LAE-based transformation
technique were used to prevent inference attacks.

Cheng et al [9] proposed a federated transfer learning
method for intrusion detection in mobile edge computing.
Transfer learning was employed in FL to speed up the model
training, reduce computational cost, increase communication
efficiency, and improve classification performance. This in-
volves selecting a well-trained model in a particular source
domain and transferring it to the edge server in the target
domain. A CNN model architecture, which comprised three
convolutional layers, two max-pooling layers, a batch nor-
malisation layer, a dropout layer, and two dense layers, was
used for binary classification. Attota et al [12] proposed an
ensemble multi-view FL method for intrusion detection in
IoT. For each client, three ANN models are trained with the
bidirectional flow, unidirectional flow, and packet views of the
network traffic features. Grey Wolf Optimization (GWO) tech-
nique is used to select the best set of network traffic features
for the ANN model training. Chen et al [16] proposed a FL
method for intrusion detection in wireless edge networks. This
method uses the concept of attention mechanism to calculate
the importance of uploaded model parameters, especially when
limited bandwidth is available. A combination of GRU and
Support Vector Machine (SVM) model architectures were used
for local training.

Sedjelmaci and Ansari [11] proposed a cooperative feder-
ated Generative Adversarial Network (GAN) for attack detec-
tion in multi-access edge computing. The discriminator and
generator of the GAN model were designed based on the ANN
model architecture, which has five hidden layers. Sun et al
[13] proposed segmented FL for adaptive intrusion detection
in large-scale local area networks. This method uses a CNN
model architecture, which has two convolutional layers, two
max-pooling layers, and two dense layers with 200 hidden
units each. Abdel-Basset et al [14] proposed a FDL method for
security and privacy in heterogeneous blockchain-based smart
transportation systems. A stack of context-aware transformer
networks, which comprised an encoder and a decoder, was
used to learn the spatial-temporal representations of vehicular
traffic flows. Aouedi et al [17] proposed a federated semi-
supervised learning method for attack detection in industrial
IoT. This method uses both labelled and unlabelled data in
federated approach since data labelling is costly and time-
consuming.

Ruzafa-Alcazar et al [18] evaluated the performance of
different differential privacy techniques for FL-based intrusion
detection in industrial IoT. The techniques include Laplace,
Laplace truncated, Laplace bounded domain, Laplace bounded
noise, Gaussian, Gaussian analytic, and uniform. The authors
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employed Logistic Regression (LR) model for the classifica-
tion of network traffic samples. Huong et al [19] proposed an
edge-cloud architecture for attack detection. To minimize the
complexity of the detection model, Principal Component Anal-
ysis (PCA) was employed for feature dimensionality reduction.
ANN model, which has a single hidden layer with 6-46 hidden
units, was used for multi-class classification. Mothukuri et al
[20] proposed a FL method for anomaly detection in IoT.
The combination of GRU and RF models was used for local
training. The performance of the method was evaluated with
the Modbus dataset. Wei et al [21] proposed a FL-based
end-edge-cloud cooperative method for attack detection in
5G heterogeneous networks. The authors employed Deep Q-
Network (DQN) and DNN for local training in the end nodes
and edge nodes, respectively.

Ferrag et al [15] proposed a FL method for cyber-attack
detection in industrial IoT. They used the SMOTE method to
oversample the minority classes. DNN model, which has two
hidden layers with 90 hidden units each, was used for training.
A grid search algorithm was used for model hyperparameter
optimisation. Popoola et al [22] proposed a FDL method for
zero-day botnet attack detection in IoT-edge devices. A DNN
model, which has four hidden layers with 100 hidden units
each, was used for local training.

III. PROPOSED FEDERATED DEEP LEARNING METHOD

The network traffic patterns and the nature of botnet attack
that is launched against the IoT edge nodes are usually
different. In this study, zero-day botnet attack scenarios are
modelled using the 11-class Bot-IoT and the 10-class N-BaIoT
datasets.

Table II presents the sample distribution of the zero-day
botnet attack traffic data in ten IoT edge nodes based on the
Bot-IoT dataset, and Table III presents the sample distribution
in nine other IoT edge nodes based on the NBaIoT dataset. A
class of botnet attack traffic was not included in each of the
IoT edge nodes to model zero-day botnet attack scenario. For
example, in Table II, there is no sample of DD-H attack in
EN1, and there is no sample of KL attack in EN10. Similarly,
in Table III, there is no sample of g_junk attack in EN3, and
there is no sample of m_syn attack in EN7. In order to depict a
real-life scenario, the distribution of botnet attack samples was
unbalanced and non-identically distributed across the classes
of network traffic and across the IoT edge nodes.

FDL method is proposed to detect zero-day botnet attacks
in IoT-enabled critical infrastructure based on Algorithm
1. The FDL framework comprised of a model parameter
server and 𝐾 IoT edge nodes. The model parameter server
coordinates the training of LAE-BLSTM [23], [24] models in
the IoT edge nodes. Also, it determines the number of training
iterations/epochs (𝐸), the batch size of training data (𝐵), and
the number of communication rounds (𝑅). In this method, 𝐾
LAE-BLSTM models are trained separately with local training
data that are privately held in 𝐾 IoT edge nodes. After each
training of 𝐸 epochs, all the edge IoT devices send their local
model updates to the model parameter server for aggregation
using FedAvg algorithm [25]. Model aggregation is performed
by model parameter server in 𝑅 communication rounds.

Algorithm 1: FDL algorithm
Input: 𝑅, 𝐸 , 𝑁 , 𝐵, 𝐾
Initialization: 𝑊 = 𝑊0
Output: 𝑊𝑟

1 function localUpdate(𝑊, 𝑘):
2 for 𝑒 = 1 to 𝐸 do
3 for 𝑏 = 1 to 𝑁

𝐵
do

4 𝑊𝑘,𝑏 = 𝑊𝑘,𝑏−1 − 𝛾Δ𝐿 (𝑏,𝑊𝑘)
5 end
6 end
7 return 𝑊𝑘

8 end function
9 for 𝑟 = 1 to 𝑅 do

10 for 𝑘 = 1 to 𝐾 do
11 𝑊𝑟 ,𝑘 = localUpdate(𝑊𝑟−1, 𝑘)
12 end

13 𝑊𝑟 =

𝐾∑︁
𝑘=1

𝑛𝑘
𝑁
𝑊𝑟 ,𝑘

14 end

Fig. 1. FDL architecture for zero-day botnet attack detection in IoT edge
nodes

The FDL method was simulated with the Bot-IoT and N-
BaIoT data sets to evaluate the effectiveness of this method
for zero-day botnet attack detection in IoT edge nodes, as
shown in Fig. 1. The network traffic data in the IoT edge nodes
was pre-processed as earlier described in [26]. The SMOTE
method in [27] was used to achieve class balance when the
network traffic data is highly imbalanced. The LAE-BLSTM
method in [23], [24] was used for feature dimensionality
reduction. The optimization method in [26] was used to select
the most suitable set of hyperparameters for local model
training in the IoT edge nodes. IBM FL framework was used
to implement the proposed method. The deployment of the
FDL model in IoT edge nodes was simulated using Linux
terminals. The communication between the model parameter
server and the IoT edge nodes was established using the Flask
web framework.

The performance of the FDL method was compared with
that of Centralized DL (CDL) and Localized DL (LDL)
methods. For the CDL method, each of the IoT edge nodes
transmitted its training data to a central server for aggregation.
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TABLE II
SAMPLE DISTRIBUTION OF THE ZERO-DAY BOTNET ATTACK TRAFFIC DATA BASED ON THE BOT-IOT DATASET

Class Edge Nodes
EN1 EN2 EN3 EN4 EN5 EN6 EN7 EN8 EN9 EN10

DD-H 0 539 1619 863 1295 215 971 1403 1731 2159
DD-T 117278 0 87958 46911 70367 11727 52775 76231 93827 29319
DD-U 113752 28438 0 45500 68251 11375 51188 73938 91004 85314
D-H 2159 539 1619 0 1295 215 971 1403 1731 863
D-T 73993 18498 55494 29597 0 7399 33296 48095 59198 44395
D-U 123882 30970 92912 49553 74329 0 55747 80523 99110 12388
Norm 2159 539 1619 863 1295 215 971 1403 1079 652
OSF 2159 539 1619 863 1295 215 0 1403 1731 971
SS 8789 2197 6592 3515 5273 878 3955 0 7037 5713
DE 2159 539 1619 863 1295 215 971 1403 0 1731
KL 2159 539 1619 863 1295 215 971 1403 1731 0

TABLE III
SAMPLE DISTRIBUTION OF THE ZERO-DAY BOTNET ATTACK TRAFFIC DATA BASED ON THE N-BAIOT DATASET

Class Edge Nodes
EN1 EN2 EN3 EN4 EN5 EN6 EN7 EN8 EN9

Norm 33339 33339 33339 33339 33339 33339 33339 33339 33339
g_combo 37039 0 33953 33953 33953 33953 33953 33953 33953
g_junk 18832 17263 0 17263 17263 17263 17263 17263 17263
g_scan 18377 16846 16846 0 16846 16846 16846 16846 16846
g_udp 68094 62419 62419 62419 0 62419 62419 62419 62419
m_ack 46435 42566 42566 42566 42566 0 42566 42566 42566
m_scan 0 35511 35511 35511 35511 35511 35511 35511 35511
m_syn 52850 48446 48446 48446 48446 48446 0 48446 48446
m_udp 88577 81196 81196 81196 81196 81196 81196 0 81196
m_udpp 37643 34506 34506 34506 34506 34506 34506 34506 0

Therefore, the CDL model was trained with an aggregated
data in the cloud. A copy of the CDL model was sent back
to all the IoT edge devices for network traffic classification
on the testing data. For the LDL method, model training was
performed with the local training data in the edge IoT devices.
Therefore, a unique LDL model was developed for each of the
IoT edge devices. In the FDL method, a global LAE-BLSTM
model was developed and a copy of this model was transmitted
to all the IoT edge nodes for network traffic classification. The
model parameter server receives further updates from the local
models in the IoT edge nodes to improve the classification
performance of the global FDL model.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the effectiveness of the FDL
models and compare it with that of the CDL and LDL models
using the network traffic data in the testing sets of the Bot-
IoT and N-BaIoT datasets based on the following: (a) classi-
fication performance, (b) computation efficiency, (c) memory
efficiency, (d) data privacy preservation, (e) communication
cost, and (f) network latency. The sample distribution of the
testing sets for the Bot-IoT and N-BaIoT datasets is presented
in Table IV.

A. Model Hyperparameter optimization

The optimal sets of hyperparameters for the BLSTM models
were determined based on the method proposed in [26]. For
the Bot-IoT dataset, the optimised BLSTM model employed
three hidden layers with 128 hidden units each, a learning
rate of 0.001, Nadam optimizer, ReLU activation function,

TABLE IV
SAMPLE DISTRIBUTION OF BOTNET ATTACK TRAFFIC DATA IN THE

TESTING SETS

Dataset Class No. of samples

Bot-IoT

DD-H 204
DD-T 195274
DD-U 190088
D-H 268
D-T 122974
D-U 206789
Norm 101
OSF 3582
SS 14413
DE 1
KL 11

N-BaIoT

Norm 111409
g_combo 103019
g_junk 52262
g_scan 50904
g_udp 189492
m_ack 128690
m_scan 107810
m_syn 146022
m_udp 246321
m_udpp 104623

a batch size of 128, and 20 epochs. The optimal model
achieved 99.97% accuracy, 85.84% precision, 87.12% recall,
and 86.34% F1 score. Nearly all the samples in the DD-T,
DD-U, D-T, D-U, Norm, OSF, and SS classes were classified
correctly. However, less than 91% of the samples in the DD-
H, D-H, DE, and KL classes were classified incorrectly. For
instance, the only sample in the DE class was misclassified as
a KL attack. This shows that the high class imbalance in the
training set adversely affected the classification performance
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of the model in the minority classes. It took 214.59 seconds to
train the model with the network traffic samples in the training
set, and the model spend 1.3 seconds to classify the network
traffic samples in the testing set.

For the N-BaIoT dataset, the optimised BLSTM model
employed two hidden layers with 128 and 32 hidden units
respectively, a learning rate of 0.001, Nadam optimizer, ReLU
activation function, a batch size of 512, and 15 epochs. The
optimal model achieved 100% accuracy, 99.96% precision,
99.97% recall, and 99.97% F1 score. Nearly all the samples in
each of the 10 classes were classified correctly. This implies
that the model had a good classification performance. It took
123.41 seconds to train the model with the network traffic
samples in the training set, and the model spend 1.23 seconds
to classify the network traffic samples in the testing set.

B. Class Balance in the Training Set

Table V presents the sample distribution of the highly
imbalanced as well as the balanced network traffic data in the
training set of the Bot-IoT dataset. The SMOTE method was
used to generate a total of 52139 synthetic samples to increase
the low class imbalance ratio of the number of samples in
a minority class to the number of samples in the majority
class. For example, in the DE class, 10791 synthetic samples
were generated, and this increased the class imbalance ratio
from 1:154854 to 1:57. The increase in the class imbalance
ratio helped the BLSTM model to achieve high classification
performance. The sampling time for the synthetic data gen-
eration was 880 − 930 milliseconds. Therefore, the process
did not increase the computation complexity of the DL-based
botnet attack detection models. The SMOTE-BLSTM model
achieved 100% accuracy, 99.32% precision, 99.92% recall,
and 99.61% F1 score. In other words, the precision, recall,
and F1 score of the SMOTE-BLSTM model were higher than
those of the BLSTM model by 15.7%, 14.69%, and 15.37%,
respectively. Nearly all the samples in the eleven classes were
classified correctly. This shows that the class balance method
improved the classification performance of the DL model,
especially in the minority classes. It took 786 seconds to train
the model with the network traffic samples in the training set,
and the model spend 6.78 seconds to classify the network
traffic samples in the testing set.

TABLE V
NEW TRAINING SET FOR THE BOT-IOT DATASET

Class Training data
Original Generated New

DD-H 588 10207 10795
DD-T 586393 0 586393
DD-U 568760 0 568760
D-H 906 9889 10795
D-T 369965 0 369965
D-U 619414 0 619414
Norm 290 10505 10795
OSF 10795 0 10795
SS 43949 0 43949
DE 4 10791 10795
KL 48 10747 10795

C. Feature Dimensionality Reduction

The training loss of the LAE-BLSTM model when it was
trained with the low-dimensional network traffic feature sets of
the Bot-IoT dataset. The training loss reduced as the number of
epochs increased from 1 to 15. Specifically, the training loss
reduced by 35.92%, 84.02%, 88.68%, 94.02%, and 91.63%
when LAE-BLSTM model reduced the feature dimensionality
of the network traffic data from 37 to 2, 4, 6, 8, and 10,
respectively. The LAE-BLSTM model achieved the lowest
training loss of 7.81 × 10−3 when the feature dimensionality
of the data was reduced from 37 to 8. Therefore, the LAE-
BLSTM model did not under-fit the low-dimensional network
traffic data in the 11-class Bot-IoT dataset.

The validation loss of the LAE-BLSTM model when it
was trained with the low-dimensional network traffic feature
sets of the Bot-IoT dataset. The validation loss reduced as
the number of epochs increased from 1 to 15. Specifically,
the validation loss reduced by 28.15%, 78.76%, 83.29%,
92.44%, and 87.29% when LAE-BLSTM model reduced the
feature dimensionality of the network traffic data from 37
to 2, 4, 6, 8, and 10, respectively. The LAE-BLSTM model
achieved the lowest validation loss of 3.79 × 10−3 when the
feature dimensionality of the data was reduced from 37 to
8. Therefore, the LAE-BLSTM model did not over-fit the
low-dimensional network traffic data in the 11-class Bot-IoT
dataset.

Table VI presents the classification performance of the 11-
class LAE-BLSTM model based on the balanced Bot-IoT
dataset. The BLSTM model, which was developed with the
37-dimensional network traffic data, achieved the best classi-
fication performance with 100% accuracy, 99.32% precision,
99.92% recall, and 99.61% F1 score. However, large memory
spaces of 666.96 MB, 217.18 MB, and 217.18 MB are required
to store the data on a central server or IoT edge node for
model training, validation, and testing, respectively. On the
other hand, the LAE-BLSTM model, which was developed
with 8-dimensional network traffic data, reduced the memory
space requirements by 89.19%, without a significant decrease
in the classification performance. The model achieved 99.98%
accuracy, 99.03% precision, 99.53% recall, and 99.25% F1
score. It took 212.99±0.66 seconds to train the LAE-BLSTM
model, and the model spent 1.19 ± 0.01 seconds to classify
the network traffic data in the testing set.

TABLE VI
PERFORMANCE OF THE LAE-BLSTM MODEL BASED ON THE ORIGINAL

BOT-IOT DATASET

Metrics Feature Dimensionality
2 4 6 8 10 37

(%)

A 97.02 99.80 99.91 99.98 99.96 100.00
P 71.40 94.31 97.04 99.03 97.80 99.32
R 83.97 99.04 98.52 99.53 99.44 99.92
F1 74.93 96.23 97.72 99.25 98.55 99.61

(MB)
Train 18.03 36.05 54.08 72.10 90.13 666.96
Val 5.87 11.74 17.61 23.48 29.35 217.18
Test 5.87 11.74 17.61 23.48 29.35 217.18

(s) Train 1007.39 869.59 945.42 870.72 939.75 786.00
Test 0.89 0.92 0.90 0.89 0.89 6.78
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TABLE VII
PERFORMANCE OF THE LAE-BLSTM MODEL BASED ON THE N-BAIOT

DATASET

Metrics Feature Dimensionality
2 4 6 8 10 115

(%)

A 96.30 98.56 99.62 99.90 99.90 100.00
P 81.94 94.02 98.34 99.50 99.47 99.96
R 80.96 94.27 98.14 99.45 99.15 99.97
F1 80.87 94.13 98.23 99.47 99.30 99.97

(MB)
Train 29.77 59.55 89.32 119.09 148.87 3423.92
Val 9.92 19.85 29.77 39.70 49.62 1141.31
Test 9.92 19.85 29.77 39.70 49.62 1141.31

(s) Train 1007.39 869.59 945.42 870.72 939.75 786.00
Test 0.89 0.92 0.90 0.89 0.89 6.78

Fig. 2 shows the training loss of the LAE-BLSTM model
when it was trained with the low-dimensional network traffic
feature sets of the N-BaIoT dataset for 10-class classification.
The training loss reduced as the number of epochs increased
from 1 to 15. Specifically, the training loss reduced by 24.49%,
57.65%, 80.13%, 89.98%, and 91.59% when LAE-BLSTM
model reduced the feature dimensionality of the network traffic
data from 115 to 2, 4, 6, 8, and 10, respectively. The LAE-
BLSTM model achieved the lowest training loss of 2.53×10−2

when the feature dimensionality of the data was reduced from
115 to 10. Therefore, the LAE-BLSTM model did not under-
fit the low-dimensional network traffic data in the 10-class
N-BaIoT dataset.
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Fig. 2. Training loss of the 10-class LAE-BLSTM model based on the N-
BaIoT dataset

Fig. 3 shows the validation loss of the LAE-BLSTM model
when it was trained with the low-dimensional network traffic
feature sets of the Bot-IoT dataset for 10-class classification.
The validation loss reduced as the number of epochs increased
from 1 to 15. Specifically, the validation loss reduced by
15.24%, 46.70%, 69.10%, 88.10%, and 89.40% when LAE-
BLSTM model reduced the feature dimensionality of the
network traffic data from 115 to 2, 4, 6, 8, and 10, respectively.
The LAE-BLSTM model achieved the lowest validation loss
of 1.79×10−2 when the feature dimensionality of the data was
reduced from 115 to 10. Therefore, the LAE-BLSTM model
did not over-fit the low-dimensional network traffic data in the
10-class N-BaIoT dataset.
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Fig. 3. Validation loss of the 10-class LAE-BLSTM model based on the N-
BaIoT dataset

Table VII presents the classification performance of the
binary LAE-BLSTM model based on the N-BaIoT dataset.
The BLSTM model, which was developed with the 115-
dimensional network traffic data, achieved the best classifi-
cation performance with 100% accuracy, 99.96% precision,
99.97% recall, and 99.97% F1 score. However, large memory
spaces of 3.42 GB, 1.14 GB, and 1.14 GB are required to
store the data on a central server or IoT edge node for model
training, validation, and testing, respectively. On the other
hand, the LAE-BLSTM model, which was developed with 8-
dimensional network traffic data, reduced the memory space
requirements by 96.52%, without a significant decrease in
the classification performance. The model achieved 99.90%
accuracy, 99.50% precision, 99.45% recall, and 99.47% F1
score. It took 926.57±57.94 seconds to train the LAE-BLSTM
model, and the model spent 900 ± 11 milliseconds to classify
the network traffic data in the testing set.

D. Localised Deep Learning Models

Ten LDL-based botnet attack detection models, which em-
ployed LAE-BLSTM architecture, were trained and tested with
the Bot-IoT network traffic data that are located in ten edge
nodes (EN1-EN10), respectively.

TABLE VIII
CLASSIFICATION PERFORMANCE OF THE LDL MODELS BASED ON THE

BOT-IOT DATASET

Edge Node Classification performance (%)
Accuracy Precision Recall F1 Score

EN1 99.69 78.15 89.89 81.77
EN2 94.27 58.64 84.32 63.13
EN3 94.93 77.84 85.67 80.84
EN4 99.14 72.75 87.88 76.88
EN5 96.77 64.76 85.42 69.61
EN6 94.49 60.57 83.42 66.14
EN7 99.34 67.57 85.87 72.73
EN8 99.10 61.49 85.53 66.19
EN9 99.55 76.39 87.77 80.53
EN10 98.09 69.52 83.38 72.71

Table VIII shows that the LDL models achieved a low clas-
sification performance with 97.54 ± 2.23% accuracy, 68.77 ±
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7.34% precision, 85.91 ± 2.07% recall, and 73.05 ± 6.77%
F1 score. None of the models was able to detect any of
the zero-day botnet attacks at the IoT edge nodes. The LDL
models, which were developed based on the Bot-IoT dataset,
had a faster training time than the CDL models. It took
48.94 ∼ 127.88 seconds to train the models with training
sets of different sizes, as shown in Table II. However, the
LDL models spent more time to classify the network traffic
samples in the testing set, compared to the CDL models. The
LDL models spent 2.28 ∼ 2.54 seconds to classify 733705
network traffic samples in the testing set. The LDL method
required a smaller memory space of 2.1 ∼ 28.7 MB to store
the network traffic data in the IoT edge nodes.

Another nine LDL-based botnet attack detection models
were trained and tested with the N-BaIoT network traffic data
that are located in nine edge nodes (EN1-EN9), respectively.

TABLE IX
CLASSIFICATION PERFORMANCE OF THE LDL MODELS BASED ON THE

N-BAIOT DATASET

Edge Node Classification performance (%)
Accuracy Precision Recall F1 Score

EN1 97.33 81.06 84.03 81.55
EN2 97.61 80.15 86.92 81.86
EN3 98.37 83.31 86.32 84.47
EN4 98.30 81.46 85.16 83.06
EN5 95.58 81.46 82.78 77.65
EN6 97.30 82.57 86.01 83.82
EN7 96.75 76.88 83.74 79.20
EN8 95.59 78.58 86.84 81.23
EN9 97.72 82.62 86.25 83.95

Table IX shows that the LDL models achieved a low clas-
sification performance with 97.17 ± 1.03% accuracy, 80.90 ±
2.07% precision, 85.34 ± 1.49% recall, and 81.87 ± 2.28%
F1 score. None of the models was able to detect any of
the zero-day botnet attacks at the nine IoT edge nodes. The
LDL models, which were developed based on the N-BaIoT
dataset, had a faster training time than the CDL models. It
took 43.47 ∼ 53.87 seconds to train the models with training
sets of different sizes, as shown in Table III. However, the
LDL models spent more time to classify the network traffic
samples in the testing set, compared to the CDL models. The
LDL models spent 3.77 ∼ 4.64 seconds to classify 733705
network traffic samples in the testing set. The LDL method
required a smaller memory space of 20.8 ∼ 25.7 MB to store
the network traffic data in the IoT edge nodes.

In the LDL method, the network traffic features of the
IoT edge nodes were not shared with a third-party central
cloud server to preserve the data privacy of IoT-enabled crit-
ical infrastructure users. The LDL models required a shorter
training time and a lower memory space for data storage, and
they incurred lower communication overhead. However, the
classification performance of the LDL models was lower than
that of the CDL models because each of former was trained
with insufficient private network traffic and fewer botnet attack
scenarios in a single IoT edge node. Therefore, the LDL
method is not suitable for zero-day botnet attack detection
in IoT-enabled critical infrastructure.

E. Federated Deep Learning Models

A FDL-based botnet attack detection model, which em-
ployed LAE-BLSTM architecture, was trained and tested with
Bot-IoT network traffic data at ten IoT edge nodes.
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Fig. 4. Classification performance of the FDL model based on the Bot-IoT
dataset

Fig. 4 shows that the classification performance of the FDL
model improved as the number of communication rounds
increased from 1 to 10. Specifically, the accuracy, precision,
recall, and F1 score of the model increased by 6.54%, 53.92%,
60.88%, and 63.75%, respectively. The FDL model achieved
the best classification performance at the end of the ninth com-
munication round with 99.72% accuracy, 95.67% precision,
97.56% recall, and 96.52% F1 score. All the network traffic
samples in the DD-T, DD-U, D-U, Norm, OSF, SS, DE, and
KL classes were classified correctly. This means that the FDL
model can distinctively detect benign network traffic as well
as DD-T, DD-U, D-U, OSF, SS, DE, and KL attack traffic
in IoT-enabled critical infrastructure with 100% accuracy and
zero false alarm rate.

Although the FDL model could not classify all the network
traffic samples in the DD-H, D-H, and D-T classes correctly,
the detection rates were very high and the false alarm rates
were very low. In the DD-H class, 90.7% of the samples were
classified correctly, 5.9% were misclassified as D-H attack,
and 3.4% were misclassified as DD-T attack. In the D-H class,
91.8% of the samples were classified correctly, 6.3% were
misclassified as DD-H attack, and 1.9% were misclassified as
DD-T attack. In the D-T class, 91.3% of the samples were
classified correctly, and 8.7% were misclassified as DD-T
attack. Therefore, the FDL model can also distinctively detect
DD-H, DD-U, D-H, OSF, and SS attack traffic in IoT-enabled
critical infrastructure with high accuracy and low false alarm
rate. The time required to train the FDL model increased from
426 to 3853.64 seconds as the number of communication
rounds increased from 1 to 10. The training time of the
FDL model which achieved the best classification performance
at the end of the ninth communication round was 3491.72
seconds. The FDL model spent 3.7 − 5.3 seconds to classify
733705 network traffic samples in the testing set.

Another FDL-based botnet attack detection model, which
employed LAE-BLSTM architecture, was trained and tested
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Fig. 5. Classification performance of the FDL model based on the N-BaIoT
dataset

with N-BaIoT network traffic data at nine IoT edge nodes. Fig.
5 shows that the classification performance of the FDL model
improved as the number of communication rounds increased
from 1 to 10. Specifically, the accuracy, precision, recall, and
F1 score of the model increased by 4.78%, 26.54%, 28.19%,
and 31.22%, respectively. The FDL model achieved the best
classification performance at the end of the eighth communica-
tion round with 99.71% accuracy, 98.39% precision, 98.94%
recall, and 98.64% F1 score. All the network traffic samples
in the Norm, g_junk, g_scan, g_udp, m_ack, m_scan, and
m_syn classes were classified correctly. This means that the
FDL model can distinctively detect benign network traffic as
well as g_junk, g_scan, g_udp, m_ack, m_scan, and m_syn
attack traffic in IoT-enabled critical infrastructure with 100%
accuracy and zero false alarm rate.

Although the FDL model could not classify all the network
traffic samples in the g_combo, m_udp, and m_udpp classes
correctly, the detection rates were very high and the false
alarm rates were very low. Therefore, the FDL model can
also distinctively detect g_combo, m_udp, and m_udpp attack
traffic in IoT-enabled critical infrastructure with high accuracy
and low false alarm rate. The time required to train the
FDL model increased from 319.95 to 3074.85 seconds as
the number of communication rounds increased from 1 to
10. The training time of the FDL model which achieved
the best classification performance at the end of the eighth
communication round was 2460.92 seconds. The FDL model
spent 5.4 − 6.4 seconds to classify 733705 network traffic
samples in the testing set.

V. CONCLUSION

In this paper, an optimised lightweight FL method is pro-
posed for efficient botnet attack detection in smart critical
infrastructure. FDL model was developed with the Bot-IoT and
N-BaIoT data sets, and its effectiveness was compared with
the CDL and LDL models. The optimization method helped in
choosing the best combination of the models’ hyperparameters
for optimal BLSTM model. Considering the highly imbalanced
Bot-IoT data set, the proposed oversampling method improved

the precision, recall, and F1 score of the BLSTM model. The
LAE-BLSTM model reduced the feature dimensionality of the
network traffic data without any significant adverse effect on
the classification performance. Consequently, the amount of
memory space required to store the private training data on
local IoT edge nodes also reduced. In the future, efforts will
be made to protect the FDL models against adversarial attacks
such as backdoor and poisoning attacks.
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