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Abstract

This research paper presents an advanced robotic system designed for efficient pick-and-place of deformable poultry pieces

from cluttered bins. The system incorporates a novel architecture with seamless integration of various modules, enabling the

robot to handle deformable poultry with precision. It introduces a comprehensive evaluation approach to assess the system’s

performance, considering perception, state modeling, planning and control, gripping and manipulation. The experiments were

conducted on two different samples of chicken pieces with varying weights and shapes, under complex and simple scenarios.

Performance indicators, failure categories, and cycle time were used for evaluation. The evaluation revealed an overall success

rate of 49.4% for picking and placing chicken pieces, with failure rates of 21.8% for perception, 30.7% for gripping, and 11% for

manipulation modules. These results highlight areas of improvement, particularly in object detection, grasp pose estimation in

clutter, and gripper designs for deformable products, to create a robust pick-and-place solution. The proposed robotic system

and evaluation method hold immense potential for revolutionizing the meat processing industry and other food processing

sectors, making automation more efficient and adaptable to meet the increasing demand in the food industry.

1



Advanced Robotic System for Efficient Pick-and-Place of Deformable
Poultry in Cluttered Bin: A Comprehensive Evaluation Approach

Rekha Raja1, Akshay K. Burusa1, Gert Kootstra1, Eldert J. Van Henten1

Abstract— This research paper presents an advanced robotic
system designed for efficient pick-and-place of deformable
poultry pieces from cluttered bins. The system incorporates a
novel architecture with seamless integration of various modules,
enabling the robot to handle deformable poultry with precision.
It introduces a comprehensive evaluation approach to assess the
system’s performance, considering perception, state modeling,
planning and control, gripping and manipulation. The exper-
iments were conducted on two different samples of chicken
pieces with varying weights and shapes, under complex and
simple scenarios. Performance indicators, failure categories,
and cycle time were used for evaluation. The evaluation revealed
an overall success rate of 49.4% for picking and placing
chicken pieces, with failure rates of 21.8% for perception,
30.7% for gripping, and 11% for manipulation modules. These
results highlight areas of improvement, particularly in object
detection, grasp pose estimation in clutter, and gripper designs
for deformable products, to create a robust pick-and-place
solution. The proposed robotic system and evaluation method
hold immense potential for revolutionizing the meat processing
industry and other food processing sectors, making automation
more efficient and adaptable to meet the increasing demand in
the food industry.

Index Terms— Robotic system architecture, Deformable ob-
ject, Machine learning, Bin picking, System analysis. Robotic
system architecture, Deformable object, Machine learning, Bin
picking, System analysis.

I. INTRODUCTION

With the advent of industry 4.0 there has been a demand
to transform food processing using robotics and artificial
intelligent (AI) technology. However current robotic and AI
technology is not able to deal with the large variations in shape,
size, and softness of natural food products like meat. Although,
worldwide, meat consumption has been rapidly increasing [1]
due to a change in diet to include more meat. Today, poultry
production accounts for roughly one-third of total meat pro-
duction worldwide [2]. Since the demand for poultry products
is increasing globally, the need to process more poultry is also
increasing. Despite the fact that the poultry-processing industry
has achieved a high degree of automation already, technical
solutions mainly rely on mechanical engineering. Certain tasks,
such as picking chicken pieces from a cluttered pile in a crate
and placing them in order, are still a challenging problem to
automate [4], and therefore currently this task is performed by
human workers (see Figure 1). This so-called bin-picking task
in poultry processing is technologically challenging due to the
fact that poultry pieces come in varied shapes and sizes and
are packed closely and disorderly piled up together in a bin
which makes it extremely hard to segregate and place them
in sequential order in another bin or on a conveyor belt in
the desired position and orientation, using purely mechanical
means. A different and more advanced kind of technology is
called for.

1Farm Technology group, Wageningen University and Research,
6700AA, Wageningen, The Netherlands

Fig. 1: Poultry pieces are currently manually segregated
from cluttered piles in bins to place them in order on the
conveyor belt by human laborers for further processing in
the processing line in an industry that is still labor intensive
(source: [3]).

Robot technology has the potential to provide flexible so-
lutions in the face of product and task variation. So far,
robot technology has been extremely successful in, for instance,
the manufacturing industry [5]. Repetitive operations on large
numbers of objects that are very well-defined in terms of
location, orientation, shape, and size were instrumental to this
success. Robots have also entered the agro-food production
chain, where adoption continues to grow rapidly [5]. This trend
expresses the readiness of this industry to adopt more advanced
technology. However, the robots currently used in the agro-
food domain are dealing with simple operations on products
without much variation and are essentially based on industrial
robotic pick-and-place technology. Current robot technology
still cannot meet the requirements of flexibility when dealing
with variation within and between different classes of products.
Switching between tasks is an additional challenge on which
robotics still needs to deliver. And due to the characteristic
of the meat industry, robot technology needs capabilities of
perception and action to deal with complex manipulation tasks
while handling products having a surface with low and varying
friction characteristics and products that easily deform under
external forces.

In the FlexCraft project [6], we aim to develop more flexible
robotic technology for poultry processing. Automating the poul-
try bin-picking task with robots requires flexible capabilities,
including perception, world modelling, planning and control,
and gripping. However, integrating these modules robustly
presents a challenge. Moreover, evaluating such a large complex
system requires a systematic approach that considers the per-
formance of individual modules that adds to the performance
of the overall system. The existing approaches for evaluating
robotic systems focus either on the whole system’s performance
without assessing individual modules or solely on the evaluation
of individual modules without translating the results to the
system’s performance. A comprehensive evaluation method
is needed to understand the system’s performance, identify
failures, and guide future research for improvement.

Therefore, the contributions of this work are as follows: i) we



a novel robotic system architecture is proposed and developed
for picking poultry pieces from a cluttered pile in a bin and
placing them in sequential order in another bin or on a conveyor
belt, ii) a novel approach to evaluate the performance of such
a large system of bin-picking robots is proposed by assessing
individual modules as well as the overall system, and iii) using
this procedure, we showed where and why the robotic bin
picking system failed and where future research should focus
to improve the system’s performance and discuss the pros and
cons of each sub-component of the systems and technologies
including the details of the systems.

The paper is organized as follows. Section III-A describes
the experimental environment. Section III-C introduces the
hardware and software components of the systems. Section III-
D describes the architecture of the proposed system. Section
III-E presents algorithms proposed for the individual modules.
Section IV presents the methods to conduct experiments and
the novel procedure to analyze pick-and-place robotic systems.
Section V provides the results and the discussion follows in
Section VI.

II. BACKGROUND

The literature on robotic automation in meat processing is
limited, with a few notable studies focusing on specific aspects
of meat handling [7], [8], [9]. Jorgensen et al. [10] presented a
robotic system for pick and place operations of pork meat using
suction cups. In [11] the same authors developed a vacuum
gripper for picking and placing meat products by the robot.
Joffe et al., [12] demonstrated an approach to handling poultry
products that allowed picking up a whole chicken from an
unordered bin using a suction cup gripper and placing it
in a canonical orientation. However, these studies primarily
evaluated the performance of individual modules rather than
the entire system.

When it comes to assessing robotic systems, current literature
shows two approaches: (1) the performance of a whole system is
analyzed, without paying too much attention to the performance
of individual modules in that system, or (2) the performance
of individual module(s) is evaluated without translating the
results to a performance of a total system. A clear example of
the former approach is in the Amazon picking challenge [13].
The evaluation methods used in the Amazon picking challenge
also focused on overall system performance without considering
individual module performance [14]. However, an overall score
of the performance does not measure the performance of
individual modules comprising the system and is therefore not
useful to understand where a system fails and where to pay
attention in future research to improve the technologies to solve
real-world problems.

Examples of the latter assessment approach, in which indi-
vidual modules are evaluated and not the whole system, can
be found in research on meat processing systems. For example,
Jorgensen et al. [10] measured the performance based on the
score that comprises three sub-scores for placing the meat at
the desired position and orientation, and ensuring the safety
of the product. In [11] the authors manually analyzed the
performance of suction cup based system for grasping meat
pieces and identified three categories of failures due to vacuum
loss during lifting, vacuum loss during transferring, and when
multiple objects were lifted during the grasp. However, they did
not analyze the performance of the whole system. In [15], the
author investigated the gripping mechanism for manipulating
deformable meat products in the industry based on the criteria
of maintaining safety (preventing visual and physical damage to
the product) and hygiene standards. In their work Joffe et al.,
[12] did not show the evaluation method for the entire pipeline
either but only evaluated the picking and placing performance
considering whether an object was picked up or not by the

Fig. 2: Experimental setup for picking and placing of chicken
pieces from a crate.

suction cup and whether the breast of the chicken was facing
the picking area and the neck of the chicken was pointing up
towards the ceiling, respectively.

It appears in research on robotic automation of meat
processing that a common evaluation process assessing both
the performance of individual sub-processes as well as the
overall system performance is lacking, and such a method could
help to get more insight into the different sub-processes in
the whole pipeline. In related robotics research on greenhouse
automation Van Henten [16] and Bac et al., [17] proposed a
robotic system for harvesting vegetables and their assessment
procedure. Building on their work as a second contribution
of this paper, we proposed and demonstrated an assessment
procedure that evaluates both the individual modules as well
as their contribution to the overall performance of the whole
system for bin-picking robots for meat processing which could
provide important insights into the performance of the whole
system.

III. MATERIALS AND METHODS

A. Experimental Environment

The pick and place environment was created in a laboratory
setup shown in Figure 2. The chicken pieces were randomly
positioned in a black crate having dimensions of 580 x 380
x 30 mm. There was ambient illumination only; no additional
lighting was used. The set-up was designed to replicate a future
industry set-up, that is, a robotic arm was installed next to the
bin so that the bin was reachable by the robot to pick up objects
and place them at a distance from one another on a conveyor
belt. In order to obtain a top view of the bin, a camera (Model:
Intel RealSense D435, 2017) was installed at the top of the bin
at a height of 740 mm. A 6 DoF manipulator (Model: ABB IRB
1200) was placed at a distance of 250 mm and 80 mm away from
the bottom-left corner of the crate along the x-axis and y-axis
of the robot so that it could reach everywhere inside the crate.
A gripper (Model: Festo Adaptive gripper fingers DHAS-ME-
H9-120) was mounted at the end-effector of the robot which
was used for picking and placing the chicken pieces.



B. Objects characteristics and variations
The experiments were performed at room temperature with

two different samples of chicken pieces, one containing light-
weight pieces and the other containing heavy-weight pieces.
These chicken pieces exhibited variations in terms of sizes,
shapes, and weights, as detailed in Section III-A. The heavy
sample contained pieces having lengths ranging from 22 cm to
24 cm and widths ranging from 7 cm to 10 cm and a weight
range from 330 grams to 370 grams; the light sample contained
pieces having lengths ranging from 16 cm to 18 cm and the
width ranged from 5 cm to 7 cm and the weight ranged from
280 grams to 320 grams. The utilization of different samples
allowed us to analyze the potential influence of size and shape
on the system’s performance.

C. Hardware and software components of the systems
The robotic system was developed as part of the research

project called FlexCRAFT which stands for ”Cognitive Robots
for Flexible Agro Food Technology” [6]. A detailed description
of the hardware and software components of pick-and-place
robots and a discussion of choices for each component is given
in the following sections.

1) Hardware components: The robotic systems for picking
and placing objects mainly consisted of three subsystems: a
manipulator, an end effector, and a sensing system.

• Manipulator We used the ABB IRB 1200 manipulator
having 6 degrees of freedom. The 6 degrees of freedom
provide the robot with the ability to move in 3-dimensional
space and to allow free positioning and posturing of the
tip of end effectors to cope with jobs. This capability is
very useful for picking and placing objects. Moreover, as
it is not a redundant manipulator, analytical solutions to
the inverse kinematic exist. Hence its calculation becomes
simpler.

• End effector The chicken pieces are naturally deformable
objects of varied shapes and sizes. To manipulate such
kinds of objects without damaging them requires a robust,
highly flexible gripper. [15] reviewed unilateral grippers
for a robot to use in meat processing. However, unilateral
gripping devices such as magnetic, needle, and adhesive
gripers were disregarded as ineffective, damaging to the
product, or unhygienic. To the best of our knowledge,
at present, the gripper which can safely manipulate
deformable poultry pieces is very rare in the market.
We experimented with different grippers available in the
market to pick and place chicken legs, for example, the
suction cups, 2-fingers Robotiq gripper, and the Festo Fin
Ray grippers. However, experimentally, it has been found
that the suction cups are not suitable for picking chicken
pieces as they leave undesired marks on the piece that is
referred to as visual damage, as shown in Figure 3 and it
does not fulfill the requirement of maintaining hygiene.
Suction-type grippers based on Coanda and Bernoulli
principles, including hybrid designs incorporating novel
additions, have also been discounted due to hygienic issues
in the meat processing environment [15]. The design of the
robotic gripper is also not very suitable for manipulating
chicken legs as its grasping is not as firm as required
to transport chicken pieces. Even, there is more chance of
physically damaging the product as it is very rigid. None of
the grippers are 100% successful in picking and placing
chicken pieces. Even, there are other grippers available
from the company Soft Robotics such as mGrip™ [18]
that could be useful to handle deformable meat pieces.
However, they are very expensive compared to others.
In this paper, we chose the Festo gripper (Model: Festo
Adaptive gripper fingers DHAS-ME-H9-120) as an end-
effector for the experiments as it is adaptive to shapes and

(a) (b)

Fig. 3: (a) Undesired mark on the chicken leg after picking
it by the suction cup, (b) grasping chicken pieces by the 2-
fingers Robotiq gripper was not very stable.

sizes. This adaptive gripping can be successfully applied
in food processing applications to process products of
varying sizes and contours. A particular characteristic
of the Fin Ray Effect® is the structure’s ability to
adapt to different component contours. Pressure-sensitive
workpieces, in particular, can be displaced and deposited
without damage.
This simple Fin-ray gripper can reliably pick chicken legs
from the narrow, deep shelf bins. The simple shape and
thin fingertips of the end-effector reduce the need for
complex collision avoidance or pre-grasp object manip-
ulation, as it easily fits in between objects, pushing them
aside if necessary. This simple choice for the end effector
illustrates that an appropriate embodiment simplifies dif-
ferent aspects of the overall solution, including perception,
planning, and grasping.

• Sensors An RGBD camera (Model: Intel RealSense D435)
was used to capture both the RGB and the depth image
of the crate from the top.
In order to integrate all the hardware components, an
interface was provided by a computer. The ABB IRC5
robot controller was connected to the computer through
the gigabit Ethernet (GigE) interface to control the ma-
nipulator. The gripper was controlled via an Arduino,
and it was directly connected to the Arduino board via a
simple breadboard circuit. Serial communication between
the Arduino controller board and the computer was done
through a USB. The camera was connected directly to the
computer through a USB cable.

2) Software Components: A generic modular software
framework for the development of picking and placing robots
was developed as part of the FlexCRAFT project. The goal
was to provide a modular generic high-level functionality by
structured programming, thus leading to faster and simplified
development of robots. In theory, this allows users to have
multiple modules - but they are different approaches to ac-
complishing the same task and they can be called whenever
required. It becomes easier to remove an existing module
or add a new module to be called in the main program.
The software framework allows sequential/parallel execution
of different modules to perform complex tasks. Each module
was written in C++ or Python language.

A Linux (version: Ubuntu 20.04) operating system was
installed on the computer with the necessary modules to connect
to external devices. A Robot Operating System (ROS, Noetic)
was utilized as a middleware running on Ubuntu to communi-



cate between hardware and software modules while performing
parallel execution of different modules of the robot. Each mod-
ule was created as a ROS node that was able to communicate
with other ROS nodes through a topic and respond to inputs. To
perform the motion planning a MoveIt package was integrated
with ROS and for the simulation and visualization, a Gazebo
platform was used. These packages/platforms communicate
with the system by digital I/O interface.

However, it is not always simple to develop code to manage
these many modules to communicate with different devices. We
designed a generic state machine that organizes and regulates
the execution sequence of each module or function by operating
its own ROS nodes. In each stage of the state machine, a
task must be finished by one or more ROS nodes. The state
machine managed and transfered data to other nodes as input
as necessary. A node is actually just executable software that
is part of a ROS package. To communicate with one another,
ROS nodes employ a client library. Nodes have the ability to
publish or subscribe to Topics. Services may also be provided
by or used by Nodes. Depending on the condition or situation,
the state machine made a transition to one of the possible
next states. Implementing code and error handling functionality
was made simpler by centralizing this transition mechanism
into a general system component. The status of the software
system was regularly checked by a performance monitor. An
error handler determined the best course of action to do when
an error was discovered, such as pausing the program and
informing the user via an error message or resetting a node,
thus realizing the performance of the whole system.

D. System Architecture
A novel system architecture was designed for a fully au-

tonomous robot that was developed for picking chicken pieces
from a bin of cluttered scenes to segregate and place them in
order. The system architecture integrates four main modules:
(A) perception module, (B) world modeling module, (C) motion
planning and control module, and (D) gripping module, which
addresses the specific challenges associated with the picking and
placing of chicken legs.

• Perception: This module process sensor data and interpret
it within the context of the task description, allowing the
robot to understand its surroundings. For example, detect-
ing and identifying the objects that has to be picked up by
the robot, localizing them in the crate, and determining
the corresponding real-world coordinates of the objects.
It extracts relevant visual features and provides essential
input to the subsequent modules.

• World Modelling: This module acts as a bridge between
the other modules, storing and exchanging various types
of information about the robot’s environment, which other
modules can read or write. It constructs a comprehensive
representation of the environment, taking into account
both static and dynamic elements. It incorporates informa-
tion from the perception module, such as the geometry and
deformability of the chicken legs, the cluttered bin, and
other objects in the vicinity. This representation enables
the robot to reason about the state of the environment,
predict the behavior of the objects, and make informed
decisions during the pick-and-place process.

• Decision Making and Planning: This module help the
robot decide what actions it should perform at each
moment to achieve its tasks effectively. For example, it
generates collision-free trajectories for the robot’s ma-
nipulator to reach and grasp the chicken legs. It utilizes
the information from the world modeling module to plan
efficient path that consider task-specific objectives.

• Gripping: It takes into consideration the information from
the world modeling modules to determine the optimal grip

Fig. 4: The system architecture, a Task-Execution-
Knowledge (TEK) framework. It emphasizes on the tasks
that are translated into physical actions through the execution
of skills, which are based on the robot’s knowledge and capa-
bilities. It highlighting the importance of task execution and
knowledge-driven decision-making. In essence, the figure
serves as a visual representation of the system’s architecture
and interactions without directly representing the software
components themselves.

Fig. 5: The data association/interconnection hierarchy of
dependencies between different components in the robotic
systems.

configuration. It focuses on the control of an adaptive
gripper or end-effector to securely grasp the target chicken
legs. It takes action to open the gripper at appropriate
time to grasp the target and close the gripper to release
the target when it reached the desired placing location.

The Figure 4 represents the robots system architecture, a task-
skill-motion paradigm, that is how a robotic system connects
the robot’s task (what it needs to do) to its physical motion
(how it performs the task), that is facilitated by the robot’s
knowledge/skill, which helps the robot make the right decisions
at the right time. The skill is a set of interactions between
hardware and software activities that enable the robot to
realise above four mentioned responsibilities. In summary, the
figure illustrates how the robot’s task, knowledge, and motion
are interconnected through discrete and continuous control,
perception, world model, and gripping modules, enabling the
robot to carry out its tasks efficiently and effectively. Figure
5 show how behavioral interactions occur at different levels of
modeling the world:

• Actuators and sensors form the basic level, linking the
robot to the physical reality. This level represents the
”smallest world” where the robot operates.

• The next level involves models of relevant objects in
the real world, containing information that needs to be
connected to the sensors and actuators.



• The subsequent level relates these objects to (i) the robot
itself, (ii) other objects in the environment, and (iii) the
task requirements.

In summary, the figure demonstrates how different levels of
modeling the world interconnect to enable the robot to perform
tasks effectively, with a focus on sensor-actuator interactions,
object modeling, task requirements.

These interconnections/data associations within the robotic
system architecture enables a coherent and effective framework
for the picking and placing of chicken legs. The architecture
follows a modular design that enables seamless integration
and interaction between modules, offering important system
features.

• Modular and Scalable Design: The architecture follows
a modular design, allowing for the seamless integration
of the perception, world modeling, motion planning, and
gripping modules. The novel contribution lies in the
development of a scalable architecture that facilitates the
addition of new modules or functionalities as the require-
ments evolve, making it adaptable to future advancements.

• Real-Time Decision Making: The architecture enables
real-time decision making by integrating the perception,
world modeling, motion planning, and gripping modules
in a coherent manner. The novel contribution lies in the
development of efficient communication protocols and data
exchange mechanisms between these modules, allowing for
timely and synchronized decision making to adapt to the
changes in the environment.

Figure 6 shows a task sequence or flowchart diagram of
the picking and placing robot. At the very beginning of an
experiment, we manually checked if the computer was able
to establish connections with other hardware devices such as
the robot controller, the gripper controller, and the camera.
Once everything was okay, the algorithm initialized the robot
manipulator at the home position such that the picking crate
was fully visible to the RealSense camera mounted on the
top to capture RGBD images of the picking workspace. The
RGBD images were registered and the RGB image was passed
to the object detection and classification algorithm (III-E.1)
to segment individual objects in the crate, and classify their
poses whether they are facing up or down. The detected and
classified fully visible pieces on the top, their mask and the
classification results were fed as input to the next level pose
estimation algorithm. At this stage, we utilized the depth image
and fed it as well as input it to the pose estimation algorithm.
The pose estimation algorithm provided the 3D position and
3D orientation of each detected fully visible piece. Then, based
on the strategy algorithm selected the target piece to be picked
up by the robot. Once, the grasp pose was estimated for the
target piece based on the object pose and the gripper pose, the
motion planner planed the motion of the manipulator from its
current pose to the target pose. Before executing the motion
the system checked the status of the gripper and ensured
that it was open. The robot executed the motion to the target
object position. Once it reached, its gripper closing action was
triggered to grasp and picked up the target object and moved
it to the placing position. Once the robot manipulator reached
the desired placing position, the gripper opening action was
triggered to release the object. Hence, it completed one cycle
and then the algorithm went back to check if there was any
object found in the crate and repeated this process until the
crate was empty or there was no object detected by the robot.

Overall, the proposed architecture provides a systematic and
comprehensive approach to address the challenges of picking
and placing chicken legs. By combining perception, world mod-
eling, motion planning, and gripping modules, the architecture
enables the robot to perform delicate and precise manipulation
tasks in real-world scenarios, with potential applications in the

food industry and other domains requiring dexterous object
handling.

E. Proposed Algorithms for Software Modules
In this section, we provide the details of underlying methods

for each of the four modules described in the previous section.
1) Perception module: The perception module consisted of

three sub-tasks: (1) object detection and classification, (2) object
pose, and grasp pose estimation, and (3) target selection.

• Object detection and classification The object detection and
classification module was continuously running to detect
objects in the crate using the color images captured by
the RealSense camera. Object detection and classifica-
tion basically involved bounding box detection and mask
detection for each class of objects. In recent times, the
most popular way to detect objects is to apply deep
convolutional neural networks (CNN) algorithms such as
Faster R-CNN [19] achieves high accuracy but is slower
and resource-intensive, and YOLO [20] enables real-time
object detection, while SSD [21] balances accuracy and
speed. U-Net specializes in medical image segmentation
but is limited to instance segmentation tasks. Mask R-
CNN [22] and YOLACT [23] offer accurate object de-
tection and instance segmentation but sacrifice real-time
performance. YOLACT++ [24] improves upon YOLACT
with enhanced performance, while Poly-YOLO excels in
handling objects with arbitrary shapes. Each algorithm
possesses unique merits and demerits as listed in Table I,
catering to specific needs in object detection and instance
segmentation applications. As in semantic segmentation,
the multiple objects are treated in a single category as one
entity and in the use case, on the other hand, we needed
to identify individual objects within these categories (fully
visible top, fully visible bottom, partly visible top, partly
visible bottom. An example of all these categories is shown
in Figure 7).
Hence, mask R-CNN is a preferred choice as accurate
object detection and precise instance segmentation are
of paramount importance for the our application of bin
picking of chickens, although we have to compromise
with real-time performance. Its ability to provide pixel-
level segmentation and handle complex scenes makes it
suitable for applications as detailed understanding of
object boundaries is crucial.

• Object pose and grasp pose estimation The RealSense
camera recorded images in color and depth at the same
resolution. As a result, the depth image was directly
covered with a mask created from the color image, and
extracting the point cloud belonging to the mask resulted
in the surface of the chicken piece that was visible to
the camera. This was done to obtain the segmented point
cloud for each individual chicken piece. This point cloud
contained noise as a result of the mask quality, the effect
of infrared light on the depth measurements, and areas
of the image that were outside the depth range that the
camera was calibrated on. The algorithm used an outlier
removal technique to remove the noise and extract the
point cloud that represented the chicken piece. To estimate
the location of the chicken piece, the corresponding (x,
y, z) coordinates of the point cloud were averaged, i.e.
we calculated the mean of the point cloud associated
with each chicken piece. The 3D pose of the object was
calculated using the principal component analysis (PCA)
of the extracted point cloud. The PCA uses singular value
decomposition (SVD) to find the eigenvectors. The eigen-
vector associated with the largest eigenvalue represents
the orientation of the chicken piece along the x-axis. This
eigenvector passes through the midpoint (x, y, z) and



Fig. 6: Flowchart diagram of the task sequences for picking and placing the chicken pieces by the robot.

aligns with the outermost point on the drumstick side
of the chicken leg. The second eigenvector, perpendicular
to the first, represents the width of the chicken pieces.
Finally, the third eigenvector signifies the thickness of the
pieces. A more detailed explanation of the algorithm is
described in our previous work [25].
The grasp pose was calculated based on the estimated 3D
pose of the object. We rotated the object pose by 180o

about the x-axis to get a grasp pose of the end effector.
However, the algorithm used only the angle calculated
in the horizontal plane (XY plane), that is, the angle
about the Z-axis of the end effector with respect to the
position of the object. Considering the rotation angles
about the X-axis and Y-axis of the grasp pose resulted
in the worst grasping and picking performance. Probably,
solutions to estimate the object pose under conditions of
occlusions, cluttered and varying shapes and sizes are not
very reliable. The grasp poses were converted from the
camera coordinate frame into the world coordinate frame

of the manipulator, using a transformation matrix between
the camera coordinate frame and the world coordinate
frame T camera

world obtained using hand-eye calibration [26],

T grasp
world = T camera

world · T grasp
camera, (1)

where T grasp
world represented the transformation matrix be-

tween the world coordinate frame to grasp pose of the
object coordinate frame; T grasp

camera was the transformation
between the camera coordinate frame and the grasp pose
of the object coordinate frame. Thus, it calculated the
necessary transformations for transforming image feature
coordinates into real-world coordinates. The transforma-
tion matrix between the camera coordinate frame and the
world coordinate frame T camera

world was

T camera
world = T base

world · T tool0
base · T camera

tool0 (2)

where T base
world was the transformation between the world

coordinate frame and the base coordinate frame of the
robot; T tool0

base was the transformation matrix between the



TABLE I: Differences among state-of-the-art object detection algorithms with respect to the application.

Algorithm Year ArchitectureObject
Detec-
tion

Instance
Segmen-
tation

Real-
time

Backbones
Sup-
ported

Merits Demerits

U-Net 2015 CNN No Yes No CustomizableSpecialized for med-
ical image segmen-
tation, effective for
small dataset

Limited to instance
segmentation

Faster R-CNN 2015 CNN +
R-CNN

Yes No No VGG,
ResNet

High accuracy Slower than single-
stage detectors, re-
quires more computa-
tional resources than
YOLO

SSD 2016 CNN Yes No Yes VGG,
ResNet,
etc.

Real-time, good accu-
racy

Struggle with small
object and tends to
generate false posi-
tives

Mask R-CNN 2017 CNN +
R-CNN

Yes Yes No ResNet,
ResNeXt

High accuracy,
instance
segmentation, pixel-
level segmentation,
handles complex
scenes

Relatively slow infer-
ence speed, requires
significant computa-
tional resources

YOLACT 2019 CNN Yes Yes Yes ResNet-
101

Real-time, instance
segmentation, high
performance, single-
stage architecture

May have reduced
accuracy compared
to two-stage methods
like Mask R-CNN

YOLACT++ 2020 CNN Yes Yes Yes DarkNet-
53

Improved
performance
compared to
YOLACT

Still Relatively less
accurate compared
to Mask R-CNN and
requires large GPU
memory

Poly-YOLO 2021 CNN Yes Yes Yes CSPDarkNet-
53

Real-time instance
segmentation with
high accuracy,
handles objects with
arbitrary shapes

May have reduced
performance for small
objects compared to
other algorithms,
memory-intensive

Fig. 7: An example of four different classes of poultry pieces:
fully visible top, fully visible bottom, partly visible top, and
partly visible bottom.

base coordinate frame and the end effector coordinate
frame of the robot; T camera

tool0 was the transformation
matrix between the end effector coordinate frame to
the camera coordinate frame. Therefore transformation
matrix T camera

world remained fixed throughout the experiment
as the camera was static with respect to the world.
It is wise to mention that the possible damage could occur

to the costly robot grippers and the robot itself if the
grasping position or orientation of the object is estimated
and given incorrectly. Therefore, to minimize potential
hazards to the property workspace constrains had been
introduced by using ”safe” maximum input levels.

• Target object selection Among all the detected objects in
the bin, we were required to select one target object to
be picked up by the robot at a time, which raised the
challenge of how to choose the best one to pick out of
all the detected objects. Hence, we proposed a strategy to
pick the object which was on the top of the pile and fully
visible, considering that would be the easiest for the robot
to pick.
The detection and pose estimation algorithm provided the
estimated pose for all the fully visible objects in cluttered
scenarios in the crate. The object which was on the top
of the pile was the one that is closest to the camera along
the z direction. Hence, we calculated the distance between
the camera’s z-position (Cz) and the positions of all the
objects that were completely visible (Oi

z) and selected the
one with the minimum distance value by

targetobject = min(Cz −O1
z , Cz −O2

z , ..., Cz −Ov
z ) (3)

where i = 1, ..., v, and v was the number of detected fully
visible objects at time t.

2) World modeling module: Current robotic systems are
pre-programmed to deal with very specific tasks on a limited
set of objects very well-defined in terms of location, shape,
size, and material properties. However, to deal with variability
and enable flexibility, robotic systems need to reason about the
objects in their environment or world. Hence a representation



Fig. 8: Schematic diagram of the world model representation
of the environment.

of the world is required, i.e., world modeling is defined as
the process of creating a numerical model of a real-world
environment, or workspace. This can be graphically displayed
to provide the user with a 3D surface model of the workspace
for simulations, analysis, and task planning [27]. In this work,
a numerical task-centric world model was developed to interact
with the environment shown in Figure 8. We stored information
about the (static) obstacles in the workspace; the state of the
robot, the end effector, the gripper; the information related to
the objects in a numerical form. For example, if the state of the
gripper was open it was numerically represented as 1, and if it
was closed that state was represented as 0, and that information
was stored in the world model and used by the gripping
module whenever necessary. Similarly, the configuration of the
manipulator was represented by Θ and the end effector position
was represented by x, y, and z in a 3D space. The id and grasp
pose of objects were stored over time to assist the perception
module and task planning module in the presence of occlusion
and variation.

3) Motion planning module: In the case of industrial
manipulators, motion planning refers to providing suitable joint
angle position (or velocity) trajectories to move the robot from
one pose to another. Many state-of-the-art motion planning
algorithms are available in the form of the open motion
planning library (OMPL) [28] which has been integrated into
several easy-to-use software packages like Moveit! [29]. In this
paper, we used the Moveit! package in integration with ROS for
building motion planning algorithms for ABB IRB 1200 robot
manipulator. The simulation was carried out using Gazebo [30]
environment. The motion planning for the picking and placing
task involved a sequence of a few steps.

Once the first target object in the crate was detected, the
estimated grasp pose of the target was sent to the Moveit!
planner that planned a path from the current pose of the robot
to the desired estimated pre-grasp pose above the target object.
The Moveit! planner used the Bi-directional Rapidly-exploring
Random Trees [31] algorithm to plan a path from initial pose to
the desired goal pose. Then the robot started executing the path
from its home pose to the pre-grasp pose. Then, from the pre-
grasp pose it moved to the estimated grasp pose to grasp and
pick the object and back to the post-grasp pose above the grasp
pose. Then, the robot moved from the post-grasp pose to the
predefined pre-place pose to the place pose to place the object.
The placing pose of the object was predefined. After placing the
object, the robot moved to the post-place pose. Meanwhile, if
the next target object was found in the crate, the robot moved
to the pre-grasp pose and repeated the process until the crate
was empty. Else, the robot moved to the home pose and stopped
the process.

Fig. 9: Example picture of the Festo gripper that adapted to
the shape of the chicken piece to firmly grasped it during
the picking and placing operation in one of the experiments.

4) Gripping module: The gripping module focuses on
controlling the selected Festo Fin Ray gripper while picking
and placing chicken pieces using robots. The gripper was
operated through a pneumatic valve which was controlled using
a microcontroller enables precise control and coordination of
the gripper’s actions. The microcontroller receives input signals
from the personal computer (PC), processes them, and sends
corresponding commands to the pneumatic valve, determining
the gripper’s opening and closing actions at appropriate time.
This integration of technology allows for automated and pro-
grammable operation of the gripper enhances the efficiency
and reliability of the pick-and-place process, reducing the risk
of product quality issues and ensuring the integrity of the
transported chicken pieces.

It is crucial to apply appropriate amount of force in handling
delicate and deformable chicken pieces to prevent excessive
force that may cause deformation or damage. Hence, we define
deformability constrains as below:

• Determined Acceptable Deformation: defined the accept-
able limits/thresholds for deformation considering accept-
able amount of flattening or bending that can occur during
the grasping process without compromising the overall
quality or appearance.

• Established Force-Deformation Relationship: determined
the relationship between the grasping force applied by
the robot and the resulting deformation of the object.
This involves experimental testing to measure the force-
deformation behavior using Hooke’s law [], that states a
change in shape due to the application of a force is a
deformation. Even very small forces are known to cause
some deformation is written by,

F = k∆L (4)

where ∆L is the amount of deformation produced by
the force F , and ∆L. The deformation can be along any
axis and it is proportional to the applied force. Based on
this relationship, the maximum allowable force that the
gripper can exert during grasping was set to stay within
the predefined deformability constraints.

Figure 9 shows the Festo gripper (Model: Festo Adaptive
gripper fingers DHAS-ME-H9-120) transporting chicken pieces
by grasping it firmly.

IV. EVALUATION AND EXPERIMENTAL PROCEDURES

A. Experimental testing scenarios
The experiments were conducted for both the light and heavy

samples (as described in Section III-A) under two different



(a) (b)

Fig. 10: Example of (a) simple and (b) complex scenarios of
chicken pieces in a crate.

testing scenarios: 1) a complex scenario, and 2) a simple
scenario depending on the placement of chicken pieces in
the bin. These scenarios were designed to assess the impact
of occlusions and clutter on the system’s performance. Each
scenario was repeated five times for both the light and heavy
samples. In the simple scenario (Figure 10(a)), 8 pieces were
taken in total and randomly placed in one layer in the crate
touching each other, whereas, for the complex scenarios (Figure
10(b)), 10 pieces were taken in total and randomly placed in
three layers so that the pieces were overlapping and some pieces
partially occluded other pieces. In total 20 sets of experiments
were conducted for both samples, out of which 5 were with
simple scenes and 5 were with complex scenes for each sample
set.

B. Guidelines of the picking and placing task
A well-defined set of guidelines was established for the

picking and placing task during the experiments, as follows:
• The robots were tasked to automatically pick one chicken

piece at a time from a pile in the crate and place them
into the desired location on another crate and repeat the
process to empty the bin.

• In case of any failure at any stage, starting from detecting
an object to placing an object during the execution, the
detected target chicken pieces at that cycle were removed
manually and the algorithm was continued to pick up the
next object.

Subsequently, the system was evaluated based on identified sub-
tasks (Section IV-B.1), and its performance was assessed at each
step using various evaluation criteria. A specific protocol was
followed, encompassing the recording of performance indicators
(Section IV-B.2) and categorizing successes or failures (Section
IV-B.3). These recorded measurements were employed to con-
duct experiments and determine the overall performance of the
robotic system (Section IV-B.2).

1) List of sub-tasks: Nine distinct sub-tasks were identified
for which the system’s performance was evaluated, as listed
below:

1) The robot must correctly identify and classify at least one
chicken piece that lies on the top of the pile.

2) The robot must select the target chicken piece to be
picked.

3) The robot must correctly estimate the pose of the target
chicken piece.

4) The robot must correctly estimate the grasp pose of the
end effector or the gripper.

5) The robot must reach the desired grasp pose of the target
chicken piece.

6) The robot must grasp the target chicken piece firmly.

7) The robot must pick the chicken piece.
8) The robot must transport the chicken piece to the desired

placing pose.
9) The robot must properly release the object at the desired

placing pose.
2) performance indicators: The evaluation process em-

ployed the following performance indicators:
1) Object detection success (%): The number of chicken

pieces successfully detected in the crate as a fraction of
the total number of chicken pieces in the crate.

2) Target Selection success (%): The number of times the
algorithm successfully selected the target piece per total
number of chicken pieces in the crate.

3) Object pose estimation success (%): The number of times
the algorithm successfully estimated the pose of the target
chicken piece per total number of chicken pieces in the
crate.

4) Grasp poses estimation success (%): The number of times
the algorithm successfully estimated the grasp pose of the
target chicken piece per total number of chicken pieces
in the crate.

5) Reaching Target (%): The number of times the robot
was able to plan the path and reach the desired target
location per total number of chicken pieces in the crate.

6) Grasping success rate (%): The number of times the robot
was able to grasp the target object successfully per total
number of chicken pieces in the crate.

7) Picking success rate (%): The number of times the robot
was able to pick the target object successfully per total
number of chicken pieces in the crate.

8) Transporting success rate (%): The number of times the
robot was able to transfer the target object successfully
from its post-grasp position to the pre-placed position per
total number of chicken pieces in the crate.

9) Placing success rate (%): The number of times the robot
was able to place the target object successfully per total
number of chicken pieces in the crate.

10) object damage rate (%): The number of damaged chicken
pieces per total number of chicken pieces in the crate.
A chicken piece was consider damaged if the robot cut
more than 5 mm into the chicken piece or caused a bruise.
Measuring meat damage was highly relevant for economic
feasibility because a producer cannot market damaged
meat.

11) Cycle time (s): Time of an average full picking and placing
operation of one chicken piece, including object detection,
pose estimation, target selection, reaching, grasping, pick-
ing, transporting, and placing the target at the desired
location per total number of chicken pieces in the crate.

3) Failure Categories: The failures during the picking and
placing attempts were categorized as follows:

1) Incorrect object detection: a) chicken piece was partially
detected or b) if two or more pieces were detected as one,
or c) if no piece was found.

2) Poor target selection: When there existed a fully visible
piece that was easier to pick than the target piece. For
example, the strategy to select the target piece was based
on the highest point cloud among all detected fully visible
pieces as discussed in Section III-E.1. However, this does
not always give the best results, especially when the piece
was tilted and some parts of the point cloud of the piece
were at a higher level but the piece was cluttered, i.e.,
surrounded by other pieces, and was then difficult to
grasp.

3) Incorrect object pose estimation: if the object pose was
not estimated or the estimated object pose was not in the
range of ground truth as discussed in Section III-E.1.



4) Poor grasp poses quality: (a) if the estimated grasp pose
was not in the range of ground truth as discussed in
Section III-E.1, (b) if the object did not fit into the gripper
based on the pose, (c) if the robot picked more than one
object at a time.

5) Failed to reach grasp: if the robot was not able to reach
the desired grasp pose due to the inability to plan motion.

6) Failed to grasp: (a) if the object slipped while closing
the gripper to grasp the object or (b) it failed to grasp
due to incorrect action of the gripper motion or (c) while
grasping if the the robot hit other objects and damaged.

7) Failed to pick: if the object slipped out of hand while
moving from grasp pose to post-grasp pose after grasping.
This could be caused due to (a) poor gripper design, (b)
the target object sticking to the underneath object or the
crate below it.

8) Failed while transferring: (a) if the object slipped out of
the hand/gripper while moving from the post-grasp pose
to the pre-place pose or (b) if the motion planner failed
to compute a safe path between these two points.

9) Failed to place: if the robot did not place an object at
the desired place position. In addition, it would be good
to consider placing the object in the desired orientation,
but we did not consider this for the experiments.

One failure category was assigned to each unsuccessful
picking and placing attempt, i.e., where the system failed first
out of nine defined categories. Let’s say, a sample set contains
X number of pieces in total, and the number of pieces that
failed in ith category is denoted by Xi. Then the failure rate
Yi for the ith category was calculated as,

Yi =
Xi

X −
∑i−1

j=1
Xi

∗ 100 (5)

where i = 1,2,..., n, and n was the total number of categories,
i.e., 9 for our case. Equation (5) was used to calculate the failure
rate of each category in the experiments. So, out of 10 objects,
if the robot failed 0 time in the first 4 categories, 2 times in
category 5, i.e., failed to reached grasp, 1 time in the category 6,
i.e, failed to grasp, then the failure rate for the category 5 and 6
would be 2

10−(0+0+0+0)
∗ 100 = 20% and 1

10−(0+0+0+0+2)
∗ 100

= 12.5%, respectively.

V. RESULTS

The experimental results of the picking and placing of
chicken pieces are described in this section. The quantitative
results for the experiments of the simple and the complex
scenarios for both the light and heavy samples are given in
Table II for the light chicken pieces. For the complex scene,
during the first experiment, out of 10 pieces, 6 times the robot
failed to successfully pick and place chicken pieces. Out of
6 failures, 1 time it failed to detect and segment the object
properly, 1 time it incorrectly estimated the pose, 1 time the
grasp pose was not good, and 3 times the chicken piece slipped
out of the gripper while picking. That means the robot could
achieve a 40 % success rate in picking and placing chicken
pieces in the first experiment. The success rates for the second,
third, fourth, and fifth experiments were 40%, 30%, 50%, and
50%, respectively. On average, it is observed that out of 29
failures, 5 times the system incorrectly detected objects, 3 times
failed to select the target, 2 times incorrectly estimated pose, 9
times incorrectly estimated grasp pose, 1 time failed to grasp
the object, 7 times failed in picking an object and 2 times it
failed to transfer object due to slip. Hence, the average success
rate for the complex scene achieved was 42%. Similarly, for
the simple scene, during the first experiment, out of 8 pieces,
3 pieces were not successfully picked and placed by the robot.
Among these 3 pieces, the robot failed to grasp 2 pieces and 1

piece slipped out of the gripper during transfer to the placing
location. That means the robot achieved a 62.5% success rate
in picking and placing chicken pieces. The success rate for
the second, third, fourth, and fifth experiments achieved was
62.5%, 37.5%, 50%, and 62.5%, respectively. On average, out
of 18 failures, 4 times it failed to estimate grasp pose, 2 times it
failed to grasp the object, 10 times it failed to pick the object,
and 2 times it failed to transfer the object. Hence, the average
success rate for the simple scene achieved was 55%. Overall,
the success rate for the simple scene (55%) was higher than
for the complex scene (42%).

Similarly, Table III shows the experimental result for picking
and placing chicken legs for the heavy chicken pieces. The
overall success rate for the complex scenes was 50% whereas
for the simple scene it was a bit more, i.e., 52.5%. A similar
trend with the light sample set was observed in the failure
rate in the first three categories of perception for the simple
scene, i.e., 0%, however, for the complex scene, there are 3,
1, 1 piece failed in detection, target selection, and the pose
estimation categories. In terms of grasp quality, there were 7
pieces that failed in a complex scene compared to a simple scene.
This shows that clutter was a serious issue while estimating
grasp pose. The highest failure rate was observed in picking
the objects for both the complex and simple scenes which
were 9 out of 25 failures and 14 out of 19 failures for the
complex and simple scenes, respectively. Overall, the robot
achieved a success rate of 50.6% for picking chicken legs from
a pile to placing them in order. The success rate for the heavy
sample set was achieved at 51.2% including complex (50%)
and simple scenes (52.5%), and for the light sample set, the
success rate was 48.5% including complex (42%) and simple
scenes (55%). So there was not much difference in success rate
when picking and placing the lighter or heavier chicken pieces.
However, it is observed that there was a pronounced difference
in the overall success rate between complex scenes (46%) and
simple scenes (53.7%), which clearly indicates that the scene
complexity highly influenced the performance of the overall
systems.

Table IV presents the performance of the individual cate-
gories for the experiments for both the heavy and light sample
sets. It showed that for the simple scene, there were 0% failure
cases in the first three categories of the perception module
which include object detection, target selection, and object pose
estimation, whereas for the complex scene the failure rate was
8%, 4%, and 3%, respectively. Even the robot failed more to
estimate grasp pose for the complex scene (16%) than for the
simple scene (7.5%). All these failures are due to the overlap,
cluttered, and occlusion conditions in the crate. In terms of
motion planning, the robot did not fail to reach the grasp pose
till it placed the object for both scenes. However, the robot failed
quite seriously whenever the gripper was in action irrespective
of the complexity of the scene, i.e., while grasping the object,
picking the object, and transferring the object the failure rate
for the complex scene was 1%, 33.3%, 10.4%, and for the simple
scene, it was 2.7%, 24%, and 5%, respectively. The robot failed
to grasp as the gripper pushed the object away from the desired
grasp point during the closing action. The robot failed to pick
up the object as the object was slipping out of hand while
pulling up. Similarly, the object was slipping out of hand while
the robot was in motion to transfer the object. Overall, there
was no damage to the chicken pieces found throughout the
experiments. However, given how frequently the gripper failed
to manipulate objects, it is clear that there is an immediate
need to work on designing a suitable gripper to manipulate
natural, soft, deformable objects like chicken legs as it leads to
the highest failure. Moreover, the perception algorithm needs
to be improved to deal with overlap, occlusion, and clutter,
especially when estimating grasp pose. We demonstrated these



TABLE II: Results for each simple vs. complex scene of Light sample set.

Type of Scene Simple Complex All
Experiments number 1 2 3 4 5 Total 1 2 3 4 5 Total Total
Incorrect object detection 0 0 0 0 0 0 1 1 1 1 1 5 5
Poor target selection 0 0 0 0 0 0 0 0 2 1 0 3 3
Incorrect pose estimation 0 0 0 0 0 0 1 0 0 0 1 2 2
Poor grasp quality 0 1 1 1 1 4 1 2 2 1 3 9 13
Failed to reach grasp 0 0 0 0 0 0 0 0 0 0 0 0 0
Failed to grasp 0 0 0 0 2 0 0 0 1 0 1 2 3
Failed to pick 0 2 4 3 1 10 3 3 1 0 0 7 17
Slipped while transferring 1 0 0 0 1 2 0 0 1 1 0 2 4
Failed to place 0 0 0 0 0 0 0 0 0 0 0 0 0
Total failures 3 3 5 4 3 18 6 6 7 5 5 29 47
Total pieces 8 8 8 8 8 40 10 10 10 10 10 50 90
Success rate (%) 62,5 62,5 37,5 50 62,5 55 40 40 30 50 50 42 47.7

TABLE III: Results for each simple vs. complex scene of Heavy sample set.

Type of Scene Simple Complex All
Experiments number 1 2 3 4 5 Total 1 2 3 4 5 Total Total
Incorrect object detection 0 0 0 0 0 0 0 1 0 0 2 3 3
Poor target selection 0 0 0 0 0 0 0 0 1 0 0 1 1
Incorrect pose estimation 0 0 0 0 0 0 0 0 0 1 0 1 1
Poor grasp quality 0 0 0 1 1 2 2 3 1 1 0 7 9
Failed to reach grasp 0 0 0 0 0 0 0 0 0 0 0 0 0
Failed to grasp 0 0 0 0 0 0 0 0 0 0 0 0 0
Failed to pick 3 4 2 2 3 14 1 0 2 3 3 9 23
Slipped while transferring 0 0 2 0 1 3 1 2 1 0 0 4 7
Failed to place 0 0 0 0 0 0 0 0 0 0 0 0 0
Total failures 3 4 4 3 5 19 4 6 5 5 5 25 44
Total pieces 8 8 8 8 8 40 10 10 10 10 10 50 90
Success rate (%) 62,5 50 50 62,5 37.5 52.5 60 40 50 50 50 50 51.1

Fig. 11: Example of incorrect object segmentation, where
two pieces are detected as one by the Mask R-CNN deep
learning algorithm.

failures at each step of perception as below:
• Incorrect object detection: Figure 11 displays typical

examples of incorrect object detection, where the top two
pieces are detected as one piece.

• Poor target selection: Figure 12 shows an example of
poor target selection. In the scene, the chicken piece on
the top was selected as the target piece but that was
surrounded by five other pieces in the neighborhood, hence
it was harder to grasp. However, it can be seen that
there were other fully visible (whole top or whole bottom)
pieces placed in the less cluttered area (for instance, the
bottom-right most piece) in the scene which was easier
to grasp than the selected one. Hence a better target

(a) (b)

Fig. 12: Example of poor target selection. (a) Segmented
output image of Mask R-CNN of top-view RGB image, (b)
RViz visualization of the point cloud image of the same scene
showing grasp pose of the selected target piece.

selection strategy/approach is required which should take
into consideration the neighborhood pieces while selecting
the target piece.

• Incorrect object pose estimation: Figure 13 shows an
example of incorrect pose estimation of the target object,
where the z-axis (red) was pointed downward. However,
the z-axis should point upward. The reason for the
incorrect estimation of the direction of the z-axis is the
misclassification of the object side (top/bottom) from the
mask R-CNN algorithm, i.e., the algorithm predicts the
bottom side as the top side. It is explained in detail in
Raja et. al., [25].



(a) (b)

Fig. 13: Example of incorrect object pose estimation. (a)
Segmented output image of Mask R-CNN of top-view RGB
image of the scene, (b) RViz visualization of the point cloud
image of the scene showing the object pose.

(a) (b)

Fig. 14: Example of poor grasp quality. (a) Segmented output
image of Mask R-CNN of top-view RGB image of the
scene, (b) RViz visualization of the point cloud image of
the scene showing the estimated grasp pose on the selected
target object.

• Poor grasp quality: Figure 14 shows an example of poor
grasp quality. It was not a good grasp pose for the
target object as there was another object underneath, and
consequently while grasping, the gripper grasped both
objects. Of course, the quality of the grasp is highly related
to the design of the gripper and how to approach the
objects during grasping.

During the experiments, we kept track of which objects
failed at which sub-tasks and recorded that information and
presented it in the form of a heatmap in Table V, where the
x-axis represents the order of pieces picked and the y-axis
represents the sub-tasks. The heatmap represents the results
for all 5 experiments for each of the sample sets, Figure
V(a), Figure V(b), Figure V(c), Figure V(d) presents heatmap
for simple light, complex light, simple heavy and complex
heavy sample sets, respectively. The darker color represents
less number of failures and the lighter color represents high
failures. The number in the map represents the total number

of times the robot failed at particular sub-tasks during the
picking-and-placing operations conducted for each sample set.
That means, the maximum number in the map could be 5,
i.e., the robot could fail a maximum of 5 times at each sub-
tasks out of 5 conducted experiments and the minimum number
could be 0, i.e., no failure. For the complex light sample set,
the first piece selected as the target was incorrectly detected
in one of the five experiments. The robot failed during the
operation on the second object in line in three experiments
out of five experiments, one time at poor grasp quality, one
time failed to pick and one time slipped while transferring.
Similarly, while operating the third piece, the robot failed three
times (one time the object was detected incorrectly, one-time
target selection was poor and one time the object slipped while
picking) out of 5 experiments. While operating the tenth object,
the robot failed one time while picking. It is visible from the
map that, there was more failure in the perception module at
the beginning compared to the later stage of the experiments. It
might happen due to occlusion and being cluttered. That means
as the robot removes objects from the crate, the complexity of
the scene reduces, i.e., there is less clutter, overlap, or occlusion
conditions, hence the performance of the perception module gets
better at the later stage, which indicates that there is a need
for better perception module that is robust to occlusion and
cluttered.

The average time taken to successfully pick and place a
chicken piece was 16 seconds.

VI. DISCUSSION

The presented research demonstrates a significant step for-
ward in the development of an advanced robotic system for
the efficient pick-and-place of deformable poultry pieces from
cluttered bins. The achieved overall success rate of 49.4% indi-
cates that the system is capable of handling deformable objects
to a reasonable extent. However, the identified failure rates
in individual modules, such as perception (21.8%), gripping
(30.7%), and manipulation (11%), reveal areas that require
further attention for improvement. The practical experiments
with the robots to pick and place real chicken pieces and the
proposed evaluation method in this study has provided valuable
insights into the system’s performance, allowing us to pinpoint
specific challenges and potential solutions. In the following
sections, we discuss lessons learned from the experiments by
reflecting on the properties of deformable chicken pieces, that
is how the object stiffness or the size and shape affects the
overall performance of the systems. Moreover, the discussion
will reflect on the four different modules of perception, world
modeling, motion planning, and gripping in the pipeline. Also,
we would reflect on the proposed assessment procedure that
combines the evaluation of all the modules.

A. Objects
One crucial aspect that emerged from the experimental

results is that the influence of cluttered scenarios on the overall
system performance. The picking and placing success rate has
reduced by 9.7% for the complex scene compared to the simple
scene. The presence of cluttered and occlusion was one of
the major reasons for the poor success. The effect of size
of chicken pieces has a little influence on the success rate.
However, the abrupt shape of chicken pieces has a lot of effect
on the performance of perception, gripping, and manipulation
modules, thus on the overall performance. A task for future
work is, therefore, to look for better solutions for all these
modules to improve their performance. In addition, there is
a need to investigate the effects of the surface properties of
poultry pieces on performance. As the surface of the chicken
pieces was slippery and its friction properties changed based
on stiffness that varies with the temperature and that has an



TABLE IV: Results of failures in individual categories for Heavy vs. Light sample set.

Sample set Light Heavy All All(%)Type of scene Simple(%) Complex (%) Simple(%) Complex(%) Simple(%) Complex(%)
Incorrect object detection 0 6 0 10 0 8 4.4
Poor target selection 0 2.1 0 6.6 0 4 2.3
Incorrect pose estimation 0 2.1 0 4.7 0 3 1.8
Poor grasp quality 5 15.5 10 22.5 7.5 16 13.3
Failed to reach grasp 0 0 0 0 0 0 0
Failed to grasp 0 0 5.5 3.2 2.7 1 2.1
Failed to pick 36.8 23.6 29.4 23.3 24 33.3 28.6
Slipped while transferring 12.5 13.9 8.3 8.7 5 10.4 11
Failed to place 0 0 0 0 0 0 0

TABLE V: Analysis of failure at sub-tasks during the experiments based on the order of picking of the objects for the
datasets (a) simple light, (b) complex light, (c) simple heavy, (d) complex heavy. The dark color represents less failure
whereas the light color represents more failure.

’ (a) (b) (c) (d)

effect on the overall performance of the system. The poultry
pieces were sticky which also adds to the poor manipulation
success rate.

B. Cycle time
Human workers can pick chicken pieces at an approximate

rate of 4-6 seconds per piece. In general, reaching that speed
for handling man-made objects with an automated solution is
likely as much a research problem as it is an engineering one,
requiring fine-tuning computations of all algorithms as well
as optimizing all robot motions. However, this is not the case
for naturally deformable objects like poultry pieces. As while
manipulation, to reduce the cycle time, velocities of the system
need to increase, which might have an effect on the masses,
forces, and friction coefficient of the deformable poultry pieces.
When these characteristics alter, the ability of the object to be
gripped by the gripper will be affected. Hence, in the future,
it has to be investigated how the performance with the velocity
of the robot and the system has to evaluate based on the time.
Speed can be utilized as one metric of development, perhaps
driving the choice of robotic mechanisms as well as algorithmic
solutions, with the risk of leading the community to premature
optimization rather than unorthodox creativity.

C. Perception module
The success rate for detecting, selecting the target, and

estimating the pose of chicken pieces in the simple scene
showed a remarkable improvement, reaching 100%, compared
to 92%, 96%, and 97% in the complex scene. That means
there was no failure in the simple scene, but faced challenges
in the complex scene due to clutter and occlusions, resulting
in some failures. Hence, this is a critical area that requires
advancements in object detection and recognition algorithms,

especially in cluttered environments. Developing sophisticated
perception techniques that can accurately interpret the context
provided by the task description is key to improving the overall
performance of the system.

While estimating the grasp pose of the target chicken piece,
the surrounding environmental situation such as clutter, occlu-
sion, and even the noisy depth information was not considered.
To the best of our knowledge, the literature on estimating
the grasp pose of chicken pieces considering the surrounding
environment is yet to appear. To effectively use the cameras
in future research, the issue of poor depth estimates should
be addressed. Another explanation for poor depth estimation
is due to the lighting condition. The light may have partially
reflected on chicken pieces and due to that some of the point
clouds were missing or provided with NAN values, which can
be overcome by having more uniform illumination systems on
the crate. In the industry environment, the illumination can
actually be controlled to overcome the issues.

D. World modelling

The world model made for this application was very simple,
where the robot was able to successfully store necessary infor-
mation in the memory and used it when necessary. However,
to improve the performance of different modules of the robot,
it might be required to build a more sophisticated world model
in the future. For example, the robot could have information
on the arbitrary shapes and sizes of objects, whether simple or
complex, it can be rapidly modeled and store the information
to allow a robot to interact with it. Moreover, the world model
should be capable to add information on 3D surface maps, or
models to form a 3D world model of the target workspace.



E. Motion planning
During the experiments, the path generated by MoveIt!

planner to move the end-effector from one initial position to
the other goal position looks good for the application of picking
and placing objects. However, sometimes, MoveIt! generates
weird complex motion trajectories for the robot arm even when
moving between two closely adjacent points. Due to the bad
motion, the object slipped out of hand while transferring from
the picking location to the placing location. This affects the
performance of the overall result significantly. A better motion
planner could improve the performance of the system.

To follow the planned trajectory, the IRC5 ABB robot
controller was used, which is able to follow the generated
trajectory very accurately to reach the goal position. Hence,
the robot could accurately reach the target location to pick the
object and precisely place it at the desired location.

F. Gripping and manipulation
A number of issues related to object properties explained the

performance of unsuccessful grasp and picking of the chicken
pieces by the Festo gripper. However, the design of the end-
effector mostly influenced the ability to manipulate the chicken
pieces. The gripper was not very effective at handling the
object’s deformability and slippery nature. We tried to improve
the grasping performance by not closing the gripper completely.
When the gripper was completely closing it squeezed the object
too much and due to that objects commonly slipped out of
the gripper. It is desired to find a better gripper in the future
which can provide stability by firmly grasping the chicken piece.
Similarly, it needs to be investigated how much force is required
to grasp the object as currently, we are providing constant
force to pick all the chicken pieces. The gripper having a force-
feedback capability could improve the gripping performance.
Damages to the chicken pieces did not occur which is a very
positive aspect of the gripper.

G. Systems and Assessment procedures
The modular design of the system architecture allowed

for seamless integration and interaction between modules,
facilitating efficient task execution. The combination of modules
provided a comprehensive approach to address the complexities
of deformable poultry handling. However, it lacks incorporat-
ing of learning and adaptation mechanisms, that can enable
continuous improvement of the system’s performance. This
continuous learning and adaptive approach holds promise for
creating a highly robust and efficient robotic system for pick-
and-place tasks, making it more versatile and capable of
handling real-world challenges in the food processing industry
and beyond.

One of the notable strengths of this research lies in the
proposed assessment procedure that combines the evaluation
of all the modules. This comprehensive approach allows for
a holistic understanding of the system’s performance, offering
valuable insights into the interplay between the different com-
ponents and their collective impact on the overall success rate.
Several aspects of hardware and software compatibility were
verified using the proposed methodology - the effectiveness of
the used 3D vision system, the gripper design, the perception
algorithms, the motion planning algorithms, and the execution
rate of the tasks. Moreover, during the experimental trial, the
evaluation methodology immediately revealed the reason for
failures and considerable limitations of that system, e.g., in
one of the experiments the object detection algorithm detected
two pieces as one, and in another experiment due to the bad
motion of the manipulator object slipped out of the gripper.
Furthermore, illumination proved to be a challenging task for
object detection, etc. This individual reason for failure/success

has an effect on the overall performance of the proposed system.
We could not have gained these insights without this method
of evaluation.

The system components and their assessment procedure can
be used by developers or integrators that want to build and
quickly evaluate the configuration of a sample bin-picking
workstation. The performed experiments can therefore be di-
rectly comparable between the selected hardware and software
components by various research teams or industries. In the
practical context, the method of evaluation could be very useful
for the industry. Though, the experimental results indicated that
the robotic bin-picking system still lacks the speed, dexterity,
and flexibility, possessed by a human worker. Despite all,
the proposed systems showed that it is possible to handle
deformable objects by the robot considering cluttered bin-
picking scenarios. Although in many literature [32], researchers
stated that it is even hard to pick and place simple objects
that would match the human mind and hand-eye coordination.
Further work is needed to improve the performance of the
system and fine-tune the evaluation. Please note that different
operations require a different assessment.

VII. CONCLUSION

This research presents an advanced robotic system for
efficiently picking and placing deformable poultry pieces from
cluttered bins. The modular design of the architecture allowed
for seamless integration and interaction between modules,
facilitating efficient task execution. The combination of percep-
tion, world modeling, motion planning, and gripping modules
provided a comprehensive approach to address the complexities
of deformable poultry handling. The proposed assessment
procedure, which evaluates all modules’ performance, proved
to be effective in identifying strengths and weaknesses within
the system. This evaluation framework indicated an overall
success rate of 49.4%. We identified the key problems of the
developed system by evaluating the performance against 13
performance indicators, and 9 failure categories by conducting
experiments with two different sample sizes of poultry pieces
in simple and complex scenes. The experimental results showed
that the performance of the robot was improved by 7.7% for
a simple scene compared to a complex scene. This difference
mainly occurred due to the poor performance of the perception
module for the complex scene compared to the simple scene. The
performance of the gripping module was poor for both scenes
as it highly depended on the interaction between the gripper
and the target object. The performance of world modeling and
motion planning modules was good for both scenes, i.e, the
information was correctly stored in the world model and used
by the other modules when required; and the robot was able to
appropriately position its end-effector at the desired location.
Hence it can be concluded that the gripping module, i.e., the
gripper design should get more attention. Additionally, a robust
perception module is needed for complex scenes in order to
boost performance. Due to the proposed method of evaluation,
we could have achieved these valuable insights. Overall, the
developed systems have the potential to be deployed in the
food processing industry to pick and place objects, and the
assessment procedure may offer valuable insights in terms of
practical application.
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