
P
os
te
d
on

18
O
ct

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
36
27
85
0
.v
2
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

GAMA: A Multi-graph-based Anomaly Detection Framework for

Business Processes via Graph Neural Networks

Wei Guan 1,1, Jian Cao 2, Yang Gu 2, and Shiyou Qian 2

1Shanghai Jiao Tong University
2Affiliation not available

October 31, 2023

Abstract

Anomalies in business processes are inevitable for various reasons such as system failures and operator errors. Detecting

anomalies is important for the management and optimization of business processes. In this paper, we propose a multi-Graph

based Anomaly detection fraMework for business processes via grAph neural networks, named GAMA. GAMA makes use of

structural process information and attribute information in a more integrated way. In GAMA, multiple graphs are applied

to model a trace in which each attribute is modelled as a separate graph. In particular, the graph constructed for the

special attribute activity reflects the control flow. Then GAMA employs a multi-graph encoder and a multi-sequence decoder

on multiple graphs to detect anomalies in terms of the reconstruction errors. Moreover, three teacher forcing styles are

designed to enhance GAMA’s ability to reconstruct normal behaviours and thus improve detection performance. We conduct

extensive experiments on both synthetic logs and real-life logs. The experiment results demonstrate that GAMA outperforms

state-of-the-art methods for both trace-level and attribute-level anomaly detection.

1

1

GAMA: A Multi-graph-based Anomaly Detection
Framework for Business Processes via Graph

Neural Networks
Wei Guan, Jian Cao, Yang Gu, Shiyou Qian

Abstract—Anomalies in business processes are inevitable for various reasons such as system failures and operator errors. Detecting
anomalies is important for the management and optimization of business processes. In this paper, we propose a multi-Graph based
Anomaly detection fraMework for business processes via grAph neural networks, named GAMA. GAMA makes use of structural
process information and attribute information in a more integrated way. In GAMA, multiple graphs are applied to model a trace in which
each attribute is modelled as a separate graph. In particular, the graph constructed for the special attribute activity reflects the control
flow. Then GAMA employs a multi-graph encoder and a multi-sequence decoder on multiple graphs to detect anomalies in terms of the
reconstruction errors. Moreover, three teacher forcing styles are designed to enhance GAMA’s ability to reconstruct normal behaviours
and thus improve detection performance. We conduct extensive experiments on both synthetic logs and real-life logs. The experiment
results demonstrate that GAMA outperforms state-of-the-art methods for both trace-level and attribute-level anomaly detection.

Index Terms—Process mining, anomaly detection, deep learning, graph neural networks, recurrent neural networks

✦

1 INTRODUCTION

ANOMALY detection, also known as outlier detection,
novelty detection, etc., focuses on identifying rare,

unexpected and suspicious instances within a swarm of
normal data points [1]. With a wide range of applications,
including spam detection, financial fraud detection, and
intrusion detection in cybersecurity [2], it has major im-
plications for assisting practitioners and decision-makers
in discovering, managing, and avoiding anomalous pat-
terns from data. With recent developments in information
technology, enterprises are increasingly relying on process-
aware information systems (PAISs) to manage their opera-
tions. However, anomalies in processes are inevitable due to
numerous root causes, such as system failures and operator
errors. Detecting anomalies in business processes is critical
to the successful operation of a business. Moreover, low-
quality event logs containing anomalies hinder our ability
to extract valuable information from them. For example,
process mining (PM) provides techniques to comprehend
and enhance processes in various application fields [3].
The output of process mining techniques using low-quality
event logs may be of poor quality, potentially reducing the
accuracy of any decisions based on it. Therefore, anomaly
detection techniques should be used to detect and remove
anomalies from the logs.

Event logs encompass multiple perspectives such as
activities, resources, data, and time, with complex intrinsic
dependencies between them. At the same time, there are
different categories of anomalies in the event logs, such
as Skip, Insert, Rework, Early, Late and Attribute [4], where
the first five categories of anomalies can be referred to as

• W. Guan, J. Cao, Y. Gu and S. Qian are with the Department of
Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, 200240, P.R. China. E-mail: {guan-wei, cao-jian, gu yang,
qshiyou}@sjtu.edu.cn.

control flow anomalies, which break the normal control
flow dependencies. Anomalies related to resources, data,
and time are categorized as Attribute. Capturing complex
dependencies among multiple perspectives and detecting
various categories of anomalies in business processes are
challenging.

In recent years, a variety of approaches have been pro-
posed for detecting anomalies in business processes, rang-
ing from graph-agnostic to graph-based methods. Graph-
agnostic approaches which treat traces as sequences have
been widely studied and can be divided into several types.
Machine learning-based approaches [5], [6], [7], [8], [9] trans-
form traces into vector representations and detect anomalies
using traditional machine learning anomaly detection algo-
rithms. Information theory-based measures are applied by
information theory-based approaches [10], [11], [12], [13] to
detect anomalies. With the advancement of deep learning,
reconstruction-based approaches [4], [14], [15], [16], [17],
[18], [19], [20], [21] have recently attracted increasing at-
tention, where traces with large reconstruction errors are
treated as anomalies. It is worth noting that reconstruction-
based approaches can detect low-level anomalies, such as
attribute-level anomalies.

Although graph-agnostic approaches can be applied di-
rectly to the traces, they ignore the structural information of
business processes which may affect the anomaly detection
performance. Fig. 1 gives a toy example. It can be seen that
the two traces are different in terms of their event sequences.
However, both can be generated from the same process.
Therefore, graph-based approaches, taking the structure of
a business process into consideration, have a better gener-
alization capability. Generally, in these approaches, normal
process model-based methods are given or discovered from
the clean log, and then conformance checking [22] is used
to compare the differences between traces and the feasible

2

e1e1 e7e7

e3e3

e2e2 e5e5

e4e4

e6e6

e8e8

Graph

Plain

Trace
<e1,e3,e4,e5,e6,e7,e8> <e1,e2,e4,e7,e6,e5,e8>

Fig. 1: A toy example of a graph-based approach

behaviors of normal process models for anomaly detection
[23], [24], [25], [26]. Since anomalies can be detected from
a probabilistic perspective, process models are extended
with probabilistic information in the form of a likelihood
graph [27], Bayesian networks [28], hidden Markov mod-
els (HMM) [29], [30] and variable order Markov models
(VOMMs) [31] for anomaly detection. However, these ap-
proaches all rely on a clean dataset to construct a normal
process model, which is often not feasible in practice. With
the rise of graph neural networks, anomaly detection based
on graph encoding has aroused researchers’ interests [32].
However, the graphs derived from traces often rely solely
on control flows, neglecting attribute information. While
attributes can be incorporated as edge features in the graph,
the underlying relationships between attributes and control
flows, specifically the patterns of attribute changes with
respect to control flows, are not adequately captured. As
a result, existing graph neural network-based methods are
ineffective in detecting anomalies at the attribute level.
Additionally, the graphs extracted directly from individual
traces lack crucial structural information about the underly-
ing process.

To address the aforementioned challenges, in this pa-
per, we propose a multi-Graph-based Anomaly detec-
tion fraMework for business processes via grAph neural
networks, named GAMA, to detect both trace-level and
attribute-level anomalies effectively. To obtain a graph with
comprehensive structural information about the process,
GAMA introduces a unique approach. It derives a multi-
graph for each trace by constructing a global graph using
the entire event log. This global graph contains detailed
structural information that encompasses the entire process.
Moreover, within the multi-graph structure, GAMA adopts
a meticulous modeling methodology where each attribute
is represented as an independent graph. This approach
ensures that attribute information is accurately captured
and reflected, resulting in a comprehensive representation of
the data. GAMA leverages graph neural networks (GNNs)
[33] to learn the graph embeddings. These GNNs are inte-
grated into a multi-graph encoder, enabling the extraction
of hidden representations for the nodes (attribute values).
These hidden representations are subsequently decoded
into probabilistic maps using a multi-sequence decoder to
detect anomalies. To effectively capture the intrinsic rela-

tionships between attributes, GAMA incorporates an atten-
tion mechanism that operates across the graphs for each
attribute. Three innovative teacher forcing styles that take
into account the unique characteristics of business processes
are introduced. These customized techniques are specifically
designed to accommodate the unique properties and intri-
cacies of business processes. By leveraging these tailored
teacher forcing methods, GAMA improves the accuracy and
effectiveness of the decoding process.

The main contributions of our work are as follows:

• We propose a groundbreaking method to convert a
trace into a multi-graph which proficiently capture
both the structural information of the process and
attribute information in a comprehensive manner.

• We design the framework GAMA, which uses a
multi-graph encoder and a multi-sequence decoder
on the multi-graph to detect anomalies in terms of
reconstruction errors.

• Considering the characteristics of business processes,
three teacher forcing styles are designed to enhance
the capability to reconstruct normal behavior and
improve detection performance.

• We perform extensive experiments on both synthetic
and real-world datasets. The experiment results
show that GAMA achieves the best performance in
detecting trace-level and attribute-level anomalies.

The rest of this paper is organized as follows. Section
2 introduces the related work. Section 3 gives the prelim-
inaries and notations used in our study. Then proposed
framework GAMA is elaborated in section 4. Section 5
reports the experiment results on synthetic logs and real-
life logs. Finally, we conclude our work and discuss future
work in section 6.

2 RELATED WORK

Anomaly detection approaches in business processes can
be graph-agnostic or graph-based. A brief summary of the
related work is given in Table 1.

2.1 Graph-agnostic Approaches
Some authors propose graph-agnostic approaches that sim-
ply treat traces as sequences. These approaches can be fur-
ther divided into three categories, i.e., i) machine learning-
based, ii) information theory-based, and iii) reconstruction-
based approaches.

Machine Learning-based Approaches. These ap-
proaches detect anomalies using traditional machine learn-
ing anomaly detection algorithms. In [5], the normalized
longest common sub-sequence (NLCS) between traces is
calculated and k nearest neighbor (KNN) is applied to
detect anomalies. The LOF algorithm based on k nearest
neighbor imputation (KNNI) is used in [6] for the real-time
business process monitoring to predict abnormal termina-
tion. Outlier-aware clustering algorithms are used in [7]. In
[8], [9], activities and traces are considered as words and
sentences, respectively, and traces are encoded as vectors
using the word2vec [43] encoding method. After encoding,
the random forest algorithm is applied in [8] to classify
traces into normal and abnormal. Similarly, the authors in

3

TABLE 1: A brief summary of related works

Categories Algorithms Comments/Limitations

Graph-agnostic
Approaches

Machine Learning-based
[5], [6], [7], [8],

[9]
Requirs lots of calculations. Efficiency decreases with large data sizes.

Information
theory-based

[10], [11], [12], [13]
Applies statistical leverage to detect anomalies.

Large detection granularity, can only detect trace-level anomalies.

Reconstruction-based
[4], [14], [15], [16]
[17], [18], [19], [20]

[21], [34]

Has the ability to train incrementally when data distribution changes.
Small detection granularity, can detect attribute-level anomalies.

Graph-based
Approaches

Behavior
Conformance-based

[23], [24], [25], [26]
[35], [36], [37], [38]
[39], [40], [41], [42]

A clean log or a prior knowledge of the process is required.
The anomaly detection performance depends on the quality

of the process model.

Probabilistic Graphical
Model-based

[27], [28], [29], [30]
[31]

Converts logs to probabilistic graphical models considering the
structural process information but creating models relies on clean logs.

Graph Neural
Network-based

[32]
Traces are encoded using graph neural networks that
fully take into account structural process information.

[9] apply a one-class SVM to classify traces into normal and
abnormal.

Information theory-based Approaches. In statistics,
leverage is a widely used metric to detect anomalies. How-
ever, traditional leverage-based approaches cannot be ap-
plied to detect anomalies in business processes. In [11], [12],
a new statistical leverage [44]-based approach is proposed
to detect trace-level anomalies in business processes which
also takes into account that traces may be of different
lengths. The authors in [10], [13] apply statistical leverage to
the online detection of anomalous traces in business process
event streams.

Reconstruction-based Approaches. These methods first
train a model that can reconstruct normal behaviors, and
then detect anomalies based on the reconstruction error.
An autoencoder is used in [14], [15], [16], [17], [18] to
detect anomalies. GRASPED [18] introduces a well-designed
teacher forcing method and the attention mechanism to
improve its detection performance. Guan et al. [34] employ
an autoencoder as a feature extractor and utilize a multi-
layer perceptron (MLP) as an anomaly score generator,
effectively harnessing the potential of a limited number of
labeled anomalies. Since a model obtained by an autoen-
coder frequently runs the risk of over-fitting, a denoising
autoencoder is applied in [19], [20]. Inspired by the use of
LSTM [45] in [46], [47], [48] to predict the next event in
the event sequence, BINet is proposed in [4], [21], which
is based on gated recurrent units (GRUs) [49] to predict the
next event in the event sequence. BINet detects anomalies by
predicting the probability of the attributes of the next event
and if the probability is lower than the threshold, then the
attribute is detected as an anomaly.

Graph-agnostic approaches can be applied directly to
traces. However, a business process is a structured set of
activities that have inherent relationships. These approaches
do not take this information into account, which can limit
the performance improvement of anomaly detection.

2.2 Graph-based Approaches
Graph-based approaches rely on a graph that models the
relationships among activities to detect anomalies.

Behavior Conformance-based Approaches. A straight-
forward graph-based approach is to utilize conformance
checking [22] to compare the differences between traces and
legitimate behaviors of corresponding process models [35],
[36], [37], [38], [39], [40], [41], [42], provided or discovered
from the clean log using process discovery algorithms [50].
In addition to relying on process models alone, the au-
thors in [23], [24], [25], [26] combine process models and
association rule learning to detect and analyze anomalies
in business processes to improve the accuracy of anomaly
detection.

Probabilistic Graphical Model-based Approaches. A
process model can be extended with probabilistic infor-
mation, such as the likelihood of activity execution transi-
tions. In [27], traces are mapped onto the likelihood graph.
The probability of the attribute value is used to deter-
mine whether it is anomalous. In [28], Bayesian networks
are automatically inferred from Petri nets, which allows
the detection of non-obvious and interdependent temporal
anomalies. In [29], the event logs are analyzed using the
hidden Markov model (HMM). Moreover, in [30], three
sequence analysis techniques based on windowing, the
Markov model and the hidden Markov model are used
to detect anomalies in business processes. Variable order
Markov models (VOMMs) are used in [31] to predict the
probability of the execution of each activity in the trace.

Graph Neural Network-based Approaches. With the
successful applications of graph neural networks (GNNs),
researchers have started to apply these techniques to solve
the anomaly detection problem since business processes
can be naturally modelled as a graph. By using GNNs,
graph embedding can be obtained and anomalies can be
detected in terms of reconstruction errors. For example,
GAE uses an edge-conditioned convolution (ECC) to obtain
a better graph encoding and then detects anomalies [32].
However, the current GNN-based approach often constructs
a graph primarily based on control flow, neglecting the
proper integration of attributes into the graph representa-
tion. As a consequence, it falls short in detecting attribute-
level anomalies effectively. Moreover, the straightforward
graph generation from individual traces further exacerbates

4

S
o
ftm

ax

O
n

e-h
o
t

E
m

b
ed

d
in

g

O
n

e-h
o
t

E
m

b
ed

d
in

g

Positional Encoding

Attribute

GAT

GAT

Attribute

Attention

… … …

Average

…
…

G
R

U

Average

L
in

ear

S
o
ftm

ax

Positional Encoding

…
…

… … …

Embeddingte-1,1

A

Attention

…
…

L
in

ear

Embeddingte-1,A

G
R

U

Probability MapProbability Map

Probability MapProbability Map

G
rap

h

G
en

erato
r

Trace

t

(Activity)

te,1

…

 Anomaly Score

A

S1,1 S2,1 S3,1 S4,1 S5,1 S6,1 S7,1 S8,1S1,1 S2,1 S3,1 S4,1 S5,1 S6,1 S7,1 S8,1

S1,A S2,A S3,A S4,A S5,A S6,A S7,A S8,AS1,A S2,A S3,A S4,A S5,A S6,A S7,A S8,A

…

 Anomaly Score

A

S1,1 S2,1 S3,1 S4,1 S5,1 S6,1 S7,1 S8,1

S1,A S2,A S3,A S4,A S5,A S6,A S7,A S8,A

A
n

o
m

aly
 S

co
re

C
alcu

lato
r

t1,1 t2,1 t3,1

t4,1

t6,1

t5,1 t7,1 t8,1

t1,A t2,A t3,A

t4,A

t6,A

t5,A t7,A t8,A

Fig. 2: The architecture of GAMA. (Using the trace involves eight events as an example).

the issue by lacking crucial structural information about the
underlying process. These limitations hinder the compre-
hensive detection of anomalies.

GAMA is a notable example that addresses these lim-
itations. Unlike methods that rely on a single graph to
model control flows, GAMA surpasses them by constructing
multiple graphs, one for each attribute, to ensure more
comprehensive embeddings. A significant advantage of
GAMA lies in its generation of a multi-graph derived from
a global graph constructed using the entire event log. This
global graph integration enables GAMA’s multi-graph to
accurately reflect the structural information of the process,
leading to more precise and insightful analyses. Addition-
ally, GAMA captures the intrinsic relationships between
attributes through attention layers that operate across the
graphs for each attribute.

3 PRELIMINARIES

Following the widely accepted notations, we adopt bold
uppercase characters (e.g., A) to denote matrices, bold low-
ercase characters (e.g., b) to indicate vectors and normal
lowercase characters (e.g., c) as scalars.

In this section, we formalize the definition of log.

3.1 Log
As a foundation for the following sections, we first define
the terms log, trace, event, and attribute.
Definition 3.1 (Log, Trace, Event). Let A = {a1, a2,⋯, aA}

be a set of attributes, where A = ∣A∣ represents the
number of attributes. Va is the set of possible values for
the attribute a ∈ A. An event e = [Va1

, Va2
,⋯, VaA

] is a
tuple, with one value for each attribute, where Vai

∈ Vai
.

A trace t is a sequence of events and an event log L is a
set of traces. Note that ∣t∣ is the number of events in trace
t, ∣L∣ is the number of traces in log L.

It should be noted that activity is a special attribute
reflecting the control flow in attribute set A. Let te,a denote
the value of attribute a of event e in trace t and ea denote
the value of attribute a of event e.
Example 1. Let attribute set A = {Activity, Company}.

t = ⟨[CSC, Th], [PSC, Be], [ASC, St], [CPO, Su], [RPO,

Be], [PGR, Pl], [PIR, Fa], [PAY, Sl]⟩ represents a trace
containing eight simple events taking place in chrono-
logical order. The value of the first attribute Activity
of the second event e in trace t can be obtained with
te,Activity = PSC or t2,1 = PSC.

4 METHODOLOGY

In this section, we elaborate on the proposed framework
GAMA.

4.1 Architecture of GAMA
The architecture of GAMA is shown in Fig. 2. The entire
framework is based on an autoencoder-like unsupervised
deep learning model, which consists of four essential com-
ponents: i) graph generator: it converts a trace t into multiple
graphs, where each attribute corresponds to one graph. For
the sake of illustration, we default the first attribute a1 to
Activity (control flow perspective); ii) multi-graph encoder:
it leverages the graph attention networks (GATs) [51] to
embed the graph corresponding to each attribute, obtaining
the hidden representation of each node. iii) multi-sequence
decoder: it attempts to reconstruct the values for each at-
tribute of each event in trace t; iv) anomaly score calculator: it
calculates anomaly scores for each attribute of each event in
trace t.

Inspired by the teacher forcing method [52], we provide
the ground truth as input for the GRUs in the multi-
sequence decoder. Three different teacher forcing styles are
proposed to guide the reconstruction of attribute values.

Obviously, the combination of a multi-graph encoder
and a multi-sequence decoder forms a straightforward au-
toencoder that effectively accomplishes the processes of
compression and reconstruction. In other words, it com-
presses the input trace t into low-dimensional representa-
tions and subsequently generates the probability distribu-
tion tpa

e for each attribute a of every event e within trace
t based on these condensed representations. Formally, the
training procedure of the autoencoder can be character-
ized as minimizing the following reconstruction errors (i.e.,
cross-entropy loss [53]):

L(L,P) = − ∑
t∈L

∑
e∈t

∑
a∈A

log
t
p
a
e [te,a] (1)

5

APO

ASC

CPO

CPR

CSC

PAY

PGR

PIR

PSC

RPO

RPR

APO ASC CPO CPR CSC PAY PGR PIR PSC RPO RPR

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

1

0

1

1

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0
[CSC,

Th]

[PSC,

Be]

[ASC,

St]

[CPO,

Su]

[RPO,

Be]

[PGR,

Pl]

[PIR,

Fa]

[PAY,

Sl]

[CSC,

Th]

[PSC,

Be]

[ASC,

St]

[CPO,

Su]

[RPO,

Be]

[PGR,

Pl]

[PIR,

Fa]

[PAY,

Sl]

APO

ASC

CPO

CPR

CSC

PAY

PGR

PIR

PSC

RPO

RPR

APO ASC CPO CPR CSC PAY PGR PIR PSC RPO RPR

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

1

0

1

1

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0
[CSC,

Th]

[PSC,

Be]

[ASC,

St]

[CPO,

Su]

[RPO,

Be]

[PGR,

Pl]

[PIR

Fa]

[PAY,

Sl]

[CSC,

Th]

[PSC,

Be]

[ASC,

St]

[CPO,

Su]

[RPO,

Be]

[PGR,

Pl]

[PIR

Fa]

[PAY,

Sl]

[CSC,

Th]

[CSC,

Th]

[PIR,

Fa]

[PIR,

Fa]

[ASC,

St]

[ASC,

St]

[PSC,

Be]

[PSC,

Be]

[PGR,

Pl]

[PGR,

Pl]

[CPO,

Su]

[CPO,

Su]

[RPO,

Be]

[RPO,

Be]

[PAY,

Sl]

[PAY,

Sl]

[CSC,

Th]

[CSC,

Th]

[PIR,

Fa]

[PIR,

Fa]

[ASC,

St]

[ASC,

St]

[PSC,

Be]

[PSC,

Be]

[PGR,

Pl]

[PGR,

Pl]

[CPO,

Su]

[CPO,

Su]

[RPO,

Be]

[RPO,

Be]

[PAY,

Sl]

[PAY,

Sl]

ThTh FaFaStStBeBe

PlPl

SuSu

BeBe SlSl

CSCCSC PIRPIRASCASCPSCPSC

PGRPGR

CPOCPO

RPORPO PAYPAY

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

0

0

0

1

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

0

0

0

1

1

0

0

1

0

0

0

1

0

0

0

0

0

Multiple graphs

Activity

Company

(i) (ii) (iii) (iv)

0

5

0

578

4

8

0

12

2512

0

0

2

0

2314

0

0

2

0

0

4

14

1540

567

0

14

2

5

0

0

1254

0

1024

5

0

0

535

0

745

5

541

2

6

0

45

12

1

0

0

0

0

0

264

5

2

1420

655

4

0

521

0

15

0

10

0

2

0

0

975

0

0

4

0

0

743

20

1002

0

0

0

0

0

455

4

2

9

0

3

12

4

0

0

5

1264

0

8

0

0

985

0

0

15

3

1586

546

2

0

0

211

53

4

7

777

0

0

2

779

9

0

1

0

5

0

5

0

578

4

8

0

12

2512

0

0

2

0

2314

0

0

2

0

0

4

14

1540

567

0

14

2

5

0

0

1254

0

1024

5

0

0

535

0

745

5

541

2

6

0

45

12

1

0

0

0

0

0

264

5

2

1420

655

4

0

521

0

15

0

10

0

2

0

0

975

0

0

4

0

0

743

20

1002

0

0

0

0

0

455

4

2

9

0

3

12

4

0

0

5

1264

0

8

0

0

985

0

0

15

3

1586

546

2

0

0

211

53

4

7

777

0

0

2

779

9

0

1

0

5

(a)

0

5

0

578

4

8

0

12

2512

0

0

2

0

2314

0

0

2

0

0

4

14

1540

567

0

14

1875

5

0

0

1254

0

1024

5

0

0

535

0

745

5

541

2

6

0

45

12

1

0

0

0

0

0

264

5

2

1420

655

4

0

521

0

15

0

10

0

2

0

0

975

0

0

4

0

0

743

20

1002

0

0

0

0

0

455

4

2

9

0

3

12

4

0

0

5

1264

0

8

0

0

985

0

0

15

3

1

0

2

0

0

211

0

4

7

777

0

0

2

779

9

0

1

0

5APO

ASC

CPO

CPR

CSC

PAY

PGR

PIR

PSC

RPO

RPR

APO ASC CPO CPR CSC PAY PGR PIR PSC RPO RPR

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0
[CSC,

Th]

[PSC,

Be]

[ASC,

St]

[CPO,

Su]

[RPO,

Be]

[PGR,

Pl]

[PIR,

Fa]

[PAY,

Sl]

[CSC,

Th]

[PSC,

Be]

[ASC,

St]

[CPO,

Su]

[RPO,

Be]

[PGR,

Pl]

[PIR,

Fa]

[PAY,

Sl]

APO

ASC

CPO

CPR

CSC

PAY

PGR

PIR

PSC

RPO

RPR

APO ASC CPO CPR CSC PAY PGR PIR PSC RPO RPR

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0
[CSC,

Th]

[PSC,

Be]

[ASC,

St]

[CPO,

Su]

[RPO,

Be]

[PGR,

Pl]

[PIR

Fa]

[PAY,

Sl]

[CSC,

Th]

[PSC,

Be]

[ASC,

St]

[CPO,

Su]

[RPO,

Be]

[PGR,

Pl]

[PIR

Fa]

[PAY,

Sl]

[CSC,

Th]

[CSC,

Th]

[PIR,

Fa]

[PIR,

Fa]

[ASC,

St]

[ASC,

St]

[PSC,

Be]

[PSC,

Be]

[PGR,

Pl]

[PGR,

Pl]

[CPO,

Su]

[CPO,

Su]

[RPO,

Be]

[RPO,

Be]

[PAY,

Sl]

[PAY,

Sl]

[CSC,

Th]

[CSC,

Th]

[PIR,

Fa]

[PIR,

Fa]

[ASC,

St]

[ASC,

St]

[PSC,

Be]

[PSC,

Be]

[PGR,

Pl]

[PGR,

Pl]

[CPO,

Su]

[CPO,

Su]

[RPO,

Be]

[RPO,

Be]

[PAY,

Sl]

[PAY,

Sl]

ThTh FaFaStStBeBe

PlPl

SuSu

BeBe SlSl

CSCCSC PIRPIRASCASCPSCPSC

PGRPGR

CPOCPO

RPORPO PAYPAY

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

1

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

1

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

Multiple graphs

Activity

Company

(a) (b) (c) (d)

(b)

Fig. 3: Illustrations showing how multiple graphs are gener-
ated

where tpa
e [te,a] denotes the probability that the value of

attribute a of event e in trace t is te,a.
Numerous previous studies [14], [15], [19], [54] have

concluded that the magnitude of reconstruction errors is
a powerful indicator of anomalies since anomalies do not
follow the patterns of the majority and cannot be precisely
reconstructed. Therefore, based on this indicator, anomaly
scores can be computed.

For ease of reference, this section focuses solely on the
reconstruction process of a trace. Therefore, we simplify the
notation by omitting the trace identifiers, denoting tpa

e as
pa
e .

4.2 Graph Generator
By utilizing existing process discovery techniques [55],
[56], [57], logs can be converted to graph-based represen-
tations. However, it is non-trivial to convert a trace into
a graph-based representation. Recognizing that anomalous
patterns inherently exhibit distinct behavior across various
attributes, we generate a graph for each attribute respec-
tively.

We construct multiple directed graphs for trace t in log
L to reflect the structural process information as follows.
When generating the directed edges of the graphs, we only
consider the control flow perspective. To begin, we compute
the number of occurrences of each directly-follows relation
(b, c), which is a measure employed by the α-algorithm
[55]. This relation signifies the occurrence of activity b being
directly followed by activity c within the log L. Secondly,
a directed global graph G(L) is generated, containing the
activities of log L as nodes. An edge b → c is present in
directed global graph G(L) if and only if the number of
occurrences of directly-follows relation (b, c) is no less than
β ∗ ∣L∣, where β is a user-chosen threshold to filter out
infrequent relations (i.e., noise). Thirdly, a directed event
graph G(t) is generated, containing the events of trace t
as nodes. An edge e → e′ is present in directed event
graph G(t) if eActivity → e′Activity is an edge in directed
global graph G(L). Fourthly, to comprehensively capture

the directly-follows relations between events, an edge e → e′

is present in G(t) if event e directly follows event e′ in trace
t. Finally, a distinct graph can be derived for each attribute
in A from the directed event graph G(t). We can obtain
multiple graphs by replacing the nodes in the event graph
G(t) from event e to attribute value ea for every attribute
a ∈ A.

Example 2 (Example 1 continued). Consider attribute set A
and trace t in Example 1. We assume that the number
of occurrences of each directly-follows relation in log L
is shown in Fig. 3a(i). Considering β ∗ ∣L∣ = 50, the
adjacency matrix of the directed global graph G(L) is
shown in Fig. 3a(ii). Fig. 3a(iii) and Fig. 3a(iv) present
the adjacency matrix of directed event graph G(t) after
step three and step four respectively. Fig. 3b illustrates
the evolution of directed event graph G(t). The multiple
graphs of trace t are shown on the right in Fig. 3b.

4.3 Multi-graph Encoder

Given A graphs generated by trace t, where each graph
contains ∣t∣ nodes, we assign a distinct one-hot embedding,
positional encoding and GAT to each graph. Next, we intro-
duce these three components in detail, using attribute a as
an example.

Due to the neural networks’ inability to interpret lan-
guage, we must transform the language to numbers. One-
hot embedding [58], which transforms categorical variables
into binary vectors, is one technique to accomplish this.
After one-hot embedding, the value of nodes can be con-
verted to ∣Va∣-dimensional vectors, where ∣Va∣ is number of
possible values for the attribute a.

In our architecture, we use GATs to encode the nodes
(i.e., the attribute values) to obtain hidden representations of
the nodes. Compared to RNNs, which is commonly applied
to solve sequence problems, GATs can better aggregate the
information of events that have strong correlations in the
trace. For example, assuming that the first event and the
last event in a trace are strongly correlated (i.e., in the log,
the activity of the first event is often directly followed by the
activity of the last event), in the graph, there exists a directed
edge from the first event to the last event, so that the last
event is able to aggregate the information of the first event.
However, from a sequence perspective, they are far apart,
and RNNs will experience the vanishing gradient problem
[59], and the last event cannot aggregate the information of
the first event well.

The order of events is very important, so if the order
of events in a trace changes, the trace will become an
anomalous trace. However, GATs do not consider the order
of nodes, losing the positional information, which is vital to
reconstruct a complete trace. In order for the GATs to utilize
the order of events, some information about the relative or
absolute position of the events in the trace must be injected
into one-hot embeddings. In this work, we use the positional
encoding (PE) proposed in [60]:

f
a
pos,2i += sin (pos/100002i/∣Va∣) (2)

f
a
pos,2i+1 += cos (pos/100002i/∣Va∣) (3)

6

where pos is the position of the event in the trace and i-th
dimension of the one-hot embedding fapos. After positional
encoding, a set of node features {fa1 , fa2 ,⋯, fa∣t∣} are input
into the GAT and GAT outputs a set of hidden representa-
tions of nodes {ha

1 ,h
a
2 ,⋯,ha

∣t∣}. We average these vectors:

s
a
0 = mean({ha

1 ,h
a
2 ,⋯,h

a
∣t∣}) (4)

Overall, multi-graph encoder outputs ∣t∣∗A hidden rep-
resentations {h1,h2,⋯,h∣t∣∗A} and A initial hidden states
{s10, s20,⋯, sA0 } for GRUs in multi-sequence decoder, where
∣t∣ is the length of trace t and A is the number of attributes.

4.4 Multi-sequence Decoder
In ths subsection, the notation se = GRU(se−1,xe) repre-
sents the process by which the input xe at the current time
step e and the hidden state se−1 from the previous time step
e − 1 are fed into a GRU. This GRU operation generates the
updated hidden state se at the current time step e.

The multi-sequence decoder, in contrast to the multi-
graph encoder, decodes the hidden representations into a
probability map. The higher the probability of the attribute
value, the more likely it is to be normal.

First, the output of the multi-graph encoder {h1,h2,⋯,
h∣t∣∗A} needs to go through the attention layer and gen-
erates cae . The attention mechanism serves as a vital link
connecting the encoder and the decoder. The attention
mechanism identifies which attributes of which events are
relevant to the next target attribute value and gives high
attention weights to those encoded attribute values.

eg
a
ei =

(Wa
qs

a
e−1)TWa

khi√
d

(5)

α
a
ei = Softmaxi (egaei) =

exp(egaei)
∑∣t∣∗A

j=1 exp(egaej)
(6)

where egaei represents the energy state, Wa
q and Wa

k , which
convert sae−1 and hi into d-dimensional vectors (i.e., Wa

qs
a
e−1

and Wa
kh

a
i), are the learnable matrices. In Eq. (6), the

energy states egaei computed at event e are normalized using
softmax to obtain the corresponding attention weight αa

ei,
which intuitively reflects the significance of each encoded
attribute value hi during reconstruction. A higher value of
αa
ei indicates that hi is more important for predicting the

current attribute value.
Then, cae can be obtained, which involves weighting the

output of the multi-graph encoder with their respective
attention weights in a direct manner.

c
a
e =

∣t∣∗A
∑
i=1

α
a
eihi (7)

Next, in order to better reconstruct the target attribute
value at event e, we introduce the teacher forcing method
which is widely used in the field of natural language pro-
cessing.

In the case of the first attribute (Activity), the prediction
of the probability distribution for the attribute value at the
current event e is guided solely by the previous ground
truth attribute value (i.e., activity name) te−1,1.

s
1
e = GRU(s1e−1, [c1e∥tf1e−1])) (8)

0.45

0.3

0.1
0.07

0.03 0.02 0.01 0.009 0.005 0.003 0.003

0 0.45 0.75 0.85 0.92 0.95 0.97 0.98 0.989 0.994 0.997

C
P

O

A
S

C

P
G

R

τ =0.8Probability=

Anomaly
Score

Fig. 4: Probability distribution

where tf1e−1 is the embedding vector of te−1,1. [c1e∥tf1e−1],
which is the concatenation of tf1e−1 and c1e, is inputted into
the GRU (see the blue part in Fig. 2). The initial hidden state
of the GRU is the output s10 of the multi-graph encoder.

Finally, the probability distribution p1
e, which is the

probability distribution over all possible values of the first
attribute (Activity) at event e, can be calculated by

p
1
e = Softmax(W1

p[s1e∥c1e∥tf1e−1]) (9)

which represents the linear layer and the softmax layer.
In the case of the other attribute a, three different teacher

forcing styles are proposed to guide the reconstruction of
attribute values.

i) Activity name (AN): We consider that the current at-
tribute value depends mainly on the current activity name.
Therefore, at current event e, the ground truth activity
name te,1 is used to guide the prediction of the probability
distribution pa

e which can be calculated by

s
a
e = GRU(sae−1, [cae∥tf1e]) (10)

p
a
e = Softmax(Wa

p[sae∥cae∥tf1e]) (11)

where tf1e is the embedding vector of te,1.
ii) Previous attribute value (PAV): We consider that the

current attribute value depends mainly on the previous at-
tribute value. Therefore, the previous ground truth attribute
value te−1,a is used to guide the prediction of the probability
distribution pa

e which can be calculated by

s
a
e = GRU(sae−1, [cae∥tfae−1]) (12)

p
a
e = Softmax(Wa

p[sae∥cae∥tfae−1]) (13)

where tfae−1 is the embedding vector of te−1,a.
iii) Fusion of activity name and previous attribute value

(FAP): We consider that the current attribute value depends
both on the current activity name and the previous attribute
value. Therefore, the fusion of current ground truth activity
name te,1 and the previous ground truth attribute value
te−1,a is used to guide the prediction of the probability
distribution pa

e which can be calculated by

s
a
e = GRU(sae−1, [cae∥tf1e∥tfae−1]) (14)

p
a
e = Softmax(Wa

p[sae∥cae∥tf1e∥tfae−1]) (15)

4.5 Anomaly Score Calculator
The trained model can be applied to identify anomalies after
the training phase. We input trace t into the trained model
to obtain the probability distribution pa

e over all possible
values of attribute a of event e.

7

Typically, compared to a normal attribute value, the
probability of an anomalous attribute value is lower. Based
on this idea, the anomaly score for the value of attribute a of
event e in trace t is defined as the sum of all probabilities in
the probability distribution pa

e greater than the probability
of te,a (i.e., pa

e [te,a]). To calculate the anomaly score for
attribute a of event e, the following formula can be applied:

St,e,a = ∑
pa

e,i>p
a
e [te,a]

p
a
e,i (16)

where pa
e,i is i-th probability in probability distribution pa

e .

Example 3. Consider probability distribution pa
e = [0.07,

0.3, 0.005, 0.03, 0.01, 0.003, 0.02, 0.45, 0.003, 0.1, 0.003]
of trace t in Fig. 4. There are eleven possible attribute
values for attribute a. Anomaly scores for each possible
value are calculated. Assuming that te,a = PGR, we can
calculate St,e,a = 0.45 + 0.3 = 0.75.

4.6 Anomaly Detection

By applying a threshold τ , the anomaly scores are labeled
into 0 or 1, with 0 indicating normal and 1 indicating anoma-
lous. We label an attribute value as anomalous whenever its
anomaly score exceeds τ (i.e., attribute-level). The likelihood
of an attribute value being anomalous increases with its
anomaly score.

Lt,e,a = {1 if St,e,a > τ

0 if St,e,a ⩽ τ
(17)

Example 4 (Example 3 continued). Given that threshold τ is
0.8, since the anomaly score St,e,a = 0.75 which is less
than 0.8, we can infer that the corresponding label for
attribute a of event e in trace t is Lt,e,a = 0, indicating
normal.

The following rule can be utilized to adapt our method to
trace-level anomaly detection: If there exists some attribute
of some event in a trace that is anomalous, the trace is
anomalous. The following formal representation is offered:

L
trace
t = {1 if ∃ Lt,e,a = 1 for e ∈ t, a ∈ A

0 if ∀ Lt,e,a = 0 for e ∈ t, a ∈ A
(18)

5 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of
GAMA on both synthetic and real-life datasets. GAMA is
implemented in Python, and the source code is accessible at
https://github.com/guanwei49/GAMA.

All experiments are conducted in an unsupervised man-
ner, meaning that no prior knowledge of the process is
provided, and clean event logs are unavailable. The models
are trained on event logs containing anomalies, and subse-
quently, anomaly detection is performed on the same event
logs.

5.1 Compared Methods

To verify the superiority of the proposed method, we com-
pare GAMA with the following state-of-the-art methods:

• OC-SVM [61]: It transforms traces into vector rep-
resentations and applies one-class SVM [62] to find
anomalies.

• Naive [41]: It marks all traces that are infrequent in
the event log as anomalies.

• Sampling [41]: It selects a sample of the event log
and mines the process model to detect anomalies by
comparing the differences between the traces and the
mined process model.

• GAE [32]: It transforms traces into graphs and detects
anomalies based on the reconstruction errors of the
edges between nodes.

• DAE [19]: It transforms traces into vector representa-
tions and detects anomalies based on reconstruction
errors in the denoising autoencoder.

• VAE [14]: It transforms traces into vector representa-
tions and detects anomalies based on reconstruction
errors in the variational autoencoder.

• LAE [14]: It transforms traces into vector representa-
tions and detects anomalies based on reconstruction
errors in the LSTM-based autoencoder.

• BINet [4]: It detects anomalies by predicting the at-
tribute values of the next event.

DAE, VAE, LAE and BINet support attribute-level
anomaly detection and trace-level anomaly detection. But
OC-SVM, Naive and Sampling only support trace-level
anomaly detection.

5.2 Parameter Settings and Metrics

GAMA is implemented based on PyTorch [63]. In our exper-
iment, we apply two-layer GATs for encoding and two-layer
GRUs for decoding. The first layer of GATs has four heads
and the second layer of GATs has one head. Dropout [64] is
applied after each layer of GATs and GRUs to counteract
overfitting. We initialize weights using the initialization
introduced in [65], and train the proposed model for a
maximum of 20 epochs with the Adam optimizer [66]. In
the absence of special statements, the hidden layer size of
the GATs and GRUs is 64, the learning rate is 0.0002, and β,
which is used to control the complexity of the graph, is 0.01.

For a fair comparison, we adopt the widely used met-
ric F − score, which is the harmonic mean of Precision
and Recall, to evaluate the performance of these methods.
These metrics are defined as follows: Precision =

TP
TP+FP

,
Recall = TP

TP+FN
, and F−score =

2∗Precision∗Recall
Precision+Recall

, where
TP , FN and FP represent true positives, false negatives
and false positives respectively. To be fair, we use a grid
search method to determine the optimal threshold value τ
and use this threshold value to calculate the F−score for
each method. The method has excellent anomaly detection
performance when the F−score is close to 1.

5.3 Artificial Anomalies

As in previous studies [4], [12], [19], [27], [41], we inject
artificial anomalies into event logs to verify the effectiveness

8

TABLE 2: F−score over synthetic logs where ’T’ and ’A’ represent trace- and attribute-level anomaly detection respectively

Methods
Logs Paper P2P Small Medium Large Huge Gigantic Wide

T A T A T A T A T A T A T A T A

OC-SVM 0.498 - 0.480 - 0.522 - 0.446 - 0.480 - 0.446 - 0.462 - 0.460 -
Naive 0.866 - 0.850 - 0.898 - 0.691 - 0.715 - 0.690 - 0.574 - 0.779 -

Sampling 0.901 - 0.886 - 0.896 - 0.860 - 0.910 - 0.890 - 0.800 - 0.888 -
GAE 0.472 - 0.559 - 0.468 - 0.449 - 0.530 - 0.429 - 0.434 - 0.561 -
DAE 0.799 0.468 0.767 0.475 0.829 0.463 0.713 0.436 0.747 0.433 0.691 0.415 0.580 0.288 0.753 0.455
VAE 0.828 0.190 0.655 0.212 0.788 0.219 0.637 0.230 0.772 0.201 0.589 0.213 0.495 0.181 0.640 0.230
LAE 0.678 0.243 0.666 0.266 0.748 0.239 0.584 0.270 0.571 0.250 0.531 0.268 0.504 0.234 0.699 0.271

BINet 0.543 0.330 0.557 0.342 0.566 0.358 0.521 0.319 0.549 0.333 0.526 0.331 0.525 0.320 0.551 0.345
GAMA-AN 0.949 0.701 0.950 0.686 0.962 0.724 0.873 0.716 0.945 0.768 0.916 0.763 0.821 0.701 0.921 0.724
GAMA-PAV 0.976 0.675 0.974 0.664 0.997 0.662 0.903 0.654 0.944 0.678 0.909 0.663 0.809 0.614 0.950 0.670
GAMA-FAP 0.955 0.699 0.949 0.683 0.957 0.712 0.872 0.700 0.947 0.752 0.922 0.750 0.833 0.691 0.923 0.712

CSC

Normal
Activity

Company

CSC
Skip

Activity

Company

CSC
Insert

Activity

Company

CSC
Rework

Activity

Company

CSC
Early

Activity

Company

CSC
Late

Activity

Company

CSC
Attribute

Activity

Company

PGR

PSC ASC CPO RPO PGR PIR PAY

Th Be St Su Be Pl Fa Sl

PSC ASC CPO RPO PIR PAY

Th Be St Su Be Pl Fa Sl

PSC ASC CPO RPO PGR PIR RA

Th Be St Su Be Pl Fa Rc

PSC ASC CPO RPO PGR PIR PAY

Th Be St Su Be Pl Fa Sl

PSC ASC CPO PGR PIR PAY

Th Be St Su Pl Fa Sl

PSCASC CPO RPO PGR PIR PAY

Th BeSt Su Be Pl Fa Sl

PSC ASC CPO RPO PGR PIR PAY

Th Be St Rc Be Pl Fa Sl

PAY

Sl

PSC

Be

RPO

Be

Fig. 5: Different anomaly types applied to a normal trace

of GAMA. Six anomaly types in [4] which frequently arise in
real business processes are manually injected. Fig. 5 shows
the different anomalous traces obtained by applying six
anomaly types to a normal trace. These anomaly types are
defined as follows:

• Skip: A sequence of events has been skipped.
• Insert: A sequence of random events has been in-

serted.
• Rework: A sequence of events has been executed a

second time.
• Early: A sequence of events has been executed too

early, and hence is skipped later.
• Late: A sequence of events has been executed too late,

and hence is skipped earlier.
• Attribute: Some attribute value has been replaced by

an incorrect value in some events.

5.4 Dataset
Both synthetic logs and real-life logs are applied to evaluate
our method.

For synthetic logs, we adopt eight different business
process models (Paper, P2P, Small, Medium, Large, Huge, Gi-
gantic, Wide) [4] to generate synthetic logs, using simulation
technology. Paper and P2P are handmade process models
and the others are random process models generated by
the PLG2 tool [67] with a different number of activities and
varying size ranges. We also extend a likelihood graph [27]

to generate causally dependent event attributes. For each
process model, the number of attributes in the synthetic logs
varies from 2 to 5, producing 4 ∗ 8 = 32 synthetic logs free
of anomalies.

For real-life logs, we consider six widely used event logs:
i) Billing: it contains events that are related to the billing
of medical services that have been provided by a hospital.
ii) Receipt: it contains the records of the execution of the
receiving phase of the building permit application process
in an anonymous municipality. iii) Sepsis: it contains events
of sepsis cases from a hospital. iv) RTFMP: it contains the
execution of the road traffic fine management process. v)
Permit: it contains events related to travel permits (including
all related events of relevant prepaid travel cost declarations
and travel declarations). vi) Declaration: it contains events
related to international travel declarations.

We inject AP percent of artificial anomalies (i.e., AP
percent of the traces are anomalous) into both synthetic and
real-life logs. In our experiments, we evaluate the scalability
of our method by considering different values of AP , specif-
ically 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, and 0.45. In the
end, we obtain 9 ∗ 32 = 288 synthetic logs and 9 ∗ 6 = 54
real-life logs.

5.5 Experiments on Synthetic Logs

5.5.1 Performance Evaluation
Table 2 reports the anomaly detection performance for trace-
level anomaly detection and attribute-level anomaly detec-
tion of various approaches on synthetic logs. We make the
following observations.

In terms of trace-level anomaly detection, the proposed
GAMA framework (-AN, -PAV and -FAP) achieves the best
performance on all synthetic logs, which demonstrates the
superiority of graph attention networks for the business
process anomaly task. Teacher forcing style AN performs
relatively poorly compared to PAV and FAP. OC-SVM has
the lowest F − scores on most of the synthetic logs. As
expected, OC-SVM is not specifically designed for business
process anomaly detection. Although DAE, VAE and LAE
are based on the autoencoder, which is similar to our ap-
proach, they do not consider structural process information,
resulting in unsatisfactory detection performance. Although
GAE takes advantage of GNNs, the graphs transformed

9

TABLE 3: F−score over real-life logs where ’T’ and ’A’ represent trace- and attribute-level anomaly detection respectively

Methods
Logs Billing Receipt Sepsis RTFMP Permit Declaration

T A T A T A T A T A T A

OC-SVM 0.340 - 0.464 - 0.415 - 0.507 - 0.405 - 0.449 -
Naive 0.668 - 0.638 - 0.392 - 0.776 - 0.462 - 0.495 -

Sampling 0.701 - 0.647 - 0.391 - 0.721 - 0.458 - 0.507 -
GAE 0.385 - 0.420 - 0.391 - 0.341 - 0.386 - 0.406 -
DAE 0.754 0.444 0.650 0.158 0.461 0.136 0.865 0.498 0.522 0.182 0.576 0.201
VAE 0.731 0.435 0.524 0.134 0.448 0.172 0.813 0.517 0.484 0.188 0.476 0.180
LAE 0.784 0.509 0.526 0.218 0.408 0.126 0.874 0.505 0.486 0.287 0.514 0.345

BINet 0.621 0.442 0.575 0.416 0.435 0.192 0.744 0.493 0.641 0.423 0.678 0.499
GAMA-AN 0.792 0.545 0.763 0.548 0.570 0.457 0.899 0.534 0.682 0.428 0.727 0.461
GAMA-PAV 0.791 0.544 0.778 0.538 0.510 0.376 0.914 0.574 0.634 0.369 0.669 0.406
GAMA-FAP 0.811 0.548 0.752 0.535 0.573 0.450 0.914 0.576 0.679 0.402 0.718 0.444

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

F-s
cor

e

A P

 O C - S V M
 N a ï v e
 S a m p l i n g
 G A E
 D A E
 V A E
 L A E
 B I N e t
 G A M A - A N
 G A M A - P A V
 G A M A - F A P

(a) Trace-level anomaly detection

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

 D A E V A E
 L A E B I N e t
 G A M A - A N G A M A - P A V
 G A M A - F A P

F-s
cor

e

A P
(b) Attribute-level anomaly detection

Fig. 6: F−score under different AP over synthetic logs

from traces do not contain the information about the pro-
cess underlying the event log. Sampling takes into account
the structural process information, therefore, Sampling per-
forms relatively well.

In terms of attribute-level anomaly detection, the pro-
posed GAMA framework (-AN, -PAV and -FAP) also
achieves the best performance on all the synthetic logs,
which demonstrates the superiority of GAMA. GAMA with
the teacher forcing style AN achieves the best performance
on all the synthetic logs, which demonstrates that the at-
tribute value of an event greatly depends on the activity
name of the previous event in synthetic logs. VAE performs
the worst, the F −scores of which are always lower than
0.25.

5.5.2 Impact of Anomaly Percentage

Next, we evaluate the impact of anomaly percentage. F −
score is averaged over all synthetic logs.

In terms of trace-level anomaly detection, from Fig. 6a,
we can see that GAMA-PAV has the best performance. Its
F−score hovers around 0.95 and barely varies with anomaly
percentage. F−scores of Sampling, GAMA-AN and GAMA-
FAP decrease as anomaly percentage increases, which indi-
cates that when anomaly percentage is too high, there will
be some failure of the teacher forcing style AN and PAV.
Furthermore, as anomaly percentage increases, the accuracy
of the process model discovered by Sampling degrades, so
the detection performance becomes worse. On the contrary,
the F −scores of OC-SVM, Naive, GAE, DAE, VAE, LAE
and BINet increase as anomaly percentage increases. As
expected, when detection is weak, an increase in anomaly
percentage must lead to an increase in Precision (i.e., ran-

domly select anomalous traces, Precision is approximately
equal to AP), and thus F−score also increases.

In terms of attribute-level anomaly detection, from Fig.
6b, we can see that GAMA outperforms the other methods
at any anomaly percentage. Similar to the anomaly detection
results at trace level, F−score of GAMA-PAV barely varies
with anomaly percentage and F − scores of GAMA-AN
and GAMA-FAP decrease as anomaly percentage increases,
which suggests that the teacher forcing methods AN and
FAP are more applicable to datasets with a low anomaly
percentage.

5.6 Experiments on Real-life Logs

5.6.1 Performance Evaluation
Table 3 reports the anomaly detection performance of dif-
ferent approaches for trace-level anomaly detection and
attribute-level anomaly detection on real-life logs. We make
the following observations.

In terms of trace-level anomaly detection, we can see
that the proposed GAMA framework (-AN, -PAV and -FAP)
achieves the best performance on the Billing, Receipt, Sepsis
and RTFMP datasets, which demonstrates the superiority
of GAMA in the anomaly detection task. GAMA-AN and
GAMA-FAP achieve the best performance on all real-life
datasets. But due to the particularity of the Permit and
Declaration datasets, BINet seems to be more effective than
GAMA-PAV, although GAMA-PAV exhibits comparable re-
sults. Specifically, the activity name and attribute value
of the current event in Permit and Declaration depend
primarily on the previous activity name and have no long
dependencies, which are carefully considered and treated
by BINet. However, GATs used in GAMA are more suitable
for capturing long dependencies, but for the teacher forcing
method PAV, it does not input the activity name of the
previous event into the network as AN and FAP do, so it
does not perform better than BINet. Similar to the results
shown in Table 2, OC-SVM and GAE perform the worst.

In terms of attribute-level anomaly detection, the GAMA
framework (-AN, -PAV and -FAP) also achieves the best
performance on the Billing, Receipt, Sepsis and RTFMP
datasets. On Permit, GAMA-AN performs the best, but
GAMA-PAV and GAMA-FAP do not perform better than
BINet. On Declaration, BINet performs better than GAMA.

10

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 50 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

F-s
cor

e

A P

 O C - S V M N a ï v e
 S a m p l i n g G A E
 D A E V A E
 L A E B I N e t
 G A M A - A N G A M A - P A V
 G A M A - F A P

(a) Trace-level anomaly detection

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 50 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

F-s
cor

e

A P

 D A E
 V A E
 L A E
 B I N e t
 G A M A - A N
 G A M A - P A V
 G A M A - F A P

(b) Attribute-level anomaly detection

Fig. 7: F−score under different AP over real-life logs
1234567891011

10.5714GAE
10.1429OC-SVM

7.5714VAE
7.3571LAE
7.0000Naive
6.1429Sampling

5.8571 DAE
5.0714 BINet
2.2857 GAMA-PAV
2.2143 GAMA-AN
1.7857 GAMA-FAP

Avg.Rank

(a) Trace-level anomaly detection

1234567

6.5714VAE
5.6429LAE
5.4286DAE
3.9286BINet

3.0000 GAMA-PAV
2.0714 GAMA-FAP
1.3571 GAMA-AN

Avg.Rank

(b) Attribute-level anomaly detection

Fig. 8: Critical difference diagram over all logs.

These also demonstrate that the activity name and attribute
value of the current event in Permit and Declaration depend
primarily on the previous activity name and have no long
dependencies, which are carefully considered and treated
by BINet.

5.6.2 Impact of Anomaly Percentage

We then evaluate the impact of anomaly percentage. F −
score is averaged over all real-life logs.

In terms of trace-level anomaly detection, from Fig. 7a,
we can see that the proposed GAMA framework (-AN, -
PAV and -FAP) has the best performance, as its F −score
is higher than the other methods at any anomaly percent-
age, which further suggests that GAMA is more scalable.
Furthermore, the F − scores of all the methods increase
as the anomaly percentage increases. There could be two
major reasons for this: i) the real-life dataset itself may
contain some natural anomalies that are detected but not
labeled. As the percentage of injected anomalies increases,
these originally anomalous traces are labeled to improve the
anomaly detection performance; ii) an increase in anomaly
percentage must result in an increase in Precision (i.e.,
randomly select anomalous traces, Precision is roughly
equal to AP), and thus F −score also increases. Although
Sampling performs relatively well on synthetic logs (see Fig.
6a), it performs poorly on real-life logs. This illustrates the
difficulty of mining real-life process models using process
discovery algorithms.

In terms of attribute-level anomaly detection, from Fig.
7b, it can be seen that the F−score of GAMA is significantly
larger than the other methods under any anomaly percent-
age.

5.7 Critical difference diagram

Fig. 8a and Fig. 8b show critical difference (CD) diagrams
[68] of trace-level and attribute-level anomaly detection re-
spectively to visualize the results with a confidence interval
of 95 percent. A bold horizontal line is used to group a set
of methods that do not exhibit significant differences.

In terms of trace-level anomaly detection, based on the
critical difference, we recognize that GAMA, which takes
full account of the structural process information within

TABLE 4: Effectiveness of three teacher forcing styles

Synthetic Logs Real-life Logs

Trace-level Attribute-level Trace-level Attribute-level

AN 0.917 0.723 0.733 0.496
PAV 0.933 0.660 0.716 0.468
FAP 0.919 0.712 0.743 0.493

- 0.858 0.594 0.641 0.429

and between different attributes, performs significantly bet-
ter than other methods and there was no significant dif-
ference in performance between the three teacher forcing
styles. GAE, a method that also utilizes GNNs for anomaly
detection, demonstrates significantly poorer performance.
This discrepancy arises from the fact that GAE generates
a graph directly from individual traces, resulting in a lack of
structural information about the process. In contrast, GAMA
derives a multi-graph for each trace from a global graph
constructed using the entire event log. This global graph
contains comprehensive structural information about the
process, enabling GAMA to outperform other methods.

In terms of attribute-level anomaly detection, GAMA
performs significantly better than other methods and
teacher forcing style AN is significantly better than PAV and
FAP. VAE performs significantly worse than other methods,
indicating that the hidden representations of traces do not
follow the normal distribution.

5.8 Effectiveness of Three Teacher Forcing Styles

We evaluate the effectiveness of three teacher forcing styles.
The F −scores are presented in Table 4 and the best two
results are shown in bold typeface and the best results are
underlined. ’-’ implies that the teacher forcing method is not
introduced.

Compared to not introducing the teacher forcing
method, incorporating any of the teacher forcing styles
significantly enhances the detection performance of GAMA.
This finding serves as strong evidence for the effective-
ness of the teacher forcing styles specifically designed for
business processes. In terms of attribute-level anomaly de-
tection, teacher forcing style AN always has the best per-
formance, which indicates that the current attribute value
depends mainly on the current activity name. As expected,
the performance of the teacher forcing style FAP is usually
between AN and PAV, and is not far from the best results,
which we consider to be the more worthwhile teacher
forcing style.

5.9 Ablation Study on Positional Encoding

It is well known that GATs do not consider the order of
nodes, losing positional information, which is vital to recon-
struct a complete trace. We verify whether the introduction
of positional encoding can provide useful information to
improve the detection performance of GAMA.

From Table 5, we can see that the introduction of posi-
tional coding (PE) improves the detection performance of
GAMA (-AN, -PAV and -FAP) both for trace- and attribute-
level anomaly detection, regardless of whether it is on

11

TABLE 5: Ablation study on positional encoding

Synthetic Logs Real-life Logs

Trace-level Attribute-level Trace-level Attribute-level

AN PAV FAP AN PAV FAP AN PAV FAP AN PAV FAP

With PE 0.917 0.933 0.919 0.723 0.660 0.712 0.733 0.716 0.743 0.496 0.468 0.493
Without PE 0.896 0.917 0.894 0.667 0.643 0.663 0.674 0.638 0.700 0.453 0.423 0.462

0 0 . 0 0 1 0 . 0 0 5 0 . 0 1 0 . 0 5 0 . 1 0 . 5 10 . 9 4

0 . 9 5

0 . 9 6

0 . 9 7

0 . 9 8

0 . 9 9

F-s
cor

e

 A N
 P A V
 F A P

b

(a) Trace-level anomaly detection

0 0 . 0 0 1 0 . 0 0 5 0 . 0 1 0 . 0 5 0 . 1 0 . 5 10 . 6 4
0 . 6 5
0 . 6 6
0 . 6 7
0 . 6 8
0 . 6 9
0 . 7 0
0 . 7 1
0 . 7 2

F-s
cor

e

β

 A N
 P A V
 F A P

(b) Attribute-level anomaly detection

Fig. 9: F−score under different β over Small logs

synthetic or real-life datasets. This suggests that GATs are in-
deed position-insensitive and the introduction of positional
coding significantly enhances the ability of GATs to encode
graphs transformed from sequence-like event traces.

5.10 Parameter Analysis
5.10.1 Impact of β
Note that parameter β controls the number of directed
edges in the generated multiple graphs. In this section,
we investigate the impact of β on the anomaly detection
performance by varying the value of β. F−score is averaged
over all the Small logs.

From Fig. 9a and Fig. 9b, we can see that the F −scores
of GAMA (-AN, -PAV and -FAP) increase and then decrease
as parameter β increases both for trace- and attribute-level
anomaly detection. As expected, when β is small, some
directed edges between nodes without any relationship in
the generated graph are retained, and these directed edges
have a substantial impact on GATs’ ability to encode the
nodes. As β increases, some meaningless directed edges are
removed, but the directed edges between nodes that have
relationships are likewise incorrectly removed, resulting in
GATs’ inability to aggregate information about some useful
nodes. Although the performance of GAMA varies with β,
these variations are not significant and do not exceed 0.025,
which means our proposed GAMA is not overly sensitive to
β.

5.10.2 Impact of Hidden Layer Size
Next, we explore the impact of hidden layer size on detec-
tion performance. F −score is averaged over all the Small
logs.

From Fig. 10a and Fig. 10b, we can see that the F−scores
of GAMA (-AN, -PAV and -FAP) increase and then de-
crease as the hidden layer size increases both for trace- and
attribute-level anomaly detection. As expected, the capacity
of the model is limited by the hidden layer size. The hidden
layer size is set too small, resulting in too small a model
capacity, and the model is unable to learn useful informa-
tion. The hidden layer size is set too large, resulting in too

2 4 8 1 6 3 2 6 4 1 2 8 2 5 60 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

F-s
cor

e

Η i d d e n L a y e r S i z e

 A N
 P A V
 F A P

(a) Trace-level anomaly detection

2 4 8 1 6 3 2 6 4 1 2 8 2 5 60 . 5 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0

F-s
cor

e

Η i d d e n L a y e r S i z e

 A N
 P A V
 F A P

(b) Attribute-level anomaly detection

Fig. 10: F−score under different different hidden layer sizes
over Small logs

large a model capacity, and the trained model is able to
reconstruct frequent (normal) patterns well while also being
able to reconstruct infrequent (anomalous) patterns.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose GAMA, a multi-graph-based
anomaly detection framework for business processes via
graph neural networks. Our approach comprehensively
incorporates the structural process information by trans-
forming a trace into a multi-graph with the assistance of
a global graph. We utilize GNNs to effectively learn the
embedding of this multi-graph. The intrinsic relationships
between different attributes are captured by aggregating
multiple graphs using the attention mechanism. GAMA
is trained in an unsupervised manner (i.e. no data labels
are required) and independent of any prior knowledge of
the process, which makes it easier to employ. Inspired by
the teacher forcing method in natural language processing,
three teacher forcing styles are designed to enhance the
capability of GAMA to reconstruct normal behaviors and
thus improve detection performance. The effectiveness of
GAMA is demonstrated through experiments for both trace-
and attribute-level anomaly detection on both real-life and
synthetic datasets. With an appropriate hidden layer size,
GAMA can still capture normal patterns even when trained
on a dataset containing anomalies and does not require a
clean dataset, which is rarely available in the real-world.

A limited number of labeled anomalies are typically
available in many real-world anomaly detection applica-
tions. These labeled anomalies may initially come from
deployed detection systems, e.g., some successfully de-
tected fraudulent transactions. A limited number of labeled
anomalies can often be used as prior knowledge to train
anomaly detection models. Future work will concentrate on
improving the performance of anomaly detection models
to detect anomalies using a limited number of labeled
anomalies.

12

ACKNOWLEDGMENT

This work is supported by China National Science Foun-
dation (Granted No. 62072301). This work is also partially
supported by the Program of Technology Innovation of the
Science and Technology Commission of Shanghai Munici-
pality (Granted No. 21DZ1205000 and 21511104700).

REFERENCES

[1] Z. Peng, M. Luo, J. Li, L. Xue, and Q. Zheng, “A deep multi-view
framework for anomaly detection on attributed networks,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 6, pp. 2539–2552, 2022.
[Online]. Available: https://doi.org/10.1109/TKDE.2020.3015098

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, 2009.
[Online]. Available: https://doi.org/10.1145/1541880.1541882

[3] C. dos Santos Garcia, A. Meincheim, E. R. F. Junior,
M. R. Dallagassa, D. M. V. Sato, D. R. Carvalho, E. A. P.
Santos, and E. E. Scalabrin, “Process mining techniques
and applications - A systematic mapping study,” Expert
Syst. Appl., vol. 133, pp. 260–295, 2019. [Online]. Available:
https://doi.org/10.1016/j.eswa.2019.05.003

[4] T. Nolle, S. Luettgen, A. Seeliger, and M. Mühlhäuser, “Binet:
Multi-perspective business process anomaly classification,”
Inf. Syst., vol. 103, p. 101458, 2022. [Online]. Available:
https://doi.org/10.1016/j.is.2019.101458

[5] A. Sureka, “Kernel based sequential data anomaly detection in
business process event logs,” CoRR, vol. abs/1507.01168, 2015.
[Online]. Available: http://arxiv.org/abs/1507.01168

[6] B. Kang, D. Kim, and S. Kang, “Real-time business process
monitoring method for prediction of abnormal termination using
knni-based LOF prediction,” Expert Syst. Appl., vol. 39, no. 5, pp.
6061–6068, 2012. [Online]. Available: https://doi.org/10.1016/j.
eswa.2011.12.007

[7] F. Folino, G. Greco, A. Guzzo, and L. Pontieri, “Mining usage
scenarios in business processes: Outlier-aware discovery and
run-time prediction,” Data Knowl. Eng., vol. 70, no. 12, pp.
1005–1029, 2011. [Online]. Available: https://doi.org/10.1016/j.
datak.2011.07.002

[8] G. M. Tavares and S. Barbon Jr, “Analysis of language inspired
trace representation for anomaly detection,” in International Con-
ference on Theory and Practice of Digital Libraries. Springer, 2020,
pp. 296–308.

[9] S. B. Junior, P. Ceravolo, E. Damiani, N. J. Omori, and
G. M. Tavares, “Anomaly detection on event logs with a
scarcity of labels,” in 2nd International Conference on Process
Mining, ICPM 2020, Padua, Italy, October 4-9, 2020. IEEE,
2020, pp. 161–168. [Online]. Available: https://doi.org/10.1109/
ICPM49681.2020.00032

[10] J. Ko and M. Comuzzi, “Online anomaly detection using
statistical leverage for streaming business process events,” in
Process Mining Workshops - ICPM 2020 International Workshops,
Padua, Italy, October 5-8, 2020, Revised Selected Papers, ser. Lecture
Notes in Business Information Processing, vol. 406. Springer,
2020, pp. 193–205. [Online]. Available: https://doi.org/10.1007/
978-3-030-72693-5\ 15

[11] ——, “Business process event log anomaly detection based on
statistical leverage,” in Proceedings of the 1st Italian Forum on
Business Process Management co-located with the 19th International
Conference of Business Process Management (BPM 2021), Rome,
Italy, September 10th, 2021, ser. CEUR Workshop Proceedings,
vol. 2952. CEUR-WS.org, 2021, pp. 7–12. [Online]. Available:
http://ceur-ws.org/Vol-2952/paper\ 291a.pdf

[12] ——, “Detecting anomalies in business process event logs using
statistical leverage,” Inf. Sci., vol. 549, pp. 53–67, 2021. [Online].
Available: https://doi.org/10.1016/j.ins.2020.11.017

[13] ——, “Keeping our rivers clean: Information-theoretic online
anomaly detection for streaming business process events,”
Inf. Syst., vol. 104, p. 101894, 2022. [Online]. Available:
https://doi.org/10.1016/j.is.2021.101894

[14] H. T. C. Nguyen, S. Lee, J. Kim, J. Ko, and M. Comuzzi,
“Autoencoders for improving quality of process event logs,”
Expert Syst. Appl., vol. 131, pp. 132–147, 2019. [Online]. Available:
https://doi.org/10.1016/j.eswa.2019.04.052

[15] P. Krajsic and B. Franczyk, “Lambda architecture for anomaly
detection in online process mining using autoencoders,” in
Advances in Computational Collective Intelligence - 12th International
Conference, ICCCI 2020, Da Nang, Vietnam, November 30 - December
3, 2020, Proceedings, ser. Communications in Computer and
Information Science, vol. 1287. Springer, 2020, pp. 579–589.
[Online]. Available: https://doi.org/10.1007/978-3-030-63119-2\
47

[16] ——, “Semi-supervised anomaly detection in business process
event data using self-attention based classification,” in Knowledge-
Based and Intelligent Information & Engineering Systems: Proceedings
of the 25th International Conference KES-2021, Virtual Event /
Szczecin, Poland, 8-10 September 2021, ser. Procedia Computer
Science, vol. 192. Elsevier, 2021, pp. 39–48. [Online]. Available:
https://doi.org/10.1016/j.procs.2021.08.005

[17] ——, “Variational autoencoder for anomaly detection in
event data in online process mining,” in Proceedings of the
23rd International Conference on Enterprise Information Systems,
ICEIS 2021, Online Streaming, April 26-28, 2021, Volume 1.
SCITEPRESS, 2021, pp. 567–574. [Online]. Available: https:
//doi.org/10.5220/0010375905670574

[18] W. Guan, J. Cao, Y. Gu, and S. Qian, “Grasped: A gru-ae net-
work based multi-perspective business process anomaly detection
model,” IEEE Transactions on Services Computing, vol. 16, no. 5, pp.
3412–3424, 2023.

[19] T. Nolle, S. Luettgen, A. Seeliger, and M. Mühlhäuser, “Analyzing
business process anomalies using autoencoders,” Mach. Learn.,
vol. 107, no. 11, pp. 1875–1893, 2018. [Online]. Available:
https://doi.org/10.1007/s10994-018-5702-8

[20] T. Nolle, A. Seeliger, and M. Mühlhäuser, “Unsupervised anomaly
detection in noisy business process event logs using denoising
autoencoders,” in Discovery Science - 19th International Conference,
DS 2016, Bari, Italy, October 19-21, 2016, Proceedings, ser. Lecture
Notes in Computer Science, vol. 9956, 2016, pp. 442–456. [Online].
Available: https://doi.org/10.1007/978-3-319-46307-0\ 28

[21] ——, “Binet: Multivariate business process anomaly detection
using deep learning,” in Business Process Management - 16th
International Conference, BPM 2018, Sydney, NSW, Australia,
September 9-14, 2018, Proceedings, ser. Lecture Notes in Computer
Science, vol. 11080. Springer, 2018, pp. 271–287. [Online].
Available: https://doi.org/10.1007/978-3-319-98648-7\ 16

[22] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst,
“Scalable process discovery and conformance checking,” Softw.
Syst. Model., vol. 17, no. 2, pp. 599–631, 2018. [Online]. Available:
https://doi.org/10.1007/s10270-016-0545-x

[23] R. Sarno and F. P. Sinaga, “Business process anomaly detection
using ontology-based process modelling and multi-level class
association rule learning,” in 2015 International Conference on Com-
puter, Control, Informatics and its Applications (IC3INA). IEEE, 2015,
pp. 12–17.

[24] F. Sinaga and R. Sarno, “Business process anomali detection us-
ing multi-level class association rule learning,” IPTEK Journal of
Proceedings Series, vol. 2, no. 1, 2016.

[25] R. Sarno, R. D. Dewandono, T. Ahmad, M. F. Naufal, and F. Sinaga,
“Hybrid association rule learning and process mining for fraud
detection.” IAENG International Journal of Computer Science, vol. 42,
no. 2, 2015.

[26] R. Sarno, F. Sinaga, and K. R. Sungkono, “Anomaly detection in
business processes using process mining and fuzzy association
rule learning,” J. Big Data, vol. 7, no. 1, p. 5, 2020. [Online].
Available: https://doi.org/10.1186/s40537-019-0277-1

[27] K. Böhmer and S. Rinderle-Ma, “Multi-perspective anomaly
detection in business process execution events,” in On the Move to
Meaningful Internet Systems: OTM 2016 Conferences - Confederated
International Conferences: CoopIS, C&TC, and ODBASE 2016, Rhodes,
Greece, October 24-28, 2016, Proceedings, ser. Lecture Notes in
Computer Science, vol. 10033, 2016, pp. 80–98. [Online]. Available:
https://doi.org/10.1007/978-3-319-48472-3\ 5

[28] A. Rogge-Solti and G. Kasneci, “Temporal anomaly detection
in business processes,” in Business Process Management - 12th
International Conference, BPM 2014, Haifa, Israel, September 7-11,
2014. Proceedings, ser. Lecture Notes in Computer Science,
vol. 8659. Springer, 2014, pp. 234–249. [Online]. Available:
https://doi.org/10.1007/978-3-319-10172-9\ 15

[29] D. Rahmawati, R. Sarno, C. Fatichah, and D. Sunaryono, “Fraud
detection on event log of bank financial credit business process
using hidden markov model algorithm,” in 2017 3rd International

13

Conference on Science in Information Technology (ICSITech). IEEE,
2017, pp. 35–40.

[30] C. Linn and D. Werth, “Sequential anomaly detection techniques
in business processes,” in Business Information Systems Workshops
- BIS 2016 International Workshops, Leipzig, Germany, July 6-8,
2016, Revised Papers, ser. Lecture Notes in Business Information
Processing, vol. 263. Springer, 2016, pp. 196–208. [Online].
Available: https://doi.org/10.1007/978-3-319-52464-1\ 18

[31] M. G. Armentano and A. A. Amandi, “Detection of sequences
with anomalous behavior in a workflow process,” in Database
and Expert Systems Applications - 26th International Conference,
DEXA 2015, Valencia, Spain, September 1-4, 2015, Proceedings, Part
I, ser. Lecture Notes in Computer Science, vol. 9261. Springer,
2015, pp. 111–118. [Online]. Available: https://doi.org/10.1007/
978-3-319-22849-5\ 8

[32] S. Huo, H. Völzer, P. Reddy, P. Agarwal, V. Isahagian, and
V. Muthusamy, “Graph autoencoders for business process
anomaly detection,” in Business Process Management - 19th
International Conference, BPM 2021, Rome, Italy, September 06-10,
2021, Proceedings, ser. Lecture Notes in Computer Science,
vol. 12875. Springer, 2021, pp. 417–433. [Online]. Available:
https://doi.org/10.1007/978-3-030-85469-0\ 26

[33] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun, “Graph neural networks: A review of methods and
applications,” AI open, vol. 1, pp. 57–81, 2020.

[34] W. Guan, J. Cao, H. Zhao, Y. Gu, and S. Qian, “Wake: A weakly
supervised business process anomaly detection framework via a
pre-trained autoencoder,” IEEE Transactions on Knowledge and Data
Engineering, pp. 1–14, 2023.

[35] F. de Lima Bezerra and J. Wainer, “Anomaly detection algorithms
in business process logs,” in ICEIS 2008 - Proceedings of the Tenth
International Conference on Enterprise Information Systems, Volume
AIDSS, Barcelona, Spain, June 12-16, 2008, 2008, pp. 11–18.

[36] ——, “A dynamic threshold algorithm for anomaly detection
in logs of process aware systems,” J. Inf. Data Manag.,
vol. 3, no. 3, pp. 316–331, 2012. [Online]. Available: https:
//sol.sbc.org.br/journals/index.php/jidm/article/view/1456

[37] W. M. P. van der Aalst and A. K. A. de Medeiros, “Process
mining and security: Detecting anomalous process executions
and checking process conformance,” Electron. Notes Theor.
Comput. Sci., vol. 121, pp. 3–21, 2005. [Online]. Available:
https://doi.org/10.1016/j.entcs.2004.10.013

[38] F. Bezerra, J. Wainer, and W. M. van der Aalst, “Anomaly detection
using process mining,” in International Workshop on Business Process
Modeling, Development and Support. Springer, 2009, pp. 149–161.

[39] R. Rieke, M. Zhdanova, J. Repp, R. Giot, and C. Gaber,
“Fraud detection in mobile payments utilizing process behavior
analysis,” in 2013 International Conference on Availability, Reliability
and Security, ARES 2013, Regensburg, Germany, September 2-6, 2013.
IEEE Computer Society, 2013, pp. 662–669. [Online]. Available:
https://doi.org/10.1109/ARES.2013.87

[40] D. Rahmawati, M. A. Yaqin, and R. Sarno, “Fraud detection on
event logs of goods and services procurement business process
using heuristics miner algorithm,” in 2016 International Conference
on Information & Communication Technology and Systems (ICTS).
IEEE, 2016, pp. 249–254.

[41] F. de Lima Bezerra and J. Wainer, “Algorithms for anomaly
detection of traces in logs of process aware information systems,”
Inf. Syst., vol. 38, no. 1, pp. 33–44, 2013. [Online]. Available:
https://doi.org/10.1016/j.is.2012.04.004

[42] M. Ebrahim and S. A. H. Golpayegani, “Anomaly detection in
business processes logs using social network analysis,” J. Comput.
Virol. Hacking Tech., vol. 18, no. 2, pp. 127–139, 2022. [Online].
Available: https://doi.org/10.1007/s11416-021-00398-8

[43] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” in 1st
International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings,
2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[44] D. C. Hoaglin and R. E. Welsch, “The hat matrix in regression and
anova,” The American Statistician, vol. 32, no. 1, pp. 17–22, 1978.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997. [Online].
Available: https://doi.org/10.1162/neco.1997.9.8.1735

[46] J. Evermann, J. Rehse, and P. Fettke, “Predicting process behaviour
using deep learning,” Decis. Support Syst., vol. 100, pp. 129–140,

2017. [Online]. Available: https://doi.org/10.1016/j.dss.2017.04.
003

[47] N. Tax, I. Verenich, M. L. Rosa, and M. Dumas, “Predictive
business process monitoring with LSTM neural networks,” in
Advanced Information Systems Engineering - 29th International
Conference, CAiSE 2017, Essen, Germany, June 12-16, 2017,
Proceedings, ser. Lecture Notes in Computer Science, vol.
10253. Springer, 2017, pp. 477–492. [Online]. Available:
https://doi.org/10.1007/978-3-319-59536-8\ 30

[48] J. Evermann, J. Rehse, and P. Fettke, “A deep learning approach
for predicting process behaviour at runtime,” in Business Process
Management Workshops - BPM 2016 International Workshops, Rio de
Janeiro, Brazil, September 19, 2016, Revised Papers, ser. Lecture Notes
in Business Information Processing, vol. 281, 2016, pp. 327–338.
[Online]. Available: https://doi.org/10.1007/978-3-319-58457-7\
24

[49] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.

[50] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi,
A. Marrella, M. Mecella, and A. Soo, “Automated discovery of
process models from event logs: Review and benchmark,” IEEE
Trans. Knowl. Data Eng., vol. 31, no. 4, pp. 686–705, 2019. [Online].
Available: https://doi.org/10.1109/TKDE.2018.2841877

[51] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” CoRR, vol. abs/1710.10903,
2017. [Online]. Available: http://arxiv.org/abs/1710.10903

[52] K. S. Narendra and K. Parthasarathy, “Identification and control
of dynamical systems using neural networks,” IEEE Trans. Neural
Networks, vol. 1, no. 1, pp. 4–27, 1990. [Online]. Available:
https://doi.org/10.1109/72.80202

[53] J. S. Bridle, “Probabilistic interpretation of feedforward
classification network outputs, with relationships to statistical
pattern recognition,” in Neurocomputing - Algorithms, Architectures
and Applications, Proceedings of the NATO Advanced Research
Workshop on Neurocomputing Algorithms, Architectures and
Applications, Les Arcs, France, February 27 - March 3, 1989, ser.
NATO ASI Series, vol. 68. Springer, 1989, pp. 227–236. [Online].
Available: https://doi.org/10.1007/978-3-642-76153-9\ 28

[54] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust
deep autoencoders,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada, August 13 - 17, 2017. ACM, 2017, pp. 665–674.
[Online]. Available: https://doi.org/10.1145/3097983.3098052

[55] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow
mining: Discovering process models from event logs,” IEEE Trans.
Knowl. Data Eng., vol. 16, no. 9, pp. 1128–1142, 2004. [Online].
Available: https://doi.org/10.1109/TKDE.2004.47

[56] S. J. Leemans, D. Fahland, and W. M. Van Der Aalst, “Discovering
block-structured process models from event logs-a constructive
approach,” in Application and Theory of Petri Nets and Concurrency:
34th International Conference, PETRI NETS 2013, Milan, Italy, June
24-28, 2013. Proceedings 34. Springer, 2013, pp. 311–329.

[57] D. Sommers, V. Menkovski, and D. Fahland, “Process discovery
using graph neural networks,” in 3rd International Conference on
Process Mining, ICPM 2021, Eindhoven, The Netherlands, October
31 - Nov. 4, 2021. IEEE, 2021, pp. 40–47. [Online]. Available:
https://doi.org/10.1109/ICPM53251.2021.9576849

[58] A. Y. Hussein, P. Falcarin, and A. T. Sadiq, “Enhancement perfor-
mance of random forest algorithm via one hot encoding for iot
ids,” Periodicals of Engineering and Natural Sciences (PEN), vol. 9,
no. 3, pp. 579–591, 2021.

[59] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of
training recurrent neural networks,” in Proceedings of the 30th
International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013, ser. JMLR Workshop and Conference
Proceedings, vol. 28. JMLR.org, 2013, pp. 1310–1318. [Online].
Available: http://proceedings.mlr.press/v28/pascanu13.html

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[61] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection
for discrete sequences: A survey,” IEEE Trans. Knowl. Data
Eng., vol. 24, no. 5, pp. 823–839, 2012. [Online]. Available:
https://doi.org/10.1109/TKDE.2010.235

14

[62] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-
Taylor, and J. C. Platt, “Support vector method for
novelty detection,” in Advances in Neural Information
Processing Systems 12, [NIPS Conference, Denver, Colorado,
USA, November 29 - December 4, 1999]. The MIT Press, 1999,
pp. 582–588. [Online]. Available: http://papers.nips.cc/paper/
1723-support-vector-method-for-novelty-detection

[63] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An im-
perative style, high-performance deep learning library,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[64] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving neural networks by preventing
co-adaptation of feature detectors,” CoRR, vol. abs/1207.0580,
2012. [Online]. Available: http://arxiv.org/abs/1207.0580

[65] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings of
the Thirteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May
13-15, 2010, ser. JMLR Proceedings, vol. 9. JMLR.org, 2010, pp.
249–256. [Online]. Available: http://proceedings.mlr.press/v9/
glorot10a.html

[66] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

[67] A. Burattin, “PLG2: multiperspective processes randomization
and simulation for online and offline settings,” CoRR, vol.
abs/1506.08415, 2015. [Online]. Available: http://arxiv.org/abs/
1506.08415

[68] P. B. Nemenyi, Distribution-free multiple comparisons. Princeton
University, 1963.

Wei Guan is currently a Ph.D student in the De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University. His research in-
terests including predictive monitoring, anomaly
detection and machine learning.

Jian Cao is currently a tenured professor with
the Department of Computer Science and En-
gineering, Shanghai Jiao Tong University. He is
also the director of research institute of network
computing and service computing. Dr. Cao’s re-
search interests include intelligent data analyt-
ics, service computing, collaborative computing
and software engineering. Besides national and
provincial government research grants, his re-
search is also supported by many industry part-
ners. He has published more than 300 research

papers in prestigious journals and conferences. Dr. Cao has won 10
ministerial or provincial level scientific and technological achievements
rewards. Currently, he is the distinguished member of CCF and the
senior member of IEEE.

Yang Gu is currently a Ph.D student in the De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University. His research in-
terests include service computing and data min-
ing.

Shiyou Qian received a PhD degree in com-
puter science from Shanghai Jiao Tong Univer-
sity, China, in 2015. He is currently an asso-
ciate researcher with the Department of Com-
puter Science and Engineering, Shanghai Jiao
Tong University, China. His research interests
include event matching for content-based pub-
lish/subscribe systems, resource scheduling for
Hybrid-Cloud, and driving recommendation with
vehicular networks.

