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Abstract

Assessments of postural sway are associated with disease status and fall risk in Persons with Multiple Sclerosis (PwMS).

However, these assessments, which leverage force platforms or wearable accelerometers, are most often conducted in laboratory

environments and are thus not broadly accessible. Remote measures of postural sway captured during daily life may provide a

more accessible alterative, but their ability to capture disease status and fall risk has not yet been established. We explore the

utility of remote measures of postural sway in a sample of 33 PwMS. Remote measures of sway differed significantly from lab-

based measures, but still demonstrated moderately strong associations with patient reported measures of balance and mobility

impairment. Machine learning models for predicting fall risk trained on lab data provided an AUC of 0.79, while remote data

only achieved an AUC of 0.51. Remote model performance improved to an AUC of 0.74 after a new, subject-specific k-means

clustering approach was applied for identifying the remote data most appropriate for modelling. This cluster-based approach

for analysing remote data also strengthened associations with patient-reported measures, increasing their strength above those

observed in the lab. This work introduces a new framework for analysing data from remote patient monitoring technologies

and demonstrates the promise of remote postural sway for assessing fall risk and characterizing balance impairment in PwMS.

1



                                                                       IEEE TRANSACTIONS AND JOURNALS TEMPLATE    1 
 

 

Assessing Free-Living Postural Sway in Persons 
with Multiple Sclerosis 

 
Brett M. Meyer, Student Member, IEEE, Jenna G. Cohen, Paolo DePetrillo, Melissa Ceruolo, David 

Jangraw, Nick Cheney, Andrew J. Solomon, and Ryan S. McGinnis, Senior Member, IEEE 

Abstract— Assessments of postural sway are associated 
with disease status and fall risk in Persons with Multiple 
Sclerosis (PwMS). However, these assessments, which 
leverage force platforms or wearable accelerometers, are 
most often conducted in laboratory environments and are 
thus not broadly accessible. Remote measures of postural 
sway captured during daily life may provide a more 
accessible alterative, but their ability to capture disease 
status and fall risk has not yet been established. We explore 
the utility of remote measures of postural sway in a sample 
of 33 PwMS. Remote measures of sway differed significantly 
from lab-based measures, but still demonstrated moderately 
strong associations with patient reported measures of 
balance and mobility impairment. Machine learning models 
for predicting fall risk trained on lab data provided an AUC of 
0.79, while remote data only achieved an AUC of 0.51. 
Remote model performance improved to an AUC of 0.74 after 
a new, subject-specific k-means clustering approach was 
applied for identifying the remote data most appropriate for 
modelling. This cluster-based approach for analysing remote 
data also strengthened associations with patient-reported 
measures, increasing their strength above those observed in 
the lab. This work introduces a new framework for analysing 
data from remote patient monitoring technologies and 
demonstrates the promise of remote postural sway for 
assessing fall risk and characterizing balance impairment in 
PwMS.  
 

Index Terms— Postural sway, wearables, digital 
biomarkers, clinical validation, remote monitoring.  

I. INTRODUCTION 
ULTIPLE sclerosis (MS) is an immune mediated 
disorder leading to demyelination of central nervous 
system axons that affects an estimated 2.8 million 
people worldwide [1]. In MS, nerve signals are altered 

or delayed leading to sensory impairment, motor impairment, 
fatigue, and postural instability. As a result, an estimated 50-80% 
of persons with multiple sclerosis (PwMS) have balance and gait 
dysfunction and over 50% experience a fall in any given 3-month 
period [2], [3]. This incidence of falls is similar to 80 year-old 
adults, however, symptoms of MS typically manifest around 30 
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years-old creating a long-term quality of life and health care 
burden [4], [5]. 

Postural instability and balance impairment  are typically 
assessed with subjective patient-reported measures (PRM) [6], 
non-instrumented balance assessments [7], [8] and/or balance 
assessments using force platforms [9], [10]. Force platforms are 
the gold standard for postural sway analysis, which considers 
objective movement features captured during a period of 
standing for characterizing balance impairment [9]. Studies 
utilizing force platforms have been able to distinguish impaired 
individuals from controls [9] and classify the fall risk of older 
adults [11] and PwMS [12]. However, force platforms are 
expensive and limit accessibility to specialized clinics or research 
laboratories. To address these challenges, studies have shown 
that postural sway can be assessed using data from just a sacral 
or chest accelerometer [9], [13]–[15]. Sensor-derived postural 
sway measures have been used to classify fall risk in PwMS [13], 
distinguish between disease states [9], [12], [15]–[17] and to 
augment current assessment techniques [18], thereby achieving 
similar clinical utility to the force platform.  

These promising balance assessments, however, are all 
performed in clinical or laboratory settings, which limits their 
accessibility. Recent studies of chest accelerometer-based 
postural sway have found stronger relationships to PRMs from 
remotely collected measures compared to in-clinic clinic 
assessment [15], [19]. These differing relationships to PRMs may 
be explained by differences between remote and in-clinic 
measures. Studies comparing remote and in-clinic gait have 
found that the remote parameters are significantly different and 
have higher variability compared to those from an in-clinic 
assessment [20], [21]. As a result, separate models are needed to 
examine in-clinic and remote gait, but it is not yet clear if these 
same discrepancies in data exist for postural sway. 

Another challenging aspect of remote monitoring is the 
inherent increase in variability, compared to laboratory measures. 
This additional variability creates challenges for interpretability 
and requires additional care to be taken during analysis such that 
simple averaging of parameters across days or weeks may not be 
appropriate. One approach is to ask participants to perform 
repeated prescribed activities throughout the monitoring period  
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to provide consistent context for analysis. For example, this 
approach has been applied to 30-second chair stand tests [22] and 
ten-meter walk tests [23], where participants were asked to 
complete multiple trials remotely. Another approach is to use 
GPS data to capture measurements in consistent physical 
locations, again providing context for analysis [24]. While these 
approaches help control variability, they also reduce the data 
available for analysis, potentially losing important information in 
favor of simplified analyses. There may instead be a benefit to 
pursuing new methods that allow us to select which data to 
analyze in a fully unsupervised manner, but these approaches 
have not yet been developed.  

 

II. METHODS 
To address our goal of evaluating remote postural sway as a 

biomarker for balance impairment, we consider free-living data 
from a sample of PwMS (left, Fig. 1). A fully automated data 
processing pipeline enables detection of standing periods via deep 
learning-based activity classification (middle, Fig. 1), computation 
of postural sway parameters that characterize balance 
performance, and determination of which data are suitable for 
analysis via unsupervised clustering (right, Fig. 1). Remote 
postural sway parameters are compared to lab-based measures and 
PRMs of balance and mobility impairment, and their suitability for 
classifying fall risk is assessed.  

A. Participants and Protocol 
To address these objectives, we utilize a dataset of 33 PwMS 

(16:17 fallers:non-fallers; 10:23 Male:Female, mean ± standard 
deviation age 50 ± 13 y/o), recruited from the Multiple Sclerosis 
Center at University of Vermont Medical Center (exclusion: no 

major health conditions other than MS, no acute exacerbations 
within the previous three-months, ambulatory without the use 
of assistive devices). PwMS who self-reported to have fallen 
within the previous six-months were characterized as fallers 
based on the criteria “consider a fall as an event where you 
unintentionally came to rest on the ground or a lower level.” 
Our analysis required a subset of the larger publicly available 
dataset that has been described in detail in our previous work 
[21]. Participants were asked to complete several PRMs, 
several activities of daily living, and a neurologist-administered 
Expanded Disability Status Scale (EDSS) assessment [25] 
during a laboratory visit. Participants were then asked to 
complete a 48-hour daily life monitoring period immediately 
following the laboratory visit. The PRMs utilized in this 
analysis were Activities-Specific Balance Confidence (ABC) 
[6], Multiple Sclerosis Walking Scale (MSWS) [26], and 
Modified Fatigue Impact Scale (MFIS) [27]. The in-laboratory 
assessment used in this analysis was a 2-minute standing 
balance assessment where participants were instructed to stand 
with their feet shoulder-width apart. The lab and remote 
assessment periods were instrumented with Biostamp nPointÒ 
(Medidata) sensors (62 Hz ± 16G) located on the chest and 
thigh. The chest sensor was secured to the sternum, just below 
the sternoclavicular joint. The thigh sensor was on the anterior 
aspect of the right thigh, ~25% from the knee to hip.  

B. Automated Data Processing 
1) Remote Activity Identification 
Data recorded from both the laboratory and remote sessions 

were first reoriented to align the cranial-caudal axis with gravity 
based on the first ten seconds of the lab standing trial. Following 
calibration, remote data were classified using a previously 

 
Fig 1. Data processing overview. Free-living data collected from thigh and chest accerleromerter and then classified using a deep learning classifier. 
Features of postural sway were computed for each standing bout. Feature values vary through the day, clustering techniques were used to find 
similar data. 
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described classification framework that identifies bouts of 
walking, standing, sitting, and lying [19], [28]. Briefly, this 
model uses a Bidirectional Long-Short-Term Memory Network 
(BiLSTM) to perform classifications on raw acceleration data 
from a chest and thigh sensor. This model was trained on a mix 
of persons with MS, Parkinson’s, and healthy adults and 
provides a 97% accuracy on a held-out test set. This model was 
used to identify all remote standing bouts that were 30 seconds 
or longer. 30 seconds was chosen as the minimum because this 
is the length of the typical in-lab balance assessment [9], [15]. 
The first minute of the laboratory standing balance assessment 
was used for in-lab analysis. Data were processed using the 
individualized distributions [15] approach where a 30-second 
window is slid 5 samples over the trial to create a distribution 
of each sway parameter. 

2) Postural Sway Parameter Extraction 
Following the identification of standing periods in both lab 

and remote data, the acceleration data were down-sampled to 
31.25 Hz and a 4th order, zero-phase Butterworth low-pass 
filter with a cutoff frequency of 3.5 Hz was applied before 
computing the magnitude of the acceleration in the horizontal 
plane. Fifteen features were computed for each 30-second lab 
epoch and/or valid remote standing period. These features 
included thirteen features from Mancini et al [9]: Jerk, Distance 
(Dist), Root-Mean-Square (RMS), Path, Range, Mean Velocity 
(MV), Mean Frequency (MF), Area, Power (Pwr), median 
power frequency (F50), 95% power frequency (F95), 
Centroidal Frequency (CF), and Frequency Dispersion (FD). 
We also considered two features that capture signal complexity: 
Approximate Entropy (ApEn) [29], and Lyapunov Exponent 
(LyExp) [16], [30]. 

3) Data Clustering Methodology 
Unsupervised clustering (k-means, [31], [32]) was used to 

discover underlying structure in the remote data that may arise 
from participants performing other activities while standing 
such as washing dishes, standing in line, etc. Similar methods 
have been used to cluster symptoms in PwMS to increase 
predictability of physical activity [33]. The optimal number of 
clusters for each participant was chosen using MATLAB’s 
evalclusters function with DaviesBouldin [34] criterion and 
Euclidean distance for 1 to 5 clusters yielding a mean of 4 
clusters across participants. The z-scores of the reduced feature 
set were then used to identify four clusters for each participant. 
The clusters were labeled based on the sorted centroid of the FD 
feature, because it is strongly related to impairment. Cluster 1 
has the highest centroid of FD, and cluster 4 has the lowest. 

C. Statistical Analysis 
Ranksum difference tests were used to identify differences 

between lab and remote postural sway features. Effect sizes 
were characterized with Cohen’s D. Median and inter-quartile 
range (IQR) are also reported for each feature. Spearman 
correlations were used to identify significant associations 
between the postural sway features and PRMs. The multiple 
observations of features per participant were aggregated using 
the 5th percentile (P5), 25th percentile (P25), median (Med), 75th 

percentile (P75), 95th percentile (P95), and standard deviation 
(STD). The results of the strongest significant aggregation were 
reported. Using the results of the correlations to PRMs and 
previously published [15] cross-correlations between the 
features, we then selected a reduced feature-set for remote 
analysis containing features that demonstrate correlations to 
PRMs and that are not highly correlated to each other. When 
choosing between highly related features, the feature with the 
strongest remote PRM correlation was chosen. Details of 
feature correlations are provided in the results. The reduced 
remote feature set contained RMS, Range, Area, CF, FD, and 
LyExp. 

To examine clinical significance, we computed Spearman 
correlations to both ABC and EDSS for the sway features from 
each cluster and compared the remote data features to lab data 
features with a Rank-sum test. Due to the reduced amount of 
data per participant, correlations were performed using the raw 
feature values instead of summary statistics. Additionally, we 
computed the Spearman correlation of the lab features with 
clustered features for the median and 95th percentile of each 
feature. For comparison, these same methods have been applied 
to the non-clustered data. 

D. Fall Risk Classification 
Six-month fall history was used to inform classification 

models for discriminating fallers from non-fallers. Logistic 
regression (LR) and support vector machine (SVM) models 
were trained, optimized, and tested separately on the lab 
features, all remote features, and remote features from each 
cluster. Leave-One-Subject-Out cross-validation (LOSOCV) 
was performed to ensure data from participants was not in both 
the test and training set. Performance was assessed using area 
under the receiver operating characteristic curve (AUC), 
accuracy (acc), sensitivity (sens), specificity (spec), and F1 
score. Model performance was computed using both the outputs 
from each individual input and by aggregating the median 
decision score from each observation of an individual 
participant, resulting in one prediction per participant. Model 
hyperparameters were tuned. Lasso regularization was used 
with OptimizeLearnRate to train the LR models and the SVM 
model was found to perform best with a linear kernel and a 
SMO solver. A permutation analysis was conducted to compare 
the model AUC against random chance, using 100 run average 
of classification results compared to 1000 replicates of 
permuted labels. 

III. RESULTS 
All fifteen sway features computed were significantly 

different between the lab and all remote data (Table I). Very 
high effect sizes were also observed for Pwr, Path, and RMS. 
When correlating the remote data to PRMs (Table II), we found 
the strongest relationships across all PRMs with FD (frequency 
dispersion). The PRMs ABC and MFIS demonstrated the most 
significant correlations to remote sway, however, the strongest 
relationship observed, r = -0.62, was the 75th percentile of FD 
with MSWS. 
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TABLE I 
DIFFERENCE BETWEEN REMOTE AND LAB 

Feature Lab 
Median 

Lab 
IQR 

Remote 
Median 

Remote 
IQR 

P-
value 

Cohen’s 
D 

Jerk 0.043 0.041 0.103 0.132 <0.001 0.838 
Dist 0.001 0.002 0.006 0.011 <0.001 0.904 
RMS 0.045 0.034 0.709 0.118 <0.001 8.50 
Path 1.39 1.071 22.2 3.749 <0.001 8.37 
Range 0.066 0.054 0.392 0.353 <0.001 1.45 
MV 1.24 1.127 21.6 4.015 <0.001 7.51 
MF 195 548.7 541 2995 <0.001 0.63 
Area 0.018 0.029 4.84 3.213 <0.001 2.20 
Pwr 0.002 0.033 0.503 0.160 <0.001 4.64 
F50 0.081 0.033 0.080 0.0002 <0.001 1.48 
F95 0.225 0.026 0.217 0.003 <0.001 1.35 
CF 0.701 0.057 0.715 0.011 <0.001 0.711 
FD 1.85 0.251 1.788 0.035 <0.001 1.00 
ApEn 0.515 0.178 0.343 0.282 <0.001 1.05 
LyExp -0.457 14.74 -2.54 5.464 <0.001 1.13 

Median and interquartile range (IQR) testing of lab and remote sway 
metrics with rank-sum difference testing (uncorrected) and Cohen’s D 
effect size (α = 0.05) 
 

Measures of in-lab postural sway were found to provide 
strong fall risk classification results. Using a LR classifier, we 
observed an AUC of 0.74 when classifying fall risk based on 
single observations, which increased to 0.79 when we used the 
median of each participant’s decision scores as a summary 
predictor (p < 0.001 and p = 0.003, respectively). The weights 
of the model, which we use as a proxy for a feature importance, 
are depicted in Fig 2. To establish a baseline remote data 
performance, we first fit models using all the collected data (i.e., 
without clustering). The best performing model was a logistic 
regression model, with an AUC of 0.52 before aggregation and 
0.44 after, suggesting that the model is unable to perform any 
better than guessing likely due to noisy data (p = 0.034 and p = 
0.417, respectively). More model performance details can be 
found in Table IV. 

 
TABLE II 

ASSOCIATION WITH PATIENT REPORTED MEASURES 
Feature  EDSS  ABC  MFIS  MSWS 
Jerk - - - - - - - - 
Dist - - - - - - - - 
RMS - - - - P75 0.34 - - 
Path - - - - P75 0.32 - - 
Range - - STD 0.36 - - - - 
MV - - - - Med 0.33 - - 
MF - - - - - - - - 
Area - - P75 0.39 STD 0.45 STD 0.30 
Pwr - - - - P75 0.34 - - 
F50 - - - - - - - - 
F95 - - - - - - - - 

CF P75 0.38 Med -
0.51 

Med 0.38 Med 0.49 

FD P75 -0.59 P75 0.56 P75 -0.40 P75 -0.62 
ApEn - - P5 0.31 P5 -0.33 P5 -0.32 
LyExp - - STD 0.38 - - - - 
Metric showing the strongest correlations, and the strength of that 
correlation, between sway features derived from all remote data and 
patient-reported measures. P5: 5th Percentile; Med: Median; P75: 75th 
Percentile; STD: Standard Deviation; Strongest correlation for each 
measure in italics. Comparisons where no metrics met a weak 
significance criterion (α = 0.10, uncorrected) are omitted and replaced 
with a dash. 
 

 
Fig 2. Feature importance of logistic regression model for in-lab fall risk 
classification.  
 

Clustering methods were then applied to investigate whether 
selecting subsets of data would enhance performance. An 
average of four clusters was found to be optimal across 
participants (see Fig. 3 for optimal clusters by participant). Each 
cluster was found to have unique relationships to PRMs. As 
seen in Table III, the strongest correlation to ABC was observed 
with FD from cluster 2, however, the strongest correlation to 
EDSS was observed with RMS from cluster 3. Overall, features 
from clusters 1-3 all establish meaningful correlations to PRMs 
while cluster 4 does not.  

When compared to lab data, all features were different 
between the clusters and lab data except ApEn for cluster 1 and 
ApEn, CF, and FD for cluster 2.  Only clusters 2 and 3 have 
significant correlations between lab-derived and clustered 
remote features. The lab-derived RMS feature has a correlation 
of 0.36 and 0.43 with the median RMS of clusters 2 and 3, 
respectively. The lab-derived CF feature was also significantly 
anticorrelated with the CF of cluster 2 (r = -0.46). Interestingly, 
while not strongly correlated, the features Range and FD 
showed negative correlations between the lab data and all 
remote data, and between the lab data and clusters 1-3. All other 
features, including those from all home data, were not 
significantly correlated to lab-derived features.  

Fig. 4 demonstrates the z-score differences between the 
clusters and all of the home data. Here we find Range and FD 
are both higher and CF is lower in clusters 1 and 2 compared to 
all home data.  

When averaging the amount of time spent in each cluster 
across all participants, fallers spent 12.05% of the time in 
cluster 1, 25.94% in cluster 2, 42.83% in cluster 3, and 19.18% 
in cluster 4. Non-fallers spent 7.69% in cluster 1, 24.35% in 
cluster 2, 38.56% in cluster 3, and 29.43% in cluster 4. 
Differences in time spent in clusters 1 and 4 between fallers and 
non-fallers approaches significance, (p = 0.055, p = 0.050, 
respectively), but this was not the case for clusters 2 and 3.  

Training models to classify fall risk from the different 
clusters of data revealed vastly difference performance between 
clusters. Considering the aggregation of 48 hours of data, 
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Fig 3. Optimal number of clusters for each participant for k-means 
clustering. 
 
clusters 1-4 achieve AUCs of 0.57, 0.71, 0.53, and 0.32 
respectively, as shown in Table IV. SVM models were found to 
perform best for clusters 1-3, while a logistic regression model 
provided the best performance for cluster 4. Overall, cluster 2 
exhibits the strongest fall classification performance. Cluster 1 
has a strong unaggregated performance, AUC 0.73 with the 
highest observed accuracy, sensitivity, and F1 score, however 
cluster 1 has a strong class imbalance toward fallers, which is 
corrected for by aggregation resulting in the AUC of 0.57. 
Details regarding class balances, additional model performance 
measures, and significance tests for model results are provided 
in Table IV. 

IV. DISCUSSION 
The purpose of this work was to introduce postural sway as 

a remote digital biomarker. In doing so, we compared postural 
sway features from free-living data to those computed from a 
lab standing assessment, computed correlations to PRMs, and 
trained fall classification models to establish clinical 
significance. In these analyses, we explored the impact of 
selecting subsets of data by clustering compared to considering 
all free-living data. 

When comparing lab and remotely collected postural sway, 
all features were found to be significantly different with larger 
IQRs observed in remote data in many cases. Interestingly, 
many of the features with high effect sizes were related to sway 
path and power (e.g., Path, RMS, Pwr), suggesting that perhaps 
sway patterns are more variable at home. These findings 
suggest that modeling approaches need to be trained using data 
from the targeted use environment. Similar observations were 
made in remotely collected gait in PwMS [21].    

Our investigation of clinical significance finds several 
significant correlations between PRMs and remote sway 
features. The FD feature provided the strongest correlations 
with EDSS, ABC, and MSWS, while Area provided the 
strongest correlation with MFIS. In our previous studies, we 
have found few significant relationships between standard eyes-

open standing and PRMs in the lab [15]. The strongest in-lab 
correlation we observed was r=-0.37 between Dist and MFIS. 
In this analysis, we not only find a stronger relationship 
between MFIS and Area (r=0.45). We also find a correlation of 
r=-0.62 between FD and MSWS when considering remotely 
collected sway. Based on these findings, remote sway 
parameters are clinically relevant because they show 
relationships with patient reported measures of impairment. 

Using the remote and lab measures to train fall classification 
models, however, we find that considering all the remote data 
is highly variable and noisy when trying to classify fall risk, 
highlighting the need for some level of preprocessing such as 
clustering. The in-lab features were able to achieve an AUC of 
0.79 in an eyes-open balance assessment compared to 0.52 with 
remote features. Investigating the feature importance of the lab 
model reveals the most important features from this set in the 
lab are RMS, Path, MV, Area, and Pwr. These findings are 
different from those previously found in MS that suggest the 
three domains to explain balance variance are sway amplitude 
and velocity and sway frequency and jerk in the anterior-
posterior (AP) and medial-lateral (ML) directions [35]. These 
features may not arise as important in this analysis because we 
do not separate into AP and ML features.  

When clustering methods were applied to the remote data, 
we found differing relationships with each cluster. Based on 
rank-sum tests, cluster 2 provided the fewest significant 
differences when compared to the lab standing, followed by 
cluster 1. All features were significantly different for clusters 3 
and 4. When correlating these home and clustered features with 
the lab-derived features, we find most features are not 
correlated, meaning lab performance is not indicative of real 
world standing. Additionally, the features Range, FD, and CF 
had negative correlations between lab and remote data, 
suggesting that those who have less sway in the lab assessment 
have larger sway ranges at home. This may reflect an increase 
in confidence and movement in those who are less impaired. 
We also found the overall highest correlations when using data 
from cluster 2 between ABC and FD (r=0.64).  

 
TABLE III 

ASSOCIATION WITH PATIENT REPORTED MEASURES BY CLUSTER 
All Data 

Feature RMS Range Area CF FD LyExp 
EDSS -0.38 -0.14 -0.13 0.18 -0.26 0.14 
ABC 0.24 0.25 - -0.21 0.25 -0.07 

Cluster 1 
EDSS -0.18 -0.22 - 0.24 -0.38 -0.21 
ABC - 0.51 -0.21 -0.57 0.55 0.33 

Cluster 2 
EDSS -0.30 -0.25 - 0.41 -0.55 0.10 
ABC 0.20 0.40 - -0.55 0.64 -0.12 

Cluster 3 
EDSS -0.61 -0.19 -0.38 0.22 -0.27 0.30 
ABC 0.42 0.33 0.14 -0.21 0.20 -0.16 

Cluster 4 
EDSS - - 0.17 0.17 -0.16 0.11 
ABC -0.12 - -0.22 -0.19 0.19 - 

EDSS: Expanded Disability Severity Scale; ABC: Activities-Specific 
Balance Confidence. Spearman correlation between postural sway 
features from each cluster and patient reported measures. (α = 0.05). 
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Interestingly, however, the strongest correlation to EDSS was 
found between RMS in cluster 3 (r=0.61). This suggests that the 
clusters may capture different relationships within the data.   

Perhaps the most interesting finding is that when the data 
from the clusters were used to train fall risk models, cluster 2 
was able to achieve performance near that of the lab assessment. 
These clustering results show promise that accurate 
assessments can still be made with remote data when 
appropriate data are selected for analysis. Herein, the clustering 
was simply used as a method to select different sets of unique 
data. The improved performance and correlations observed 
when doing so motivates using similar unsupervised methods 
to remove unwanted data or select data of interest in future 
remote analyses. For example, a similar approach may have 
been able to explain the differences between fall classification 
performance of PwMS from gait from the lab and home [21], 
[36].  

There are some limitations to this study. First, our analysis 
was based on a relatively small sample of 33 PwMS. There is a 
lack of demographic and regional diversity in this sample. 
Additionally, our methods do not distinguish between AP and 
ML direction features, which may impact the resulting 
conclusions and their agreement with prior work. Finally, our 
inclusion criteria limit these studies to lower impairment 
individuals.  

 
Fig 4. Z-score differences for each feature between that derived from all 
remote data and that derived from clustered remote data or lab data. 

We expect a more impaired sample would result in stronger 
signals, however, that remains untested with our current dataset. 

Despite these limitations, we were still able to provide 
strong results and motivations for the remote assessment of 
postural sway. Future studies need to be done to determine if 
these same clustering methods can be applied to improve deep 
learning classification of fall risk. Studies should also be done 
to determine if similar clustering methods provide meaningful 
findings in other activities measured remotely, such as gait.  

V. CONCLUSION 
Herein we examined the use of postural sway as a remote 

digital biomarker. We demonstrated that sway measures 
collected in the lab are significantly different from those 
collected remotely and that remote data demonstrated stronger 
correlations with PRMs. However, lab sway features were able 
to accurately assess fall risk while unclustered remote measures 
were unable to do so. To address this, we applied a clustering 
method to identify similar data at home and found differing 
relationships to PRMs and fall risk within each cluster. The best 
performing cluster was able to achieve similar performance to 
lab collected sway and provided stronger correlations than both 
the lab and all home data. Our results motivate the inclusion of 
postural sway as an analysis method in future remote studies. 
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