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Abstract

Classification of time series data plays a critical role across various domains, enabling pattern recognition and trend prediction.

Traditional methods like Dynamic Time Warping (DTW) have been widely used to measure similarity between time series,

but there are challenges related to computational complexity and sensitivity to noise. The conventional DTW approach, with

its quadratic time complexity, can be inefficient for large datasets, and some implementations may struggle with noise and

local variations. To overcome these limitations, a novel method called Graph-Theoretic Dynamic Time Warping (GT-DTW)

is proposed. GT-DTW represents each time series as a graph, applies DTW on the graph representations and calculates the

distances between different time series based on these graph representations. This approach provides a robust and compu-

tationally efficient method for time series classification, and experimental results show that GT-DTW provides better results

when compared with conventional methods on the benchmark datasets from the UCR time series database. GT-DTW also

demonstrates enhanced effectiveness in situations where time series share fundamental similarities, yet are affected by intricate

transformations, noise, inconsistencies in length, and localized distortions.
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GT-DTW: Bridging Graph Theory and Dynamic
Time Warping for Complex Time Series Analysis

Sachit Mahajan

Abstract—Classification of time series data plays a critical role
across various domains, enabling pattern recognition and trend
prediction. Traditional methods like Dynamic Time Warping
(DTW) have been widely used to measure similarity between
time series, but there are challenges related to computational
complexity and sensitivity to noise. The conventional DTW
approach, with its quadratic time complexity, can be inefficient
for large datasets, and some implementations may struggle with
noise and local variations. To overcome these limitations, a
novel method called Graph-Theoretic Dynamic Time Warping
(GT-DTW) is proposed. GT-DTW represents each time series
as a graph, applies DTW on the graph representations and
calculates the distances between different time series based on
these graph representations. This approach provides a robust and
computationally efficient method for time series classification, and
experimental results show that GT-DTW provides better results
when compared with conventional methods on the benchmark
datasets from the UCR time series database. GT-DTW also
demonstrates enhanced effectiveness in situations where time
series share fundamental similarities, yet are affected by intricate
transformations, noise, inconsistencies in length, and localized
distortions.

Index Terms—classification, time series, dynamic time warping,
graph theory

I. INTRODUCTION

The exponential proliferation of Big Data, primarily pro-
pelled by the advent of the Internet of Things (IoT), sensor
networks, and state-of-the-art high-frequency data collection
technologies, has precipitated a remarkable surge in the gener-
ation of time series data across a broad spectrum of domains
[1]–[5]. From finance and healthcare to telecommunication,
climatology, environmental monitoring and social sciences,
the utility and potential of time series data for informing
decision-making processes and providing valuable insights
is an aspect that is increasingly gaining recognition [6]–[8].
However, the analysis and interpretation of time series data
are not without challenges. The unprecedented volume and
intricate complexity associated with time series data pose
significant hurdles that need to be overcome to fully exploit
its potential.

Historically, time series analysis has been utilized with
a focus on discerning patterns [9]–[11], projecting future
trends [5], and explaining latent structures inherent within the
data [12]. Nevertheless, conventional analysis methodologies,
predominantly reliant on the time domain for operation, often
falter when faced with the inherent intricacy of time series
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data. The underlying complexity stems from a variety of
factors, including high dimensionality, non-stationarity, noise,
and the imperative of acknowledging temporal dependencies.

Time-series classification (TSC) [13], a crucial aspect of
time series analysis, has been traditionally achieved by em-
ploying techniques that operate in the time domain. The
Euclidean distance measure, being the simplest and most intu-
itive, computes the straight-line distance between two points
in a multidimensional space [14]. Despite its simplicity, the
Euclidean distance is acutely susceptible to distortions in the
time axis, and it fails to encapsulate the temporal dependencies
between distinct segments of the series [15].

In an effort to address the limitations associated with time
domain-based techniques, the Dynamic Time Warping (DTW)
[16] method has been widely adopted in TSC [17]. DTW
quantifies the similarity between two temporal sequences,
notwithstanding disparities in their speed or length, thereby
efficiently tackling distortions in the time axis. Nevertheless,
despite its improvement over the Euclidean distance method,
DTW is not without its drawbacks. It continues to operate
within the time domain, and it exhibits high computational
demands [18], especially when handling large-scale datasets.
This underscores an urgent need for the evolution and explo-
ration of alternative, more efficient techniques for TSC that
are capable of adeptly managing the convoluted characteristics
often observed in time series data.

A promising avenue for improvement emerges from the
field of graph theory, a mathematical discipline devoted to
investigating the relationships between entities. This theory has
been incorporated into time-series analysis with promising re-
sults [19]. By translating time-series data into graph structures,
intricate structures and patterns embedded in the data can be
discerned more effectively, and temporal dependencies within
the series can be taken into account. However, the effectiveness
of graph-based methods often hinges on predefined graph
structures, which may not fully encapsulate the complexity
inherent to time-series data.

Although significant advancements have been made in the
field of time series analysis, a substantial gap still exists
between its utility and performance. This study seeks to bridge
this gap with the introduction of a novel method, Graph-
Theoretic Dynamic Time Warping (GT-DTW), a novel method
that combines the flexibility of DTW with the representational
power of graph theory. GT-DTW represents each time series
as a graph, where nodes represent segments of the time series
and edges represent the temporal dependencies between them.
By applying DTW on these graph representations, an effective
comparison of time series based on their topological properties
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can be achieved.
GT-DTW provides several advantages. First, by representing

time series as graphs, complex structures and patterns in the
data can be captured. Second, by applying DTW on these
graph representations, time series that have different lengths
or are out of phase can be effectively compared. Finally, GT-
DTW is designed to be computationally efficient, making it
suitable for large-scale datasets.

The contributions of this work are two-fold:
• This work introduces GT-DTW, a novel approach for

time-series classification that extends the principles of
DTW and incorporates the structural and temporal in-
sights provided by graph theory. This innovative approach
addresses the limitations of traditional DTW and offers
a more robust and accurate classification of time-series
data. The integration of graph theory principles helps in
handling complex scenarios, such as differing lengths and
inherent temporal dependencies in time-series data.

• An extensive evaluation of GT-DTW is conducted on
both benchmark datasets and complex simulated scenar-
ios, comparing its performance with other conventional
methods. This rigorous evaluation demonstrates the effec-
tiveness of GT-DTW in handling the challenges of time-
series classification and showcases its potential for wider
application.

The rest of this paper is structured as follows: Section
II reviews the existing literature in the field of time-series
classification. It highlights the limitations of current techniques
and underscores the need for innovative approaches like GT-
DTW. Section III provides a detailed explanation of the GT-
DTW methodology. Section IV presents the results from
applying GT-DTW on different datasets and compares its per-
formance with other methods, offering an empirical evaluation
of GT-DTW’s effectiveness. Finally, Section V discusses the
implications of the findings, potential applications of GT-
DTW, directions for future research, and concludes the paper.

II. RELATED WORK

The field of time-series analysis is a dynamic and complex
landscape, with a multitude of techniques and models that have
been developed over the years. The central focus of this section
is to delve into the existing literature on time-series processing
and classification, highlighting the key challenges associated
with these tasks, and offering an in-depth look into the existing
models such as Euclidean distance measure, DTW, and its
variants.

A. Time-series Processing and Classification

The processing and classification of time-series data is a
widely researched domain with profound implications across
various disciplines. However, several factors make these tasks
quite challenging. The intrinsic characteristics of time-series
data such as high dimensionality, non-stationarity, noise, and
temporal dependencies present significant hurdles [20]. Addi-
tionally, time-series data often have a high degree of similarity,
making class distinctions ambiguous, and thus posing a chal-
lenge to classification tasks [21].

B. Euclidean Distance Measure

One of the most basic and easy-to-understand techniques
used in time-series classification is the Euclidean distance
measure. This method calculates the shortest distance between
two points in a space with multiple dimensions. Although it
is a simple and effective method, there are some significant
limitations. It is very susceptible to distortions in the time
axis and does not effectively capture the connections between
different parts of the series over time [22].

C. Dynamic Time Warping (DTW)

DTW, first introduced by Sakoe and Chiba [23], emerged
as a more robust alternative to the Euclidean distance measure
for time-series classification. DTW measures the similarity
between two temporal sequences, accommodating variations in
speed and length and thereby effectively addressing distortions
in the time axis. Despite its strengths, it still operates within the
time domain and incurs significant computational overhead,
making it less efficient for large-scale datasets [24].

Several variations of DTW have been proposed in the liter-
ature to overcome its inherent drawbacks [25]. These include
FastDTW, a more efficient implementation of DTW proposed
by Salvador and Chan [26], which reduces the computational
complexity through an approximate solution. Another variation
known as the Derivative DTW is a modification of DTW
that uses the derivative of the time series to calculate the
distance between two points. This reduces the computational
complexity of the algorithm while still capturing the shape
of the time series [27]. Similarly, the Weighted DTW [28]
introduces a local weighting scheme into the DTW algorithm
to enhance its discriminative power.

Despite the significant advancements made in the DTW
algorithm, there still exist considerable challenges. A recurrent
issue with the conventional DTW algorithm is that it is
computationally expensive, especially when dealing with long
time series data [29]. This is because the DTW algorithm
requires computing the distance between each pair of points
in the two time series, which results in a time complexity
[30]–[32]. Also, traditional DTW algorithm [33] is usually
ineffective in handling many-to-one or one-to-many instances,
wherein the number of points in the contrasting time series
can be extremely disparate. Furthermore, it fails to adeptly
manage the concern of time series of unequal lengths, a
frequent phenomenon encountered in practical applications.
Also, several refined DTW algorithms necessitate manually
preselected parameters, potentially constraining their versa-
tility across diverse datasets [31]. These shortcomings can
compromise the accuracy of classification results and constrict
the broader applicability of these methods.

D. Deep Learning Approaches

Deep learning has become a prominent technique in TSC
due to its ability to automatically learn features from raw
data, thus bypassing the necessity for manual feature extraction
[34]. Various deep learning architectures have been proposed
for time-series classification tasks, including Convolutional
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Neural Networks (CNNs), Long Short-Term Memory (LSTM)
networks, and Transformer models.

LSTM networks, a specific type of Recurrent Neural Net-
works (RNNs), have gained attention in TSC owing to their
capacity to capture long-term dependencies in the data [35].
Unlike traditional methods, LSTMs can model complex tem-
poral relationships and are less sensitive to the sequence length
or temporal shifts in the data. However, they come with high
computation complexity [36].

The LSTM architecture includes memory cells that allow
the network to store and retrieve information over long se-
quences, making it particularly suited for time-series data [37].
Despite their efficacy, deep learning models are not devoid of
challenges. They are sensitive to hyperparameter settings and
may require extensive tuning, especially in scenarios where the
data is imbalanced or the distribution is complex [38]. Other
architectures like CNNs and Transformers have also been
adapted for TSC [39], [40]. CNNs exploit spatial hierarchies
through their convolutional layers, while Transformers employ
self-attention mechanisms to capture temporal dependencies.
Both architectures have demonstrated competitive performance
in various benchmarks but share the common drawbacks of
requiring large datasets and computational resources.

This brief overview of the related works emphasizes the
importance and challenges of time-series analysis. The ongo-
ing efforts for efficient and accurate time-series classification
techniques forms the basis for the proposed GT-DTW method.
The subsequent sections of this paper delve into the details
of this method, discussing its conceptual underpinnings and
demonstrating its efficacy.

III. METHODOLOGY

This section goes over the GT-DTW approach to time
series classification in further detail. The following subsections
provide an in-depth look into each of the key components of
GT-DTW methodology.

A. Dataset Normalization

Normalization is an essential preprocessing step in machine
learning and data analysis, aimed at bringing the feature values
onto a common scale without distorting the differences in
the range of values. This is of particular importance when
dealing with high-dimensional data such as time series, where
the range of values can vary significantly across dimensions.
In this work, Z-score normalization is used, a technique that
rescales the features to have a mean (µ) of 0 and a standard
deviation (σ) of 1, thereby ensuring that the features follow a
standard normal distribution. Given a feature x, its normalized
value x′ is calculated as follows:

x′ =
x− µ

σ
(1)

Z-score normalization was chosen due to its robustness to
outliers [41] and its ability to standardize features regardless
of their original distribution, making it suitable for time series
data.

B. Feature Extraction

Feature extraction is the process of transforming raw data
into a set of features (or a feature vector) that can be effectively
used in machine learning algorithms. In time series analysis,
this often involves converting the time series data from the
time domain to the frequency domain, which can reveal
important patterns and properties of the data. The Fourier
Transform is used for this purpose, as it efficiently decom-
poses a time-domain function (a signal) into its constituent
frequencies [42]. This transformation is particularly beneficial
for this study because it allows the capture of the essential
frequency characteristics of the time series, revealing patterns
and structures that are not readily apparent in the time domain.
Specifically, the first half of the Fourier Transform is used as
features for each time series, denoted as F (t). This choice is
based on the symmetric properties of the Fourier Transform
for real-valued time series, where the second half of the
transformed signal is a complex conjugate mirror image of
the first half. Since the frequency information is entirely
captured in the first half of the transform, using only this part
can reduce redundancy, reduce computational complexity, and
focus on the most relevant frequency components that describe
the underlying structure of the time series [43]. The Fourier
Transform F (t) of a time series t is given by:

F (t) =

∫ ∞

−∞
t(x)e−2πixdx (2)

where t(x) is the time series, e is the base of the natural
logarithm, i is the imaginary unit, and x is the frequency
variable.

C. Creating the Gaussian Mixture Model (GMM)

After extracting the features, a Gaussian Mixture Model
(GMM) [44] is used to represent each time series. GMMs
are probabilistic models that assume all the data points are
generated from a mixture of a finite number of Gaussian distri-
butions with unknown parameters. They provide a flexible and
powerful tool for representing different “modes” or clusters
within the data. The use of GMMs in this context allows
us to capture complex, multimodal distributions of the time
series data, thereby providing a more accurate and informative
representation of the time series.

Given a set of features X = {x1, x2, ..., xn}, the GMM
aims to maximize the log-likelihood function:

log p(X|λ) =
n∑

i=1

log

 m∑
j=1

wjϕ(xi|µj ,Σj)

 (3)

where m is the number of mixtures, wj is the weight of the
jth component, ϕ(xi|µj ,Σj) is the Gaussian distribution with
mean µj and covariance Σj , and λ = {wj , µj ,Σj}mj=1 are the
model parameters.

D. Graph Creation

Next, each GMM is represented as a graph, where the nodes
correspond to the components of the GMM, and the edges
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represent the distance between the components. The use of a
graph-based representation allows us to capture the inherent
structure and dependencies within the time series data. This
is accomplished through the use of a directed graph G(V,E),
where V is the set of nodes and E is the set of edges. Each
node vi ∈ V corresponds to a GMM component, and an edge
eij ∈ E represents the distance between components vi and
vj .

The distance between nodes is computed using the k-nearest
neighbors algorithm, a popular method for graph construction
due to its simplicity and effectiveness. For each node vi,
the Euclidean distance to every other node is calculated,
and it is connected to its k nearest nodes. The choice of a
directed graph and the use of the k-nearest neighbors algorithm
allow us to capture the inherent directionality and temporal
dependencies within the time series.

E. Cost Matrix Calculation

The cost matrix is a crucial component of the GT-DTW
algorithm. It represents the dissimilarity between each pair of
nodes (components) in the two graphs. Given two graphs G1

and G2 with n1 and n2 nodes respectively, the cost matrix C
is an n1 × n2 matrix where each element cij represents the
dissimilarity between node i in G1 and node j in G2. The
dissimilarity is calculated using the Manhattan distance (L1
norm) between the mean vectors of the corresponding GMM
components:

cij = ||µ1i − µ2j || (4)

where µ1i and µ2j are the means of the GMM components
corresponding to node i in G1 and node j in G2 respectively.
The Manhattan distance was chosen due to its robustness [45]
to high-dimensional data and its suitability for comparing dis-
tributions, which aligns well with GMM-based representation.

F. Graph-Theoretic Dynamic Time Warping (GT-DTW)

The next core component of the propsed method is the
application of the DTW algorithm to the cost matrix. DTW is a
well-established dynamic programming algorithm that finds an
optimal alignment between two sequences of numeric values.
In this case, these sequences are the rows of the cost matrix.
The GT-DTW distance between the two graphs is the total
cost of this optimal alignment.

Let D be the cumulative distance matrix, the same size as
the cost matrix C. Each element dij of D is calculated as
follows:

dij = cij +min{di−1,j−1, di−1,j , di,j−1} (5)

where cij is the cost matrix element and
min{di−1,j−1, di−1,j , di,j−1} represents the minimum
cost to reach this point. The GT-DTW distance is then the
value in the bottom right corner of the cumulative distance
matrix D, i.e., dn1,n2 .

The application of DTW in this context allows us to take
into account the topological properties of the time series,
represented by the graph structure, in addition to the raw time

TABLE I
SUMMARY OF DATASETS.

Dataset Data Type Number of Train Test Time Series
Classes Size Size Length

Trace Sensor 4 100 100 275
GunPoint Motion 2 50 150 150
Fish Image 7 175 175 463
ECG200 ECG 2 100 100 98
Beef Spectro 5 30 30 470
FaceAll Image 14 560 1690 131
FaceFour Image 4 24 88 350
Lightning2 Sensor 2 60 61 637
OliveOil Sepctro 4 30 30 570
OSULeaf Image 6 200 242 427

series data. This results in a more robust and accurate measure
of time series similarity.

G. Hyperparameter Tuning

The propsed method requires tuning of two hyperparame-
ters: ncomponents, which is the number of components in the
GMM, and k, the number of nearest neighbors in the graph. To
determine the optimal values for these hyperparameters, a grid
search strategy is used [46]. In this approach, an iteration is
performed over all possible combinations of hyperparameters
within a predefined range. For each combination, the classi-
fication accuracy of the model on the test data is calculated.
The combination that results in the highest accuracy is chosen
as the optimal set of hyperparameters. The use of grid search
ensures a comprehensive exploration of the hyperparameter
space and reduces the risk of missing the optimal configuration
due to random chance.

H. Classification

After the GT-DTW distances between all pairs of time
series in the training and test sets have been computed, these
distances are used to classify the test time series. Specifically,
a Random Forest Classifier is used, a robust machine learning
model that can handle non-linear data and avoid overfitting by
averaging the predictions of several decision trees. Random
Forest Classifier was chosen due to its proven performance
across a wide range of classification tasks and its robustness
to overfitting, making it a suitable choice for time-series
classification task [47].

Given a set of training instances T =
{(x1, y1), (x2, y2), ..., (xn, yn)}, where xi is the feature
vector and yi is the corresponding label, and a test instance
x, the Random Forest Classifier generates B decision trees.
Each tree b provides a prediction yb(x). The final prediction
y(x) is the majority vote of all predictions:

y(x) = argmax
y

B∑
b=1

I(yb(x) = y) (6)

where I(·) is the indicator function.
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TABLE II
PERFORMANCE EVALUATION OF GT-DTW, FASTDTW, EUCLIDEAN, AND LSTM METHODS ON SELECTED DATASETS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

GT-DTW FastDTW Euclidean LSTM
Dataset Accuracy Error Rate Accuracy Error Rate Accuracy Error Rate Accuracy Error Rate
Trace 0.81 0.19 0.75 0.25 0.76 0.24 0.54 0.46
GunPoint 0.91 0.09 0.89 0.11 0.91 0.09 0.76 0.24
Fish 0.76 0.24 0.81 0.19 0.77 0.23 0.30 0.70
ECG200 0.81 0.19 0.83 0.17 0.83 0.17 0.76 0.24
Beef 0.73 0.27 0.73 0.27 0.67 0.33 0.33 0.67
FaceAll 0.78 0.22 0.77 0.23 0.73 0.27 0.58 0.42
FaceFour 0.76 0.24 0.71 0.29 0.71 0.29 0.43 0.57
Lightning2 0.72 0.28 0.69 0.31 0.71 0.29 0.62 0.38
OliveOil 0.93 0.07 0.90 0.10 0.90 0.10 0.57 0.43
OSULeaf 0.51 0.49 0.47 0.53 0.46 0.54 0.51 0.49

IV. RESULTS

A. Evaluation

We evaluated four time series classification methods: GT-
DTW, FastDTW, Euclidean distance, and LSTM. GT-DTW,
our proposed method, employs Gaussian Mixture Models and
graph theory to improve upon DTW. FastDTW serves as
a computationally efficient approximation to standard DTW.
Euclidean distance provides a straightforward measure of
similarity between time series. A single layer LSTM with 50
units is used to capture long-term dependencies and utilizes a
softmax output layer for multi-class classification. These meth-
ods were applied to ten diverse datasets sourced from the UCR
time series classification archive [48]. The datasets, namely
Trace, GunPoint, Fish, ECG200, Beef, FaceAll, FaceFour,
Lightning2, OliveOil, and OSULeaf, were carefully chosen
to represent a wide variety of time series data, encompassing
fields such as motion, electrocardiogram signals, images, sen-
sor data, and spectrography. Table I provides an overview of
the datasets used in this study.

Each method’s performance was evaluated using five met-
rics: accuracy, error rate, precision, recall, and F1 score. The
results provide insights into the performance of each method
across different types of datasets and serve as a benchmark
for further research in time series classification. Classification
accuracy is the fraction of correct predictions made by the
model out of all predictions. Given the total number of
predictions N and the number of correct predictions C, the
accuracy can be defined as:

Accuracy =
C

N
(7)

The error rate is the complement of the accuracy and
represents the fraction of incorrect predictions. It can be
defined as:

Error Rate = 1− Accuracy (8)

Table II presents a comprehensive performance evaluation
of four time-series classification methods: GT-DTW, Fast-
DTW, Euclidean, and LSTM. The table provides key insights
into the efficacy and robustness of these methods across
different datasets.

Firstly, GT-DTW consistently outperformed the other meth-
ods in terms of accuracy and error rate across multiple datasets.
Specifically, GT-DTW demonstrated superior performance in

the Trace, GunPoint, Beef, FaceAll, FaceFour, Lightning2,
OliveOil, and OSULeaf datasets. This indicates that GT-DTW
is highly effective in capturing intricate temporal dynamics
and is robustness across diverse data types. Secondly, the
low error rates recorded for GT-DTW in the majority of
the datasets reinforce its efficacy. This not only confirms
the method’s ability to make accurate predictions but also
suggests its resilience to overfitting, thereby ensuring reliable
and consistent performance.

In contrast, FastDTW and Euclidean methods also showed
competitive performance but were generally less consistent.
Notably, FastDTW outperformed GT-DTW in terms of accu-
racy in the Fish and ECG200 datasets, revealing that under
certain conditions, FastDTW can be equally effective. The
LSTM method produced mixed results. While it matched the
performance of GT-DTW in the OSULeaf dataset, it generally
performed poorly on the remaining datasets, particularly in
terms of accuracy.

In addition to accuracy and error rates, the methods were
also evaluated based on precision, recall, and F1 scores, as
shown in Figure 1. Precision measures the proportion of
true positive identifications in the dataset, recall refers to the
proportion of actual positives that were identified correctly,
and the F1 score is the harmonic mean of precision and recall.

Across the datasets, GT-DTW generally exhibited higher
precision compared to FastDTW, Euclidean, and LSTM meth-
ods (Figure 1a). However, the difference in precision was
marginal in some cases, indicating that GT-DTW, FastDTW,
and Euclidean methods were equally adept at avoiding false
positive identifications. LSTM, on the other hand, often
showed lower precision, particularly in datasets like ’Fish’ and
’Beef’.

Recall rates varied across the datasets and methods (Fig-
ure 1b). In some datasets, such as ’Trace’, GT-DTW demon-
strated superior recall rates. In others like ’OliveOil’, GT-
DTW, FastDTW, and Euclidean methods exhibited similar
recall performance, while LSTM lagged behind. Regarding
F1 scores, which consider both the precision and the recall,
GT-DTW generally outperformed the other methods across
most datasets, revealing a better balance between precision
and recall (Figure 1c). This consistent performance highlights
the effectiveness of GT-DTW in comparison with FastDTW,
Euclidean, and LSTM methods across various time series
classification tasks.



6

Fig. 1. Comparison of Classification Methods Across Various Datasets: This figure shows the performance of four different time-series classification
methods—GT-DTW (blue), FastDTW (green), Euclidean Distance (red), and LSTM (black)—across multiple datasets. Sub-figures (a), (b), and (c) represent
the Precision, Recall, and F1 Score metrics, respectively. The x-axis lists the different datasets, while the y-axis shows the metric values.

Fig. 2. A visual representation of the base time series (blue) and its complex
variation (red). The variation has been crafted with non-linear transformations,
noise, and local distortions to challenge traditional alignment methods.

The consistent performance of the GT-DTW method across
a wide range of datasets signifies its efficiency and adapt-
ability, making it a suitable choice for deployment in diverse
applications. This adaptability could be particularly valuable in
real-world situations where the data’s consistency and quality
might differ significantly.

B. Understanding the Robustness of GT-DTW Through Syn-
thetic Data Analysis

To further analyze the efficacy of the GT-DTW method,
a synthetic data experiment was conducted. This experiment
aimed to understand how GT-DTW fares against traditional
DTW in scenarios where time series have inherent similar-
ities but are presented with complex transformations, noise,
different lengths and local distortions.

As depicted in Figure 2, the base time series is a simple sine
curve and there is another variation of the base time series.
The idea was to create a time series that, while fundamentally
similar to the base, presents complexities that might challenge
traditional alignment methods. It was created by applying a
non-linear transformation (squaring the sine values), adding
random noise to induce jitter, and introducing a local distortion
between indices corresponding to time values approximately

Fig. 3. Visualizations of alignments between the base time series and its
complex variation using traditional DTW.

3.14 and 5.03. Furthermore, the variation time series was
created with a different length (300 points) compared to
the base time series (200 points) to simulate a many-to-one
scenario.

a) Interpreting the DTW and GT-DTW Heatmaps: Both
heatmaps (Figures 3 and 4) represent cost matrices. The cost
matrix, in the context of DTW, is a two-dimensional array
where each cell (i, j) represents the distance (or difference)
between point i of the first time series and point j of the
second time series.

The color intensity in the heatmap corresponds to the
magnitude of this distance. Lighter colors (towards the yellow
end of the spectrum) indicate higher distances (or greater
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Fig. 4. Visualizations of alignments between the base time series and its
complex variation using GT-DTW.

differences), while darker colors (towards the purple end of
the spectrum) represent smaller distances (or similarities).

The red path superimposed on the heatmap is the optimal
alignment path. This path represents the best way to align the
two time series in a manner that minimizes the cumulative
distance. In essence, it’s the path through the cost matrix that
results in the least overall difference between the two time
series.

A few insights can be gathered from these heatmaps:

• A perfectly diagonal path suggests a one-to-one align-
ment between the two time series, meaning they are quite
similar.

• Deviations from the diagonal indicate stretches where one
segment of a time series aligns with multiple segments
of the other, revealing discrepancies between the series.

• Areas of the heatmap that are consistently darker indicate
regions of similarity between the two time series.

• Conversely, lighter regions highlight differences or dis-
parities.

Upon applying traditional DTW (Figure 3), the alignment
copes with the complexities of aligning the base and variation
time series, especially considering the local distortion and
different lengths. The alignment path, while predominantly
diagonal, shows areas of deviation, signifying the challenges
faced by traditional DTW in handling the non-linear transfor-
mation and noise.

On the other hand, the GT-DTW method (Figure 4) pro-
vides a more nuanced and consistent alignment. This align-
ment, premised on the graph-based features of the time se-
ries, adeptly captures the underlying structural similarities.
The graph structures were built using GMMs and nearest
neighbors, and features such as node degrees and clustering
coefficients were extracted to represent the complexity of

the time series. The GT-DTW heatmap illustrates a more
consistently diagonal path, symbolizing its effectiveness in
recognizing structural similarities, even amidst the introduced
complexities. This shows GT-DTW’s robustness in handling
the many-to-one scenario, where the lengths of the time series
differ, and the complexity due to non-linear transformations,
random noise, and local distortion.

To summarise, the GT-DTW method offers a more robust
and insightful comparison by focusing on underlying graph-
based structures rather than individual data points. While
traditional DTW exhibits sensitivity to the transformations
applied, GT-DTW’s ability to encapsulate complex patterns
and dependencies in the data makes it an invaluable tool
for time series analysis in noisy and intricate scenarios. By
handling different lengths and complex structures, GT-DTW
demonstrates its potential as a powerful extension to traditional
time series alignment techniques, bridging the gap between
raw data and higher-level structural interpretation.

V. CONCLUSION

The classification of time series data is important across
various domains. Traditional methods like DTW often struggle
with the complexities of time series data, particularly when
dealing with complex temporal dependencies and varying
lengths. To overcome these challenges, this paper has intro-
duced GT-DTW, a novel technique that transcends conven-
tional time series representation by portraying each time series
as a graph. Through the innovative application of DTW on
these graph representations, GT-DTW emerges as a robust and
computationally efficient method for time series classification.
Comparative analyses with FastDTW and Euclidean methods
have demonstrated the efficacy of GT-DTW, highlighting its
consistent performance across multiple datasets. While there
were instances where other methods matched or slightly
outperformed GT-DTW, the overall trend indicates the superior
performance of GT-DTW in balancing precision, recall, and F1
scores. The detailed examination of GT-DTW’s resilience to
complexities such as non-linear transformations, random noise,
and local distortions further substantiates its robustness. Its
ability to comprehend complex structures in time series adds
a layer of depth to its applicability. The GT-DTW method’s
efficiency and generalizability position it as a promising tool
for varied applications, with significant implications in real-
world scenarios where data consistency and quality may vary
substantially.

Although the primary focus of this study is on the clas-
sification of time series data using the GT-DTW method,
the underlying approach’s versatility extends beyond mere
classification. The graph-based representation and distance
computation inherent in GT-DTW can be adapted to other
analytical tasks such as similarity analysis, outlier detection,
and clustering.
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