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Abstract

In recent years, utility-scale hybrid power plants (HPPs) have emerged as promising electricity generation resources by combining

multiple generation technologies and storage capabilities. This paper presents a novel framework for optimizing the offering

and operation of HPPs in the voluntary balancing market, specifically for providing regulating power as a balancing service.

The proposed framework utilizes a two-level robust optimization approach, where the first level focuses on look-ahead offering

and operation, and the second level handles real-time re-scheduling of generation. Uncertainties arising from wind power and

regulating prices are considered as decision-independent uncertainties (DIU). Conversely, the decisions regarding regulating

power offers influence the uncertainty associated with activated regulating volumes, leading to decision-dependent uncertainties

(DDU). To tackle the model incorporating both DIU and DDU, this paper introduces a customized nested adaptive column and

constraint generation (NAC&CG) algorithm that ensures global convergence. The case studies demonstrate the effectiveness

of the proposed model in enabling HPPs to accurately track the activated regulating volumes, ensuring reliable provision of

balancing service.
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Abstract—In recent years, utility-scale hybrid power plants
(HPPs) have emerged as promising electricity generation re-
sources by combining multiple generation technologies and stor-
age capabilities. This paper presents a novel framework for
optimizing the offering and operation of HPPs in the voluntary
balancing market, specifically for providing regulating power
as a balancing service. The proposed framework utilizes a
two-level robust optimization approach, where the first level
focuses on look-ahead offering and operation, and the second
level handles real-time re-scheduling of generation. Uncertainties
arising from wind power and regulating prices are consid-
ered as decision-independent uncertainties (DIU). Conversely,
the decisions regarding regulating power offers influence the
uncertainty associated with activated regulating volumes, leading
to decision-dependent uncertainties (DDU). To tackle the model
incorporating both DIU and DDU, this paper introduces a
customized nested adaptive column and constraint generation
(NAC&CG) algorithm that ensures global convergence. The case
studies demonstrate the effectiveness of the proposed model
in enabling HPPs to accurately track the activated regulating
volumes, ensuring reliable provision of balancing service.

Index Terms—hybrid power plant, balancing service, decision
dependent uncertainty, robust optimization.

NOMENCLATURE
A. Parameters and Constants
βup
t,s Upward balancing price at period t in

scenario s.
βdw
t,s Downward balancing price at period t

in scenario s.
πsp
t Spot price at period t.

πrp
t,s Regulating price at period t in scena-

rio s.
qs Probability of scenario s.
P̂w
t Wind power forecasts at period t.

ηl Battery leakage efficiency.
ηcha Battery charging efficiency.
ηdis Battery discharging efficiency.
Emin Minimum remaining energy of battery.
Emax Maximum remaining energy of battery.
P b,max Power capacity of battery.
Pw,max Power capacity of wind.
Pup,max Maximum up regulating power offer.
P dw,max Maximum down regulating power offer.
Pup,min Minimum up regulating power offer.
P dw,min Minimum down regulating power offer.
P grid Grid connection capacity.

B. Variables
Pha
t power schedule of HPP at period t.

Pw
t wind power schedule at period t.

P cha
t /P dis

t Battery charging/discharging schedule
at period t.

zt Battery charging/discharging state .
Eb

t Energy of battery at period t.
Pup
t Up regulating power offer at period t.

P dw
t Down regulating power offer at period t.

Pw,up
t Up regulating power offer from wind

at period t.
Pw,dw
t Down regulating power offer from wind

at period t.
P b,up
t Up regulating power offer from battery

at period t.
P b,dw
t Down regulating power offer from bat-

tery at period t.

I. INTRODUCTION

RENEWABLE energy sources (RESs) and energy stor-
age systems (ESSs) play significant roles in the green

transition of energy systems. Generally, they are placed at
different locations due to developers’ interests and power grid
requirements. In recent years, there are commercial interests
in combing RES and ESS on the plant level, forming hybrid
power plants (HPPs) [1]. Although there is temporarily no
consensus on the definition of HPPs, HPPs are generally
co-located two or more generation and storage technologies
that produce electricity in coordinated ways. Different from
virtual power plants (VPP) which are cloud-based distributed
power plants aggregating distributed energy resources [2],
HPPs are co-located utility-scale power plants. Due to the
high cost of point of interconnection, HPPs are normally
overplanted in respect to grid connection capacity, which is
also an obvious distinction with VPP. It is clear that HPPs
can produce more reliable and flexible power compared with
individual renewable power plants. Besides, according to the
report from National Renewable Energy Laboratory [3], HPPs
can accelerate the integration of renewable energy into energy
systems. Currently, the trading of electricity produced by HPPs
is mainly based on power purchase agreements [4]. However,
the increasing advocacy for the active involvement of HPPs in
electricity markets to provide balancing services is becoming
more pronounced.

As demonstrated in Fig. 1, to provide balancing service
in European electricity markets, market participants can offer
balancing capacity in the day-ahead (DA) reserve market (RM)
before 9:30 a.m. on the previous day. Then the participants can
enter balancing markets (BMs) with regulating power offers no
less than the committed balancing capacity. However, market
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Fig. 1. Schematic of important deadlines for participants offering in voluntary balancing markets (Denmark example)

participants can refrain from committing balancing capacity
in DA RM, instead entering balancing markets voluntarily
when they find it is profitable [5]. For example in Denmark,
irrespective of whether participants have a reserve obligation
or not, the offer of regulating power can be updated until 45
minutes prior to the delivery hour [6]. Since the regulating
power is used by the transmission system operator (TSO) to
ensure system security, there are non-financial requirements
for participants to deliver the activated regulating power. In
case participants cannot provide the service or provide non-
conforming service, the TSO may rule out the participants
from taking part in the auctions [7]. Therefore, to avoid this
situation, the reliability of the regulating power offer is crucial.

Table I provides a comprehensive overview of the existing
research studies focusing on the optimal offering and operation
of HPPs in electricity markets. Notably, all the reviewed
studies consider the spot market (SM) since the energy sold in
SM is the reference energy during the operation. Furthermore,
some investigations delve into the intra-day market (IDM),
providing opportunities to modify the reference energy. To
address uncertainties associated with renewable power and
market prices, robust optimization [13], [16] and stochastic
optimization [13]- [18] techniques are commonly employed.
Additionally, the provision of ancillary services is also con-
sidered in certain studies. Ref. [21] studies HPPs’ optimal
operation in the RM and SM using stochastic optimization.
The uncertainty of regulating volumes is represented by a set
of scenarios using k-means clustering. Similar methodologies
are also applied in ref. [22] to further consider IDM. It
is important to note that the final revenues of HPPs also
encompass the imbalance settlement (IS), a key component
of BMs. Consequently, a majority of the literature accounts
for the IS within their proposed models.

The literature review reveals a notable research gap con-
cerning the optimal offering and operation of hybrid power
plants (HPPs) in BMs. Notably, ref. [24] focuses on a de-
terministic model that overlooks uncertainties. Furthermore,
another referenced model in [23] lacks a guarantee of reliable
regulating power offers, potentially exposing HPPs to the risk
of being quarantined by the TSO during real-world operations.
While [18] claims to include BMs, the methodology primarily
focuses on IS within BMs rather than the optimal offering
strategy. Therefore, this paper uses ”voluntary balancing mar-
ket (VBM)” to distinguish it from IS. In the study of offering
strategy in VBMs, it is important to highlight that none of the
literature considers the uncertainty associated with activated
regulating volumes, which differentiates it from uncertainties
related to wind power and regulating prices. Wind power and

regulating prices fall under decision-independent uncertainty
(DIU), whereas the uncertainty of activated regulating vol-
umes falls under decision-dependent uncertainty (DDU). This
disparity implies that the uncertainty of activated regulating
volumes is influenced by the decision of regulating power
offers. Closing these research gaps by incorporating uncer-
tainty considerations, particularly in the context of activated
regulating volumes, will contribute to a more comprehensive
understanding of the optimal offering and operation of HPPs
in VBMs.

Therefore, this paper proposes a two-level robust optimiza-
tion framework for look-ahead optimal offering and operation
of hybrid wind-battery plants (HWBPs) in VBMs. To the best
of the author’s knowledge, this is the first study to investigate
the look-ahead participation of HWBPs in VBMs, considering
both DIU and DDU. The contributions are:

1) The two-level robust optimal offering and operation
framework is proposed. The dependence relationship between
regulating power offers and the uncertainty of activated regu-
lating volumes is captured via the novel framework. Besides,
the framework also incorporates the state-of-art probabilistic
forecasts for wind power [25] and the regulating price un-
certainty is modeled by scenarios generated by k-means clus-
tering. Furthermore, an accurate non-linear battery degradation
model [26] is incorporated into the model to extend the battery
lifetime.

2) A nested adaptive column and constraint generation
(C&CG) algorithm is customized to solve the proposed frame-
work effectively. In the external adaptive C&CG algorithm,
a mapping approach is developed to project the identified
vertices into DDU set of master problem. Since the sub-
problem is max-min optimization with integral variables, the
internal C&CG algorithm is applied to solve the optimization,
resulting in nestification. The process involves the big-M
method to convert complementary slackness conditions to
mixed integral constraints. An adaptive method is introduced
to choose tighter M values.

3) Through the case studies, this paper finds that without
considering the uncertainty of activated regulating volumes
leads to aggressive offering strategies of regulating power.
Once activated, HPPs cannot guarantee a feasible supply of
regulating power, enabling the potential quarantine of HPPs
from participating in VBMs.

The rest of this paper is organized as follows. Section II
presents mathematical formulations of the proposed robust
framework. The quantification of uncertainties is introduced in
Section III. An customized nested adaptive C&CG algorithm
is developed in Section IV to solve the proposed framework.
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TABLE I
COMPARISONS OF THE RECENT STUDIES ON HPP IN ELECTRICITY MARKETS

Ref. No. HPP configuration Market consideration Uncertainty consideration Time stage Modelling method

[8] Wind+Battery SM - DA Deterministic optimization
[9] Wind+ESS SM+IS Wind+Price DA Stochastic optimization
[10] Wind+Solar+Battery SM+IS Wind+Solar+Price DA Stochastic optimization
[11] Wind+Battery SM+IS Wind+Price DA Distributionally robust optimization
[12] Wind+Battery SM+IS Wind DA Distributionally robust optimization
[13] Wind+Battery+Other SM+IDM+IS Wind+Price DA Stochastic/Robust optimization
[14] Wind+Other SM+IDM+IS Wind+Price DA Stochastic optimization
[15] Wind+Battery+Other SM+IDM+IS Wind+Price DA Stochastic optimization
[16] Wind+Solar+Battery+Other SM+IDM+IS Wind+Solar+Price DA Stochastic/Robust optimization
[17] Wind+Battery SM+IDM+IS Wind+Price DA Stochastic optimization
[18] Wind+Solar+ESS SM+IDM+IS Wind+Solar+Price DA Stochastic optimization
[19] Wind+Battery RM+SM Wind+Price+reserve activation state DA Stochastic optimization
[20] Wind+Other RM+SM+IS Wind+Price DA Stochastic optimization
[21] Wind+ESS RM+SM+IS Wind+Price+Regulating volumes DA Stochastic optimization
[22] Wind+ESS RM+SM+IDM+IS Wind+Price+Regulating volumes DA Stochastic optimization
[23] Wind+Battery SM+VBM+IS Wind+Price HA Stochastic/Robust optimization
[24] Wind+Battery SM+VBM+IS - DA+HA Deterministic optimization

This paper Wind+Battery VBM+IS Wind+Price+Regulating volumes HA Robust/Stochastic optimization

Case studies are given in Section V and conclusions are
summarized in Section VI.

II. MATHEMATICAL MODELS

A. Objective function

The objective function is to minimize negative profits of
HPP over the worst-case wind power forecasting errors sce-
nario. The formulations are given as:

min
x∈X

max
ξ̃wt ∈W

P̃up
t ,P̃dw

t ∈U(·,·)

min
y∈Y

[F1(y) + F2(y) + F3(y) + F4(y)]

F1(y) =
∑
s∈S

qs
∑
t∈T1

(βdw
t,s · P̃ dw

t ·∆t− βup
t,s · P̃

up
t ·∆t) (1)

F2(y) =
∑
s∈S

qs
∑
t∈T0

(βup
t,s ·∆P̃ dw

t ·∆t− βdw
t,s ·∆P̃up

t ·∆t)

(2)

F3(y) =
∑
t∈T0

(Cim · |∆P̃ dev
t | ·∆t) (3)

F4(y) =
∑
t∈T0

[Cdeg · (P̃ dis
t + P̃ cha

t ) ·∆t] (4)

where U(·, ·) and W represent the DDU and DIU sets,
respectively. F1(x), F2(y) are negative expected revenues from
providing balancing service and negative expected revenues
from imbalance settlement under the two-price model [27],
respectively. βup

t,s and βdw
t,s are the scenario of up and down

balancing price, respectively. They are calculated by:

βup
t,s =

{
πrp
t,s, if πrp

t,s ≥ πsp
t

πsp
t , otherwise

(5)

βdw
t,s =

{
πrp
t,s, if πrp

t,s ≤ πsp
t

πsp
t , otherwise

(6)

F3(y) denotes costs of power deviation from the most recently
updated generation plan, where Cim is the deviation cost
per MWh. This cost comes from the fact that in European
countries, there are legal or contractual requirements for power
plants to track their most recently updated generation plan

[28]. It is noted that F3(y) has absolute item, which can be
transferred as (7a)-(7c) by introducing an auxiliary variable τt.

F3(y) =
∑
t∈T0

(Cim · τt ·∆t) (7a)

τt ≥ ∆P̃ dev
t (7b)

τt ≥ −∆P̃ dev
t (7c)

F4(y) represents costs of battery degradation, where Cdeg is
the cost of degradation per MWh energy throughput. The value
is estimated from an accurate non-linear battery degradation
model [26] and varies every day in order to represent the non-
linear degradation process. Detailed information of calculating
Cdeg refers to [24]. X and Y are the first-level and second-
level constraints introduced in the following parts.

B. First-level constraints
1) Look-ahead operation constraints: The optimization

horizon T0 is always from the current time period t0 to the
end of the day. Therefore, ∀t ∈ T0:

Pha
t = Pw

t + P dis
t − P cha

t (8a)

0 ≤ P dis
t ≤ P b,max · zt (8b)

0 ≤ P cha
t ≤ P b,max · (1− zt) (8c)

Eb
t+1 = Eb

t (1− ηl)−
P dis
t

ηdis
·∆t− P cha

t · ηcha ·∆t (8d)

Emin ≤ Eb
t+1 ≤ Emax (8e)

Pha
t + Pup,∗

t ≤ P grid, ∀ t ∈ T0 \ T1 (8f)

Pha
t + Pup

t ≤ P grid, ∀ t ∈ T1 (8g)

Pha
t − P dw,∗

t ≥ 0, ∀ t ∈ T0 \ T1 (8h)

Pha
t − P dw

t ≥ 0, ∀ t ∈ T1 (8i)

Eb
t = Et0 , ∀ t = t0 (8j)

where Pup,∗
t and P dw,∗

t are the known regulating power offer.
T1 is the offering horizon. The reason to distinguish the
optimization horizon and the offering horizon is that at the
time of running the proposed model, at least the regulating
power offer of the current hour is fixed. Constraints (8a)-(8e),
and (8j) are common operation constraints for power balance,
discharging and charging the battery, battery evolution, battery



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

energy limitation, and battery initial energy. Since HPPs are
normally overplanted, constraints (8f) and (8g) restrict that the
maximum possible HPP power output should not exceed grid
connection capacity due to the overplanting of the HPP with
regards to grid connection capacity. Besides, constraints (8h)
and (8i) restrict that the HPP is a power supplier rather than
a power consumer.

2) Look-ahead offering constraints: At the time of imple-
menting optimization, the gate of balancing market for period
t0 is closed. Hence, the offering constraints are only valid for
T1, starting from t1 to the end of the day. Therefore, ∀t ∈ T1:

Pw
t + Pw,up

t ≤ Pw,max (9a)

Pw
t − Pw,dw

t ≥ 0 (9b)

P dis
t − P cha

t + P b,up
t ≤ P b,max (9c)

P dis
t − P cha

t − P b,dw
t ≥ −P b,max (9d)

Pup
t = Pw,up

t + P b,up
t (9e)

P dw
t = Pw,dw

t + P b,dw
t (9f)

Pup
t ≤ Pup,max (9g)

P dw
t ≤ P dw,max (9h)

Pup
t = 0 ∨ Pup

t ≥ Pup,min (9i)

P dw
t = 0 ∨ P dw

t ≥ P dw,min (9j)

Constraint (9a) restricts the planned wind power output,
including up regulating offer from wind power that is less than
rated power capacity, while constraint (9b) limits the planned
wind power output, including down regulating offer from wind
power that is greater than 0. Similar constraints (9c) and
(9d) are applied for battery. Constraints (9e) and (9f) describe
the relationship between the total up/down regulating power
and up/down regulating power from individual technologies.
Constraints (9g) and (9h) give the maximum volumes for up
and down regulating power offer. Constraints (9i) and (9j)
indicate that the HPP either does not offer the regulating
power or offers regulating power greater than the minimum
requirements. Note that this is for the HPP who does not
commit balancing capacity in the DA RM. However, if the
HPP has participated in the DA RM. the regulating power
offer must be higher than the committed balancing capacity.
It is noted that (9i) and (9j) can be linearized as mixed integral
linear constraints using big M method according to [19], given
as:

−M1 · (1− zupt ) ≤ Pup
t ≤ M1 · (1− zupt ) (10a)

Pup,min −M1 · zupt ≤ Pup
t (10b)

−M2 · (1− zdwt ) ≤ P dw
t ≤ M2 · (1− zdwt ) (10c)

P dw,min −M2 · zdwt ≤ P dw
t (10d)

zupt , zdwt ∈ {0, 1} (10e)

The big M values, M1 and M2, can be chosen as
Pup,max, P dw,max, respectively.

C. Second-level constraints

1) Real-time operation constraints: The variables in
second-level are all uncertainty dependent variables with the
symbol ·̃. In real-time, the HPP, wind, and battery should

meet the following physical constraints, which have similar
meanings as first-level operation constraints.

P̃ rt
t = P̃w

t + P̃ dis
t − P̃ cha

t (11a)

0 ≤ P̃ dis
t ≤ P b,max · z̃t (11b)

0 ≤ P̃ cha
t ≤ P b,max · (1− z̃t) (11c)

Ẽb
t+1 = Ẽb

t (1− ηl)−
P̃ dis
t

ηdis
·∆t− P̃ cha

t · ηcha ·∆t (11d)

Emin ≤ Ẽb
t+1 ≤ Emax (11e)

0 ≤ P̃ rt
t ≤ P grid (11f)

0 ≤ P̃w
t ≤ P̃ ava,w

t (11g)

Ẽb
t = Et0 , ∀ t = t0 (11h)

2) Day-after imbalance settlement constraints: The imbal-
ance settlement consists of two parts: 1) the settlement of
energy imbalance from SM energy plan; 2) the settlement of
power deviation from the most recently updated power plan.

∆P̃t = P̃ rt
t − P sm

t − P̃up
t + P̃ dw

t (12a)

∆P̃t = ∆P̃up
t −∆P̃ dw

t (12b)

∆P̃up
t ·∆P̃ dw

t = 0 (12c)

∆P̃up
t ,∆P̃ dw

t ≥ 0 (12d)

∆P̃ dev
t + P̃up − P̃ dw = P̃ rt

t − Pha
t (12e)

Constraint (12a) calculates imbalance power, which is the
difference between the real-time power output and promised
power in spot market as well as promised regulating power
in balancing market. Constraint (12b) divides the imbalance
power into positive and negative imbalance power, which are
constrained by (12c) and (12d). Note that (12c) is bi-linear
constraint, which can also be linearized by big M method,
expressed as:

∆P̃up
t ≤ M3 · z∆t (13a)

∆P̃ dw
t ≤ M3 · (1− z∆t ) (13b)

z∆t ∈ {0, 1} (13c)

The big M values, M3, can be chosen as P grid.
Constraint (12e) calculates the power deviation between

real-time power output and look-ahead power plan as well
as the activated regulating power in balancing markets.

III. UNCERTAINTY QUANTIFICATION

A. Quantify uncertainty of activated regulating power

The activated up and down regulating power, denoted as
P̃up
t , P̃ dw

t , depends on look-ahead up and down regulating
power offers Pup

t , P dw
t . The uncertainty set U(Pup

t , P dw
t ) can

be defined as:

U(Pup
t , P dw

t ) =

 (P̃up
t , P̃ dw

t )

∣∣∣∣∣∣
P̃up
t = 0 ∨ Pup

t ,
P̃ dw
t = 0 ∨ P dw

t ,
P̃up
t · P̃ dw

t = 0


(14)

The initial two equations impose constraints on the activated
regulating power, ensuring that it is either zero or equal to the
maximum offer. The non-linear constraint P̃up

t · P̃ dw
t = 0 lies

in the fact that in each activation interval, either up or down
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regulating power can be activated. All these constraints can be
linearized as:

P̃up
t ≤ M4 · ẑupt (15a)

P̃up
t ≥ −M4 · (1− ẑupt ) + Pup

t (15b)

P̃ dw
t ≤ M5 · ẑdwt (15c)

P̃ dw
t ≥ −M5 · (1− ẑdwt ) + P dw

t (15d)

P̃up
t ≤ M6 · ẑt (15e)

P̃ dw
t ≤ M6 · (1− ẑt) (15f)

ẑupt , ẑdwt , ẑt ∈ {0, 1} (15g)

The advantage of employing the DDU set is its indepen-
dence from any prior information regarding activated regulat-
ing volumes. This becomes particularly valuable in situations
where there is limited or insufficient data available about the
probabilistic distribution of activated regulating volumes.

B. Quantify the uncertainty of wind power
The uncertainty of wind power is described using the box

uncertainty set, denoted as:

W := {P̃ ava,w
t |P ava,w

t ≤ P̃ ava,w
t ≤ P

ava,w

t } (16)

where P ava,w
t and P

ava,w

t are the lower and upper bound of
the available wind power at the plant level. The bounds are
obtained using the quantile regression forest (QRF) model,
which is a well-established probabilistic model for wind
power forecasting [29] and ranks among the best-performing
forecasting methods [30]. The framework presented in [31]
is used to generate the probabilistic forecasts. The following
paragraphs will briefly describe the methodologies used, and
the interested reader is referred to [31] for a more in depth
explanation of the probabilistic forecasting framework.

The QRF model is used to post-process numerical weather
prediction forecasts. Hub height wind speed were at the
grid point closest to the wind park from the freely available
Meteorological Cooperation on Operational Numeric Weather
Predicition (MetCoOp) from the Norwegian meteorological
institute [32] (12 UTC cycle runs, lead times t + k, k ∈
{12, 13, ...36}) and 24 hour time lagged power observations
are used as explanatory variables to train and test the QRF
models. Learning the QRF model is mainly influenced by
three hyperparameters; the number of variables to randomly
select from (max features) the minimum number of trees
(n estimators) and the minimum number of observations
in each leaf (min samples leaf ). The number of variables
to select from is set to 1/3 of the available variables, the
number of trees are set to 1000 and the minimum number
of observations per leaf is set to 10 to avoid overfitting. Since
wind production behaved differently according to the forecast
horizon, e.g. diurnal variability, one QRF model is trained for
each forecast horizon.

It was found in [31] that the reliability, which is a de-
sired property when trading using probabilistic production
forecasts, was not sufficient with solely using the QRF mod-
els. Therefore, the QRF forecasts were post-processed using
quantile regression (QR) [33]. The QR model produces a
non-parametric cumulative distribution function by assuming
a linear relationship between the QRF forecast distributions
and the observations. From the QR model, forecasts with
19 evenly spaced nominal probabilities, τ ∈ {0.05, ..., 0.95},
were produced and used for optimization model evaluation.

C. Quantify the uncertainty of regulating price

The uncertainty of regulating price is represented by a set
of scenarios. At the time of offering, the spot price is known.
To utilize this information, the scenarios of regulating prices
are generated with the following steps:

Step 1: The historical spot prices and the spot prices of the
operation day are clustered using k-means clustering [34].

Step 2: Identify the cluster which contains the spot prices
of the operation day and record the indices of the historical
days in this cluster.

Step 3: The regulating prices corresponding to the indices
of the historical days are clustered using k-means clustering
again. Then each centroid of new clusters is the scenario of
regulating prices.

IV. SOLUTION ALGORITHM

The proposed two-level robust optimization model has
two special features: 1) It contains the DDU set; 2) The
recourse problem is a mixed integral linear programming
(MILP). These two features make it difficult for the traditional
C&CG algorithm [35] to solve the proposed model. The
reasons are that identified vertices from subproblems may be
infeasible for the new DDU set in each iteration [36] and
Karush–Kuhn–Tucker (KKT) conditions do not hold for MILP.
Therefore, this paper proposes a NAC&CG algorithm to solve
the proposed model based on [36] and [37].

A. Solving subproblem

The subproblem (SP) is defined as follows:

SP : max
ξ̃wt ∈W

P̃up
t ,P̃dw

t ∈U(·,·)

min
y1,y2,z

aT · y1 + bT · y2 (17a)

s.t. y1, y2, z ∈ Y(x∗
k, P̃

up
t , P̃ dw

t , ξ̃wt ) (17b)
y1 ≥ 0, z ∈ {0, 1} (17c)

where x∗
k is the optimal solution of the master problem during

iteration k; a, b are coefficients in the objective function ; y1,
y2 and z represent second-level variables defined as:

y1 := {P̃ rt
t , P̃w

t , P̃ dis
t , P̃ cha

t ,∆P̃up
t ,∆P̃ dw

t , P̃map,up
t , P̃map,dw

t }
y2 := {∆̃Pt, ∆̃P spc

t , Ẽb
t , τ̃t}

z := {z̃t, z̃∆t }

and Y(x∗
k, P̃

up
t , P̃ dw

t , ξ̃wt ) := {(11a) − (13c))} represent
second-level constraints, which have the compact form:

A1x
∗
k +B1y1 + C1y2 +D1z + E1 · P̃up

+G1 · P̃ dw +H1 · ξ̃w + f1 ≤ 0
(18a)

A2x
∗
k +B2y1 + C2y2 + E2 · P̃up +G2 · P̃ dw

+H2 · ξ̃w + f2 = 0
(18b)

where A1, A2, B1, B2, C1, C2, D1, E1, E2, G1, G2, H1, H2,
f1, f2 are coefficients of the constraints.
SP is a max-min problem with integral variables existing

in the inner minimization problem. Therefore, it cannot be
directly converted using KKT conditions. Instead, according to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

[37], by separating integral variable z and continuous variable
y, SP can be reformulated as:

max
ξ̃wt ,P̃up

t ,P̃dw
t

min
z

min
y1,y2

aT · y1 + bT · y2 (19a)

s.t. y1, y2, z ∈ Y(x∗
k, P̃

up
t , P̃ dw

t , ξ̃wt ) (19b)

ξ̃wt ∈ W (19c)

P̃up
t , P̃ dw

t ∈ U(P̃up
t , P̃ dw

t ) (19d)
y1 ≥ 0, z ∈ {0, 1} (19e)

Then, the classical C&CG algorithm [35] can accommodate
the above optimization. Hence, the sub-sub-problem (SSP) is
defined as:

SSP : min
y1,y2,z

aT · y1 + bT · y2 (20a)

s.t. y1, y2, z ∈ Y(x∗
k, P̃

up,∗
t,l , P̃ dw,∗

t,l , ξ̃w,∗
t,l ) (20b)

y1 ≥ 0, z ∈ {0, 1} (20c)

where P̃up,∗
t,l , P̃ dw,∗

t,l , ξ̃w,∗
t,l are the optimal solution of sub-

master problem SMP during iteration l.
Assume that the optimal solution of SSP is z∗l , the SMP

can be defined as:

SMP : max
ξ̃wt ,P̃up

t ,P̃dw
t

η1 (21a)

s.t. ξ̃wt ∈ W, (21b)

P̃up
t , P̃ dw

t ∈ U(Pup
t , P dw

t ) (21c)

η1 ≤ min aT · y1,l+1 + bT · y2,l+1

(21d)
A1x

∗
k +B1y1,l+1 + C1y2,l+1

+D1z
∗
l + E1 · P̃up +G1 · P̃ dw

+H1 · ξ̃w + f1 ≤ 0

(21e)

A2x
∗
k +B2y1,l+1 + C2y2,l+1

+ E2 · P̃up +G2 · P̃ dw

+H2 · ξ̃w + f2 = 0

(21f)

y1,l+1 ≥ 0 (21g)
∀l ∈ L (21h)

Note that constraints (21d)-(21g) contain a minimization prob-
lem, which is a linear programming. The KKT conditions can
be utilized to convert it into a feasibility problem. Specifically,
let λ, µ, and v be the dual variables of the constraint (21e)-
(21g), respectively. The minimization problem is equivalent to
the following KKT equations:

A1x
∗
k +B1y1,l+1 + C1y2,l+1 +D1z

∗
l + E1 · P̃up

+G1 · P̃ dw +H1 · ξ̃w + f1 ≤ 0
(22a)

A2x
∗
k +B2y1,l+1 + C2y2,l+1 + E2 · P̃up +G2 · P̃ dw

+H2 · ξ̃w + f2 = 0
(22b)

BT
1 λ+BT

2 µ+ a ≥ 0 (22c)

λi · (A1x
∗
k +B1y1,l+1 + C1y2,l+1 +D1z

∗
l + E1 · P̃up

+G1 · P̃ dw +H1 · ξ̃w + f1)i = 0
(22d)

y1,l+1,i · (BT
1 λ+BT

2 µ+ a)i = 0 (22e)

CT
1 λ+ CT

2 µ+ b = 0 (22f)
λ ≥ 0, y1,l+1 ≥ 0 (22g)

where variables and equations with subscript i represents the
ith element. (22d) and (22e) are complementary slackness con-
ditions, which have the equivalent mixed integral formulations
as follows:

λi ≤ M7 · (1− zλi ) (23a)

(A1x
∗
k +B1y1,l+1 + C1y2,l+1 +D1z

∗
l + E1 · P̃up

+G1 · P̃ dw +H1 · ξ̃w + f1)i ≥ M8 · zλ
(23b)

y1,l+1,i ≤ M9 · (1− zyi ) (23c)

(BT
1 λ+BT

2 µ+ a)i ≤ M10 · zyi (23d)

where M8 and M10 can be chosen based on the physical
constraints. The big M for dual variables, i.e. M7 and M9 has
significant impacts the performance of the algorithm. Too large
value causes numerical instability, while too small value leads
to local optimality or even infeasibility. This paper proposes
an adaptive method to select tighter big M for dual variables.
The details are introduced in Appendix A.

B. Solving master problem
During each iteration k, the master problem (MP) is

defined as follows.

MP : min
x

η (24a)

s.t. x ∈ X (24b)

y1,k, y2,k, zk ∈ Y(x, P̃map,up
t,k , P̃map,dw

t,k , ξ̃w,∗
t,k )

(24c)

η ≥ aT · yk, (24d)

P̃map,up
t,k = Pup

t · ẑup,∗t,k , (24e)

P̃map,dw
t,k = P dw

t · ẑdw,∗
t,k , (24f)

∀k ∈ N , zk ∈ {0, 1} (24g)

where x is first-level decision variables denoted as x :=
{Pw

t , P dis
t , P cha

t , Pup
t , P dw

t , Pup,w
t , P dw,w

t , Pup,b
t , P dw,b

t }. X
is first-level constraints denoted as X := {(8a)−(9h), (10a)−
(10e)}. yk, zk are generated variables, while constraints (24c)
and (24d) are generated constraints. (24e) and (24f) are
constraints to project the identified vertices from the kth

uncertainty set Uk(P
up
t,k , P

dw
t,k ) into the new DDU set.

C. Nested adaptive C&CG algorithm
The overall process of the NAC&CG algorithm is summa-

rized in Algorithm 1. For simplification, the time index t in
the following algorithms is omitted.

Algorithm 1 NAC&CG algorithm
1: Initialize: Accuracy tolerance ϵ ≥ 0; Iteration index

k = 1; Upper bound UB0 = 1010; Lower bound
LB0 = −1010; Worst scenario set N = ∅.

2: while k do
3: Master problem: Solve the MP and obtain the

optimal solution x∗
k. Update the lower bound LBk = ηk.

4: Sub-problem: Solve the SP using Algorithm 2 and
obtain the worst-case ω∗

k = (ξ̃w,∗
k , P̃up,∗

k , P̃ dw,∗
k ). Update

the upper bound UBk = min{UBk−1, a
T ·y∗1,k+bT ·y∗2,k}.

5: Termination condition: If |UBk −LBk| ≤ ϵ, break;
Otherwise, N = N ∪ {ω∗

k} and k = k + 1.
6: end while
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Fig. 2. Probabilistic forecast of wind power

Algorithm 2 Internal C&CG algorithm
1: Initialize: Accuracy tolerance ϵ ≥ 0; Iteration index

l = 1; Upper bound UB0 = 1010. Lower bound LBk =
−1010; Worst scenario set L

2: while l do
3: Sub-Master-problem: Solve the SMP and obtain the

optimal solution (ξ̃w,∗
k,l , P̃

up,∗
k,l , P̃ dw,∗

k,l ). Update the upper
bound UBl = ηl.

4: Sub-Sub-problem: Solve the SSP and obtain the
worst-case z∗k,l. Update the lower bound LBl =

min{LBl−1, a
T · y∗1,k,l + bT · y∗2,k,l}.

5: Termination condition: If |UBl − LBl| ≤ ϵ, break;
Otherwise, L = L ∪ {z∗k,l} and l = l + 1.

6: M values: Obtain the tighter M values of dual vari-
ables for SMP according to Appendix A.

7: end while

Fig. 3. Scenarios of regulating price

The Algorithm 1 summarizes the alternative solving of
MP and SP . The main differences with traditional C&CG
are the including of mapping constraints (24e) and (24f) into
MP and applying Algorithm 2 to solve SP . The global
convergence can refer to [36]. In Algorithm 2, if the algorithm
does not stop at step 5, step 6 is introduced to choose tighter
M values. The details can be found in Appendix A.

V. CASE STUDIES

The considered HWBP, consisting of a 50 MW wind farm
and 10MW/30MWh battery, is assumed to be located in West-
ern Denmark. Correlated renewable energy source tool [38],
[39] is applied to simulate wind power generation from 2018
to 2022. The market prices and regulating volumes of Nordic
areas from 2021 to 2022 are downloaded on the European
Network of Transmission System Operators for Electricity
website [40]. These data are applied to obtain probabilistic

forecasts of wind power and scenarios of regulating prices. All
case studies are implemented by Python [41] and optimizations
are solved using IBM Decision Optimisation Studio CPLEX
through the docplex python library [42] operating on DTU’s
high-performance computing cluster Sophia [43].

Figures 2 and 3 display the probabilistic forecasts of wind
power and the scenarios of regulating prices, respectively.
There are total of 9 confidence levels for wind power and
4 scenarios for regulating prices. In Figure 2, it is evident that
the actual wind power aligns closely with the 90% confidence
level range, showcasing the effectiveness of the probabilistic
forecasts in capturing the inherent variability and uncertainty
of wind power. Similarly, in Figure 3, the ranges for both
upward and downward regulating power almost encompass the
real prices, providing a robust representation of the potential
uncertainty in regulating prices. It is important to note that
while there are instances where the real values lie outside
the depicted ranges, the overall coverage of the forecasts and
scenarios accurately captures the majority of the observed
variations in wind power and regulating prices.

A. Comparison with Benchmark model
A benchmark model is employed to test the performance

of the proposed model. The benchmark model represents the
proposed model excluding the consideration of the uncertainty
of activated regulating volumes. This involves removing the
DDU set U(Pup

t , P dw
t ) from the objective function (1) and

replacing the stochastic variables P̃up
t and P̃ dw

t with Pup
t and

P dw
t , respectively. In the benchmark model, it is assumed

that all the offered regulating power is activated in real-
time, which aligns with common assumptions found in the
literature, such as [23], [24]. It is noted that in the proposed
model and the benchmark model, the confidence level of wind
power forecasts is chosen as 50%. The consecutive 14 days
results of the benchmark model and the proposed model are
demonstrated in Fig. 4 and Fig. 5, respectively. In the presented
simulation results, the regulating power offers of both models
are updated once at 12:00 of the operation day.

The disparity between the benchmark model and the pro-
posed model in terms of the robustness of regulating power
offerings is evident in Fig. 4 and Fig. 5. Nearly every hour, as
shown in the upper figure of Figure. 4, the benchmark model
tends to offer regulating power, which indicates a relatively
aggressive offering strategy. Consequently, as demonstrated in
the lower figure of Figure. 4, the HPP with the benchmark
model faces challenges in adhering to the committed reference
in 11 hours, resulting in deviations from their initial power
commitments. In contrast, the proposed model offers a reduced
amount of regulating power in the market. For example, as
depicted in the upper figure of Figure. 5, during the end of
Jan 03 and the beginning of Jan 04, there is no regulating
power offering, indicating a more cautious offering strategy.
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Fig. 4. Results of the benchmark model

Fig. 5. Results of the proposed model

However, for the HPP with the proposed model, when regulat-
ing power offers are activated, the HPP consistently delivers
the required power as expected.

B. Impact of confidence levels of probabilistic wind power
forecasts

This section investigates how confidence levels of proba-
bilistic wind power forecasts affect the performance of the
benchmark model and the proposed model. The statistics of
the count and the percentage of hours during which the HPP
fails to provide balancing service per the TSO’s request are
shown in Table. II, where 5 confidence levels are considered.
It is observed in Table. II that the number of hours decreases
for both models as the confidence level rises. This is because
of the inclusion of more extreme wind power scenarios in the
uncertainty set when higher confidence levels are considered.
As a result, both models adopt more robust decisions to
ensure reliable operation in the face of uncertainty. Despite
considering a 90% confidence level, there are still 5 hours
in which the benchmark model fails to deliver the committed
regulating power. It occupies around 6% of the total number
of hours that the regulating power is activated. Consequently,
there is a risk of the HPP being excluded by the TSO from
providing balancing services. However, the proposed model
demonstrates its capability to fully deliver the committed
regulating power when the confidence level surpasses 30%.
This highlights the improved performance and reliability of
the proposed model.

Furthermore, Table III provides a detailed comparison of
the HPP’s profitability using the proposed model at different
confidence levels. Notably, higher confidence levels lead to

TABLE II
THE COUNT AND PERCENTAGE OF HOURS DURING WHICH THE HPP FAILS

TO PROVIDE BALANCING SERVICE PER THE TSO’S REQUEST

Model Confidence level Number of hours Percentage

Benchmark model

10% 21 22%
30% 17 18%
50% 10 11%
70% 6 7%
90% 5 6%

The proposed model

10% 3 15%
30% 3 15%
50% 0 0%
70% 0 0%
90% 0 0%

more conservative decisions, i.e. fewer regulating power offers,
which in turn affects the variations in revenues and costs as
shown in the table.

Firstly, as the confidence levels increase, the regulation
revenue rises from −15.5 kC to −14.8 kC. This could be
attributed to the decrease in the provision of down-regulating
power, leading to lower payments for down-balancing services.
However, the energy imbalance cost, caused by the imbalance
energy ∆P , increases from 121.3 kC to 136.8 kC, and the
power imbalance cost, caused by the power deviation ∆P dev ,
increases from 4.1 kC to 12.6 kC. The reason for these
increases is that the opportunities to reduce the imbalance costs
by offering the imbalances as regulating power are reduced.
On the other hand, the battery degradation costs decrease as
the battery is less frequently utilized with fewer balancing
service provisions. Additionally, since fewer regulating power
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TABLE III
REVENUES AND COSTS (THOUSAND C) COMPARISON OF THE PROPOSED MODEL AT DIFFERENT CONFIDENCE LEVELS

Confidence level SM revenues BM revenues Total Degradation Total
regulation revenues energy imbalance costs power imbalance costs Total revenues costs profits

50% 966.7 -15.5 121.3 4.1 -140.9 825.8 12.9 812.9
70% 969.2 -15.2 127.9 6.8 -148.9 820.3 11.5 808.9
90% 972.2 -14.8 136.8 12.6 -163.1 809.1 10.1 799.0

offers lead to more energy stored in batteries, more energy
in batteries can be used for spot market offerings daily.
Consequently, the spot market revenue also increases with a
higher confidence level.

Taking these trade-offs into account, the maximum total
profits are achieved at the 50% confidence level. This indicates
that selecting a confidence level of 50% represents a well-
balanced trade-off between economic performance and the
robustness of the proposed model.

C. Performance of the proposed NAC&CG algorithm
The computational performance of the proposed model is

demonstrated in Fig. 6. The notation ”22:00, D-1” indicates
that the model is executed at 22:00 on the previous day, while
”12:00, D” implies that the regulating power offers are updated
at 12:00 on the operation day. The figure showcases the solving
time for the model when run twice, with solving times ranging
from 348s to 2263s for the first run and from 8s to 875s for
the second run. The solving times of the proposed model are
deemed acceptable. For instance, considering that the first offer
needs to be submitted by 23:15, D-1, allowing a time window
of 4500s between 22:00 and 23:15. Remarkably, the maximum
solving time of 2263s comfortably fits within this time frame.
Similarly, for the second run, the maximum solving time of
875 seconds is well below the 900 seconds time window
between 12:00 and 12:15. In fact, users have the flexibility to
choose their preferred execution time of the proposed model,
enabling them to submit or modify their regulating power
offers well ahead of the deadline. It is important to note that
the computational performance of the model is dependent on
the worst-case scenario, which accounts for the wide time
range observed. Additionally, it is reasonable that the average
solving time for the second run (254s) is lower than the first
run (1408s) since the optimization horizon is reduced during
the second run.

Fig. 6. Computational performance of the proposed model

VI. CONCLUSION

In this paper, a novel robust optimization model is proposed
for HPPs offering regulating power in voluntary balancing

markets considering the uncertainty of regulating price, wind
power, and activated regulating volumes. A nested adaptive
column & constraint generation algorithm is developed to
solve the proposed model. Based on the Danish test case, the
main findings of this paper are:

1) Without considering the uncertainty of activated reg-
ulating volumes leads to aggressive offering and operation
strategies for HPPs. Although utilizing the most conservative
uncertainty set of wind power, the HPP in the studied case
still fails to provide balancing services in around 6% of the
time.

2) It is effective to model the uncertainty of activated
regulating volumes using the decision dependent uncertainty
set. The proposed model ensures the reliable provision of
balancing services, avoiding being quarantined by transmission
system operators.

3) The proposed algorithm is effective to solve the proposed
model. In the studied case, the average solving time for the
first run is 1408s, while it is 254s in the second run.

APPENDIX A

This appendix introduces how to select proper M values for
the dual variables of the optimization problem (21d)-(21g).
During each iteration l, after the SSP is solved and the
optimal solution z∗l is fixed, this optimization is written in
the following compact formation:

min
y

cT · y (25a)

s.t. Ay + b ≤ 0 (25b)
y ≥ 0 (25c)

Then, an auxiliary variable w and a penalization term M ·w
are added into the problem (25), resulting in the following
optimization:

min
y

cT · y +M · w (26a)

s.t. Ay + b ≤ w (26b)
y, w ≥ 0 (26c)

Then, the M value can be gradually increased until the
optimal solution w∗ = 0, namely problem (25) and (26) are
equivalent. According to dual theory, the dual problem of (26)
is:

max
λ

bT · λ (27a)

s.t. A · λ ≤ c (27b)
0 ≤ λ ≤ M (27c)

It is obvious that when w∗ = 0, the M value is a natural bound
of the dual variable λ.
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