
P
os
te
d
on

24
J
u
l
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
37
13
96
2.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Correlation Based Node Partitioning to Sparse Multilayer

Perceptron

Cem Benar 1 and Ali Naci Akansu 2

1New Jersey Institute of Technology
2Affiliation not available

October 31, 2023

Abstract

A signal-dependent, correlation-based pruning algorithm is proposed to sparsify inter-layer weight matrices of a Multilayer

Perceptron (MLP). The method measures correlations of node outputs for an input or hidden layer. The nodes are partitioned,

accordingly. The nodes of a partition with relatively higher correlations are bundled to be the inputs of a node in the next

layer. Such partitioning improves subspace representation of nodes in the network. The numerical performances for various

MLP architectures and input (training) signal statistics for the two-class classification problem are presented. The results

provide insights on the relationships between signal statistics, node and layer behavior, network dimension, depth, sparsity,

and system performance. We show convincing evidence in the paper that the model design should track input statistics and

transformations through the building blocks to sparsify the network for improved performance and computational efficiency.

The proposed pruning method may also be used to design a self-reconfiguring network architecture with weight and node

sparsities.

1

Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version XX Month, XXXX.

Digital Object Identifier 10.1109/XXXX.2022.1234567

Correlation Based Node Partitioning to
Sparse Multilayer Perceptron

CEM BENAR (Graduate Student Member, IEEE) and ALI N. AKANSU (Fellow, IEEE)
New Jersey Institute of Technology, Newark, NJ 07102 USA

CORRESPONDING AUTHOR: CEM BENAR (email: cb427@njit.edu).

ABSTRACT A signal-dependent, correlation-based pruning algorithm is proposed to sparsify inter-layer
weight matrices of a Multilayer Perceptron (MLP). The method measures correlations of node outputs for an
input or hidden layer. The nodes are partitioned, accordingly. The nodes of a partition with relatively higher
correlations are bundled to be the inputs of a node in the next layer. Such partitioning improves subspace
representation of nodes in the network. The numerical performances for various MLP architectures and
input (training) signal statistics for the two-class classification problem are presented. The results provide
insights on the relationships between signal statistics, node and layer behavior, network dimension, depth,
sparsity, and system performance. We show convincing evidence in the paper that the model design should
track input statistics and transformations through the building blocks to sparsify the network for improved
performance and computational efficiency. The proposed pruning method may also be used to design a
self-reconfiguring network architecture with weight and node sparsities.

INDEX TERMS Explainable neural network, pdf re-shaping, misaligned node, node compression ratio,
layer compression ratio, sparsity, AR(1) source model.

I. INTRODUCTION
Over-parameterized deep neural networks perform excep-
tionally well in applications such as natural language pro-
cessing and many others [1]. The best performing network
architecture is designed mostly by trial-and-error. This proce-
dure lacks the framework to explain model performance [2].
The development of new methods to design architecture
and optimization for under-determined systems is an active
research topic.

The state-of-the-art deep neural networks are heavily
under-determined (over-parameterized) [3]. However, in-
creased model complexity (more parameters) may not lead to
reduced model generalizability. This behavior is in contrast
to the classical statistical learning theory [3], [4], [5], [6],
[7], [8], [9], [10], [11]. Experimental studies claim that over-
fitting training data and higher generalization performance
can occur at the same time if the network is sufficiently
over-parameterized [3], [4], [5], [6], [7], [8], [9], [10], [11].
When network parameter set or the number of training
epochs (training time) is increased, network performance
may initially improve, then worsen, and it may improve
again. This phenomenon is known as deep double-descent
curve or double-descent hypothesis [6], [7], [8], [9], [10],
[11]. Deep double-descent curve is divided into three stages
[6], [7], [8], [9], [10], [11]. They are called as a. under-fitting

stage where the number of model parameters P is smaller
than the number of training data points M (P < M), b.
critical-fitting stage when P ∼= M , and c. overfitting stage
with P > M .

A common strategy is to train an over-parameterized
neural network by using some form of inductive bias and
to learn more compact representations (better approxima-
tion) with increased generalization performance. Deep neural
networks tend to be biased towards low-rank solutions to
reduce complexity and to enhance generalization perfor-
mance, known as implicit regularization. The benign overfit-
ting phenomenon and implicit regularization as observed in
specific architectures and various real-world data sets suggest
to over-parameterize neural networks judiciously and learn
compressed representations (lower rank approximation) with
improved performance [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22].

The modern neural networks are mostly dense and over-
parameterized [3]. They have built-in inductive bias of archi-
tectural choices (e.g., convolutional layers, pooling methods,
positional-encoding mechanism), regularizations (e.g., L0,
L1, or L2 norm), optimizer types, and initialization meth-
ods [1]. Using inductive bias is intuitive to enhance the
model approximation. Some of them may be computation-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

BENAR ET AL.: CORRELATION BASED NODE PARTITIONING TO SPARSE MULTILAYER PERCEPTRON

ally demanding to train the model [23]. Their redundancy
may be reduced by incorporating sparsity methods during
model optimization [23]. Sparse neural networks achieve
higher efficiency in the forms of speed, storage, and energy
consumption with better (or marginally lower) performance
than their dense counterparts [23]. The advantages of sparse
neural networks are highlighted in Section II and quantified
in Section V.

The regularization effect of sparsity in optimization is
discussed in Section II. A Multilayer Perceptron (MLP) is
briefly presented in Section III-C. We introduce the node
and layer performance metrics for explainability of network
behavior in Section III-E. They relate variations of entropy
(compression) through the nodes and layers to network
performance. The motivation and mathematical framework
for the proposed (correlation-based) weight pruning method
to sparsify a network is given in Section IV-A. Its algorithmic
and implementation details are explained in Section IV-B
and Section IV-C, respectively. The data sets used in the ex-
periments are described in Section IV-D. The performances
of fully-connected and sparse MLPs (pruned with various
techniques) for AR(1) and CIFAR-10 data sets are compared
in Section V. The conclusions are given in Section VI.

II. SPARSITY REGULARIZATION
There is redundancy among model parameters (features) of
over-parameterized deep neural networks since representa-
tions within each hidden layer (subspace) and between lay-
ers are usually correlated [20]. Redundant features provide
little or no additional information beyond what is already
expressed by others. Learning redundant features leads to
the undesired multi-collinearity with increased complexity
without any improvement in model approximation. The
multi-collinearity also exists between vectors (filters) of a
trained weight matrix [16], [17], [18], [19]. The redundancy
of trained weight matrices for several deep neural networks
(e.g., VGG, ResNet, DenseNet) is shown in [16], [17],
[18], [19]. Multi-collinearity and redundancy have several
drawbacks as outlined below.

Firstly, redundant features are more sensitive to a noisy
environment [24]. It is harder for a model to learn general-
izable patterns from distorted training signals [24].

Secondly, the existence of redundant features deteriorates
the interpretability and trustworthiness of a model. It be-
comes harder to identify the most relevant features in a
model [25]. Trustworthiness is critical for most applications
such as in medicine, autonomous driving, and finance [25].
In fact, the explainable artificial intelligence (XAI) pursues
solutions with maximized trustworthiness [25]. Although
XAI is attractive, some researchers favor interpretable mod-
els over explainable ones since it is very difficult and
complex to explain heavily over-parameterized networks by
using available frameworks.

Thirdly, heavily over-parameterized dense networks are
mostly very large models. They require significant computa-

tional resources to train and perform evaluations. In contrast,
sparse neural networks are more efficient to implement and
run faster with mostly increased (or negligibly reduced)
performance [26].

Lastly, neurological studies show a link between sparsity
and intelligence in human brain. It is found that human brain
is not densely connected [27]. In fact, sparsely connected
human brains have higher intelligence and computational
efficiency than dense ones [27]. As a supporting evidence,
infant brains are more densely connected with higher activity
than adult brains [28]. During adulthood, the removal of con-
nections between neurons efficiently is essential to achieve
higher intelligence [28].

Sparsity in deep learning is achieved by reducing the
number of model parameters based on available sparsity
schedules and selection criteria [23]. In this study, we primar-
ily focus on the weight selection criteria and propose a signal
dependent, correlation-based weight pruning algorithm to
sparsify MLP as presented in Section IV-B. We compare
the performance of the proposed method with the magnitude
and random pruning methods. We also rank the classification
performances of the fully-connected and sparsified MLPs for
AR(1) (auto-regressive order one) model and CIFAR-10 data
sets for the two-class case.

The contributions of the paper are summarized as follows.

1) The impact of signal statistics (∆ρ and SNR) on
network performance is demonstrated.

2) The two metrics called node compression ratio (NCR)
and layer compression ratio (LCR) are proposed to
explain the inner workings of model optimization at
the node level. Their values are related to the implicit
regularization forced by the optimizer. The invaluable
insights for weight and node sparsity are gained from
network simulations.

3) A correlation-based signal dependent network pruning
method is proposed. Its superior performance over the
magnitude and random pruning methods is shown for
two different data sets.

The impact of weight pruning (sparsity) and input statistics
on MLP performance are presented next in Section II-A.

A. PRUNING METHODS
The two popular pruning methods along with the proposed
one are summarized in this section.

1) RANDOM PRUNING
Random pruning method does not consider any statistics in
the network [23], [29]. It randomly selects the discarded
weights [29], [30]. It is generally used as a baseline pruning
method for comparisons [29], [30].

2 VOLUME ,

2) MAGNITUDE PRUNING
Magnitude pruning removes weights smaller than the pre-
defined threshold to sparsify the network [23], [29], [31],
[32], [33]. The pruning of a dense network is followed
by the re-training of the sparse model (fine-tuning) [34].
The selection of magnitude threshold is important [23].
The optimum magnitude threshold is determined by cross-
validation or learned during training [23], [35]. The main
factor determining the magnitude threshold is the resource
budget for implementation [23]. It is noted that smaller
weights may be important for certain cases [36], [37]. The
magnitude pruning does not consider input or any other node
statistics in the network [23]. It was reported that signal-
dependent (data-driven) sparsity methods are more effective
than signal-independent (data-free) techniques [23], [38],
[39], [40].

3) CORRELATION BASED PRUNING
Correlation-based pruning is a signal-dependent weight spar-
sity method [23]. It considers statistics of the input and
hidden node outputs to sparsify a network [23]. The Hebbian
learning inspired a number of correlation-based pruning
algorithms [23], [37], [41], [42]. If two neurons simulta-
neously fire (high correlation between their firing rates), the
strength of their synaptic connection is increased [43]. The
correlation-based weight pruning method calculates Pearson
correlation matrix for the node outputs of the current and
previous layers [41]. Then, it removes connections between
weakly correlated neurons and keeps ones with strong corre-
lations [41]. The same idea is also tested by using the cosine
similarity metric [42]. Weight matrices are sparsified starting
from the last layer to the previous layers in sequence [41].
The entire neural network is re-trained (fine-tuned) each time
after a weight matrix is sparsified [41]. Increasing sparsity
ratio gradually decreases the probability of getting stuck
in a bad local minimum [41]. Over-parameterized neural
networks possess equally many similar local minima that
are as (approximately) good as the global minimum [44]. In
other words, the loss landscapes of smaller neural networks
include a higher number of bad local minima [44]. Hence,
layer by layer sparsifying and re-training the whole network
progressively decreases the possibility of being stuck at a
bad local minimum and improves performance [41]. This
sparsity schedule is explained in detail later in Section IV-
B.

B. IMPACT OF SIGNAL STATISTICS
The over-parameterized neural networks have high expres-
sivity (redundancy) [45]. Experimental observations suggest
that over-parameterized neural networks are able to fit ran-
domly labeled training data or unstructured random noise due
to their high expressivity. And they can still simultaneously
generalize structured (correlated) data as well [45]. The gen-
eralization (approximation) performance of a model is tied

to the labels randomization ratio (label noise) or signal-to-
noise ratio (SNR) [12]. This finding is also true for relatively
smaller feed-forward neural networks where the proposed
complexity measure for Boolean functions highly corre-
lates with the generalization error [46]. As the complexity
measure of Boolean functions increases, the generalization
error also increases [46]. Similarly, generalization abilities
of various network architectures as a function of intrinsic
dimension of data, called task rank, are tested [47]. Shal-
lower networks perform better for higher task rank (data with
higher intrinsic dimension). In contrast, deeper networks are
more successful for lower task rank (data with lower intrinsic
dimension) [47]. Thus, the signal statistics plays a crucial
role in determining the best network architecture [47]. The
proposed metrics to measure generalization capability of a
network model are related to the correlation strength of
data set and its signal-to-noise ratio. Besides, the empirical
studies demonstrate that signal statistics should be taken into
consideration when the generalization ability of a model
is evaluated [12], [45], [46], [47]. The impact of signal
statistics on network performance favors the use of signal-
dependent sparsity techniques over signal-independent ones
to sparsify a network optimally. We empirically relate the
signal statistics at nodes and layers of MLP based classifier
to its accuracy in Section V.

III. MATHEMATICAL OVERVIEW
We review some basic concepts of signal processing in the
following sections that are utilized to develop the empirical
framework used in this study.

A. AR(1) SOURCE MODEL
Autoregressive discrete process of order one, AR(1), pro-
vides a coarse approximation to natural signals like images
[48]. AR(1) source generates signal sequence as

x(n) = ρx(n− 1) + ξ(n) + c (1)

where ρ is the first order correlation coefficient, n is the
discrete-time variable, c is a constant, and ξ(n) is white noise
with zero-mean and variance σ2

ξ [48]. The auto-correlation
of ξ(n) is expressed as

E{ξ(n)ξ(n+ k)} = σ2
ξδn−k (2)

where E{·} is the expectation and δk is the Kronecker delta
function. The mean of x(n) is found as [48]

µx = E{x(n)} = c

1− ρ
(3)

The variance of x(n) is calculated as

σ2
x = E{x(n)2} − µ2

x =
σ2
ξ

1− ρ2
(4)

The auto-correlation sequence of x(n) is written as

Rxx(k) = E{x(n)x(n+ k)} = σ2
xρ

|k|; k = 0,±1,±2, . . .
(5)

VOLUME , 3

BENAR ET AL.: CORRELATION BASED NODE PARTITIONING TO SPARSE MULTILAYER PERCEPTRON

and ρ is found as

ρ =
Rxx(1)

Rxx(0)
=

E{x(n)x(n+ 1)}
E{x(n)x(n)}

(6)

where −1 < ρ < 1 [48]. The auto-correlation matrix of
AR(1) process is exponential and Toeplitz of size N ×N as

Rx = σ2
x


1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1

 (7)

The signal-to-noise ratio (SNR) of AR(1) source as a func-
tion of ρ is found as

SNR(ρ) =
σ2
x

σ2
ξ

=
1

1− ρ2
(8)

One of the two data types used in this study is generated by
using AR(1) model as explained in Section IV-D1.

B. EIGEN SUBSPACE OF Rx

The eigen-decomposition of the matrix Rx in (7) is written
as [48]

Rx = ΦT
KLTΛΦKLT =

N−1∑
k=0

λkϕkϕ
T
k (9)

where ϕk is the kth eigenvector of Rx, λk is the correspond-
ing eigenvalue, and Λ = diag(λk).

The Karhúnen-Loeve transform (KLT), also called princi-
pal component analysis (PCA), is the optimal orthonormal
transform [48]. Its transform matrix for the given (correla-
tion) matrix Rx is defined as

ΦKLT = [ϕ0 ϕ1 ... ϕ(N−1)]
T (10)

The rows of ΦKLT are eigenvectors of Rx as defined in (9)
where ΦKLTΦ

−1
KLT = ΦKLTΦ

T
KLT = I, and I is N × N

identity matrix.
N dimensional vector process X = [x0 x1 ... x(N−1)]

T

is mapped onto its eigen-subspace through the forward KLT

ΘKLT = ΦKLTX (11)

where ΘKLT is the KLT transform coefficients vector as

ΘKLT = [θ0 θ1 . . . θ(N−1)]
T (12)

The inverse transformation perfectly reconstructs the signal
vector X from ΘKLT as

X = Φ−1
KLTΘKLT = ΦT

KLTΘKLT (13)

The signal energy σ2
x is preserved and optimally repacked

among transform coefficients (dimensions) in the eigen-
subspace expressed as [48]

E{ΘT
KLTΘKLT } =

N−1∑
k=0

E{θ2k} =
N−1∑
k=0

σ2
θk

= Nσ2
x (14)

where σ2
θk

is the variance of the kth coefficient θk. Note
that {λk = σ2

θk
} ∀k for KLT. One can show that Rθ =

E{ΘKLTΘ
T
KLT } = diag{λk}.

FIGURE 1. A single hidden layer Multilayer Perceptron (MLP) for the
two-class case.

The subspace performance of KLT for AR(1) process as
a function of ρ and N is displayed in Section IV-A as
the theoretical basis for the proposed correlation-based node
partitioning and network sparsification method in Section IV-
B.

C. MULTILAYER PERCEPTRON
A shallow MLP consists of one or two hidden layers [1].
The two mappings of a typical shallow network with one
hidden layer are Mh = f [Φh, gh(.)] and Mo = f [Φo, go(.)]
where Φh and Φo are N ×K and K×L weight (transform)
matrices, respectively. Bh and Bo are defined as the bias
vectors of the hidden and output layers, respectively. The
mapping functions gh(.) and go(.) are the activation func-
tions of the hidden and output layers, respectively. Therefore,
Yh = gh(Θh), Θh = ΦhX + Bh and Yo = go(Θo), Θo =
ΦoYh +Bo. These mappings are depicted in Fig. 1.

Alternatively, the forward propagation of a typical shallow
neural network with one hidden layer comprised of K
nodes is expressed in the following equations. Let X be
N dimensional random vector process

X = [x0 x1 ... x(N−1)]
T (15)

where xn is the nth component (random variable) of X ,
0 ≤ n ≤ N − 1, with zero-mean and unit variance. We can
populate the rows of weight (transform) matrix Φh between
the input and hidden layers with a set of K real vectors,
discrete-time sequences {ϕk(n)}, as

Φh = [ϕ0 ϕ1 ... ϕ(K−1)]
T (16)

The bias vector Bh is defined as

Bh = [β0 β1 ... β(K−1)]
T (17)

Then, the input of the hidden layer is obtained as

Θh = ΦhX +Bh (18)

4 VOLUME ,

FIGURE 2. A single node of a neural network. Activation function g(·)
maps input x to output y.

where Θh = [θ0 θ1 . . . θ(K−1)]
T . The components of

Θh individually go through the same mapping (activation)
function gh(.). The hidden layer output vector is populated
by

Yh = gh(Θh) (19)

where Mh = f [Θh, gh(.)] represents the hidden layer map-
ping from input X to the output Yh. Similarly, the output
vector of the hidden layer Yh goes through the output layer
mapping Mo = f [Φo, go(.)] as

Θo = ΦoYh +Bo (20)

and
Yo = go(Θo) (21)

The components of the vector Yo are L outputs of the
network. The decisions of the network are made based on
the component values of Yo.

A typical MLP architecture with P hidden layers is
built by concatenating hidden layers hierarchically [1]. The
forward propagation of a MLP with P hidden layers is
expressed as

Yp = gp(Φpgp−1(Φp−1 · · · g1(Φ1X+B1) · · ·+Bp−1)+Bp)
(22)

where Φp ∈ IRNp×N(p−1) , Np is the pth layer dimension
(width), and the mapping functions of hidden layers are
gp(.), 1 ≤ p ≤ P . Similarly, the output mapping is described
as

Yo = go(ΦoYp +Bo) (23)

where Φo ∈ IRNo×Np is the weight matrix between the last
hidden and the output layers. We use various MLP architec-
tures and compare their performances for two different data
sets in Section V.

D. NODE STATISTICS
A single node of a neural network is displayed in Fig. 2 with
input X and output Y .

The activation function g(·) is monotonic and nonlinear.
The node output is expressed as

Y = g(X) (24)

The input random variable X of a node is a weighted sum of
multiple random variables (node outputs from the previous
layer). The probability density function (pdf) of node output
fY (y) is calculated from its input pdf fX(x) as [49]

fY (y) =
fX(x)

| ∂Y∂X |
(25)

These two relationships dictate the statistics of node output
while weight coefficients are optimized during the training

of a network. The transcendental nature of such optimization
process is the root-cause of built-in explainability concern
in learning networks. Additionally, joint statistics of node
outputs play a central role in system performance. We
observe that optimization process reshapes the marginal and
joint statistics of nodal inputs and outputs during training
while searching for optimal weights. This process forces
some node inputs to be misaligned (mean and/or variance
mismatch) with their activation functions. Such nodes have
entropy compression from their inputs to outputs. We quan-
tify this implicit regularization phenomenon by using the
two entropy based metrics introduced in Section III-E and
relate them to the system performance. Similar observations
discussed in Section I also support the existence of implicit
regularization by reducing the number of free model pa-
rameters during the performance optimization of an under-
determined system. Sparsifying an over-parameterized neural
network is another way to reduce the number of optimized
parameters that we also investigate in this study.

The (differential) entropy of a continuous information
source with pdf fX(x) is calculated as [50]

E(x) = −
∫ +∞

−∞
fX(x) ln[fX(x)]dx (26)

Similarly, entropy of a discrete information source with N
symbols {xi} with probabilities {pi} is calculated (in bits)
as [50]

Ex = −
N∑
i=1

pilog2pi (27)

Entropies of node inputs and outputs in a network are mea-
sured. They are used to calculate node and layer compression
ratios as discussed in Section III-E.

E. ENTROPY COMPRESSION IN NODES AND LAYERS
We introduce entropy compression metrics for nodes and lay-
ers of a network and highlight their empirical relationships
with the classifier accuracy later in the paper.

1) NODE COMPRESSION RATIO
We introduce the node compression ratio (NCR) to measure
the information-theoretic behavior of a node as [24]

ηEi =
Ei

in

Ei
out

(28)

where Ei
in and Ei

out are the input and output entropies of
node i, respectively. A node with high node compression
ratio has a misalignment between its input pdf fX(x) and
the activation function g(·). It causes significant information
loss (entropy reduction) at the node output.

The input and output pdfs including Ei
in and Ei

out with
Sigmoid activation for the aligned (high-energy) and mis-
aligned (low-energy) node examples are displayed in Figs.
3 and 4, respectively. These figures show the dramatic
differences between pdf shapes of those nodes caused in

VOLUME , 5

BENAR ET AL.: CORRELATION BASED NODE PARTITIONING TO SPARSE MULTILAYER PERCEPTRON

FIGURE 3. The input and output pdfs of an aligned (high-energy) node
along with their input entropy Ei

in and output entropy Ei
out for Sigmoid

activation function.

FIGURE 4. The input and output pdfs of a misaligned (low-energy) node
along with their input entropy Ei

in and output entropy Ei
out for Sigmoid

activation function.

principle by the optimizer. The latter is a good example
of implicit regularization (node sparsity) dictated by the
optimization process.

2) LAYER COMPRESSION RATIO
Similarly, the layer compression ratio (LCR) is defined as
the average of NCRs in a layer

ηE =
1

N

N−1∑
i=0

ηEi
(29)

Node and layer compression ratios are used to quantify the
combined impact of activation and optimizer as implicit
regularizer in the optimization of under-determined system
as discussed in Section V.

IV. CORRELATION BASED NODE PARTITIONING AND
WEIGHT SPARSITY
A. EIGEN SUBSPACE PERFORMANCE
The gain of transform coding (GTC) over pulse code mod-
ulation (PCM) is an information-theoretic metric to assess
subspace performance. It measures the merit of representing
a signal in a subspace rather than signal space. It is defined
as [48]

GN
TC =

1
N

∑N−1
k=0 σ2

θk

[
∏N−1

k=0 σ2
θk
]

1
N

(30)

where σ2
θk

is the variance of the kth transform coefficient
(see (11) and (14)) and N is the dimension [48]. It is noted
that {λk = σ2

θk
} ∀k for eigen-subspace representation (KLT)

of signals (see Section III-B).

FIGURE 5. GTC performance of eigen subspace (KLT) for AR(1) signal of
various correlation coefficients, ρ = {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}and
dimensions.

Source: [51].

GTC performances of eigen-subspace representation
(KLT) for AR(1) signal with various correlation coefficients
(ρ) and dimensions (N) are displayed in Fig. 5. It is
observed from the figure that GTC increases as dimension
increases and then saturates at some N value [48], [51].
It is also noted that higher values of ρ show higher GTC

performance [48], [51]. Most importantly, Fig. 5 demon-
strates that GTC performance of eigen subspace (KLT) for
a lower-dimensional and higher correlated AR(1) is better
than higher-dimensional and lower correlated one (compare
GTC values for {ρ = 0.9, N = 8} and {ρ = 0.8, N = 256}
in Fig. 5) [51]. This fact is the theoretical basis to develop
a method for correlation-based partitioning (clustering) of
nodes in a layer prior to connecting them blindly to the next
layer nodes. Such a method divides N nodes of a layer into
L partitions where intra-partition correlations are increased.
Consequently, partitions possess their selected subsets of
higher correlated nodes. These node partitions with higher
GTC are connected to different nodes of the next layer as
their inputs [51]. It is more effectively used when random
variables of input vector process are not highly correlated.
This idea was successfully implemented for the design of
eigenportfolios with improved financial performance [51].
We are extending it to develop the correlation-based pruning
method to sparsify network models as explained in the next
section.

B. CORRELATION BASED PRUNING
Inter-layer mappings of a deep neural network are viewed as
subspace representations. An input data vector propagates
through each layer and transformed onto a new subspace.
Each layer learns a representation (weight matrix) of its input
data vector based on node outputs of the previous layer and
a specific cost function. It is noted that node outputs of a
hidden or input layer in a network are not always highly
correlated. The subspace representation is quite poor for
such a case as discussed in Section IV-A. We develop the

6 VOLUME ,

novel weight pruning method to sparsify MLP by adopting
a correlation-based partitioning of nodes [51]. It increases
intra-partition node correlations. The outputs of such a node
partition are the only inputs for a single node in the next
layer.

The dense MLP with P hidden layers is fully trained to the
convergence. This pruning method partitions nodes of each
layer successively by using Pearson correlation matrix of
layer output vectors and a pre-defined correlation threshold.
The pseudo-code for the correlation-based partitioning of
node outputs in a layer is shown in Algorithm 1. The
optimal correlation threshold is signal-dependent for each
{ρ0, ρ1} pair set (∆ρ and SNR data sets as tabulated in
Table 1). This process increases intra-partition correlations
while decreasing inter-partition ones. After this step, all
nodes within a partition are fully connected to a node in
the next layer as its only inputs. The node outputs of other
partitions are not inputs to that node anymore. It results in
a sparse inter-layer weight matrix for each layer. Note that
the weight matrix between the last hidden and output layers
is not sparsified in this study.

All inter-layer weight matrices of multiple hidden layer
MLP are progressively sparsified by using this pruning
method. The MLP is re-trained to fine tune the model after
each weight matrix is sparsified. The progressive nature of
sparsification process reduces the chance of getting stuck
in a poorly performing local minimum point in the search
region [41], [44]. Note that this pruning method may also
be applied to all weight matrices at once and network is re-
trained only once if more efficient implementation is desired.

We define the sparsity ratio of the weight matrix between
the pth and (p+ 1)th layers of a MLP as

SRp = 100×

[
1−

∑N(p+1)−1

i=0

∑Np−1
j=0 S(i, j)

N(p+1)Np

]
(31)

where S ∈ IRN(p+1)×Np is the binary sparsity mask com-
prised of 1’s and 0’s. S(i, j) = 1 indicates a connection
between the node pair (i, j) of layers p + 1 and p. The
parameter Np is the dimension of the pth layer (width).

C. IMPLEMENTATION
The training is performed by using mini-batch gradient
descent with the batch size of 100 data vectors. Weight
matrices are initialized by uniformly distributed random
values in the range -1 and 1. The mean squared error (MSE)
is used as the loss function. AR(1) and CIFAR-10 data sets
as explained in Section IV-D for the two-class case are used
for experiments. Input and hidden layer dimensions of all
MLPs are assumed to be the same. Accuracies of MLPs
are calculated with respect to various architectural core
parameters (layer dimension, network depth, and network
sparsity) with Sigmoid activation functions in the hidden and
output layer nodes. The correlation-based pruning method
as explained in Section IV-B sparsifies weight matrices of a
MLP layer-by-layer followed by a re-training step. A MLP

FIGURE 6. Serial to Parallel (S/P) conversion to generate data vectors of
dimension N from a sequence X(n).

with P hidden layers is sparsified in P re-training steps.
Magnitude and random pruning methods sparsify all weight
matrices at once proceeded by a single re-training step.
Sparsifying a fully trained network (with P hidden layers) in
one single step is the most common schedule type [23]. Note
that all these pruning methods perform one single re-training
step to sparsify a single hidden layer MLP. The weight matrix
between the last hidden layer and the output layer is kept
dense for all experiments.

The magnitude and random pruning methods cannot dy-
namically change the nodal architecture of network. There-
fore, we did not implement node sparsity and kept the
dimension of input and hidden layers fixed in this study. We
kept redundant nodes as necessary in the next layer in order
to avoid node sparsity. This forced node redundancy degrades
performance and prevents the correlation-based pruning to
reach its full potential. The self-reconfiguring network design
is beyond the scope of this paper.

D. DATA SETS
1) AR(1) DATA SET
We simulated a classifier for the two-class case using AR(1)
model generated training and test data sets. The two classes
(class 0 and class 1) are defined by their correlation co-
efficients {ρ0, ρ1} for the AR(1) model, respectively. We
followed the steps given below to generate each class data
with a distinct class correlation coefficient.

1) The ith AR(1) class sequence is generated for the given
class correlation coefficient ρi, i = {0, 1}.

2) 8-bit uniform quantization of the ith AR(1) class
sequence is performed to generate one byte per sample
resolution.

3) The serial to parallel conversion (S/P) is applied to
generate N -dimensional data vectors for the ith AR(1)
class sequence, see Fig. 6.

4) The steps above are repeated to generate data for all
classes with distinct class correlation coefficient.

VOLUME , 7

BENAR ET AL.: CORRELATION BASED NODE PARTITIONING TO SPARSE MULTILAYER PERCEPTRON

The same correlation coefficient pair {ρ0, ρ1} is used to
generate the training and test data sets for each experiment.
AR(1) data vectors of two classes are concatenated to form
the training and test data sets. Each class has 10, 000 training
and 2, 000 test data vectors. In total, each {ρ0, ρ1} pair of
AR(1) data set experiment has 20, 000 training and 4, 000
test data vectors of dimension N . Labels for each class are
created and the data sets and labels are randomly shuffled.
Each data set is normalized to zero mean and unit variance
in each dimension (random variable).

The signal-to-noise ratio (SNR) of training and test data
set for a two-class problem is expressed as

SNR(ρ) =
σ2
x

σ2
ξ

=
1

1− ρ2
(32)

where ρ is the average correlation coefficient of the two
classes as

ρ =
ρ0 + ρ1

2
(33)

We look at the relationship between accuracy and SNR
range of {ρ0, ρ1} pair as well as their correlation distance
∆ρ = |ρ0 − ρ1| in Section V. These two distinct data sets
of {ρ0, ρ1} pairs for two classes are generated as described
next.

a: CORRELATION COEFFICIENT PAIRS FOR TWO
CLASSES
We generate two distinct data sets of {ρ0, ρ1} pairs to relate
the accuracy of the two-class classifier as a function of AR(1)
signal statistics. The first one is called ∆ρ set for {ρ0, ρ1}
pair with correlation distance ∆ρ = |ρ0 − ρ1| between the
two classes. We examine the relationship between accuracy
and the correlation distance ∆ρ. The second one is the
SNR set for various {ρ0, ρ1} pairs with their SNRs for fixed
correlation distance ∆ρ. We look at the relationship between
accuracy and SNR of {ρ0, ρ1} pair. SNR data sets emphasize
the significance of input signal correlation on performance.
The empirical performance for both data sets are presented
in Section V-A. These results show the benefit of tracing
signal statistics in the network and their relations to classifier
performance. This approach leads to the development of
signal-dependent framework to design neural networks.

2) CIFAR-10 DATA SET
The CIFAR-10 data set includes 60, 000 32 × 32 pixels
size color images. The data set consists of 10 classes
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck). Each class has 5, 000 training and 1, 000 test images.
We convert CIFAR-10 color images to gray-scale images
of 1, 024 pixels. We randomly select 20 class pairs from
CIFAR-10 data set to show the relationship between input
signal statistics (∆ρ and SNR) and classifier performance.
Each class pair is comprised of 10, 000 training and 2, 000
test images. Each data set is normalized to zero mean and
unit variance in each dimension. The classifier accuracies for

TABLE 1. AR(1) ∆ρ and SNR Data Sets of Various Correlation Coefficient

Pairs for Two-Class Case and Their SNRs

∆ρ Data Sets SNR Data Sets

{ρ0, ρ1} ∆ρ SNR {ρ0, ρ1} ∆ρ SNR
0, 0 0 1 0.15, 0.05 0.1 1.01

0.1, 0 0.1 1 0.25, 0.15 0.1 1.04

0.2, 0 0.2 1.01 0.35, 0.25 0.1 1.1

0.3, 0 0.3 1.02 0.45, 0.35 0.1 1.19

0.4, 0 0.4 1.04 0.55, 0.45 0.1 1.33

0.5, 0 0.5 1.07 0.65, 0.55 0.1 1.56

0.6, 0 0.6 1.1 0.75, 0.65 0.1 1.96

0.7, 0 0.7 1.14 0.85, 0.75 0.1 2.78

0.8, 0 0.8 1.19 0.95, 0.85 0.1 5.26

0.9, 0 0.9 1.25

0.99, 0 0.99 1.32

CIFAR-10 class pairs along with their measured {ρ0, ρ1},
∆ρ, SNR, and SR1(%) values are presented and discussed
in Section V-B.

V. PERFORMANCE COMPARISONS
We simulated MLP based two-class classifier to measure
its accuracy for the dense and weight sparsed network
architectures. The results for the AR(1) model and CIFAR-
10 data set types are presented in the following sections.

A. ACCURACY FOR AR(1) DATA
Tables 2 and 3 display the two-class accuracies of the
fully- and sparsely-connected single hidden layer MLP based
classifier for several ∆ρ and SNR data sets with N = 1, 024,
respectively. The results are consistent that the sparsified
MLPs do not malignantly overfit and they outperform their
fully-connected counterparts. It is also observed that the
correlation-based pruning of MLP consistently outperforms
the magnitude- and the random-pruning based designs.

The results show the relationships between data statistics
(∆ρ and SNR) and accuracy. It is shown in Tables 3, 5, 6,
7 and 8 that accuracy increases as the correlation distance
∆ρ = |ρ1 − ρ0| of the class pair increases. It is also seen
that the accuracies decrease as the signal-to-noise ratio (SNR)
gets smaller even when ∆ρ is constant (see Tables 2 and 4).

It is noted from Tables 2 and 3 that the accuracy and the
layer compression ratio ηh1

E of the hidden layer are inversely
correlated with each other.

1) IMPACT OF DIMENSION
We present accuracies of the single hidden layer fully- and
sparsely-connected MLPs for the two-class case with dimen-
sions, N = {16, 64, 256, 1024}, in Table 4. The performance
of sparsified MLP with correlation-based pruning increases
as its layer dimension (width) N increases. However, the per-
formance of the fully-connected MLP and sparsified MLPs
with the magnitude- and random-based methods deteriorate

8 VOLUME ,

TABLE 2. The Accuracy and Layer Compression Ratio (LCR) Measurements of the Single Hidden Layer MLPs with Layer Dimension (Width) N=1,024 for

the SNR Data Sets of Various Correlation Coefficient Pairs

SNR Data Sets Fully-Connected Correlation Magnitude Random

{ρ0, ρ1} ∆ρ SNR Acc ηh1
E SR1(%) Acc ηh1

E Acc ηh1
E Acc ηh1

E

0.15, 0.05 0.1 1.01 50.95 2.26 99.58 79.68 0.97 49.58 1.09 50.25 0.95

0.25, 0.15 0.1 1.04 52.02 2.26 99.48 80.65 0.97 49.52 1.09 50.92 0.95

0.35, 0.25 0.1 1.1 50.7 2.26 99.4 82.48 0.96 50.2 1.08 50.15 0.95

0.45, 0.35 0.1 1.19 50.95 2.26 99.31 83.48 0.96 49.7 1.08 50.45 0.95

0.55, 0.45 0.1 1.33 50.75 2.26 99.25 87.25 0.96 49.55 1.08 51.78 0.95

0.65, 0.55 0.1 1.56 49.98 2.26 99.16 90.02 0.96 50.08 1.09 52.05 0.95

0.75, 0.65 0.1 1.96 49.6 2.27 99.05 94.75 0.95 50.5 1.1 57.88 0.95

0.85, 0.75 0.1 2.78 50.75 2.27 98.76 97.32 0.94 52.85 1.1 69.03 0.94

0.95, 0.85 0.1 5.26 50.2 2.29 98.54 99.78 0.93 83.88 1.1 96 0.93

TABLE 3. The Accuracy and Layer Compression Ratio (LCR) Measurements of the Single Hidden Layer MLPs with Layer Dimension (Width) N=1,024 for

the ∆ρ Data Sets of Various Correlation Coefficient Pairs

∆ρ Data Sets Fully-Connected Correlation Magnitude Random

{ρ0, ρ1} ∆ρ SNR Acc ηh1
E SR1(%) Acc ηh1

E Acc ηh1
E Acc ηh1

E

0, 0 0 1 51.08 2.26 99.63 49.6 0.97 50.32 1.1 49.85 0.95

0.1, 0 0.1 1 51.1 2.26 99.46 76.92 0.97 50.42 1.08 49.55 0.95

0.2, 0 0.2 1.01 50.72 2.26 99.25 94.75 0.95 49.75 1.07 53.78 0.95

0.3, 0 0.3 1.02 52.08 2.26 98.95 98.8 0.94 49.42 1.07 61.62 0.94

0.4, 0 0.4 1.04 51.72 2.26 98.6 99.68 0.93 52.2 1.08 70.2 0.94

0.5, 0 0.5 1.07 51.88 2.26 98.33 99.75 0.92 53.5 1.1 76.88 0.94

0.6, 0 0.6 1.1 51.35 2.26 97.92 99.95 0.92 55.22 1.13 84.3 0.94

0.7, 0 0.7 1.14 51.82 2.26 97.48 99.98 0.92 55.7 1.16 88.22 0.95

0.8, 0 0.8 1.19 51.1 2.26 96.96 99.98 0.91 60.68 1.22 92.78 0.97

0.9, 0 0.9 1.25 50.82 2.26 95.35 99.92 0.91 70.75 1.33 91.28 1.02

0.99, 0 0.99 1.32 67.22 2.23 84.59 99.98 0.9 69.8 1.73 98.7 1.28

after the layer dimension of N = 64. The correlation-
based pruning shows superior performance to the other
two methods for all test scenarios considered in the paper.
The superiority of the correlation-based pruning method is
more visible in larger dimensions, N = {256, 1024}. This
performance improvement is due to the efficient partitioning
of node outputs for the AR(1) generated input data sets with
exponential correlation model, see (7). It is observed from
Table 4 that magnitude and random pruning methods perform
comparable when SNR is lower. In contrast, the performance
of random pruning is significantly better than the magnitude
pruning and the dense network when SNR and N are higher.

B. ACCURACY FOR CIFAR-10 DATA SET
We tabulated accuracy of single hidden layer, dense and spar-
sified (with the three pruning methods) MLPs for CIFAR-10
class pairs in Table 5. The table also includes the measured
{ρ0, ρ1}, ∆ρ, SNR, and SR1(%) values for each pair. Note
that the three pruning methods are tuned for the same
SR1(%) in each case. The sparse MLP with correlation-
based pruning is superior to the other two methods for the
CIFAR-10 data set. The correlation-based pruning works
more effectively for weakly correlated data sets. The CIFAR-
10 class pairs have high correlation (high SNR) and small
correlation distance ∆ρ. As stated in Section IV-C, the

inefficient implementation of correlation-based pruning in
this study inserts nodal redundancy to avoid node sparsity.
It causes performance degradation. One should exploit both
node and weight sparsities when using this pruning tech-
nique for a typical network design problem in real world.
It is emphasized that the sparse implementations increase
accuracy and they significantly reduce computational cost of
implementation.

The superiority of the correlation-based pruning method
is more significant for the AR(1) set than the CIFAR-10
data. Although AR(1) model is a rough approximation to
real world signals, the values of correlation coefficients for
the CIFAR-10 pairs are still related to MLP performance.
Table 5 demonstrates the fact that accuracy also increases as
the ∆ρ of a CIFAR-10 pair gets larger.

C. REMARKS
The experimental results for AR(1) and CIFAR-10 data sets
measure the impact of signal statistics (∆ρ and SNR) on
MLP performance. Our observations on empirical perfor-
mance results are summarized as follows.

Remark 1:
The accuracy of MLP improves when ∆ρ increases (see
Tables 3, 5, 6, 7 and 8).

VOLUME , 9

BENAR ET AL.: CORRELATION BASED NODE PARTITIONING TO SPARSE MULTILAYER PERCEPTRON

TABLE 4. The Impact of the Layer Dimension (Width) N on the Accuracy of the Single Hidden Layer MLPs for the SNR Data Sets of Various Correlation

Coefficient Pairs

SNR Data Sets N=16 N=64 N=256 N=1,024

{ρ0, ρ1} SNR Dense Corr Mag Rand SR1(%) Dense Corr Mag Rand SR1(%) Dense Corr Mag Rand SR1(%) Dense Corr Mag Rand SR1(%)

0.15, 0.05 1.01 55.8 55.58 53.88 53.82 61.72 53.28 57.42 50.22 50.85 92.87 50.32 68.75 51.58 52.15 98.4 50.95 79.68 49.58 50.25 99.58

0.25, 0.15 1.04 55.8 55.75 53.35 53.48 74.22 52.18 59.28 51.7 50.82 93.41 48.98 70.35 51.62 53.02 98.19 52.02 80.65 49.52 50.92 99.48

0.35, 0.25 1.1 56.22 56.1 54.25 55.05 61.72 52.7 59 51.6 51.45 92.53 49.08 70.65 50.7 54.3 97.92 50.7 82.48 50.2 50.15 99.4

0.45, 0.35 1.19 56.75 55.85 55.85 54.8 64.84 53.35 59.22 53.82 52.85 92.53 50.52 73.82 51.6 54.75 97.89 50.95 83.48 49.7 50.45 99.31

0.55, 0.45 1.33 58.48 59.62 58.5 57.25 64.84 55.28 62 55.8 55.45 91.8 50.25 76.3 52.32 55 97.59 50.75 87.25 49.55 51.78 99.25

0.65, 0.55 1.56 60.42 61.65 60.92 59.12 64.84 59.25 61.65 58.9 59.38 91.26 50.42 80.9 54.52 58.82 97.27 49.98 90.02 50.08 52.05 99.16

0.75, 0.65 1.96 65.05 64.6 63.9 63.55 64.84 64.8 60.92 63.02 64.45 90.72 50.52 87.02 55.8 64.8 96.89 49.6 94.75 50.5 57.88 99.05

0.85, 0.75 2.78 72.45 72.2 73.1 70.6 64.84 74.3 78.25 77.5 74.38 91.16 50.95 95.4 71.12 80.68 96.26 50.75 97.32 52.85 69.03 98.76

0.95, 0.85 5.26 87.98 89.8 89.55 86.45 49.22 95.58 98.55 93.72 96.5 91.55 85.18 99.68 94.7 97.42 97.07 50.2 99.78 83.88 96 98.54

TABLE 5. Performance Comparison of the Weight Pruning Methods for a

series of CIFAR-10 Class Pairs and the Single Hidden Layer MLPs with

Layer Dimension (Width) N=1,024

{ρ0, ρ1} ∆ρ SNR Dense Corr Mag Rand SR1(%)

Cat, Dog 0.868, 0.871 0.003 4.1 63.9 62.1 63.5 60.5 90.86

Cat, Horse 0.868, 0.858 0.01 3.92 77.9 79.5 77.25 77.4 89.01

Dog, Horse 0.871, 0.858 0.013 3.96 75.8 77.3 74.85 75.25 77.04

Bird, Cat 0.852, 0.868 0.016 3.84 68.55 69.65 68.1 69.1 17.3

Bird, Dog 0.852, 0.871 0.019 3.88 72.65 72.45 71.65 72.25 92.81

Airplane, Dog 0.893, 0.871 0.022 4.5 84.5 86.2 83.85 84.4 89.27

Airplane, Cat 0.893, 0.868 0.025 4.45 84.1 83.45 83.05 82.55 74.42

Airplane, Ship 0.893, 0.924 0.031 5.73 76.55 77.6 76.25 74.95 66.77

Bird, Frog 0.852, 0.821 0.031 3.33 74 75.05 75.85 75.85 35.5

Airplane, Horse 0.893, 0.858 0.035 4.28 84.65 86.15 84.25 84.55 69.03

Frog, Horse 0.821, 0.858 0.037 3.39 84.4 86.2 84.05 84.9 79.3

Airplane, Bird 0.893, 0.852 0.041 4.19 73.8 76.6 76.15 76.6 72.97

Cat, Frog 0.868, 0.821 0.047 3.49 73.05 75.25 71.75 72.6 84.16

Dog, Frog 0.871, 0.821 0.05 3.52 78.7 80.1 78.6 79.85 95.4

Dog, Ship 0.871, 0.924 0.053 5.14 87.9 89.35 87.35 87.95 74.23

Cat, Ship 0.868, 0.924 0.056 5.07 86.25 87.5 86.55 85.85 79.08

Horse, Ship 0.858, 0.924 0.066 4.85 87.9 89.8 86.25 86.1 77.1

Bird, Ship 0.852, 0.924 0.072 4.73 86 86.65 87.55 87.95 58.31

Airplane, Frog 0.893, 0.821 0.072 3.77 84.7 84.75 84.1 83.7 59.34

Frog, Ship 0.821, 0.924 0.103 4.19 87.1 88.05 86.45 87.25 61.24

Average 79.62 80.69 79.37 79.48 72.16

The shape of the deep double-descent curve is regulated
by the input data statistics such as the label noise, signal-to-
noise ratio, and the effective rank of the given data set [6],
[47], [52]. Less parameterized neural networks work better
in high effective rank (weakly correlated) data sets [47].

Remark 2:
The accuracy of MLP rises when the SNR of data set
increases (see Tables 2 and 4).

The optimization of the fully-connected single hidden
layer MLPs falls in the under-parameterized regime with
dimensions N = {16, 64} for the AR(1) sets. On the other
hand, the optimization improves performance in the over-
parameterized regime with dimensions, N = {256, 1024}.
We observe from the results that the performance of a dense
MLP increases until N = 64 (see Table 4). Then, the
performance drops for N > 64. This behavior supports the
classical bias-variance trade-off [53]. The benign overfit-
ting phenomenon is not observed in the over-parameterized
regime, N = {256, 1024} for various MLP architectures
with the AR(1) sets. However, the benign overfitting phe-
nomenon does not claim that the larger model size is always

better for all neural network architectures and all data sets
[2], [6], [11], [47], [52]. It is not universal and depends
on the network architecture and input signal statistics under
consideration [2], [6], [11], [47], [52].

Remark 3:
Benign overfitting phenomenon is not observed for the fully-
connected MLPs with dimensions N = {256, 1024} on
AR(1) sets (see Table 4).

The correlation strengths of the AR(1) sets are not only
dictated by SNR but also by dimension N of the input.
The input correlation matrices Rx of AR(1) sets include
much weaker correlations especially for larger dimensions
like N = {256, 1024} due to the nature of the exponen-
tial correlation given in (7). An over-parameterized, fully-
connected MLP is less impacted negatively by the malign
overfitting when it is trained on a data set with higher SNR
(see the correlation coefficient pair of {0.95, 0.85}) for the
fully-connected MLP with dimension N = 256 in Table 4).
The performances of the over-parameterized, dense MLPs
with layer dimensions N = {256, 1024} are lower than the
performances of the less parameterized, dense MLPs with
dimensions N = {16, 64} and their sparse counterparts (see
Table 4).

Remark 4:
Malign overfitting is more devastating in the weakly-
correlated AR(1) sets (with lower SNRs and/or higher di-
mensions N).

Less parameterized MLPs are more desirable especially for
the weakly-correlated data sets (see Table 4).

These results and observations are in support of the
theoretical intuition with respect to signal correlation,
layer dimension N , and reduction of model parameters
in the optimization of an under-determined system. Over-
parameterizing neural networks by increasing layer width or
network depth should be decided carefully considering data
statistics and available resources for implementation [11],
[47], [52].

Remark 5:

10 VOLUME ,

TABLE 6. The Impact of the Network Depth on the Layer Compression

Ratio (LCR) and Accuracy of the Fully-Connected MLPs with Layer Dimen-

sion (Width) N=1,024 for the Single, Double, and Triple Hidden Layer Cases

and the ∆ρ Data Sets of Various Correlation Coefficient Pairs

∆ρ Data Sets Single Double Triple

{ρ0, ρ1} ∆ρ SNR Acc ηh1
E Acc ηh1

E ηh2
E Acc ηh1

E ηh2
E ηh3

E

0, 0 0 1 51.08 2.26 49.9 2.26 4.44 50.9 2.25 3.45 12.55

0.1, 0 0.1 1 51.1 2.26 50 2.26 4.33 50.4 2.25 3.40 11.43

0.2, 0 0.2 1.01 50.72 2.26 51.7 2.26 4.11 49.92 2.25 3.40 9.95

0.3, 0 0.3 1.02 52.08 2.26 51.12 2.26 3.87 51.32 2.25 3.37 12.42

0.4, 0 0.4 1.04 51.72 2.26 53.8 2.26 4.13 52.48 2.25 3.40 10.74

0.5, 0 0.5 1.07 51.88 2.26 55.78 2.26 4.24 53 2.25 3.42 10.39

0.6, 0 0.6 1.1 51.35 2.26 60.68 2.26 4.27 54.5 2.25 3.39 11.16

0.7, 0 0.7 1.14 51.82 2.26 69.82 2.26 4.36 56.78 2.25 3.40 10.80

0.8, 0 0.8 1.19 51.1 2.26 83.55 2.26 4.12 62.05 2.25 3.46 11.45

0.9, 0 0.9 1.25 50.82 2.26 95.88 2.26 4.3 74.55 2.25 3.50 13.23

0.99, 0 0.99 1.32 67.22 2.23 99.7 2.25 4.05 97.5 2.22 3.90 12.78

TABLE 7. The Impact of the Network Depth on the Layer Compression

Ratio (LCR) and Accuracy of the Sparsely-Connected MLPs with Layer Di-

mension (Width) N=1,024 using Correlation-Based Pruning for the Single,

Double, and Triple Hidden Layer Cases and the ∆ρ Data Sets of Various

Correlation Coefficient Pairs

∆ρ Data Sets Single Double

{ρ0, ρ1} ∆ρ SNR Acc SR1(%) ηh1
E Acc SR1(%) SR2(%) ηh1

E ηh2
E

0, 0 0 1 49.6 99.63 0.97 49.52 99.63 93.89 0.95 1.1

0.1, 0 0.1 1 76.92 99.46 0.97 69.1 99.46 94.43 0.97 1.03

0.2, 0 0.2 1.01 94.75 99.25 0.95 93.5 99.25 94.81 0.96 1

0.3, 0 0.3 1.02 98.8 98.95 0.94 97.82 98.95 93.71 0.94 1

0.4, 0 0.4 1.04 99.68 98.6 0.93 98.9 98.6 94.14 0.93 1

0.5, 0 0.5 1.07 99.75 98.33 0.92 99.35 98.33 91.88 0.93 1

0.6, 0 0.6 1.1 99.95 97.92 0.92 99.58 97.92 94.54 0.92 1

0.7, 0 0.7 1.14 99.98 97.48 0.92 99.95 97.48 93.85 0.91 1

0.8, 0 0.8 1.19 99.98 96.96 0.91 99.98 96.96 94.4 0.9 1

0.9, 0 0.9 1.25 99.92 95.35 0.91 99.82 95.35 93.19 0.88 1.02

0.99, 0 0.99 1.32 99.98 84.59 0.9 100 84.59 79.98 0.87 1.05

∆ρ Data Sets Triple

{ρ0, ρ1} ∆ρ SNR Acc SR1(%) SR2(%) SR3(%) ηh1
E ηh2

E ηh3
E

0, 0 0 1 50.02 99.63 94.38 97.97 0.98 1.04 0.98

0.1, 0 0.1 1 74.3 99.46 93.38 96.05 1.02 1.01 0.96

0.2, 0 0.2 1.01 94.2 99.25 92.87 96.99 0.97 1 0.98

0.3, 0 0.3 1.02 98.15 98.95 95.34 97.81 0.95 0.99 0.99

0.4, 0 0.4 1.04 98.92 98.6 95.34 97.86 0.94 0.99 0.99

0.5, 0 0.5 1.07 99.48 98.33 94.29 97.66 0.93 0.99 0.99

0.6, 0 0.6 1.1 99.55 97.92 94.42 96.48 0.92 1 0.99

0.7, 0 0.7 1.14 99.65 97.48 95.02 94.79 0.92 1 1

0.8, 0 0.8 1.19 99.9 96.96 94.37 94.64 0.92 1 1

0.9, 0 0.9 1.25 99.95 95.35 90.25 93.97 0.91 1 0.99

0.99, 0 0.99 1.32 99.98 84.59 79.99 93.99 0.87 1.06 0.99

A node with high node compression ratio is somehow
dysfunctional. It plays a less significant role in the next
layer(s) for the prediction of desired output. It is a good
candidate to prune its output connections to the next layer
nodes. This point was also reported in [23], [24], [32], [47],
[54], [55].

Table 6 demonstrates that the existence of the implicit
regularization and its impact on performance for the fully-
connected MLP. It indicates that LCRs of deeper layers are
higher than LCRs of earlier layers. It also shows that the
built-in sparsity caused by the implicit regularization is not
effective enough to improve the network performance for the
correlation pairs {ρ0, ρ1} of smaller ∆ρ.

TABLE 8. The Accuracy Measurements of the Fully- and Sparsely-

Connected MLPs with Layer Dimension (Width) N=1,024 for the Double,

and Triple Hidden Layer Cases and the ∆ρ Data Sets of Various Correla-

tion Coefficient Pairs

∆ρ Data Sets Double

{ρ0, ρ1} ∆ρ SNR Dense Corr Mag Rand SR1(%) SR2(%)

0, 0 0 1 49.9 49.52 50.58 50.38 99.63 93.89

0.1, 0 0.1 1 50 69.1 50.42 51.75 99.46 94.43

0.2, 0 0.2 1.01 51.7 93.5 52.9 58.4 99.25 94.81

0.3, 0 0.3 1.02 51.12 97.82 55.42 65.47 98.95 93.71

0.4, 0 0.4 1.04 53.8 98.9 59.85 73.9 98.6 94.14

0.5, 0 0.5 1.07 55.78 99.35 64.53 80.97 98.33 91.88

0.6, 0 0.6 1.1 60.68 99.58 73.05 89.52 97.92 94.54

0.7, 0 0.7 1.14 69.82 99.95 80.6 94.08 97.48 93.85

0.8, 0 0.8 1.19 83.55 99.98 88.8 97.6 96.96 94.4

0.9, 0 0.9 1.25 95.88 99.82 94.15 99.3 95.35 93.19

0.99, 0 0.99 1.32 99.7 100 99.32 99.7 84.59 79.98

∆ρ Data Sets Triple

{ρ0, ρ1} ∆ρ SNR Dense Corr Mag Rand SR1(%) SR2(%) SR3(%)

0, 0 0 1 50.9 50.02 49.98 51.22 99.63 94.38 97.97

0.1, 0 0.1 1 50.4 74.3 51.22 50.92 99.46 93.38 96.05

0.2, 0 0.2 1.01 49.92 94.2 53.28 57 99.25 92.87 96.99

0.3, 0 0.3 1.02 51.32 98.15 56.58 64.38 98.95 95.34 97.81

0.4, 0 0.4 1.04 52.48 98.92 59.82 71.6 98.6 95.34 97.86

0.5, 0 0.5 1.07 53 99.48 67.53 80 98.33 94.29 97.66

0.6, 0 0.6 1.1 54.5 99.55 73.12 87.98 97.92 94.42 96.48

0.7, 0 0.7 1.14 56.78 99.65 81.18 91.98 97.48 95.02 94.79

0.8, 0 0.8 1.19 62.05 99.9 87.1 96.95 96.96 94.37 94.64

0.9, 0 0.9 1.25 74.55 99.95 92.98 99.08 95.35 90.25 93.97

0.99, 0 0.99 1.32 97.5 99.98 99.02 99.8 84.59 79.99 93.99

Remark 6:
The optimization modulates the degree of parameterization
for MLP to prevent under-fitting or malign overfitting via
Sigmoid activation function.

The simulation results and points made above provide
convincing evidence to sparsify dense MLPs in order to (po-
tentially) improve performance and computational efficiency.
Tables 2, 3 and 4 show the fact that the under-determined
system optimization incorporating signal dependent pruning
exploits the potential benefits of model size reduction.

Remark 7:
The use of sparsity as an explicit regularizer in model
optimization brings significantly higher performance gains
and efficiency than the implicit regularization performed by
the optimizer itself (see Table 4 and compare Tables 6 and 7).
It was reported that signal-dependent sparsity methods may
bring performance improvements over signal-independent
methods [23], [38], [39], [40]. The superior performance of
the correlation-based pruning also validates this point. Its
superiority is consistent for the single, double, and triple
hidden layers MLPs tested in this study (see Tables 3, 4 and
5 for the single hidden layer case and Table 8 for the double
and triple hidden layer cases).

VOLUME , 11

BENAR ET AL.: CORRELATION BASED NODE PARTITIONING TO SPARSE MULTILAYER PERCEPTRON

VI. CONCLUSIONS
Mathematical nature of the under-determined system opti-
mization requires parameter reduction methods (regulariz-
ers) to improve search performance. We propose a signal
dependent, correlation-based pruning method to sparsify net-
works. It is intuitive and simulations show that performance
improves when network sparsity is tied to input signal
and node statistics. The proposed correlation-based pruning
outperforms magnitude and random pruning methods. It is
shown that model design benefits from the use of such
sparsity method during training.

Two information-theoretic metrics called node compres-
sion (NCR) and layer compression ratios (LCR) are in-
troduced. They explain the inner workings of model opti-
mization at the node level and provide hints for network
performance. NCR measures the entropy compression of a
node dictated by the alignment between its input pdf and
activation function. Its value increases when the mean and/or
variance misalignment become more significant. It is argued
that such misalignment is exploited as an implicit regularizer
during optimization of an under-determined system. This
phenomenon causes built-in sparsity.

The signal dependent pruning may also be used for Neural
Architecture Search (NAS) and automated Machine Learning
(AutoML) where a self re-configuring and adaptive network
architecture with node and weight sparsities is realized.

APPENDIX
The pseudo-code of the correlation-based node partitioning
introduced in Section IV-B is given in Algorithm 1.

REFERENCES
[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-

bridge, MA, USA: MIT Press, 2016.
[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[3] P. L. Bartlett, A. Montanari, and A. Rakhlin, “Deep learning: A
statistical viewpoint,” Acta Numerica, vol. 30, pp. 87–201, 2021.

[4] B. Neyshabur, R. Tomioka, and N. Srebro, “In search of the real
inductive bias: On the role of implicit regularization in deep learning,”
2014, arXiv:1412.6614.

[5] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “To-
wards understanding the role of over-parametrization in generalization
of neural networks,” 2018, arXiv:1805.12076.

[6] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,
“Deep double descent: Where bigger models and more data hurt,”
Journal of Statistical Mechanics: Theory and Experiment, vol. 2021,
no. 12, p. 124003, 2021.

[7] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern
machine-learning practice and the classical bias-variance trade-off,”
in Proceedings of the National Academy of Sciences, vol. 116, no. 32,
2019, pp. 15 849–15 854.

[8] S. Spigler, M. Geiger, S. d’Ascoli, L. Sagun, G. Biroli, and M. Wyart,
“A jamming transition from under- to over-parametrization affects
generalization in deep learning,” Journal of Physics A: Mathematical
and Theoretical, vol. 52, no. 47, p. 474001, 2019.

[9] M. Geiger et al., “Jamming transition as a paradigm to understand the
loss landscape of deep neural networks,” Physical Review E, vol. 100,
no. 1, p. 012115, 2019.

[10] M. S. Advani, A. M. Saxe, and H. Sompolinsky, “High-dimensional
dynamics of generalization error in neural networks,” Neural Net-
works, vol. 132, pp. 428–446, 2020.

[11] M. Geiger et al., “Scaling description of generalization with number of
parameters in deep learning,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2020, no. 2, p. 023401, 2020.

[12] G. Valle-Perez, C. Q. Camargo, and A. A. Louis, “Deep learning
generalizes because the parameter-function map is biased towards
simple functions,” 2018, arXiv:1805.08522.

[13] G. Yang and H. Salman, “A fine-grained spectral perspective on neural
networks,” 2019, arXiv:1907.10599.

[14] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro,
“The implicit bias of gradient descent on separable data,” The Journal
of Machine Learning Research, vol. 19, no. 1, pp. 2822–2878, 2018.

[15] Y. Zhang, A. M. Saxe, M. S. Advani, and A. A. Lee, “Energy-entropy
competition and the effectiveness of stochastic gradient descent in
machine learning,” Molecular Physics, vol. 116, no. 21-22, pp. 3214–
3223, 2018.

[16] C. H. Martin, T. Peng, and M. W. Mahoney, “Predicting trends in the
quality of state-of-the-art neural networks without access to training or
testing data,” Nature Communications, vol. 12, no. 1, p. 4122, 2021.

[17] C. H. Martin and M. W. Mahoney, “Implicit self-regularization in
deep neural networks: Evidence from random matrix theory and
implications for learning,” The Journal of Machine Learning Research,
vol. 22, no. 1, pp. 7479–7551, 2021.

[18] ——, “Heavy-tailed universality predicts trends in test accuracies for
very large pre-trained deep neural networks,” in Proceedings of the
SIAM International Conference on Data Mining, 2020, pp. 505–513.

[19] M. W. Mahoney and C. H. Martin, “Traditional and heavy tailed
self regularization in neural network models,” in Proceedings of
International Conference on Machine Learning, 2019, pp. 4284–4293.

[20] N. O. Hodas and P. Stinis, “Doing the impossible: Why neural
networks can be trained at all,” Frontiers in Psychology, vol. 9, p.
1185, 2018.

[21] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” 2017, arXiv:1703.00810.

[22] A. M. Saxe et al., “On the information bottleneck theory of deep
learning,” Journal of Statistical Mechanics: Theory and Experiment,
vol. 2019, no. 12, p. 124020, 2019.

[23] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste,
“Sparsity in deep learning: Pruning and growth for efficient inference
and training in neural networks,” The Journal of Machine Learning
Research, vol. 22, no. 1, pp. 10 882–11 005, 2021.

[24] C. Benar and A. Akansu, “On explainability of a simple classifier for
AR(1) source,” in Proceedings of the IEEE 56th Annual Conference
on Information Sciences and Systems (CISS), 2022, pp. 275–280.

[25] C. Molnar, Interpretable Machine Learning. A Guide for Making Black
Box Models Explainable. Durham, NC, USA: Lulu Press, 2020.

[26] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” in Proceedings of the
IEEE, vol. 105, no. 12, 2017, pp. 2295–2329.

[27] E. Genç et al., “Diffusion markers of dendritic density and arborization
in gray matter predict differences in intelligence,” Nature Communi-
cations, vol. 9, no. 1, p. 1905, 2018.

[28] S. Herculano-Houzel, B. Mota, P. Wong, and J. H. Kaas,
“Connectivity-driven white matter scaling and folding in primate
cerebral cortex,” in Proceedings of the National Academy of Sciences,
vol. 107, no. 44, 2010, pp. 19 008–19 013.

[29] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural
networks,” 2019, arXiv:1902.09574.

[30] S. Changpinyo, M. Sandler, and A. Zhmoginov, “The power of sparsity
in convolutional neural networks,” 2017, arXiv:1702.06257.

[31] D. Blalock, J. Ortiz, J. Frankle, and J. Guttag, “What is the state of
neural network pruning?” in Proceedings of Machine Learning and
Systems, vol. 2, 2020, pp. 129–146.

[32] M. Hagiwara, “Removal of hidden units and weights for back propaga-
tion networks,” in Proceedings of 1993 International Joint Conference
on Neural Networks, vol. 1, 1993, pp. 351–354.

[33] G. Thimm and E. Fiesler, “Evaluating pruning methods,” in Proceed-
ings of the International Symposium on Artificial Neural Networks,
1995, pp. 20–25.

[34] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015, arXiv:1510.00149.

[35] A. Kusupati et al., “Soft threshold weight reparameterization for
learnable sparsity,” in Proceedings of the International Conference on
Machine Learning, 2020, pp. 5544–5555.

12 VOLUME ,

[36] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-
less-informative assumption in channel pruning of convolution layers,”
2018, arXiv:1802.00124.

[37] M. C. Mozer and P. Smolensky, “Skeletonization: A technique for
trimming the fat from a network via relevance assessment,” in Proceed-
ings of the International Conference on Neural Information Processing
Systems, vol. 1, 1988.

[38] V. Sanh, T. Wolf, and A. Rush, “Movement pruning: Adaptive sparsity
by fine-tuning,” in Proceedings of the International Conference on
Neural Information Processing Systems, vol. 33, 2020, pp. 20 378–
20 389.

[39] E. Tartaglione, S. Lepsøy, A. Fiandrotti, and G. Francini, “Learn-
ing sparse neural networks via sensitivity-driven regularization,” in
Proceedings of the International Conference on Neural Information
Processing Systems, vol. 31, 2018, pp. 3878–3888.

[40] S. Wang, Z. Chen, S. Du, and Z. Lin, “Learning deep sparse regular-
izers with applications to multi-view clustering and semi-supervised
classification,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 9, pp. 5042–5055, 2021.

[41] Y. Sun, X. Wang, and X. Tang, “Sparsifying neural network connec-
tions for face recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 4856–4864.

[42] Z. Atashgahi, J. Pieterse, S. Liu, D. C. Mocanu, R. Veldhuis, and
M. Pechenizkiy, “A brain-inspired algorithm for training highly sparse
neural networks,” Machine Learning, vol. 111, no. 12, pp. 4411–4452,
2022.

[43] D. O. Hebb, The Organization of Behavior. New York, NY, USA:
Wiley, 1949.

[44] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surfaces of multilayer networks,” in Proceedings of Artificial
Intelligence and Statistics, 2015, pp. 192–204.

[45] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning (still) requires rethinking generalization,”
Communications of the ACM, vol. 64, no. 3, pp. 107–115, 2021.

[46] L. Franco, “Generalization ability of boolean functions implemented
in feedforward neural networks,” Neurocomputing, vol. 70, no. 1-3,
pp. 351–361, 2006.

[47] M. Huh, H. Mobahi, R. Zhang, B. Cheung, P. Agrawal, and
P. Isola, “The low-rank simplicity bias in deep networks,” 2021,
arXiv:2103.10427.

[48] A. N. Akansu and R. A. Haddad, Multiresolution Signal Decompo-
sition: Transforms, Subbands, and Wavelets. New York, NY, USA:
Academic Press, 1992.

[49] A. Papoulis, Probability, Random Variables and Stochastic Processes.
New York, NY, USA: McGraw Hill, 1984.

[50] T. Berger, Rate-Distortion Theory. New York, NY, USA: Wiley, 2003.
[51] A. Akansu, M. Avellaneda, and A. Xiong, “Quant investing in cluster

portfolios,” Journal of Investment Strategies, vol. 9, no. 4, pp. 61–78,
2020.

[52] K. Wen, J. Teng, and J. Zhang, “Benign overfitting in classification:
Provably counter label noise with larger models,” in Proceedings of
the 11th International Conference on Learning Representations, 2023.

[53] J. Franklin, “The elements of statistical learning: Data mining, infer-
ence and prediction,” The Mathematical Intelligencer, vol. 27, no. 2,
pp. 83–85, 2005.

[54] J. Sietsman, “Neural net pruning-why and how,” in Proceedings of the
IEEE International Conference on Neural Networks, 1988, pp. 1325–
333.

[55] M. Hagiwara, “A simple and effective method for removal of hidden
units and weights,” Neurocomputing, vol. 6, no. 2, pp. 207–218, 1994.

CEM BENAR (Graduate Student Member,
IEEE) received the B.S. degree in electrical and
electronics engineering with a double major
in computer science from Özyeğin University,
Istanbul, Turkey, in 2016, and the M.S. degree
in neuroscience from Bilkent University, Ankara,
Turkey, in 2019. He is currently working toward
the Ph.D. degree with the New Jersey Institute
of Technology, Newark, NJ, USA. His research
interests include signal processing, machine
learning, and deep learning, with emphasis on

understanding the inner-workings of neural networks.

ALI N. AKANSU (Fellow, IEEE) received his
B.S. degree from the Technical University of Is-
tanbul, Turkey, M.S. and Ph.D. degrees from the
Polytechnic University, Brooklyn, New York, all in
electrical engineering. He has been with the New
Jersey Institute of Technology since 1987 where
he is Professor of Electrical & Computer Engi-
neering. He was a Founding Director of the New
Jersey Center for Multimedia Research and NSF
Industry-University Cooperative Research Center
for Digital Video & New Media. Dr. Akansu was

the Vice President for R&D of IDT Corporation [NYSE:IDT]. He was
the founding President and CEO of PixWave, Inc., and Senior VP for
Technology Development of TV.TV (IDT Entertainment subsidiaries). He
did sit on the boards of start-up companies, and an investment fund.
He visited David Sarnoff Research Center, IBM T.J. Watson Research
Center, GEC-Marconi Electronic Systems Corp., and Courant Institute of
Mathematical Sciences at NYU. His current research interests are signals
and transforms, quantitative finance and algorithmic trading, explainable
machine learning methods and data engineering, including FPGA & GPU
computing.

VOLUME , 13

BENAR ET AL.: CORRELATION BASED NODE PARTITIONING TO SPARSE MULTILAYER PERCEPTRON

Algorithm 1 Correlation-Based Partitioning of Layer Node Outputs in a Multilayer Perceptron (MLP).
1: ▷ Yk: kth layer node outputs of size N ×M

N : kth layer dimension (number of nodes)
M : the number of training samples
Rk: Pearson correlation matrix of node outputs Yk

of the kth layer (the 1st layer refers to input layer)
thre: correlation threshold of the kth layer
P : a list of node partitions (Pm is mth partition)
C: a set of node indices belonging to a partition
(partitioned node indices)
U : a set of node indices not belonging to any
partition (unpartitioned node indices)
I: a list of node pair indices (a, b) whose correlation
coefficients R[a, b] are greater than correlation thre ◁

2:
3: function PARTITIONNODES(Rk, thre, Yk)
4: ▷ partitioning nodes with positive correlations ◁
5: Ppos, Upos ← PARTITIONCOMBINE(Rk, thre, Yk)
6: ▷ partitioning nodes with negative correlations ◁
7: Pneg, Uneg ← PARTITIONCOM-

BINE(−Rk[Upos, Upos], thre, Yk[:, Upos])
8: P

+← Ppos ▷ append partitions of nodes with positive
correlations

9: P
+← Pneg ▷ append partitions of nodes with nega-

tive correlations
10: P

+← Uneg ▷ append each unpartitioned node in
Uneg as a separate (single node) partition

11: return P
12:
13: function PARTITIONCOMBINE(Rk, thre, Yk)
14: R′

k ← Rk

15: Y ′
k ← Yk

16: while LEN(R′
k) > 1 do

17: P,U ← PARTITIONSELECT(R′
k, thre)

18: L← LEN(P) ▷ number of partitions
19: for l = 1, . . . , L do ▷ l: partition id
20: ▷ add node outputs within the same parti-

tion l ◁
21: Y ′

k[:, l]← SUM(Y ′
k[:, P (l)])

22: ▷ calculate Pearson correlation of Y ′
k ◁

23: R′
k ← CORRCOEF(Y ′

k)
24: return P,U
25:

26: function PARTITIONSELECT(Rk, thre)
27: I ← () ▷ initialized as an empty list
28: for a = 1, . . . , N do ▷ number of rows of Rk

29: for b = 1, . . . , N do ▷ number of columns of Rk

30: if a > b then
31: ▷ only check node pair indices in non-

diagonal, lower triangular part of Rk ◁
32: if Rk(a, b) ≥ thre then
33: I

+← (a, b)
34: ▷ sort node pair indices in I in the descending

order based on Rk ◁
35: SORT(I , Rk)
36: P ← () ▷ initialize as an empty list
37: C ← {} ▷ initialize as an empty set
38: ▷ number of thresholded node pair indices I ◁
39: L← LEN(I)
40: for l = 1, . . . , L do
41: (a, b)← I(l) ▷ indices of lth node pair in I
42: if a /∈ C & b /∈ C then
43: ▷ none of them belong to any existing par-

tition ◁
44: P

+← {a, b} ▷ add it as a separate partition
45: C

+← a ▷ node a is partitioned
46: C

+← b ▷ node b is partitioned
47: else if a ∈ C & b /∈ C then
48: ▷ node a belongs to a partition (e.g., Pm)

check if node b is eligible to be in the
same partition ◁

49: if MEAN(Rk[b, Pm]) ≥ thre then
50: Pm

+← b ▷ add node b into partition Pm

51: C
+← b ▷ node b is partitioned

52: else if a /∈ C & b ∈ C then
53: ▷ node b belongs to a partition (e.g., Pm)

check if node a is eligible to be in the
same partition ◁

54: if MEAN(Rk[a, Pm]) ≥ thre then
55: Pm

+← a ▷ add node a into partition Pm

56: C
+← a ▷ node a is partitioned

57: U ← {1, 2, . . . , N} \ C ▷ unpartitioned node in-
dices

58: return P,U

14 VOLUME ,

	INTRODUCTION
	SPARSITY REGULARIZATION
	PRUNING METHODS
	RANDOM PRUNING
	MAGNITUDE PRUNING
	CORRELATION BASED PRUNING

	IMPACT OF SIGNAL STATISTICS

	MATHEMATICAL OVERVIEW
	AR(1) SOURCE MODEL
	EIGEN SUBSPACE OF TEXT
	MULTILAYER PERCEPTRON
	NODE STATISTICS
	ENTROPY COMPRESSION IN NODES AND LAYERS
	NODE COMPRESSION RATIO
	LAYER COMPRESSION RATIO

	CORRELATION BASED NODE PARTITIONING AND WEIGHT SPARSITY
	EIGEN SUBSPACE PERFORMANCE
	CORRELATION BASED PRUNING
	IMPLEMENTATION
	DATA SETS
	AR(1) DATA SET
	CIFAR-10 DATA SET

	PERFORMANCE COMPARISONS
	ACCURACY FOR AR(1) DATA
	IMPACT OF DIMENSION

	ACCURACY FOR CIFAR-10 DATA SET
	REMARKS

	CONCLUSIONS
	REFERENCES
	Biographies
	CEM BENAR
	ALI N. AKANSU

