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Learning a fair and privacy-preserving graph neural
network from private and limited sensitive attributes

Xuemin Wang, Tianlong Gu, Senior Member, IEEE, Xuguang Bao, and Liang Chang

Abstract—Graph neural networks (GNNs) have been applied
in various high-stake scenarios to make decisions. However, the
successful adoption of GNNs may raise ethical issues such as
fairness and privacy. In most recent studies, these issues are
addressed separately, disregarding their potential trade-off. In
this paper, we propose a novel framework called FPGNN (Fair
and Privacy-preserving GNN) on limited sensitive attributes.
Specifically, FPGNN promotes individual fairness by minimizing
the difference between two ranking lists derived from the input
and output spaces using differentiable ranking metrics. To defend
against the attribute inference attack in the downstream tasks,
FPGNN purges the information about sensitive attributes from
the released graph embedding using adversarial training. Besides,
FPGNN consists of a utility maximization module to preserve
competitive accuracy. Furthermore, we consider a situation in
which the collected sensitive attributes are protected by local
differential privacy (LDP). In this situation, the attacker employs
methods that can learn from the noisy label, to perform the
attribute inference attacks. To defend against this kind of attack,
we extend FPGNN to PL-FPGNN (Private and Limited sensitive
attributes-Fair and Privacy-preserving GNN). Experimental re-
sults on three benchmark datasets demonstrate that our methods
achieve a good balance among fairness, utility, and privacy.

Index Terms—Individual fairness, attribute inference attack,
graph neural network, trustworthy.

I. INTRODUCTION

GRAPH-STRUCTURED data are ubiquitous in the real
world, such as social networks [1], knowledge graphs

[2], and trading networks [3]. To better understand such
data, various graph mining algorithms have been proposed.
Among these algorithms, graph neural networks (GNNs) [4]
have demonstrated remarkable performance. Besides, they are
increasingly adopted in high-stake scenarios such as credit
scoring [5], fack review detection [6], and medical diagnosis
[7]. Although GNNs have excelled in accomplishing corre-
sponding tasks in these scenarios, adopting GNNs directly
could empirically result in fairness issues and privacy issues.
Specifically, GNNs may inherit societal bias from the graph
data [8]. For example, GNNs may give unfair credit scores to
low-income people. Besides, recent studies have shown that
GNNs are vulnerable to attribute inference attacks [9]. For
example, the attacker leveraged Facebook data such as user
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linkage, gender, and other attributes to infer users’ sensitive
attributes such as sexual orientation. Therefore, lacking either
fairness consideration or privacy considerations may cause
unanticipated harm to humans and society.

A wide spectrum of fair GNNs has been developed to
mitigate the bias of GNNs. Existing fairness notations mainly
consist of group fairness and individual fairness [10]. Group
fairness aims to provide equal outcome rates for people in
different demographic subgroups (e.g., age, gender, and race).
Since group fairness focuses on the bias for a specific group,
it only eliminates limited forms of bias. However, the bias for
graph data exists in various shapes and formats as the graph
data is heterogenous and comprises various data modalities
such as node features and edges. It is necessary to scrutinize
the bias at a much finer level of granularity. To address this
challenge, individual fairness is proposed to consider atomic
components of graphs such as nodes. It requires similar nodes
to receive similar outcomes. The formulation based on the
Lipschitz condition [11] requires the distances of any node
pairs in the output space should be smaller or equal to the
corresponding distance in the input spaces. However, it is
difficult to calibrate the difference between the two individuals.
To tackle this challenge, ranking-based individual fairness is
proposed [12]. This fairness focuses on a ranking list that
consists of other nodes in descending order according to their
similarity to the chosen node. It first derives two ranking lists
for each node from input space and output space and then
ensures the two ranking lists are consistent. However, this
individual fairness-aware GNN also encounters privacy issues.
An existing method called LPF-IFGNN [13], aims to promote
ranking-based individual fairness while protecting node pri-
vacy. Since LPF-IFGNN assumes that the trust third party is
absent, it needs to perturb the nodes and labels using local
differential privacy and publish the noisy data to the server.
This way can provide strict privacy protection, while fairness
and utility promotion is limited. To better promote individual
fairness, we consider a scenario involving a trusted third party
for learning graph representation. It is noted that vector rep-
resentation contains significant individual information and the
downstream task requires a classifier to accomplish tasks such
as node classification. In this scenario, the attacker can train a
classifier to predict the sensitive attributes using the released
graph embedding and the collected sensitive attributes. Hence,
the sensitive factor is necessary to be purged from the released
graph embeddings for the downstream tasks.

In this paper, we introduce a novel problem of promoting
ranking-based individual fairness, defending against attribute
inference attacks, and preserving competitive utility perfor-
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mance. To address this problem, we face three challenges:
(1) Efficiently promoting ranking-based individual fair-
ness. For fairness promotion, the ranking-based individual
fairness can be seen as the ranking accuracy of the prediction
matrices, which can be measured by NDCG@K. However,
existing methods such as REDRESS [12] and LPF-IFGNN
[13] optimize a surrender loss rather than optimizing the
ranking metrics. In this way, the approximation quality of
surrogate loss is controlled by the number of samples. Besides,
sometimes, the surrogate loss is loosely related to the target
loss [14], which results in the inefficiency of promoting
ranking-based individual fairness. Hence we need to better
measure the changes of similarity and position information
in the loss function and promote individual fairness more
efficiently. (2) Mitigating the leakage of sensitive attributes
from the graph embedding. In this paper, we consider a more
realistic scenario where the sensitive attributes are private and
limited. This consideration arises from the fact that, despite the
presence of a trusted third party, private users may not disclose
their sensitive attributes Furthermore, the limited sensitive
attributes may be perturbed by local differential privacy (LDP).
To explore the privacy issues in this situation, we propose a
novel attribute inference attack approach for the private and
limited sensitive attributes. Specifically, the attacker accesses
the privacy budget and trains a GNN model using forward
correction loss [15], which can infer the sensitive attributes
with high accuracy. Thus, we need to defend against these
kinds of attribute inference attacks on private and limited sen-
sitive attributes. (3) Balancing fairness, privacy, and utility.
Except for fairness promotion and privacy protection, com-
petitive utility is also essential to be preserved. The superior
performance of GNNs on various downstream tasks benefits
from the end-to-end learning methods. Therefore we need to
incorporate fairness and privacy requirements into the training
process while preserving competitive utility performance.

To tackle these challenges, we propose a novel GNN
training algorithm called FPGNN (Fair and Privacy-preserving
Graph Neural Network). FPGNN comprises three modules: in-
dividual fairness promotion module, privacy-preserving mod-
ule, and utility maximization module. The individual fairness
promotion module formulates the loss function by employ-
ing differentiable ranking metrics to measure the difference
between two ranking lists from the input and the output
spaces. The privacy-preserving module employs a sensitive
attribute estimator to provide accurate sensitive attributes.
Using these sensitive attributes, it employs adversarial train-
ing to improve the privacy performance of released graph
embedding. The utility module aims to preserve competitive
accuracy for downstream tasks. Furthermore, we consider a
situation in which limited sensitive attributes are protected by
LDP. To explore privacy issues in this situation, we propose
a novel attribute inference attack. To defend against the novel
inference attack, we further propose PL-FPGNN (Private and
Limited sensitive attributes-Fair and Privacy-preserving Graph
Neural Network). Specifically, we train a sensitive attribute
estimator using forward correction loss to provide accurate and
clean sensitive attributes. Based on these sensitive attributes,
adversarial training can purge the individual information about

sensitive attributes from the graph embeddings more effi-
ciently. Experiments on three real datasets demonstrate the
effectiveness of the proposed model in balancing fairness
promotion, privacy protection, and utility maximization.

The contributions of our work are summarized as follows:
(1) We propose a novel method that leverages differentiable
ranking metrics to effectively promote ranking-based individ-
ual fairness. (2) We introduce an adversarial training method
on private and limited sensitive attributes to defend against
attribute inference attacks. (3) We propose a novel framework
FPGNN, which can promote individual fairness and mitigate
the individual privacy leakage issues of private users while
preserving high accuracy on limited sensitive attributes. (4)
We propose a novel attribute inference attack approach for the
limited sensitive attributes protected by LDP. To defend against
this attack, we further propose the framework PL-FPGNN.

The rest of this paper is organized as the following. Sec-
tion 2 summarizes the related work of fair GNNs, privacy-
preserving GNNs, and fair and privacy-preserving GNNs.
Section 3 introduces the background knowledge required for
our study, and presents the definitions of our problems. Section
4 describes the details of the proposed FPGNN framework
and training algorithm. Section 5 shows the details of the pro-
posed PL-FPGNN framework and training algorithm. Section
6 provides details of the experiments and a discussion of the
experiment results. Section 7 concludes the paper and presents
future research directions for fairness and privacy in GNNs.

II. RELATED WORK

A. Fair GNNs

Many works have been conducted to deal with the bias in
graph representation learning. The fairness notation can be
categorized into group fairness, counterfactual fairness, and
individual fairness [10]. Group fairness ensures equal outcome
statistics such as true positives across different groups. Ad-
versarial learning is a popular strategy for learning a graph
embedding align with the group fairness. Bose et al. [16]
employed a discriminator to predict the sensitive attributes
using graph embedding. The generator continually generates
the graph embeddings until the embeddings are indistin-
guishable w.r.t. sensitive attributes. Dai et al. [17] achieved
group fairness using adversarial training for situations where
sensitive attributes are limited and perturbed using differential
privacy techniques. Wang et al. [18] generated fair views
of the graph by identifying and masking sensitive-correlated
features and clamped weights of the encoder to give up the
sensitive-related features, which can mitigate the biased caused
by feature propagation. Counterfactual fairness ensures the
prediction for each individual and its counterfactuals are the
same. Agarwal et al. [19] introduced a novel objective function
to achieve fair and stable representations both and developed
a layer-wise weight normalization to promote fairness and the
stability of the graph representation. Ma et al. [20] mitigated
graph unfairness by generating counterfactuals and minimizing
the discrepancy between the representations that are learned
from the original graph and the counterfactual of each node
to achieve counterfactual fairness. Individual fairness requires
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treating similar people similarly. Kang et al. [11] introduced
node pair distance-based fairness, which requires satisfying the
Lipschitz condition for node-wise distances calculated in both
input and output spaces. Song et al. [21] focused on addressing
discrimination arising from group disparities in optimizing
individual fairness. Specifically, this discrimination is caused
by the variation in scalers used in the Lipschitz condition for
different groups. Dong et al. [13] proposed node-ranking-based
fairness, where they computed similarity ranking lists for each
node and enforced consistent rankings between the input and
output spaces.

In summary, individual fairness focuses on atomic compo-
nents of a graph such as nodes rather than a specific protected
group. It is a finer fairness guarantee, which can mitigate
more forms of bias. However, existing methods for promoting
ranking-based fairness employ a surrogate loss measuring
the difference between two rankings. Since the instability of
surrogate loss, we propose a novel fairness promotion method
that benefits from the differentiable ranking metrics [14].

B. Privacy-preserving GNNs
Recent studies indicate that graph neural network is vulner-

able to privacy attack which aims to extract sensitive informa-
tion that users aren’t intended to publish, including member-
ship inference attacks, attribute inference attacks, property in-
ference attacks, and model extraction attack [8]. In this paper,
we focus on attribute inference attacks. To avoid extracting
node-level information about sensitive attributes, Liao et al.
[22] proposed a minimax game between desired GNN encoder
and the worst-case attacker. Li et al. [23] considered another
inference attack that infers users’ sensitive attributes from the
node representation and proposed a graph adversarial training
network that removes the sensitive factors from the learned
node representation using disentangling and purging mecha-
nisms. To defend against inference attacks, Jiang et al. [24]
employed secure aggregation to achieve privacy-preserving
federated GNNs. Differential privacy can be divided into
common differential privacy and local differential privacy. The
former adds noise such as Gaussian noise into attributes value
or gradients which are in the form of continuous numbers.
The latter perturbs the attributes in discrete forms on each
user’s terminals with a certain probability [25]. Hu et al. [9]
disentangled the non-sensitive attributes into sensitive latent
representation and non-sensitive latent representation under
the orthogonal constraint. They only publish the non-sensitive
latent representation rather than the non-sensitive attributes to
defend against the attribute inference attack.

In summary, existing attribute inference attacks assume that
attackers can access all clean sensitive attributes, without
considering the situation that only limited sensitive attributes
can be accessed. Furthermore, the limited sensitive attributes
may be perturbed by differential privacy. To explore the
privacy issues in this situation, we propose a novel attribute
inference attack. Existing privacy-preserving methods cannot
defend against this kind of attack efficiently, as they only have
access to the noisy sensitive attributes. Hence, we present the
adversarial training methods to defend against this kind of
attack.

C. Fair and privacy-preserving GNNs

Although much progress has been made to meet both
privacy and fairness requirements simultaneously in machine
learning, the exploration of these issues in graph mining
algorithms is fairly recent. Dai et al. [26] focused on group
fairness and considered the privacy scenario that the sensitive
attributes are limited and perturbed by LDP. In this scenario,
they adopted a sensitive attribute estimator to provide sufficient
sensitive attributes for adversarial training. Dai et al’s work can
defend against attribute inference attacks to some extent but
cannot promote individual fairness. Zheng et al. [27] enforced
the fairness constraint on the graph generative model to treat
protected groups and unprotected groups equally in the gen-
erated graph. However, the generative model needs personal
information to improve performance, which can be leveraged
by the attacker to infer sensitive attributes. Zhang et al. [28]
explored the relationship between edge privacy and individual
fairness based on Lipschitz-based individual fairness. Their
work considers Lipschitz-based individual fairness which pos-
sesses more limitations compared to the latest ranking-based
individual fairness. Wang et al. [13] protected node privacy and
promote ranking-based individual fairness on the perturbed
node data. Specifically, they protected node privacy using LDP
and aggregated the K-hop neighbor’s attributes to average
injected noise. However, their main privacy protection goals
are different from ours. Besides, they promoted individual
fairness using a surrogate loss which may loosely be related
to the true loss.

Therefore, our work complements established research by
considering the promotion of ranking-based individual fair-
ness and defense of attribute inference attacks on limited
and private sensitive attributes, simultaneously. Specifically,
we propose novel fairness promotion and privacy-preserving
methods, overcoming the limitation of existing methods. Fur-
thermore, we achieve a fair and privacy-preserving graph neu-
ral network based on our proposed fair and privacy-preserving
methods.

III. PROBLEM DEFINITION

In this section, we first present the notation used in this
paper. Then, we introduce the preliminaries of GNNs and
ranking-based individual fairness. Finally, we provide the
problem formulation of fair and privacy-preserving GNNs on
limited sensitive attributes and further formulate the problem
on the private and limited sensitive attributes.

A. Notations

In this paper, bold uppercase characters (e.g., S), bold
lowercase characters (e.g., s), and lowercase characters (e.g.,
s) denote matrices, vectors, and scalars, respectively. Let
G = (V,A,X) be an input graph, where V = {v1, . . . , vN}
is the set of N nodes, A ∈ Rn×n is the adjacency matrix
of the graph and X ∈ Rn×d is the attribute matrix. Here
n denotes the node number and d denotes the dimension of
features. Y ∈ {0, 1}n×c and Ŷ ∈ Rn×c are the label matrix
and prediction matrix for the node classification task, where c
refers to the number of classes. The set VL ⊆ V denotes the
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nodes with the label and the set VS ⊆ V refers to the nodes
with the sensitive attributes. The similarity matrices from the
input and output spaces are denoted as SG and SŶ, describing
the pairwise similarity for individuals. Concretely, the input
space refers to the node attributes, and the output space refers
to the predictions of nodes.

B. Preliminaries of GNNs

To capture both attribute and structure information, GNNs
learn a representation for each node using several layers. Each
layer gets the output of the previous layer for each node
and outputs an aggregation of adjacent neighbors’ vectors by
a non-linear transformation. Formally, given an input graph
(V,A,X), a GNN is built to learn a representation hv of node
v ∈ V . The aggregation steps between the l-th and (l + 1)-th
layer are formulated as follows:

h
(l+1)
N (v) = AGGREGATE(l)

({
h(l)
u : u ∈ N (v)

})
(1)

h(l+1)
v = ComBINE(l)

(
h(l)
v ,h

(l+1)
N (v)

)
(2)

where N (v) denotes the neighbors of node v, AGGREGATE
(l) (.) denotes an aggregation function of layer l, and the
combination function of layer l is denoted as COMBINE (l).
The initial embeddings of u and v (i.e., h(0)

u and h
(0)
v ) are

the feature vector of xu and xv.

C. Ranking-based Individual fairness

Ranking-based individual fairness is formulated as “for each
instance ui, the two ranking lists of other instances (based on
their distances to ui) in the input space and outcome space
should be as similar as possible”. Specifically, the ranking
list of an instance ui is obtained by ranking based on the
similarity between ui and other instances in descending order.
The ranking lists for the SG and SŶ are denoted as R1 and R2,
respectively. The ranking-based individual fairness requires R1

and R2 of each instance to be consistent. For example, given
an instance ui and R1 is {u2,u3,u4 }, if R2 is also {u2,u3,u4

}, the prediction for ui aligns with ranking-based individual
fairness.

D. Fair and privacy-preserving GNNs on limited sensitive
attributes

With the notation given in 3.1 and the ranking-baed indi-
vidual fairness described in 3.3, we formulate the problem
of training fair and privacy-preserving GNNs on the limited
sensitive attributes as follows:
Problem 1. Given a graph G = (V,A,X),VS with sensitive
attributes s, VL with label matrix Y, the prediction matrix Ŷ
for node classification tasks, the similarity matrices SG and
SŶ obtained from X and Ŷ, respectively, we aim to promote
ranking-based individual fairness for each node, exclude users’
sensitive information from the released graph embedding, and
make Ŷ close to Y.

E. Fair and privacy-preserving GNNs on limiteds and private
sensitive attribute

The LDP has been adopted to protect sensitive attributes.
Concretely, the sensitive attributes are flipped according to the
following distribution:

p (s′ | s) =

{
eϵ

eϵ+c−1 , if s′ = s
1

eϵ+c−1 , otherwise
(3)

where s′ and s denote the perturbed sensitive attributes and
clean sensitive attributes, respectively, ϵ denotes the privacy
budget, and c denotes the class number. In this paper, we
denote ρ = 1

eϵ+c−1 as the probability of flipping sensitive
attributes. Many efforts have been made to learn from noisy
labels. Specifically, the forward correction loss (i.e., ℓ (s′, ŝ′))
[15] is equal to the original loss calculated on the clean labels
(i.e., ℓ(s, ŝ))). Here, s′ denotes the perturbed sensitive at-
tributes and ŝ′ denotes the perturbed prediction of the sensitive
estimator. Hence, the attacker can train a classifier to predict
true sensitive attributes, and we provide the formulation of this
attack as follows:
Definition 1. (Attribute inference attack on private and
partially observed sensitive attributes) Given graph G =
(V,A,X), all the node set V , the node set VS with sensitive
attributes s′, the flipping probability ρ, the adjacency matrix A,
the attribute inference attack on private and partially observed
sensitive attributes is to infer the sensitive attributes for the
node u ∈ (V − VS) by training a classifier using forward cor-
rection loss ℓ (s′, ŝ′) where s′ denotes the perturbed sensitive
attributes and ŝ′ denotes the perturbed prediction.

To defend the attribute inference attack in Definition 1, the
main challenge is how to purge the sensitive factor from the
released graph embedding on the noisy sensitive attributes.
Hence, we further formulate the problem of fair and privacy-
preserving GNNs on private and limited sensitive attributes as
follows:
Problem 2. Given graph G = (V,A,X), VS with sensitive
attributes s, VL with label matrix Y, the prediction matrix
Ŷ for node classification tasks, the similarity matrices SG
and SŶ obtained from X and Ŷ, respectively, we aim to
learn a GNN, satisfying three aims: 1) prediction aligns with
the ranking-based individual fairness; 2) prediction maintains
high accuracy (i.e., make Ŷ close to Y; 3) the released graph
embedding can defend the attribute inference attack described
in Definition 1.

IV. FPGNN FOR PARTIAL OBSERVED SENSITIVE
ATTRIBUTES

In this section, we provide the details of FPGNN to learn
fair and privacy-preserving GNNs and show the framework
of FPGNN in Fig. 1. We aim to achieve the balance between
fairness, privacy, and utility. Since it is difficult to determine
the relationship between fairness, privacy, and utility, we set
up three separate modules: an individual fairness promotion
module (Module 1), a privacy-preserving module (Module 2),
and a utility maximization module (Module 3). Specifically,
the individual promotion module ensures two ranking lists
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Outcome similarity matrix

Top kTop k Top kTop k

Oracle similarity matrix

Module 1: Individual fairness promotion module

Ranking list R1 Ranking list R2

Sensitive attribute 

exstimator

M 30

F 26

M 30

F 26

M

F

M

F

M

F

M

F

GNN classifier 

Adversary

Fair 

loss

Module 3: Utility 

maximization

Utility loss

Module 2: Privacy-preserving module

Input graph

Graph embedding

Privacy 

loss

Estimator loss

Fig. 1: The overall framework of FPGNN.

derived from SG and SŶ to be consistent for each instance;
the privacy-preserving module purges sensitive factors from
the released graph representation; the utility maximization
module preserves the competitive accuracy of the backbone
model for specific downstream tasks. We let them compete
with each other to achieve balance. In the previous studies,
the common sense is that fairness promotion and privacy
protection may decrease the utility. Hence, the balance is
achieved by improving fairness and privacy with a small
reduction in utility.

A. The GNN classifier and utility maximization module

This module aims to preserve the high utility performance of
the GNN classifier by learning a mapping function fG : VL →
yL with parameter θG . The representation of node v for GNN
with K layers is formulated as follows:

hv = f
(K)
G (xv,A, θG) . (4)

Since we focus on node classification tasks, we adopt a liner
classification layer with parameter W to gain the predictions
ŷv, which is formulated as follows:

ŷv = σ (hv) (5)

where σ is the sigmoid function. The utility maximization
module aims to maximize the utility of the backbone GNN.
The prediction ŷv is required to be close to the ground

truth yv . The loss function based on the cross-entropy loss
is formulated as follows:

min
θG

LU = −
∑
v∈VL

yv ln ŷv. (6)

B. Fairness promotion module
Ranking-based individual fairness requires the ranking lists

derived from the output space to be consistent with the ranking
list derived from the input space. Since the input space is fixed,
we only optimize the GNN parameters to generate appropriate
predictions. One straight way to formulate the loss function is
to quantify the difference between two ranking lists. We take
the node ui as an example. The ith row of SG is denoted
as L1 which provides relevant information. R2 is a ranking
list from SŶ , which provides the position information. The
aim is to align instances on rth position with rth highest
relevance value. However, the positions of instances in the two
ranking lists may not be consistent. We first find the instance
on rth position in R2 and then return the similarity value of
this instance in reli(r) from L1. For NDCG@K, we calculate
the NDCG@K across all nodes and combine them to derive
the loss function. The formulation of the loss function is as
follows:

min
θG

LF =
1

N

I∑
i

(
1−

K∑
r=1

2reli(r) − 1

log2(r + 1)

)
. (7)

where N denotes a normalizing constant, and I is the number
of nodes. However, the non-differentiability of the loss func-
tions (7) prevents the optimization of GNN model parameters
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using gradient-based methods. Get inspired by differentiable
ranking metric [14], we adopt a rank indicator Irj to denote
whether instance j is the rth highest similarity value. reli(r)
can be written as follows:

reli (jr) =

N∑
j=1

reli(j)I
r
j . (8)

If instance j is the rth highest similarity value, Irj = 1,
otherwise, Irj = 0. To return which instance is the rth highest
similarity value, we adopt the argmax function formulated as
follows:

argmax j′ ∈ {1, . . . , N}
∀l < r, I ′j′ = 0

Sj′ = argmax
j′∈{1,...,N}

Sj′

r−1∏
l=1

(
1− Irj′

)
. (9)

where Sj′ refers to the similarity value of j′ from SŶ. Since
argmax is not differentiable, the Irj′ calculated by parameter-
ized softmax is formulated as follows:

Ir,αj =
eαSjΠ

r−1
l=1 (1−Ir,α

j )∑
j′ e

αSj′
∏r−1

l=1

(
1−Ir,α

j′

) . (10)

where α is a hyperparameter that controls the quality of the
approximation. Hence, the smooth reli(r) is formulated as
follows:

reli(r) =

N∑
j=1

rel (jr) I
r,α
j . (11)

We replace the reli(r) in loss function (7) with a differentiable
approximation of

∑N
j=1 rel (jr) I

r,α
j and the fairness loss

function is formulated as follows:

min
θG

LF =
1

N

I∑
i

(
1−

K∑
r=1

2
∑N

j=1 rel(jr)Ir,α
j − 1

log2(k + 1)

)
. (12)

Theorem 1. Loss function (12) is differentiable regarding the
parameter θG .
Proof. The prediction ŷv is differentiable to the parameters
θG . In the calculation of Ir,αj , each element Sij in SŶ can be
obtained by calculating the cosine similarity of the ŷv. Hence,
the loss function can be written as fI (fc (fs (fG (xv,A, θG))))
where LF = fI

(
Ir,αj

)
, Ir,αj = fc (Sj), Sj = fs (ŷv), and

ŷv = fG (xv,A, θG). Hence ∂LF

∂θG
= ∂fI

∂Ir,α
j

× ∂fc
∂Sj

× ∂fs
∂ŷv

× ∂fG
∂θG

and LF is differentiable to the parameters θG .
Theorem 2. If α → +∞, the differential loss function (12) is
equal to the loss function (17).
Proof. limα→+∞ Ir,αj = Irj has demonstrated in [14], hence
loss function (12) is equal to loss function (7).

C. Privacy-preserving module

To defend against the attribute inference attack, the privacy-
preserving module aims to purge the sensitive factor about the
sensitive attributes from the released graph embedding. Hence,
clean sensitive attributes are necessary in the training process.
However, the sensitive attributes are limited in our setting.
Since we assume that a trust third parity exists for learning

graph embedding, we can employ a sensitive attribute estima-
tor to predict accurate sensitive attributes without the leakage
of sensitive attributes. Specifically, the sensitive estimator
leverages the non-sensitive attributes, and the graph structure
information to train a GNN classifier. It is still possible to
predict the sensitive attributes accurately. The reason is that
the message-passing of GNN captures two dependencies: 1)
users and their neighbors tend to possess the same sensitive
attributes; 2) non-sensitive attributes are naturally correlated
with the sensitive attributes. The mapping function of the
estimator is denoted as fE : VS → S with the parameter
θE , and the objective function is formulated as:

min
θE

LE = −
∑
v∈VS

sv ln ŝv. (13)

We denote the node set with estimated sensitive attributes
as Vp. By combining the Vp with the existing node set VS ,
we gain Vc = VS ∪ Vp. With Vc, we employ adversarial
training to remove the information about the sensitive attribute
from the released graph embedding. The adversarial learning-
based framework consists of an attacker and an obfuscator.
The attacker utilizes the graph structure and releases graph
embedding hv to predict the sensitive attributes, employing a
separate GNN network fA with parameters θA. The prediction
of fA is denoted as:

ŝ = fA (fG (hv)) . (14)

The attack aims to make ŝ close to the clean sensitive attributes
sv of node v ∈ Vc. In contrast, an obfuscator aims to make the
prediction ŝ far from the sensitive attributes. The adversarial
game is formulated as a min-max problem:

min
θG

max
θA

LP = −
∑
v∈Vc

sv ln ŝv. (15)

To decrease the inference accuracy, the obfuscator minimizes
the loss function (15) by optimizing the parameters θG of
backbone GNN model fG .

Algorithm 1 Training Algorithm of FPGNN.

Input: Feature matrix X, adjacency matrix A, true labels yv,
the hyperparameters α, β, and γ, and the limited sensitive
attributes sv for node v ∈ VS .

Output: θG , θA, θE
1: Initialize the parameters θE of fE by optimizing the loss

function (13)
2: Initialize the parameters θG of fG by optimizing the loss

function (6)
3: Calculate the similarity matrix SG for feature matrix X.
4: while the stopping condition is not met do
5: Obtain the estimated sensitive attributes with fE for the

node
6: Obtain the graph embedding hv according to (4)
7: Obtain the prediction ŷv according to (5)
8: Calculate the similarity matrix SŶ for prediction

matrix Ŷ.
9: Compute LU , LF , LP ,LE and Ltotal according to (6)

(12) (13) (15) (16), respectively.
10: Optimize θG , θA, θE
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11: end while
12: return θG , θA, θE

D. Overall training algorithm

We have introduced the loss functions of the fairness pro-
motion module, the privacy-preserving module, and the utility
maximization module, and the overall objective function is
formulated as follows:

min
θE ,θG

max
θA

Ltotal = LU + LE + βLF + γLP . (16)

where β and γ are hyperparameters used to control the
promotion strength of the terms. The first term in (16) ensures
the preservation of high accuracy; the second term improves
the accuracy of the sensitive attributes estimator; the third term
enforces the efficiency of fairness promotion; and the final
term guarantees the efficiency of privacy protection. To gain
the objective function (16), we provide the overall training
algorithm in Algorithm 1. To gain an accurate sensitive
attribute estimator, we first initialize the parameters θE of
fE by optimizing the loss function (13) (line 1). Then, we
initialize the parameters θG by optimizing the loss function
(6) (line 2), and the following operations are conducted based
on this original model. To promote individual fairness and
protect privacy, we calculate each item LU , LF , LP and LE ,
and sequentially, we gain the overall objective function Ltotal
(line 9) and optimize the whole module utilizing the Adam
optimizer. Since optimizing the three parameters jointly is
impossible, we update the three model parameters iteratively.
Specifically, the two parameters are fixed when optimizing
another parameter. The time complexity of FPGNN consists
of three parts. The complexities of the privacy module and
the utility module are both O(n) and the complexity of the
fairness promotion module is O(Kn2) where n refers to the
number of nodes in the training set and K refers to the top-K
instances considered. Therefore, the computational complexity
of FPGNN is O(Kn2).

Algorithm 2 Training Algorithm of PL-FPGNN.

Input: Feature matrix X, adjacency matrix A, true labels the
observed sensitive attributes, the hyperparameters α, β,
and γ, the noisy sensitive attributes s′v for node v ∈ VS ,
and the probability of flipping sensitive attributes ρ.

Output: θG , θA, θE
1: Flip the sensitive attribute using a random response mech-

anism with probability ρ
2: Initialize the parameters θE of fE by optimizing the loss

function (17)
3: Initialize the parameters θG of fG by optimizing the loss

function (6)
4: Calculate the similarity matrix SG for feature matrix X.
5: while the stopping condition is not met do
6: Obtain the estimated sensitive attributes with fE for the

node
7: Obtain the graph embedding hv according to (4)
8: Obtain the prediction ŷv according to (5)
9: Calculate the similarity matrix SŶ for prediction

matrix Ŷ.

10: Compute LU , LF , LP ,LE and Ltotal according to (6)
(12) (18) (15) (16), respectively.

11: Optimize θG , θA, θE
12: end while
13: return θG , θA, θE

V. PL-FPGNN FOR PRIVATE AND PARTIAL
OBSERVED SENSITIVE ATTRIBUTES

In this section, we present the details of PL-FPGNN which
can promote individual fairness, defend against the attribute
inference attack described in Definition 1, and preserve the
competitive accuracy (Problem 2). The inference attack in
Definition 1 considers the limited sensitive attributes perturbed
by the LDP. By employing the approach for learning noisy
labels, the attacker can infer the accurate sensitive attributes.
However, without clean sensitive attributes, adversarial train-
ing cannot purge the sensitive factor efficiently. To defend
against inference attacks in this situation, we extend FPGNN
to PL-FPGNN. The framework of PL-FPGNN is shown in
Fig. 2. It consists of three key modules: the individual fair-
ness promotion module, the privacy-preserving module, and
the utility maximization module. For the privacy-preserving
module, we require the sensitive attribute estimator to predict
the clean sensitive attributes. To learn about the noisy sensitive
attributes, we first calculate p̂ (ŝ′ | x) from p̂(ŝ | x):

p̂ (ŝ′ | x) =
∑
s

p (ŝ′ | ŝ) · p̂(ŝ | x). (17)

where p (ŝ′ | ŝ) is directly gained from (3) and p̂(ŝ | x) is
the prediction of the sensitive attribute estimator. The forward
correction loss function is formulated as:

min
θE

LEp
= −

∑
v∈VS

s′v ln p̂ (ŝ
′
v | x) . (18)

Unlike FPGNN, all the nodes in the set VS are required to
be predicted by a sensitive attribute estimator as the existing
sensitive attribute in VS are perturbed by LDP. Based on
the clean data in Vc, the loss function (15) can also be
used to purge the sensitive information from the released
graph embedding. The PL-FPGNN algorithm is presented as
Algorithm 2.

The difference between PL-FPGNN and FPGNN is that PL-
FPGNN only accesses the noisy sensitive attributes denoted
as s′v and the probability ρ of flipping sensitive attributes.
Using forward correction loss, the sensitive estimator fE can
predict the clean sensitive attributes, which are recorded in Vc.
The calculations of the terms LU , LF , LP and Ltotal are the
same as FPGNN, while LE is replaced by LEp . Besides, the
parameters optimization is also the same as FPGNN. In PL-
FPGNN, the extra operation such as perturbing the sensitive
attributes, and calculation of forward correction loss both
exhibit O(n) time complexity. Therefore, the complexity of
PL-FPGNN is O(Kn2), which is the same as that of FPGNN.
Theorem 3. Forward correction loss (18) on the noisy sensitive
attributes is equal to the original loss (13) on the clean sensitive
attributes.
Proof. The details for proving that forward correction loss is
equal to the original loss can be found in [15].
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Fig. 2: The overall framework of PL-FPGNN.

TABLE I: Detailed statistics of datasets

Dataset Nodes Edges Features Sens.Attr Label
German 1000 22242 27 Gender Good/Bad Credit

Recidivism 18876 321308 18 Race Bail/No bail
Credit 30000 1436858 13 Mattied Default/No default

VI. EXPERIMENTS

In this section, we conduct empirical experiments to validate
the effectiveness of our proposed methods. Specifically, we
aim to answer the following research questions.

• RQ1: Can our proposed FPGNN promote individual
fairness and defend against attribute inference attacks
while maintaining high accuracy on limited sensitive
attributes?

• RQ2: Can our proposed PL-FPGNN on private and lim-
ited sensitive attributes well balance the utility, privacy-
preserving, and fairness promotion?

• RQ3: How do the fairness promotion module, privacy-
preserving module, and utility maximization module af-
fect our framework?

• RQ4: How do the hyper-parameters affect the perfor-
mance of our framework?

• RQ5: How do the size of sensitive attributes affect the
performance of our approaches?

A. Datasets

We conduct our experiments on three ethical datasets [9]:
German credit, Recidivism, and Credit defaulter. All these
datasets are public and available for access. The details of
these datasets are listed in Table 1. Specifically, the German
credit dataset consists of 1000 nodes. Each node represents a
client in German credit banks and is described by 27 attributes.
The sensitive attribute is set as the client’s gender. Each edge
denotes the similarity between users’ accounts. The task is to
classify the client into good or bad credit risks. Recidivism
has 18876 nodes which represent the defendants released on
bail in the U.S. state during 1990-2009. Each node contains
18 attributes and the race is a protected attribute. The edges
denote the similarity between the defendant based on past
criminal records and the demographics. The aim is to The
edges denote the similarity between the defendant based on
past criminal records and the demographics. The aim is to
predict whether the defendants commit a crime again. The

Credit defaulter dataset contains 30000 nodes that represent
the individuals, and age is a sensitive attribute. The edges refer
to the similarity between users, which is calculated using the
spending and payment patterns of the users. The goal is to
classify the users into default or not default using credit card
payments.

B. Evaluation Metrics

Following [9], we adopt node classification accuracy to
evaluate both node classification performance and privacy-
preserving performance. For the first task, high accuracy is
desired, while low accuracy is better for the second task.
The reason is that the second task is to predict the sensitive
attributes. Low accuracy indicates fewer accurate sensitive
attributes are predicted by the attacker and the privacy of
the private user is preserved. Following [13], ranking-based
individual fairness is employed to measure the performance
of fairness promotion. Essentially, this fairness is the ranking
accuracy. For each node, the order of the ranking list R1 is
desired, ranking list R2 derived from SŶ should be consistent
with R1. To measure the quality of R2, we adopt two widely
applied ranking metrics NDCG@K and ERR@K. The fairness
metric is the average of the NDCG@K and ERR@K values
across all nodes. Here, the K is set as 10 for the quantitative
comparison.

C. Baselines and Comparisons

To demonstrate the efficiency of our methods in balanc-
ing utility, fairness promotion, and privacy preservation, we
compare our approaches against state-of-the-art baselines: 1)
fair and privacy-preserving GNN training algorithms; 2) fair
GNN training algorithms; 3) privacy-preserving GNN training
algorithms; 4) backbones GNN models such as GCN [30],
GAT [31], and GIN [32]. The details of the baseline models
are listed as follows:

• REDRESS [12]: REDRESS promotes ranking-based in-
dividual fairness which ensures the ranking lists for each
node from input and output spaces are consistent.

• DP-GCN [9]: DP-GCN publishes no-sensitive latent rep-
resentations to defend against the attribute inference
attack.

• LPGNN [29]: This method is proposed to promote
ranking-based individual fairness on the perturbed data.

• FairGNN [17]: FairGNN uses adversarial learning to
make the released graph embedding decouple from the
sensitive features.

• NT-FairGNN [26]: NT-FairGNN achieves group fairness
in situations where limited sensitive attributes are per-
turbed by LDP.

• GUIDE [21]:This method promotes individual fairness
that relies on the Lipschitz condition and further considers
the equality of individual fairness between groups.

• Vanilla: Vanilla refers to the backbone model such as
GCN, GAT, and GIN without any additional modifica-
tions and enhancements.

REDRESS, LPGNN, LPF-IFGNN, GUIDE, and backbone
models such as GCN, GAT, and GIN need to complete
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TABLE II: The comparisons of our proposed methods with the baselines on limited sensitive attributes

ACC(U) ACC(Privacy) ACC(Utility) ACC(Privacy) ACC(Utility) ACC(Privacy)
Vanilla 70.20 ±  1.78 92.48 ± 2.38 90.77 ± 0.96 58.45 ± 0.74 80.24 ± 0.22 97.27 ± 0.09

REDRESS 66.20 ± 4.38 91.91 ± 1.43 89.25 ± 0.65 58.34 ± 0.57 78.99 ± 0.70 97.21 ± 0.65
DP-GCN 69.56 ± 0.88 91.14 ± 1.05 85.40 ± 0.55 54.95 ± 0.63 79.29 ± 0.18 90.99 ± 0.15
LPGNN 65.00 ± 4.68 87.14 ± 2.86 72.83 ± 1.86 50.10 ± 0.54 77.64 ± 0.40 90.49 ± 1.45

LPF-IFGNN 65.48 ± 3.94 84.95 ± 3.48 70.63 ± 7.01 50.56 ± 0.74 75.69 ± 3.08 89.49 ± 2.57

FairGNN 69.64 ± 0.87 91.52 ± 2.48 89.72 ± 0.30 58.93 ± 0.62 80.30 ± 0.11 95.88 ± 0.57
GUIDE 62.36 ± 1.18 93.90 ± 1.57 91.85 ± 0.36 62.87 ± 0.96 66.24 ± 0.65 90.65 ± 0.30
FPGNN 66.44 ± 1.46 90.67 ± 4.09 90.80 ± 0.17 57.50 ± 0.18 78.87 ± 0.51 94.46 ± 1.31
Vanilla 67.68 ± 1.68 86.29 ± 1.90 93.18 ± 0.23 58.80 ± 0.83 80.46 ± 0.11 97.03 ± 0.51

REDRESS 62.90 ± 5.02 92.26 ± 5.00 82.09 ± 7.53 58.02 ± 0.60 76.92 ± 1.71 96.90 ± 0.22
DP-GAT 61.12±12.14 88.86 ± 3.14 87.87 ± 0.30 54.90 ± 0.76 80.22 ± 0.17 90.98 ± 0.16
LPGNN 67.68 ± 1.90 70.19 ± 4.28 66.51 ± 2.44 50.61 ± 1.28 77.49 ± 0.37 86.54 ± 3.36

LPF-IFGNN 67.28 ± 2.56 67.43 ± 7.62 57.33 ± 4.42 50.04 ± 0.48 74.64 ± 3.99 85.97 ± 5.75

FairGNN 67.08 ± 1.82 87.81 ± 1.86 89.64 ± 0.37 58.75 ± 0.56 80.11 ± 0.19 96.31 ± 0.25
GUIDE 59.28 ± 1.38 79.71 ± 1.33 95.05 ± 0.49 61.18 ± 0.73 67.63 ± 1.64 90.00 ± 0.58 
FPGNN 65.68 ± 1.38 85.72 ± 3.52 92.16 ± 0.83 57.57 ± 0.53 78.23 ± 0.31 93.63 ± 1.34
Vanilla 63.16 ± 1.70 85.53 ± 1.91 92.39 ± 0.44 55.96 ± 0.78 79.00 ± 0.18 92.41 ± 0.44

REDRESS 60.52 ± 3.46 84.76 ± 3.09 87.90 ± 1.25 54.79 ± 0.77 76.86 ± 1.99 92.16 ± 0.52
DP-GIN 68.00 ± 4.12 83.71 ± 6.14 57.64 ± 11.11 51.20 ± 1.51 78.53 ± 0.18 90.95 ± 0.21
LPGNN 61.00 ± 0.74 82.86 ± 2.38 87.71 ± 0.33 52.58 ± 0.57 78.53 ± 0.18 90.95 ± 0.21

LPF-IFGNN 63.40 ± 1.60 83.52 ± 2.81 87.27 ± 0.91 53.13 ± 1.27 78.24 ± 0.19 91.00 ± 0.37
FairGNN 63.00 ± 2.56 83.71 ± 2.71 93.29 ± 0.30 55.39 ± 0.26 79.56 ± 0.15 91.67 ± 0.28
GUIDE 60.64 ± 1.96 83.24 ± 3.33 92.12 ± 0.18 56.38 ± 1.15 64.79 ± 0.44 90.74 ± 0.19

FPGNN 62.36 ± 2.28 79.43 ± 3.52 90.79 ± 1.37 54.22 ± 0.66 78.25 ± 0.58 91.08 ± 0.22
NDCG(fair) ERR(fair) NDCG(fair) ERR(fair) NDCG(fair) ERR(fair)

GCN Vanilla 42.38 ± 0.61 74.12 ± 1.03 33.20 ± 0.44 74.24 ± 0.33 53.43 ± 1.97 75.54 ± 1.26
REDRESS 44.24 ± 1.46 75.21 ± 0.85 33.75 ± 1.02 74.48 ± 0.31 56.87 ± 4.44 77.60 ± 2.86
DP-GCN 43.10 ± 0.75 74.27 ± 0.62 32.99 ± 0.21 73.90 ± 0.20 58.69 ± 0.68 79.51 ± 0.52
LPGNN 41.06 ± 1.97 73.22 ± 1.74 31.60 ± 0.15 73.04 ± 0.80 37.15 ± 0.46 66.99 ± 0.84

LPF-IFGNN 42.23 ± 1.04 75.79 ± 2.67 31.76 ± 0.21 73.84 ± 0.31 37.36 ± 0.81 67.41 ± 0.63
FairGNN 38.06 ± 1.12 74.59 ± 1.47 30.81 ± 0.76 71.17 ± 2.99 31.48 ± 1.79 63.94 ± 3.49
GUIDE 32.02 ± 1.79 69.43 ± 3.80 20.85 ± 0.41 67.82 ± 4.68 35.90 ± 0.97 71.95 ± 2.43
FPGNN 45.61 ± 1.61 76.20 ± 1.36 34.46 ± 0.94 74.60 ± 0.83 65.27 ± 1.20 83.71 ± 0.63

GAT Vanilla 43.51 ± 0.84 74.92 ± 1.35 33.26 ± 0.53 73.92 ± 0.28 55.87 ± 1.68 77.55 ± 1.31
REDRESS 45.35 ± 0.61 74.74 ± 0.55 34.10 ± 0.96 74.54 ± 0.35 57.94 ± 4.26 78.61 ± 2.54
DP-GAT 44.51 ± 1.91 74.66 ± 1.03 32.86 ±  0.26 73.96 ± 0.12 59.50 ± 0.38 79.04 ± 0.26
LPGNN 43.25 ± 1.14 78.64 ± 3.26 32.58 ± 0.08 73.83 ± 0.48 43.23 ± 2.45 69.75 ± 1.22

LPF-IFGNN 42.07 ± 2.91 75.53 ± 3.18 32.98 ± 0.32 74.21 ± 0.39 49.17 ± 1.99 74.08 ± 1.25
FairGNN 35.08 ± 0.78 70.36 ± 3.96 31.29 ± 1.44 72.31 ± 5.26 31.82 ± 1.51 63.62 ± 4.71
GUIDE 32.45 ± 1.45 72.52 ± 2.62 20.92 ± 1.20 68.08 ± 4.75 37.73 ± 1.02 79.11 ± 2.22
FPGNN 46.54 ± 0.77 75.80 ± 0.40 34.67 ± 0.88 74.56 ± 0.46 65.70 ± 2.73 82.96 ± 2.72

GIN Vanilla 40.45 ± 0.84 73.20 ± 0.68 32.44 ± 0.33 73.76 ± 0.18 41.82 ± 0.77 69.28 ± 0.38
REDRESS 42.09 ± 0.68 74.68 ± 0.52 33.11 ± 0.40 74.07 ± 0.30 45.97 ± 1.32 71.66 ± 0.91
DP-GIN 42.12 ± 1.17 74.36 ± 1.38 33.93 ± 1.51 74.78 ± 1.23 37.65 ± 0.88 67.21 ± 0.51
LPGNN 40.45 ± 0.91 74.12 ± 0.69 31.80 ± 0.05 73.64 ± 0.04 37.65 ± 0.88 67.21 ± 0.51

LPF-IFGNN 41.20 ± 1.09 74.66 ± 1.28 31.90 ± 0.09 73.65 ± 0.20 37.94 ± 1.17 67.28 ± 0.66
FairGNN 37.25 ± 1.72 73.88 ± 2.29 32.01 ± 1.27 73.34 ± 2.30 31.03 ± 2.15 63.25 ± 3.71
GUIDE 33.02 ± 1.04 73.35 ± 1.75 21.26 ± 1.00 70.07 ± 4.15 35.20 ± 1.59 69.38 ± 2.34
FPGNN 44.91 ± 0.65 75.83 ± 0.85 34.58 ± 0.50 74.63 ± 0.24 57.04 ± 1.40 78.35 ± 0.96 

GAT

GIN

Methods
German Recidivism Credit

GCN

sensitive attributes during training. Hence, we employ GCN
as a sensitive attribute estimator. By treating non-sensitive
attributes as inputs and sensitive attributes as outputs, we
train a GCN classifier to predict missing sensitive attributes
in the training data. Additionally, FairGNN and DP-GCN are
specifically designed to handle scenarios where only limited
sensitive attributes are available. These methods are well-
suited for our experimental setup.

D. Implementation Details

For each dataset, we randomly split 30% of nodes for
training, 20% of nodes for validation, and the remaining 50%
of nodes for testing. To generate limited sensitive attributes,
we randomly sample 30% of nodes from the training set, the
sensitive attributes of the remaining nodes are unknown. Each
experiment is conducted 5 times and the result is reported
with average value and the standard deviation. For gener-
alization purposes, we employ three widely applied GNNs:

GCN [30], GAT [31], and GIN [32] as the backbone model.
Each backbone consists of two layers with 32 hidden units.
To facilitate the information flow, we employ SELU as the
activation function between two layers. In the experimental
setup, we set the default values for weight decay, learning
rate, and dropout rate as 5e-6, 0.01, and 0.3, respectively. The
initialization of the backbones requires 300 epochs, while the
subsequent steps for fairness promotion and privacy protection
encompass 15 epochs. To identify the optimal model, we vary
the hyperparameters α, β, and γ among {0.5, 1, 10, 20, 50},
{0.1, 1, 2, 4, 6, 8, 10}, and {0.1, 1, 2, 4, 6, 8, 10}. The
selection of the most suitable hyperparameter is based on the
performance of the model on the validation set.

E. Performance of FPGNN

To answer RQ1, we compare FPGNN against state-of-
the-art alternatives on balancing utility, privacy, and fairness.
For generalization purposes, FPGNN and other baselines
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Fig. 3: The changes in privacy inference accuracy, fairness promotion (NDCG, ERR), and classification accuracy compared
with GAT (a) and GIN (b).

are conducted under various GNN backbones. Quantitative
results for the experiment are shown in Table 2. In this
table, higher ACC(Utility) indicates better performance on
model utility; higher NDCG(Fair) and ERR(Fair) represent
better performance on ranking-based individual fairness, and
lower ACC(Privacy) indicates better performance on privacy
protection. We can make the following observations from
Table 2:

From the perspective of model utility, our proposed frame-
work FPGNN demonstrates competitive performance com-
pared to other state-of-the-art baselines. Compared to the
backbone model, the accuracy of FPGNN decreases by no
more than 3%. Compared with individual fairness methods
such as REDRESS and GUIDE, FPGNN has better perfor-
mance in most cases. Besides, compared with the privacy-
preserving GNN baselines, FPGNN also outperforms them in
most cases. In some cases, the alternatives such as privacy-
preserving GNNs or fair GNNs outperform the backbones.
The reason can be conjectured that the privacy-preserving or
fairness promotion methods play the role of regularization to
prevent overfitting.

From the perspective of ranking-based individual fairness,
our framework outperforms all baseline methods in all cases
with different levels of improvement w.r.t the fairness evalua-
tion metric NDCG@10 and ERR@10. This verifies the effec-
tiveness of the individual fairness promotion of FPGNN. The
reason is that our fair loss function is a good approximation to
the true loss. Although we adopt a differentiable version for
NDCG@10, ERR@10 is also improved as they both measure
ranking accuracy in terms of similarity information and posi-
tion information. GUIDE does not improve NDCG@10 and
ERR@10 in some cases as it is not designed for rank-ing-
based individual fairness.

From the perspective of privacy protection, our frame-
work provides competitive performance. Compared with fair
GNNs such as REDRESS, and GUIDE, our methods can sig-
nificantly improve privacy-preserving performance. Besides,

FPGNN also outperforms the backbones such as GCN, GIN,
and GAT. Compared with the privacy-preserving baselines,
FPGNN protects less privacy as the aim of FPGNN is not
just to protect privacy.

From the perspective of balancing the model utility and
individual fairness and privacy protection, Fig. 3 present the
changes in privacy inference accuracy, fairness promotion
(NDCG@10 and ERR@10), and classification accuracy com-
pared with the backbone GNNs. We take FPGIN as an exam-
ple, compared with GIN, FPGIN reduces the privacy inference
accuracy by 3.4% on the Credit dataset, improving the fairness
by 5.41% for ERR@10 and 9.83% for NDCG@10 with only
a 2.23% of accuracy decrease. Based on such observations,
we contend that FPGNN achieves a superior balance between
utility, privacy, and individual fairness compared with other
available alternatives. utility, privacy, and individual fairness
compared with other available alternatives.

F. Performance of PL-FPGNN

To address RQ2, we conducted further experiments to
evaluate the performance of PL-FPGNN in scenarios where
sensitive attributes are limited and private. While accuracy
and individual fairness are minimally impacted by the sen-
sitive attributes, our focus is on defending against inference
attacks. We compare PL-FPGNN with four baseline methods,
including GNN, DPGNN, NT-FairGNN, and FPGNN on three
backbones: GCN, GAT, and GIN. To provide a more intuitive
representation of the level of privacy protection, we employ
the flipping probabilities instead of the privacy budget, which
is varied across {10%, 20%, 30%, 40%}. Each experiment
was repeated five times to ensure statistical reliability. The
outcomes of these experiments are shown in Fig. 4. In Fig.
4, we draw the following observations: The noise ratio of
released sensitive attributes does not have a consistent impact
on both fairness and accuracy. The PL-FPGNN exhibits lower
inference accuracy compared to FPGNN across various noise
ratios. The reason is that the sensitive attribute estimator
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Fig. 4: The comparisons of PL-FPGNN with baselines on private and limited sensitive attributes.

employs the forward correction loss and can provide accu-
rate predictions of sensitive attributes. The FPGNN and PL-
FPGNN exhibit moderate accuracy and outperform the other
baseline model in terms of individual fairness.

G. Ablation study

To answer RQ3, we discuss the functionality of the com-
ponents of FPGNN in this section. The FPGNN consists
of three modules: the individual fairness promotion module,
the privacy-preserving module, and the utility maximiza-
tion module. To explore the necessity of each module of
FPGNN, we design three variants: FPGNN\F, FPGNN\P, and
FPGNN\U. Specifically, FPGNN\F eliminates the individual
fairness promotion module; FPGNN\P means FPGNN without
the privacy-preserving module; FPGNN\U doesn’t consist of
the utility maximization module. We only show the result
on the German dataset as we have similar observations on
the other datasets. The experiment results are shown in Fig.
5 and we make the following observations. From the per-
spective of privacy protection, FPGAT\P has higher inference
accuracy compared with other alternatives. This indicates the
necessity of the privacy module for protecting privacy. For
fairness promotion, FPGCN\F has less performance than the

alternatives such as FPGNN\P, FPGNN\U, and FPGNN. In
some cases, the privacy-preserving module may promote in-
dividual fairness. For instance, FPGCN\F and FPGIN\F have
better fairness promotion than the corresponding backbones.
However, in other cases, increasing privacy performance may
decrease fairness promotion. Hence, a fairness module is nec-
essary for stable fairness promotion. For utility maximization,
FPGNN\U achieves lower node classification accuracy com-
pared to other alternatives. It is worth noting that the accuracy
of FPGAT\U is 43.5, which is significantly lower than the
performance of the GAT backbone. Hence, it is necessary
to preserve accuracy when promoting individual fairness and
protecting privacy. Although, sometimes, the fairness terms or
the privacy terms may play a role in regularization. It can
prevent the over-fitting of backbone GNN models. However,
in most cases, fairness promotion and privacy protection may
decrease the accuracy as achieving these requirements may
change the outputs of the original model.

PL-FPGNN has an estimator with a denoising mechanism
that provides clean sensitive attributes for adversarial training.
Since the other parts of PL-FPGNN are the same as FPGNN,
PL-FPGNN only needs to be compared with FPGNN, aiming
to verify the necessity of the denoising mechanism. FPGNN
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Fig. 5: The results of ablation studies for FPGNN.

and PL-FPGNN have been compared on the dataset with
perturbed sensitive attributes in section 6.6. We find that PL-
FPGNN has better performance on privacy preservation, which
is benefit from the accurate sensitive attributes learned from
the denoise mechanism. Therefore, the validity and necessity
of the estimator are demonstrated.

H. Parameter-sensitive analysis

To answer RQ4, we analyze the parameter’s effect on the
performance of FPGNN. In our framework, the quality of
the approximation is controlled by α, the fairness promotion
is controlled by β, and the contribution of the privacy term
is controlled by γ. Since α and β both affect the fairness
promotion, we keep γ unchangeable and very α and β across
{5, 10, 50, 100} and {1, 5, 10, 15, 20}, respectively. The
results of this experiment are presented in Fig. 6. To investigate
the impact of γ, we conduct experiments by keeping α and
β unchangeable and varying γ across {1, 5, 10, 15, 20},
and the results are presented in Fig. 7 (a). To explore the
impacts of the size of sensitive attributes (RQ5), we vary the
sizes of sensitive attributes as {0.1, 0.2, 0.4, 0.6, 0.8}, and
keep the other hyperparameters unchangeable. We only show
the results of FPGNN on German datasets and have similar
observations on the other datasets and for PL-FPGNN. The
results are shown in Fig. 7 (b).

From Fig. 6, we find that as α and β increase, the accuracy
of attribute inference attacks on graph embeddings also in-
creases. This reason is that, in graph data, neighboring nodes
tend to possess similar predictions. The fairness promotion
may provide a more similar prediction for the nodes and their

neighbors, which is also incorporated into graph embedding
and results in increasing the accuracy of the inference attack.
This also highlights the necessity of striking a balance between
fairness and privacy. For model utility, as the α and β increase
to an appropriate value, the accuracy of the model reaches
the maximum, which indicates that fairness loss serves as a
regulation to prevent overfitting. However, as α and β continue
to increase, the utility of the model decreases. When these
parameters reach the maximum, the accuracy is lower than
the accuracy of the baseline model. With the increase of α
and β, fairness metrics such as NDCG@10 and ERR@10
initially increase until reaching a maximum. However, further
increasing α and β leads to a fairness decline.

Fig. 7 (a) shows the effect of γ on the accuracy of attribute
inference attacks. As γ increases, the accuracy of inferring sen-
sitive attributes initially decreases and then reaches a plateau.
Similarly, the utility of the model follows a similar pattern,
initially decreasing and then stabilizing. This observation
indicates that privacy protection is increased in a certain range
of γ, which may decrease the model utility. Furthermore, the
variations in γ do not significantly impact the fairness metrics
NDCG@10 and ERR@10.

In Fig. 7 (b), the accuracy and fairness both improve slightly
as the number of sensitive attributes gradually increases in the
training set. This indicates that clean sensitive attributes may
slightly lead to better performance on accuracy and fairness.
The inference accuracy (i.e., the performance of privacy pro-
tection) improves with the increased size of sensitive attributes.
Since the model has access to more sensitive attributes, it can
infer more accurate sensitive attributes.
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Fig. 6: Parameter sensitivity analysis of FPGIN (α and β).
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Fig. 7: (a) Parameter sensitivity analysis of FPGIN (γ) ; (b)
Impact of the size of sensitive attributes to FPGNN

VII. CONCLUSION

In this paper, we propose a novel approach to tackle the
challenge of promoting individual fairness and mitigating
the leakage of sensitive attributes in graph embedding with
limited and private sensitive attributes. We propose two GNN

training algorithms, namely FPGNN and PL-FPGNN, which
are designed to be individual fairness-aware and privacy-
preserving GNN models. FPGNN specifically focuses on
scenarios where the sensitive attributes are limited. It tackles
the fairness issue by employing our proposed ranking-based
individual fairness methods and removes sensitive informa-
tion from graph embeddings through adversarial training.
Additionally, FPGNN also considers the task of maximizing
downstream task accuracy. We further consider the situation
that the limited sensitive attributes are perturbed by LDP. To
explore the privacy issues in this situation, we propose a novel
attribute inference attack. Since the privacy-preserving module
of FPGNN needs clean sensitive attributes, we propose PL-
FPGNN to defend against this novel inference attack. Exper-
imental evaluations conducted on three benchmark datasets
demonstrate that both FPGNN and PL-FPGNN achieve a
good balance between individual fairness promotion, privacy
protection, and utility maximization. An interesting avenue for
future research involves integrating other privacy-preserving
GNNs and fair GNNs to offer diverse solutions that cater to
different real-world requirements. Besides, trustworthy GNNs



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

consist of four ethical principles, namely respect for human
autonomy, prevention of harm, fairness, and explainability. Our
work primarily focuses on achieving fairness and preventing
harm. In the future, we will investigate how to explain the bias
and mitigate it based on the explanation.
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