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Abstract

Interior permanent magnet synchronous motors are becoming increasingly popular as traction motors in environmentally friendly

vehicles. These motors, which offer a wide range of design options, require time-consuming finite element analysis to verify their

performance, thereby extending design times. To address this problem, we propose a deep learning model that can accurately

predict the iron loss characteristics of different rotor topologies under various speed and current conditions, resulting in an

automatic design system for the IPMSM rotor core. Using this system, the computation time for efficiency maps is reduced to

less than 1/3000 of the time required for finite element analysis. The system also shows efficiency optimization results similar to

the best results of previous research, while reducing the computational time for optimization by one or two orders of magnitude.
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Abstract—Interior permanent magnet synchronous 
motors are becoming increasingly popular as traction 
motors in environmentally friendly vehicles. These 
motors, which offer a wide range of design options, 
require time-consuming finite element analysis to verify 
their performance, thereby extending design times. To 
address this problem, we propose a deep learning model 
that can accurately predict the iron loss characteristics 
of different rotor topologies under various speed and 
current conditions, resulting in an automatic design 
system for the IPMSM rotor core. Using this system, the 
computation time for efficiency maps is reduced to less 
than 1/3000 of the time required for finite element 
analysis. The system also shows efficiency optimization 
results similar to the best results of previous research, 
while reducing the computational time for optimization 
by one or two orders of magnitude. 

 
Index Terms—Design optimization, generative 

adversarial network, iron loss, permanent magnet motors, 
vision transformer. 

I. INTRODUCTION 

N the current era, the increasing integration of electrical 

and mechanical elements in a wide range of goods, along 

with the development of sustainable energy sources such as 

wind power generation, is being promoted to achieve carbon 

neutrality. As a result, the demand for machines that 

efficiently convert electrical power into mechanical action 

has increased dramatically. In the automotive industry, for 

example, there has been a remarkable global increase in the 

number of electric transportation systems, including electric 

cars, plug-in hybrid vehicles, and fuel cell units, along with 

the emergence of internal permanent magnet synchronous 

motors (IPMSMs), which are replacing internal combustion 

engines as the primary drive system in these electrified 

modes of transportation. In anticipation of continued growth 

in motor use in the future, improving the efficiency of 

IPMSMs remains a critical challenge. 

The design phase of today's IPMSMs is prolonged due to 

two critical factors. First, the widespread use of finite element 

analysis (FEA) to calculate the characteristics of IPMSMs. 

Second, the wide range of design alternatives in these motors, 

including parts such as permanent magnets (PMs) and flux 

barriers, forces the iterative evaluation of numerous 

configurations to achieve defined standards. These combined 

factors lead to longer development times in IPMSM design, 

with multiple structures subjected to FEA and development 
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based largely on the trial-and-error approach taken by 

designers. 

Many studies have been conducted to reduce the time 

required for the optimal design of advanced IPMSMs by 

implementing machine learning (ML) methods [1]–[16]. 

Although ML-focused research requires a certain amount of 

training time, the computation takes less than 1/1000th of the 

time compared to FEA upon model completion [14]. 

Previous studies can be divided into those that use geometric 

parameters as input and those that use topology information. 

The former method takes the dimensions and current 

conditions of the motor design as input and predicts the motor 

characteristics with high accuracy. The dimension of the 

input information is often fixed, and the applicable domain of 

the ML model is based on the initial geometry, making the 

method suitable after the conceptual design is completed. The 

latter approach interprets the material data under the polar 

coordinate of the rotor geometry for IPMSMs as tensors, 

allowing the use of deep learning (DL) image processing 

models such as convolutional neural networks (CNN) and 

vision transformers (ViT). Although this method is capable 

of handling multiple topologies, it results in an increase in 

training dataset size, model dimensions, and training time. 

The above-mentioned studies encounter limitations in 

input features such as geometry type, current and speed 

conditions, and model output variables such as torque and 

efficiency, which hinder the construction of a comprehensive 

automatic design system for IPMSMs. Therefore, this study 

proposes a DL model capable of handling various input and 

output conditions, thus contributing to the development of an 

automatic design system for IPMSMs as shown in Fig. 1. The 

system uses a generative adversarial network (GAN), a type 

of deep generative model, to construct the rotor shape of 

IPMSMs, and promptly predicts the speed, torque, and iron 

loss characteristics using two different characteristic 

prediction models. Configured to include current and speed 

conditions in addition to rotor geometry data, these models 

enable fast, high-quality efficiency map generation during 

current vector control, such as maximum torque per ampere 

(MTPA) control and flux weakening (FW) control. This 

approach allows efficiency optimization for numerous rotor 

topologies at any speed and torque setting. The main 

contributions of this study are as follows: 

a) The construction of a model that accurately predicts 

iron loss characteristics in IPMSMs with three different 

rotor topologies. 

b) To propose a time-efficient automatic design system 

for motor efficiency at arbitrary speed and torque 

points. 
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c) To validate the reliability of the automatic design 

through FEA and prototype experimentation on the 

optimal geometry generated by the design system. 

The dataset described in Sec. IV-A is available at IEEE 

DataPort [17]. This paper is an extended and revised version 

of a conference proceeding [18].  

II. RELATED WORKS 

A. Design Optimization without Machine Learning 

Several studies have developed algorithms to efficiently 

determine the most appropriate design. Farhadian et al. [19] 

formulated an optimization mechanism, based on an 

improved particle swarm optimization, to enrich the torque 

aspects of a synchronous reluctance motor. Son et al. [20] 

improved the rotor arrangement of an IPMSM with 

grain-oriented electrical steel in the stator teeth, by applying a 

revised genetic algorithm. Das et al. [21] performed a 

sensitivity analysis on the noise vibration performance of the 

permanent magnet synchronous motor (PMSM) for 10 

geometric parameters, and performed design optimization for 

the highly sensitive parameters. Pfister et al. [22] p proposed 

a method to perform an optimization of a PMSM assuming 

linear magnetic material properties, followed by FEA 

optimization with a small number of generations. Although 

these methods effectively optimize the geometry, they 

determine the motor characteristics only at a single or a small 

number of current settings, making them unsuitable for 

IPMSMs operating over wide current ranges, such as those 

used in automotive applications. 

B. Shape Optimization with Machine Learning 

To accelerate shape optimization, several research efforts 

have used machine learning to construct surrogate models as 

an efficient replacement for FEA. By using these surrogate 

models, we can perform the design of IPMSMs with a reduced 

reliance on FEA iterations, or potentially, without FEA at all. 

Islam et al. [1] used response surface methodology to optimize 

a pair of rotor design parameters at multiple output points of an 

IPMSM using the response surface methodology. Zheng et al. 

[2] performed multi-objective refinement of an IPMSM 

installed with rare earth PMs and ferrite PMs using the 

response surface methodology. Sun et al. [3] classified the 

geometric parameters of an IPMSM into three different groups 

using cross-factor variance analysis, and optimized them in 

terms of torque and loss characteristics by applying kriging. 

Sun et al. [4] proposed a sequential subspace optimization 

technique using the kriging method for a PM hub motor, 

respectively. Dhulipati et al. [5] used support vector regression 

to develop a predictive model for a six-phase IPMSM. Hao et 

al. [6] developed a model to identify the relationship between 

design parameters and torque ripple in an IPMSM using radial 

basis function networks, and used this model for optimization. 

Yan et al. [7] constructed a surrogate model using an artificial 

neural network for an IPMSM with a cage conductor 

embedded in the rotor and performed multi-objective 

optimization of torque, inertia, efficiency, power factor, and 

cogging torque. Zheng et al. [8] proposed an optimization 

method that combines ridge regression and the whale 

optimization algorithm for permanent magnet synchronous 

linear motors. Pan et al. [9] used XGBoost, a superior 

distributed gradient boosting library, to understand the 

relationship between the torque characteristics and the 

structural parameters of PM arc motors, and then used this 

model for optimization. Despite the demonstrated 

effectiveness of these machine learning-based surrogate 

models for automated IPMSM design, their ability to deal with 

geometric parameters within the same dimension is limited, 

restricting them to certain limited geometries. 

C. Topology Optimization with Deep Learning 

Various research efforts have introduced rotor design 

using topology optimization and DL. Barmada et al. [10] 

considered the incorporation of DL technology to optimize 

the rotor core topology of the synchronous reluctance motor 

(SynRM). Sasaki et al. [11] accelerated the rotor topology 

optimization of IPMSM with a CNN trained from the 

analysis of the magnetic flux distribution at the initial 

position and the material distribution. Sato et al. [12] 

predicted motor parameters from rotor geometry using CNNs 

and used the results to evaluate individuals in topology 

optimization. Khan et al. [13] optimized the topology of the 

SynRM rotor using deep reinforcement learning, a less biased 

approach to topology optimization compared to supervised 

learning. These research efforts are primarily focused on 

 
Fig. 1.  Overall configuration of automatic design system for efficiency optimization. The blue part represents the prediction for the speed and torque 

characteristics using the model proposed in [16]. The red part represents the prediction for the iron loss characteristics, which is described in detail in Sec. III-C 

and IV. 
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identifying innovative rotor designs and do not consider the 

wide operational range of properties and iron loss 

characteristics required for applications such as automotive 

settings.  

III. AUTOMATIC DESIGN SYSTEM  

A.  Target Motor 

This study focuses on IPMSMs for automotive 

applications. To verify the generality of the proposed method, 

this study uses three rotor topologies as shown in Fig. 2. All 

IPMSMs have 8-pole, 48-slot stators with distributed 

windings. Further specifications of each model can be found 

in [23]. 

B. Motor Design by Deep Generative Model  

This study focuses on different rotor topologies and tries to 

handle them in a harmonious way by representing rotor 

geometries as images.  Fig. 3 shows a schematic of the 

material representation approach implemented in the system. 

The rotor pole coordinates are specified as electrical steel 

sheets, PMs, or air. The image represents the rotor 

configuration by assigning one-hot vectors to the RGB pixels 

for each of the three materials, as shown in the right part of 

Fig. 3. A GAN generates the rotor image from a 

256-dimensional latent variable space as follows. 

( ),=x zG   (1) 

where G is the generator of the GAN, x is the generated rotor 

image, z is the latent variable. See [16] for more details. 

C.  Prediction models 

By predicting the characteristics from the generated 

images, an automatic design system can be constructed 

without FEA integration. This study uses geometry, current 

and speed conditions as input data, and considers models for 

predicting motor parameters and iron loss as follows. 

( )1, , , , ,a d q d qL L i i = xE   (2) 

( )2, , , , ,h e d qW W i i N= xE   (3) 

where E1 and E2 are the prediction models for motor 

parameters and iron loss, respctively, a is the PM flux 

linkage, Ld and Lq are the d- and q-axis inductances, 

respectively, id and iq are the d- and q-axis currents, 

respectively, N is the motor speed, and Wh and We are 

hysteresis loss and eddy current loss, respectively. 

These models allow prediction of torque and efficiency 

aspects under various current vector control conditions as 

follows. 

( )  ,n a q d q d qT P i L L i i= + −  (4) 

( )
2 2

,
m h em i

m a a m a a

T W WT W

T R I T R I




 

− +−
= =

+ +
 (5) 

where Pn is the number of pole pairs, Ra is the winding 

resistance, Ia is the magnitude of the armature current vector, 

m is the mechanical angular frequency, and Wi is the iron 

loss. 

The model proposed in [16] is used for motor parameter 

prediction, and the iron loss prediction model is detailed in 

this section. Fig. 4 shows the common architecture of the iron 

loss prediction model used in this study, where dinit is the 

dimension of the encoded shape components, dh and de are 

the dimensions of the hidden layers of the multilayer 

perceptron (MLP) for hysteresis loss and eddy current loss 

prediction, respectively, dho and deo are the dimensions of the 

second layer from the end of the MLP for hysteresis loss and 

eddy current loss prediction, respectively. FEA conditions, d- 

and q-axis currents and motor speed are standardized 

according to the following equations. 

 ( ), , ,X
d q

X

X
X X i i N





−
=   (6) 

where X and X are the mean and standard deviation of the 

training data, respectively.  

As input, a trained model that encodes the rotor image 

generated by the GAN is used to extract the semantic rotor 

geometry data from the image. The resulting shape encoding 

information is combined with the FEA operating conditions 

in a multi-task learning context, allowing simultaneous 

prediction of hysteresis loss and eddy current loss. The MLP 

consists of fully connected layers and batch normalization, 

with a rectified linear unit (ReLU) serving as the activation. 
( )

( ) ( )

( ) ( ) ( )( )( )1

,
,l l

l l l l
Z BN W Z B

 


+
= +  (7) 

( ) ( )

( )( ) ( )

( ) ( )
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

 −
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( )( ) ( )( ) ( )( )ReLU max ,0 ,
l l l

X X X = =  (9) 

where Z(l) is the input to the l-layer, W(l) and B(l) are the 

weights and biases of the l-layer to be trained. In the batch 

normalization, the mean and standard deviation are computed 

per dimension over the mini-batches, (l) and (l) are the 

learnable parameter vectors, and  = 0.00001 is a constant 

added to the mini-batch variance for numerical stability. 

 
             (a) 2D (b) V (c) Nabla 

Fig. 2.  Single-pole conventional rotor shapes. 

 
Fig. 3. Material representation of rotor shape. 

 
Fig. 4. Common architecture of iron loss prediction model.  
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IV. TRAINING OF IRON LOSS PREDICTION MODEL 

A. Dataset and Training Setting 

 To accommodate the large data requirements of deep 

learning, this study combines computer-aided design (CAD) 

and FEA for dataset generation. In terms of geometry, 30,000 

shapes were formulated for each topology by randomly 

generating geometric parameters based on the three rotor 

topologies shown in Fig. 2. For these geometries, random 

FEA conditions, such as phase current (0–140 Arms), current 

phase (0–90°), and motor speed (0–15,000 r/min), were also 

generated, resulting in 90,000 FEA cases across the three 

rotor topologies. The motor characteristics to be calculated 

included core iron losses, specifically hysteresis and eddy 

current losses. The iron loss calculation was based on the fast 

Fourier transform (FFT) of the magnetic flux density and 

material data sheets. JMAG-Designer 19.1 software was used 

for analysis, yielding 85,184 datasets after excluding failed 

cases. See [15] for details. 

80% of the dataset was used for training, while the 

remaining 20% was used for validation. The mean squared 

error (MSE) determined the loss function for multitask 

learning, as shown in the following equation.  

( ) ( )( ) ( ) ( )( )
2 2

1 1

1 ˆ ˆ ,
n n

i i i i

h h e e

i i

W W W W
n = =

 
= + = − + − 

 
 ehL L L  (10) 

where ( )i
hW  and ( )ˆ i

hW  are the predicted hysteresis loss and 

training data, respectively, and ( )i
eW  and ( )ˆ i

eW  are the 

predicted eddy current loss and training data, respectively. 

The number of training epochs was set to 100. The 

optimizer was Adam, and the batch size was set to 128. 

PyTorch was used to implement the neural network model. 

B. Hyperparameter Optimization 

Hyperparameter optimization was performed on the iron 

loss prediction model shown in Fig. 4. The procedure started 

by using the tree-structured Parzen estimator (TPE) for 

hyperparameter optimization. Table I shows the variables to 

be optimized along with their upper and lower bounds, where 

nl is the number of hidden layers in the MLP, lr is the learning 

rate of the optimizer. The Optuna library was used for the 

TPE [24]. During each optimization evaluation, a set of 20 

epochs was assigned. The encoder model was the pre-trained 

Swin Transformer (Swin-T) [25], and the optimization 

results are shown in Table I. 

Further comparative evaluations were performed based on 

the optimized hyperparameters of TPE. One focus was the 

comparison of hidden layer sizes in MLPs. Fig. 5 shows the 

validation loss differences for several dh and de combinations, 

where the validation losses are evaluated at the end of the 

100th training epoch and the listed validation losses are the 

mean values over 10 training runs. For dh = 4, there is a 

significantly high validation loss for the hysteresis loss, 

which materializes independently of the de values, decreasing 

and reaching equilibrium as dh increases. A parallel trend 

appears for the eddy current loss and de, indicating that an 

adequate representation of the nonlinearity within the iron 

loss characteristics occurs when the hidden layer dimensions 

exceed 10. In the following steps, (dh, de) = (12, 10) is used 

because it produced the minimum validation losses for both 

hysteresis and eddy current losses. 

Fig. 6 shows the validation loss for different nl values to 

compare the influence of the number of the hidden layers in 

MLPs. The lowest validation loss for both hysteresis and 

eddy current loss is achieved with nl = 3, and it increases as 

the number of layers increases beyond 3. This result suggests 

that it may not be necessary to rely on highly nonlinear 

models to predict iron loss from the encoded geometry data, 

motor speed, and current conditions. This is also supported 

by Steinmetz's experimental law [27], which states that the 

nonlinearity of hysteresis and eddy current loss is affected by 

up to a power of 1–2 with respect to the frequency (associated 

with speed) and the maximum flux density value (associated 

with current). 

The evaluation of the shape encoder models is performed 

subsequently. Fig. 7 shows the validation loss associated with 

the weights of the Swin-T encoder weights, where 

"pre-trained" represents the encoder pre-trained using 

ImageNet [25], [28]–[31], and "normal" represents the model 

without pre-training. The contrast between "fix" and "train" 

refers to whether the encoder weights are fixed or 

additionally trained when training with the iron loss dataset. 

When comparing the validation loss, the observed minimum 

validation loss for both hysteresis loss and eddy current loss 

is achieved using a fixed weight encoder with pre-training.  

TABLE I 

HYPERPARAMETERS FOR IRON LOSS PREDICTION MODEL 

Symbols Range Selected by TPE 

dinit (2, 12) 8 

dh (5, 55) 15 

de (5, 55) 10 

dho (10, 100) 50 

deo (10, 100) 50 

nl (3, 11) 3 

lr (0.00001, 0.1) 0.0004 

 

 
(a) 

 
(b) 

Fig. 5.  Validation loss differences for several dh and de combinations for (a) 
hysteresis loss and (b) eddy current loss. The mean values for 10 training 

runs are shown.  



 

Finally, the pre-trained models were compared. Table II 

shows the validation loss of several well-known encoder 

models [25], [28]–[31]. The final comparative evaluation 

shows that the Swin-T model produces the minimum 

validation loss, making it the most appropriate encoder model 

for this study. 

V. EFFICIENCY OPTIMIZATION 

The combination of the models described in Sec. IV results 

in the automatic design system for the IPMSM rotor core 

shown in Fig. 1. Using this design system, the efficiency 

optimization design is performed within the constraints of the 

256-dimensional latent variable space found in the generative 

model. 

A. Problem 

In this study, the efficiency maximization design is 

performed at two unique evaluation points, constrained by two 

torque limits, as shown in Fig. 8. The efficiency maximization 

problem, incorporating a torque constraint for the IPMSM, is 

formulated as follows. 

( )

1 2

1 2

: 3, 4

min , ,

. . ,

pred pred

init init

i

T

pred req

i i is t g T T

 

 

 =

 
− − 

 
z  (11) 

where 
1

pred  and 
2

pred  are the predicted efficiencies at 

operating points P1 (3,000 r/min, 20 Nm) and P2 (11,000 

r/min, 20 Nm), with each value normalized by the initial 

values 
1

init  and 
2

init , respectively. The constraint 

conditions gi are the torque constraints for two required 

operating points P3 (3,500 r/min, 197 Nm) and P4 (11,000 

r/min, 40 Nm), with a coefficient (=1.05) to account for the 

prediction error.  

Average torques, used in the efficiency evaluation and 

torque constraint analysis, were calculated using the motor 

parameter prediction model [16]. Current conditions for 

torque and efficiency calculations were determined by 

MTPA control and FW control algorithm [15].  

NSGA-II [32] was used as the optimization algorithm, and 

the pymoo [33] library was used for implementation. The 

population size was 100, and the number of offspring was 10. 

Latin hypercube sampling was used for sampling the initial 

population, the tournament method was used for selection, 

simulated binary crossover was used for crossover, and 

polynomial mutation was used for mutation. The termination 

condition was set to 50 generations. 

 
(a) 

 
 (b) 

Fig. 6.  Validation loss for different nl for (a) hysteresis loss and (b) eddy 

current loss. The mean and standard deviation values for 10 training runs are 
shown.  

 
(a) 

 
(b) 

Fig. 7. Validation loss for different types of training for (a) hysteresis loss 

and (b) eddy current loss. The mean and standard deviation for 10 training 

runs are shown. "Pre-trained" represents the pre-trained encoder, and 
"normal" represents the model without pre-training. The contrast between 

"fix" and "train" refers to whether the encoder weights are fixed or 

additionally trained when training with the iron loss dataset. 

TABLE II 

VALIDATION LOSSES FOR DIFFERENT ENCODERS 

Model Validation loss for Wh Validation loss for We 

ResNet-18 [28] 0.0539 ± 0.0117 0.0401 ± 0.0084 

ResNet-34 [28] 0.0456 ± 0.0035 0.0369 ± 0.0114 
ResNet-50 [28] 0.0562 ± 0.0145 0.0428 ± 0.0128 

ResNet-101 [28] 0.0567 ± 0.0126 0.0447 ± 0.0050 

ResNet-152 [28] 0.0570 ± 0.0050 0.0481 ± 0.0085 
VGG-11 (w/bn) [29] 0.0289 ± 0.0025 0.0216 ± 0.0018 

VGG-13 (w/bn) [29] 0.0267 ± 0.0018 0.0218 ± 0.0020 

VGG-16 (w/bn) [29] 0.0357 ± 0.0089 0.0272 ± 0.0018 
VGG-19 (w/bn) [29] 0.0310 ± 0.0034 0.0267 ± 0.0019 

ViT-B/16 [30] 0.0429 ± 0.0051 0.0287 ± 0.0037 

ViT-B/32 [30] 0.0348 ± 0.0064 0.0292 ± 0.0037 
ViT-L/16 [30] 0.0346 ± 0.0042 0.0268 ± 0.0035 

ViT-L/32 [30] 0.0378 ± 0.0053 0.0317 ± 0.0027 

Swin-T [25] 0.0267 ± 0.0033 0.0177 ± 0.0011 

Swin-B [25] 0.0406 ± 0.0092 0.0279 ± 0.0027 

Poolformer-s12 [31] 0.0577 ± 0.0084 0.0428 ± 0.0104 
*mean ± std for 10 training runs 

 
Fig. 8.  Evaluation points used for optimization. The blue points are for 
efficiency evaluation. The red squares are for average torque constraints. 
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B. Optimization Results 

Fig. 9 shows the efficiency characteristics and torques at 

required speeds for all individuals in the optimization process, 

while Fig. 10 shows the Pareto solution shapes.  After 

optimization, the final generation population established a 

clear Pareto front in terms of efficiencies. Notably, the entire 

final generation population satisfied the torque constraints, 

specifically the operating point constraint related to 

maximum torque was active. The final generation population 

is divided into two main clusters, representing Nabla and 2D 

topologies, as shown in Fig. 10. Nabla generally produces 

higher torque at low speed due to the proximity of the PMs to 

the gap, which reduces copper loss and increases efficiency at 

P1. In contrast, the 2D topology is designed to mitigate gap 

flux density harmonics and preferentially achieves higher 

efficiency at high speeds P2, where iron losses dominate.  

Efficiency predictions for the Pareto front are usually 

better than those obtained from FEA, because tradeoff 

optimization with surrogate models tends to converge on 

individuals with overestimated solutions [14]. Nevertheless, 

the difference between the system predictions and the FEA 

results is marginal, highlighting the effectiveness of the 

system in predicting efficiencies with high accuracy. The 

efficiency prediction error at P1 may appear large, but this is 

due to the more detailed scaling of the horizontal axis in Fig. 

9(a) as opposed to the vertical axis, which actually results in a 

small prediction error. 

To evaluate the efficiency characteristics in detail, the 

individual with the highest efficiency at P2 was selected from 

among the Pareto solutions. Fig. 11 shows the selected rotor 

geometry, and the efficiency maps calculated by FEA and 

system prediction. The prediction accuracy of the efficiency 

characteristics is high, and the prediction system reduces the 

computational time required, with evaluations performed 

over 10 iterations using a computer with an Intel Core™ 

i7-9700K CPU, 32.0 GB of RAM, and an NVIDIA GeForce 

RTX 3090 SUPER (24 GB) GPU.  

The optimization performance is further evaluated against 

previously proposed methods [15], namely parameter 

optimization with machine learning using XGBoost to 

predict torque and efficiency with geometric parameters of 

each topology. Table III shows a comparison of the losses of 

the optimized geometry under the Worldwide Harmonized 

Light Vehicles Test Cycle (WLTC) and the computational 

time for the optimization, where the WLTC losses were only 

evaluated during powering. The complete WLTC loss 

calculation procedure is described in [15]. An analysis of the 

results shows that the converging geometry of the proposed 

method has similar loss characteristics with the best result of 

previous parameter optimization approaches. Moreover, the 

 
Fig. 10.  Shapes of all Pareto solutions of optimization, which is indicated by 

the red line in Fig. 9(b).  
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Fig. 11. Efficiency maps for selected optimal design. (a) Selected rotor 

geometry, and efficiency maps calculated by (b) FEA and (c) automatic 
design system. 

 

 
(a) 

 
(b) 

Fig. 9.  Optimization result for (a) efficiencies and (b) torques using 
proposed automatic design system. The red line represents the Pareto front in 

the last generation. Individuals outside the Pareto front were eliminated in 

the optimization process because they did not satisfy the torque constraint. 
The blue line represents the result of the FEA performed on the individuals 

in the Pareto front. 

 



 

computational time for optimization is reduced by one or two 

orders of magnitude due to the implementation of parallel 

processing on GPUs.  

C. Experimental Validation 

Finally, a prototype of the optimized geometry shown in 

Fig. 11(a) was fabricated for experimental validation of the 

proposed system. Fig. 12 shows the fabricated prototype 

rotor shape with minor adjustments to the PM positioning 

shape and the fillet pattern. In the experimental setup, the 

torque was measured by an SS-500 torque detector (Ono 

Sokki Co., Ltd., Yokohama, Japan), and the load was 

supplied by a 16-kW induction motor (Fuji Electronic Co., 

Ltd., Tokyo, Japan). A PWM inverter (Myway Plus Co., 

Yokohama, Japan) with a carrier frequency of 10 kHz and a 

DC side voltage of 650 V drove the tested IPMSMs.  

Fig. 13 shows the no-load induced voltage, which is the 

line voltage between the U and V phases at 1200 r/min. The 

measured results are similar to the FEA results.  

Fig. 14 shows the loss characteristics of the motor at a 

speed of 3500 r/min with a torque of 20 Nm, where the 

measured loss was calculated by subtracting the measured 

mechanical output and the electrical input to the motor, 

taking into account the pre-measured mechanical losses. 

"FEA (training)" represents an analysis result performed 

under conditions identical to the training dataset of the 

proposed system, while "FEA (prototype)" represents an 

analysis result performed under conditions adapted to the 

actual experiment. Specifically, the "FEA (prototype)" 

geometry adopts the same CAD data used in the prototype 

drawings, including PM positioning shape and fillets.  In 

addition, it uses a finer analysis mesh and resolution, current 

input considerations for the PWM inverter, temperature 

condition, and eddy current loss analysis in the PM. 

Direct comparisons between measured losses and system 

predictions indicate significant errors. On the other hand, 

comparing the system predictions with the FEA results under 

conditions equivalent to the training data shows a prediction 

error of 3.5%, indicating a high level of accuracy in the 

system prediction. This leads to the conclusion that the 

discrepancy between the measured losses and the system 

predictions is due to the modeling errors present in the FEA 

results of the training dataset. Furthermore, although the 

losses of "FEA (prototype)" were closer to the measured 

results than those of "FEA (training)", there are still 

differences between FEA and measured results due to factors 

such as three-dimensional iron losses, stray load losses, 

manufacturing tolerances, and variations in machine losses. 

In addition, the analysis time for "FEA (prototype)" exceeded 

that of "FEA (training)" by more than sixty times. Because a 

sufficient amount of data is required for deep learning models 

to cover a wide range of applications, the trade-off between 

modeling accuracy and FEA analysis time is the primary 

obstacle to improving the performance of deep learning in 

motor design. 

VI. CONCLUSIONS  

This study proposed a DL model that accurately predicts 

the iron loss characteristics in IPMSMs with three different 

rotor topologies under various speed and current conditions. 

In addition, the combination of this model and previously 

proposed models resulted in an automatic design system for 

the IPMSM rotor core. Using this system, the computation 

time for efficiency maps was less than 1/3000 that of FEA. In 

addition, the efficiency optimization results with this system 

showed the same level of performance as the best results of 

the previous studies, while the computation time for 

optimization is reduced by one or two orders of magnitude. 

The experimental results of the optimized geometry 

showed that there was a significant error between the system 

predictions and the measured values in terms of motor losses. 

TABLE III 

PERFORMANCE COMPARISON BETWEEN PROPOSED SYSTEM AND PARAMETER OPTIMIZATION 

 Item (unit) Proposed 
Parameter optimization (XGBoost) [15] 

2D V Nabla 

Loss under WLTC (FEA) (kJ) 263.8 266.3 329.7 311.7 

                         – Copper loss (kJ) 199.1 206.1 232.0 229.3 

                           – Iron loss (kJ) 64.7 60.2 97.7 82.4 

Computation time for optimization (min) 3.783 ± 0.037 123.58 ± 0.13 55.25 ± 0.84  89.30 ± 0.23 

  

  
(a) (b) 

Fig. 12.  Photographs of prototype. (a) Stator core. (b) Rotor core. 

 
 

 

 
Fig. 13.  Measured no-load induced voltage at 1200 r/min. 

 
Fig. 14.  Measured loss characteristics at 3500 r/min and 20 Nm. 
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This was caused by the modeling errors present in the FEA 

results of the training dataset rather than the accuracy of the 

DL model, suggesting that how to obtain a dataset with both 

sufficient quality and quantity is an important issue for 

improving the performance of deep learning in motor design. 
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