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Abstract

This work aims to disclose a closed-form analytical solution to attitude motion for a rigid body subject to zero body-fixed

torques, i.e., Euler-Poinsot problem. Revisiting Routh’s study, the presence of multiple solutions are identified. To verify

the proposed solution, numerical simulations and real-life experiment results are presented. A Code Ocean repository is also

provided so that readers could test the algorithm individually.
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A Closed-form Analytical Solution to Torque Free Precession:
Euler-Poinsot Problem

Barkan Ugurlu1

Abstract— This paper aims to disclose a closed-form ana-
lytical solution to attitude motion for a rigid body subject to
zero body-fixed torques, i.e., Euler-Poinsot problem. Revisiting
Routh’s study, the presence of multiple solutions are identified.
To verify the proposed solution, numerical simulations and real-
life experiment results are presented. A Code Ocean repository
is also provided so that readers could test the algorithm
individually.

I. INTRODUCTION

The Euler-Poinsot problem tackles the description of at-
titude motion of a rigid body, subject to zero body-fixed
torques. To this end, Poinsot proposed a visualization tech-
nique, called Poinsot construction, which can be used to
geometrically describe the attitude of a rigid body [1], [2].
Routh challenged the Euler-Poinsot problem and provided
analytical solutions to Euler’s equation for the case of zero
body-fixed torques [3]. Jupp also proposed a solution using
a Lie-series perturbation procedure [4]. Recently, Routh’s
study was revisited and researchers provided further findings,
e.g, analyses on its state transition matrix, motion con-
stants, and ergodicity [5], Dzhanibekov effect [6], computer-
aided visualization [7], and open-source code [8]. They also
demonstrated the presence of multiple solutions concerning
the problem.

In this study, Routh’s solution was further elaborated so as
to identify the multiple solution cases such that it could be
used as a generalized zero-input solution. The accuracy of
the solution was primarily tested via numerical simulations.
It was also demonstrated that the proposed solution could
represent uncontrolled rotational motion of an actual space-
craft. By solely using the initial angular velocity values, the
solution accurately predicted the angular velocity trajectory
data which was recorded while the actual spacecraft Aist was
undergoing uncontrolled rotational motion [9].

The manuscript is organized as follows. In section II,
the mathematical tools used in the manuscript is succinctly
provided. The problem definition is given in section III. The
closed-form analytical solution is explained in section IV.
Simulation and experiment results are presented in section
V and the manuscript is concluded in section VI.

II. MATHEMATICAL PRELIMINARIES

Introduced by Carl Gustav Jakob Jacobi, Jacobi elliptic
functions are a set of elliptic functions, which are used for the
analytical description of a certain class of nonlinear system

1The author is with the Biomechatronics Laboratory, Department of
Mechanical Engineering, Ozyegin University, 34794 Istanbul, Türkiye.
barkanu@ieee.org

motion. While a unit circle is considered as a basis for
trigonometric functions, a normalized ellipse is used as the
basis for the definition of Jacobi elliptic functions. Following
the descriptions provided in [10], the following equations
defines an ellipse:

( x
a

)2
+(y)2 = 1 (1)

m = 1− 1
a2 (2)

(3)

Note that a > 1 and the shape of the ellipse can be
controlled by the parameter m which obeys 0 < m < 1.
When m = 0, the ellipse take the form of a unit circle. The
parameter u may be defined as in the following:

u =
∫

γ

0

dθ√
1−msin2

θ

(4)

Using these parameters, the elliptic functions are respec-
tively described as sn(u,m) = sinγ , cn(u,m) = cosγ , and

dn(u,m) =
√

1−msin2
γ . Furthermore, let (x,y) be a point

on the ellipse; sn(u,m) = y and cn(u,m) = x
a . Therefore,

sn(u,m)2 +cn(u,m)2 = 1. In addition, dn(u,m) = r
a ; r is the

radial distance of the ellipse.
Derivatives of the elliptic functions can be expressed as

below:

d
du

sn = cn dn (5)

d
du

cn = −sn dn (6)

d
du

dn = −m sn cn (7)

To simplify the notation, the argument (u,m) is dropped.
For the solution of the Euler-Poinsot motion, one needs the
squares of the eqs. (5)-(7):

(
d
du

sn
)2

= m sn4−(1+m)sn2+1 (8)(
d
du

cn
)2

= −m cn4+(2m−1)cn2+(1−m) (9)(
d
du

dn
)2

= −dn4+(2−m)dn2+m−1 (10)



III. PROBLEM STATEMENT: EULER-POINSOT MOTION

For a given rigid body, Euler’s equation for principal axes
describes the attitude motion [3],

Mx = Ixxω̇x − (Iyy − Izz)ωyωz (11)
My = Iyyω̇y − (Izz − Ixx)ωzωx (12)
Mz = Izzω̇z − (Ixx − Iyy)ωxωy (13)

where M = [Mx,My,Mz]
ᵀ denote the body-fixed torques, Ixx,

Iyy, Izz are moment of inertia values for principal axes,
ω = [ωx,ωy,ωz]

ᵀ stand for the angular velocity. In this case,
the products of inertia are deemed to be negligible. When
the body-fixed torques are zero, the body is subject to Euler-
Poinsot motion. In this case, the eqs. (11)-(13) take the
following form:

Ixxω̇x = (Iyy − Izz)ωyωz (14)
Iyyω̇y = (Izz − Ixx)ωzωx (15)
Izzω̇z = (Ixx − Iyy)ωxωy (16)

A. Conserved Quantities

To express the conservation of energy, the expression
(14)ωx +(15)ωy +(16)ωz is computed:

Ixxω̇xωx + Iyyω̇yωy + Izzω̇zωz = 0 (17)

If (17) is integrated with respect to time, the following is
yielded:

2Ek = Ixxω
2
x + Iyyω

2
y + Izzω

2
z (18)

= Ixxω
2
x0 + Iyyω

2
y0 + Izzω

2
z0 (19)

In (19), Ek is the rotational kinetic energy, and
(ωx0,ωy0,ωz0) stand for initial angular velocity values.
Hence, given the initial angular velocity values, one can
compute the conserved value of 2Ek. To express the conser-
vation of angular momentum, one can compute (14)Ixxωx +
(15)Iyyωy +(16)Izzωz:

I2
xxω̇xωx + I2

yyω̇yωy + I2
zzω̇zωz = 0 (20)

If (20) is integrated with respect to time, the square of
the magnitude of angular momentum vector, Hb

2, can be
obtained:

H2
b = I2

xxω
2
x + I2

yyω
2
y + I2

zzω
2
z (21)

= I2
xxω

2
x0 + I2

yyω
2
y0 + I2

zzω
2
z0 (22)

Similarly, given the initial angular velocity values, one can
compute the conserved value of H2

b using (22). Without the
loss of generality, one can consider Ixx > Iyy > Izz, y-axis
being the intermediate axis. Thus, ωy is primarily isolated.

B. Isolating the Variable ωy

Using (15), ω̇2
y can be expressed as in the following:

ω̇
2
y =

(
Izz − Ixx

Iyy

)2

ω
2
z ω

2
x (23)

Furthermore, (18) and (21) can be collectively processed
to obtain ω2

x and ω2
z , in terms of ωy and the conserved

quantities H2
b and 2Ek:

ω
2
x =

H2
b −2EkIzz − Iyyω2

y (Iyy − Izz)

Ixx(Ixx − Izz)
(24)

ω
2
z =

2EkIxx −H2
b − Iyyω2

y (Ixx − Iyy)

Izz(Ixx − Izz)
(25)

Plugging (24) and (25) into (23), one could obtain the final
differential equation that solely comprises ωy:

ω̇
2
y = ayω

4
y +byω

2
y + cy (26)

where the coefficients ay, by, and cy take the following form:

by =
(Iyy−Izz)(H2

b −2EkIxx)− (Ixx−Iyy)(H2
b −2EkIzz)

IxxIyyIzz

ay =
(Ixx − Iyy)(Iyy − Izz)

IxxIzz
(27)

cy =
(2EkIxx −H2

b )(H
2
b −2EkIzz)

IxxIzzI2
yy

Considering the case Ixx > Iyy > Izz, it is observed that ay
is always positive. Furthermore, (H2

b−2EkIzz) = IxxW 2
x0(Ixx−

Izz)+ IyyW 2
y0(Iyy−Izz) and (H2

b −2EkIxx) = IyyW 2
y0(Iyy−Ixx)+

IzzW 2
z0(Izz−Ixx); thus, by is always negative. Likewise, cy is

always positive. Therefore, regardless of the initial angular
velocity values, the coefficients of the differential equation
(26) meets the criteria of ay > 0, by < 0, and cy > 0,
concerning the intermediate axis.

C. Isolating the Variable ωz

Using (16), ω2
z can be express as in the following:

ω̇
2
z =

(
Ixx − Iyy

Izz

)2

ω
2
x ω

2
y (28)

Similar to the previous case, (18) and (21) can be collec-
tively processed to obtain ω2

x and ω2
y , in terms of ωz and the

conserved quantities H2
b and 2Ek:

ω
2
x =

H2
b −2EkIyy + Izzω

2
z (Iyy − Izz)

Ixx(Ixx − Iyy)
(29)

ω
2
y =

H2
b −2EkIxx + Izzω

2
z (Ixx − Izz)

Iyy(Iyy − Ixx)
(30)

Combining (29) and (30) in (28), the following differential
equation is obtained:



ω̇
2
z = azω

4
z +bzω

2
z + cz (31)

where the coefficients az, bz, and cz are computed as follows:

bz =
H2

b (2Izz − Ixx − Iyy)−2Ek(Izz(Ixx + Iyy)−2IxxIyy)

IxxIyyIzz

az =
(Izz − Ixx)(Iyy − Izz)

IxxIyy
(32)

cz =
(2EkIxx −H2

b )(H
2
b −2EkIyy)

IxxIyyI2
zz

Recall that Ixx > Iyy > Izz, and thus az is always negative.
However, unlike the case for the intermediate axis, the signs
of bz and cz depend on the initial angular velocity values.

D. Problem Definition

By respectively isolating ωy and ωz, the solution of (14)-
(16) is reduced to the solution of (26) and (31). Although
being nonlinear, the eqs. (26) and (31) have no coupling
terms; (26) only includes ωy as the variable and (31) only
includes ωz as the variable. In the next subsection, it is
demonstrated that they can be solved via Jacobi elliptic
functions. Once (26) and (31) are solved, ωx can be obtained
rather easily.

IV. ANALYTICAL SOLUTION

Observing the analogy between the eqs. (8)-(10), (26), and
(31), it is natural to think that the analytical solutions may
appear in the form of Jacobi elliptic functions.

A. Analytical Solution for ωy

To obtain the analytical solution for ωy, one must solve
(26). As previously discussed, the coefficients of (26) obey
ay > 0, by < 0, and cy > 0, regardless of the initial conditions.
Considering the fact that 0 < m < 1 for the elliptic functions,
(26) can only be similar to (8). Therefore, the following
function is proposed for the analytical solution of ωy:

ωy = µy sn(u,m) (33)

where u is described as u = q0 + qt; t is the time variable
[10], q and q0 are constants. The parameter µy denotes the
amplitude of ωy. The first time differentiation of (33) and its
square is expressed as below:

ω̇y =
dωy

dt
=

dωy

du
du
dt

= q
dωy

du
(34)

ω̇
2
y = q2

(
dωy

du

)2

= q2
µ

2
y

(
d

du
sn
)2

(35)

Again, the function parameters (u,m) are dropped to
simplify the notation. Plugging (8) into (35), the following
is yielded:

ω̇
2
y = mµ

2
y q2 sn4−(1+m)µ2

y q2 sn2+µ
2
y q2 (36)

Using the one-on-one correspondence between (26) and
(36), the parameters ay, by, and cy can be computed as in
the following:

ay = mµ
−2
y q2 (37)

by = q4(1+m)2 (38)

cy = µ
2
y q2 (39)

Solving the eqs. (37)-(39), the parameter m appears to have
two solutions:

m =
1

2aycy

(
∓by∆y −2aycy +b2

y
)

(40)

In (40), ∆y =
√

b2
y −4aycy. Despite the multiple mathemat-

ical solutions, only the one with the plus sign obeys the
condition 0 < m < 1, thus the other solution is discarded.
Having obtained the parameter m, the rest of the parameters
are computed subsequently:

q = κ1

√
−by

m+1
(41)

µy =

√
cy

q2 (42)

Despite the presence of multiple solutions, it is determined
that κ1 =−sign(Wx0)sign(Wz0) yields a physically consistent
solution. Furthermore, q0 can be computed by using the
initial value ωy0:

q0 = arcsn(
ωy0

µy
,m) (43)

B. Analytical Solution for ωz and ωx

Unlike in the case of intermediate y-axis, the coefficients
of (31) depend on the initial conditions. Yet, it is possible
to compute az, bz, and cz, given the initial conditions. For
a given set of initial conditions, if cz < 0 the solution of ωz
is in the form dn; otherwise, it is cn. The ellipse parameters
m, q, q0 should remain the same [1], [11]; hence, only the
computation of µz is required for two distinct cases.

1) Case 1: cz < 0: In this case, the proposed solution is
in the form of dn; see (10):

ωz = µz dn(u,m) (44)

where µz denotes the amplitude of ωz. The first time differ-
entiation of (44) and its square are expressed as below:

ω̇z =
dωz

dt
=

dωz

du
du
dt

= q
dωz

du
(45)

ω̇
2
z = q2

(
dωz

du

)2

= q2
µ

2
z

(
d
du

dn
)2

(46)

Combining (10) and (46), the following is obtained:



ω̇
2
z = −µ

2
z q2 dn4+µ

2
z q2(2−m)dn2+µ

2
z q2(m−1)(47)

Using the one-on-one correspondence between (31) and
(47), the parameters az, bz, and cz can be calculated. As
the parameter µz is solely needed, one can use one of the
parameters to compute it. Choosing az, the parameter µz is
yielded as below:

µz =−sign(ωx0)q

√
− 1

az
(48)

Having obtained ωy and ωz, it is rather straightforward to
compute ωx by using the eq. (14) in the following form:

ωx =
Iyy − Izz

Ixx
µyµz

∫
sndndt (49)

Recall that dt = 1
q du, the integration in (49) can be taken

with the help of (6) to obtain ωx:

ωx =
µyµz

q
(Izz − Iyy)

Ixx
cn(u,m) (50)

2) Case 2: cz > 0: In this case, the proposed solution is
in the form of cn; see (9):

ωz = µz cn(u,m) (51)

The first time differentiation of (51) and its square are
computed as follows:

ω̇z =
dωz

dt
=

dωz

du
du
dt

= q
dωz

du
(52)

ω̇
2
z = q2

(
dωz

du

)2

= q2
µ

2
z

(
d
du

dn
)2

(53)

Plugging (10) into (53), the following is obtained:

ω̇
2
z =−µ

2
z q2mcn4+µ

2
z q2(2m−1)cn2+µ

2
z q2(1−m) (54)

Similar to the previous case, the parameters az, bz, and cz
can be calculated by using the one-on-one correspondence
between (31) and (54). Choosing az, the parameter µz is
obtained as in the following:

µz =−sign(ωx0)q
√
−m

az
(55)

Following a similar procedure, ωx can be expressd via
(14):

ωx =
Iyy − Izz

Ixx
µyµz

∫
sncndt (56)

Using (7), the closed-form solution of (56) is acquired:

ωx =
1
m

µyµz

q
(Izz − Iyy)

Ixx
dn(u,m) (57)
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V. RESULTS

A. Numerical Simulations

In order to verify the proposed closed-form analytical so-
lution, a series of numerical simulations were conducted. In
these simulations, NASA’s Cassini spacecraft was considered
as the rigid body model. Its moment of inertiae about its
principle axes are Ixx = 8802 kgm2, Iyy = 8155 kgm2, and
Izz = 4715 kgm2, respectively [12]. The products of inertia are
negligible. The results are displayed in Figs. 1 and 2, where
dashed blue lines indicate numerical solutions and solid red
lines indicate the proposed analytical solution. Numerical
solutions are obtained via MATLAB ode45 solver in which
the step size was 1 ms.

In the first numerical simulation, the initial angular veloc-
ities were set as ωx0 = 2.2 rad/s, ωy0 =−3.0 rad/s, ωz0 =
−1.5 rad/s. In the second numerical simulation, they were
set as ωx0 = 0.01 rad/s, ωy0 = 20.0 rad/s, ωz0 = 0.01 rad/s
to simulate Dzhanibekov effect [6]. In both simulations,
the difference between both solution is indistinguishable.
For longer simulations, the numerical solution inevitably
drifts while the proposed analytical solution exhibits no such
behavior at all. In [8], a Code Ocean repository is provided



0 105 15 20 25 30
Time (s)

10

5

0

10

0

-10

10

0

-10

A
n

g
u

la
r 

V
e

lo
ci

ty
 (

d
e

g
/s

)
Actual Predicted

ωx

ωy

ωz

Fig. 3: Angular velocity trajectories of Aist spacecraft [9].

so that the reader could test the proposed analytical solution
for different initial conditions and inertia values.

B. Real-life Experiment Results

In [9], the researchers have reported their findings regard-
ing the uncontrolled rotational motion of an actual spacecraft
Aist. Using the initial angular velocity values (ωx0 = 6.763
deg/s, ωy0 = −5.672 deg/s, ωz0 = 6.752 deg/s), angular
velocity trajectories were estimated using the proposed an-
alytical solution. Aist’s moment of inertia values were not
reported; instead, its successor Aist-2’s inertia values were
slightly tweaked [13]: Ixx = 275 kgm2, Iyy = 235 kgm2, and
Izz = 172 kgm2, respectively. The products of inertia are
omitted. The result is presented in Fig. 3, where dashed blue
and solid red lines respectively stand for the actual angular
velocity and the proposed analytical solution’s prediction.
As may be observed, the actual angular velocity trajectories
are well predicted with sufficient accuracy, although there is
noticeable error for the x-axis angular velocity. This could
be due to the fact that Aist’s moment of inertia values
were guessed by considering the inertia of its successors
spacecraft. Despite this error, it is observed that the proposed
solution could predict the attitude motion of spacecrafts
which are subject to Euler-Poinsot motion.

VI. CONCLUSION

In this manuscript, a closed form analytical solution for
torque free precession is proposed. In this motion type, a
rigid body with no body-fixed torques may perform rotational
motion and given the initial conditions, the angular velocity
trajectories of the rigid body can be obtained using the
proposed solution. The validity of the proposed solution was
demonstrated via numerical solutions and real-life spacecraft
data. In [8], a Code Ocean repository is provided where a
MATLAB implementation concerning the proposed solution
can be found. Interesting readers could play with the code;
they can test the solution with different initial conditions and
inertia values.

REFERENCES

[1] L. Poinsot, Theorie Nouvelle de la Rotation des Corps. Bachelier,
Paris, 1834.

[2] H. Goldstein, C. P. Poole, and J. L. Safko, “Classical mechanics,
3rded..” Addison Wesley, 2000, pp. 74–110.

[3] E. J. Routh, “Motion of a body under the action of no forces,” in The
Advanced Part of a Treatise on the Dynamics of a System of Rigid
Bodies - Being part II of a treatise on the whole subject. MacMillan
and Co., Ltd, 1905, pp. 74–110.

[4] A. H. Jupp, “On the free rotation of a rigid body,” Celestial Mechanics,
vol. 9, no. 1, pp. 3–20, Mar. 1974.

[5] J. E. Hurtado and A. J. Sinclair, “State transition matrix, motion
constants, and ergodicity of the Euler–Poinsot problem,” Nonlinear
Dynamics, vol. 85, no. 3, pp. 2049–2063, May 2016.

[6] C. Peterson and W. Schwalm, “Euler’s rigid rotators, Jacobi elliptic
functions, and the Dzhanibekov or tennis racket effect,” American
Journal of Physics, vol. 89, no. 4, pp. 349–357, Apr. 2021.

[7] C. Murakami, “Analytical solution of the Euler-Poinsot problem,”
Journal of Geometry and Symmetry in Physics, vol. 60, pp. 25–46,
2021.

[8] Barkan Ugurlu, “Analytical solution to torque free
precession [source code],” 2023. [Online]. Available:
https://codeocean.com/capsule/6311625/tree/v3

[9] V. I. Abrashkin, K. E. Voronov, A. V. Piyakov, Y. Y. Puzin, V. V.
Sazonov, N. D. Semkin, A. S. Filippov, and S. Y. Chebukov, “Un-
controlled rotational motion of the aist small spacecraft prototype,”
Cosmic Research, vol. 55, no. 2, pp. 128–141, Mar. 2017.

[10] W. A. Schwalm, Lectures on Selected Topics in Mathematical
Physics: Elliptic Functions and Elliptic Integrals. IOP Publishing,
2015. [Online]. Available: https://doi.org/10.1088/978-1-6817-4230-4

[11] L. Landau and E. Lifshitz, Mechanics: Course of Theoretical Physics.
Elsevier, 1976.

[12] A. Y. Lee and J. A. Wertz, “In-flight estimation of the Cassini
spacecraft’s inertia tensor,” Journal of Spacecraft and Rockets, vol. 39,
no. 1, pp. 153–155, Jan. 2002.

[13] V. F. Petrishchev and M. G. Shipov, “Optimization of spatial turns
of AIST-2 small spacecraft on the basis of the principle of minimum
control,” VESTNIK of Samara University, Aerospace and Mechanical
Engineering, (in Russian), vol. 14, no. 4, pp. 72–79, Jan. 2016.


