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Data was gathered from 30 adult participants who completed two distinct tasks involving both structured and unstructured
commands. The study examines correlations between robot errors and user perceptions, as well as how past or present failures
impact participants’ perception of robot utility. Three hypotheses are formulated, and the paper offers a comprehensive
overview of the study’s aims, methodologies, and principal findings, which were ascertained using paired t-Test and Kendall-
Tau correlations. The study indicates that participants showed a preference for the unstructured task in contrast to the
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Structured and Unstructured Speech2Action
Frameworks for Human-Robot Collaboration: A

User Study
Krishna Kodur Manizheh Zand Matthew Tognotti Cinthya Jauregui Maria Kyrarini

Abstract—This research delves into user preferences concern-
ing structured (the subject follows an exact script to command
the robot) and unstructured (the subject commands the robot
in a conversational way) robot interaction through natural
spoken language. Data was gathered from 30 adult participants
who completed two distinct tasks involving both structured
and unstructured commands. The study examines correlations
between robot errors and user perceptions, as well as how
past or present failures impact participants’ perception of robot
utility. Three hypotheses are formulated, and the paper offers a
comprehensive overview of the study’s aims, methodologies, and
principal findings, which were ascertained using paired t-Test and
Kendall-Tau correlations. The study indicates that participants
showed a preference for the unstructured task in contrast to
the structured one. Analysis of the data revealed interesting
correlations between the user perception of the robot and the
robot errors.

Index Terms—Structured Speech, Unstructured Speech,
Human-Robot Interaction, Voice commands, Human-Robot In-
terface, User Preferences, Natural Language Processing, Large
Language Models

I. INTRODUCTION

In recent years, robots are on the rise in our homes.
According to the International Federation of Robotics Report,
2019 [1], there is an uptick in the adoption of robots for
households. These robots can be defined as household robots
that can be deployed at homes to perform routine tasks, e.g.,
vacuuming the floor, fetching objects, assisting with cooking,
etc. This crucial integration of robots in households necessi-
tates the development of efficient modes of communication to
interact with them. Robot manufacturers currently offer users
various graphical interfaces, such as website dashboards or
mobile apps, to operate their robots. However, these interfaces
might not align well with natural modes of communication
(e.g., speech) and could present accessibility challenges for
differently-abled users, making them potentially unsuitable
for this user group [2], [3]. Speech-based communication
emerges as a viable and natural approach to make the robots
more accessible and easier to use at home, enabling them to
continually learn from the inputs they receive.
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Fig. 1: Setup for collaborative cooking scenario with a
robot; Robot is delivering tomato sauce

One approach to human-robot interaction via speech is a
predefined vocabulary that the user can employ to communi-
cate with the robot, and the robot is able to understand and
perform the requested actions [4]–[7]. This type of interaction
is structured, as the commands and the robot actions are
well-mapped to each other. Taking advantage of the recent
breakthrough of Natural Language Processing (NLP) with
ChatGPT, humans, and robots can now communicate in an
unstructured fashion [8]. This approach may feel seamless for
humans, but it can be more challenging for the robots to recog-
nize the required actions [9], [10]. Our research assesses user
experiences with robots by analyzing the user study conducted
in a laboratory, which simulates a home setting. The user
study compares structured and unstructured communication
modes between humans and mobile manipulators. Nowadays,
robotic cooking assistants are gaining popularity [11]–[13].
Therefore, as an interactive scenario, a collaborative cooking
task is selected, as illustrated in Figure 1.

The contribution of this paper lies in understanding user
preferences for speech-based interaction with a real robot in a
collaborative cooking scenario, which includes robot failures.
Therefore, we defined three hypotheses that are designed to
facilitate an understanding of these preferences, as elaborated
in the following subsection I-A. To the best knowledge of
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the authors, this is the first study that compares the two
modes of communication while including an interactive and
collaborative robotic scenario. Additionally, in accordance
with the guidelines set forth by the Institutional Review
Board (IRB) protocol ID 23-02-1902, the dataset from the
study is shared through our lab’s official website (Dataset:
https://sites.google.com/view/hmi2lab/datasets). The outcomes
of this study will offer valuable insights to inform the design
of forthcoming human-robot interaction systems.

A. Hypothesis

The primary objective of this research is to determine if
individuals prefer structured or unstructured spoken language
to instruct the robot. Additionally, the study aims to investigate
how robot failures impact the individual’s perception, specif-
ically in relation to structured and unstructured methods. To
this end, the paper presents three hypotheses:

1) Hypothesis 1: Individuals exposed to unstructured robot
interaction via spoken language will demonstrate a
higher preference for this mode of interaction compared
to structured robot interaction.

2) Hypothesis 2: The individual’s perception of robots
will be negatively affected when they encounter robot
failures during the interaction, as opposed to instances
without or with minimal failures.

3) Hypothesis 3: The individual’s preferred method of
instructing the robot, whether structured or unstructured,
will be influenced by their previous experiences with
robot failures during the interaction, based on the re-
spective method.

The following sections of this paper are structured as
follows: Section II outlines the existing literature on different
methods of human-robot communication involving speech or
text interfaces. In Section III, an overview of the robotic sys-
tem used to examine interactions between humans and robots
is provided, including details about the experimental scenarios
and protocols. Section IV conducts a comprehensive analysis
of the proposed hypotheses, determining their acceptance or
rejection based on the gathered data. The implications of the
hypothesis analysis results are discussed in depth in Section V.
Finally, Section VI concludes the paper by summarizing the
findings and addressing potential avenues for future research.

II. RELATED WORK

Human-Robot Interaction (HRI) involves various commu-
nication modes to facilitate seamless interaction between hu-
mans and robots. Among the primary communication modes
in HRI are Graphical User Interfaces (GUIs) with buttons
and text, gestures, and speech interfaces. These interfaces
have been extensively explored in the field of robotics [14]–
[21]. Speech interaction with robots can be of two types:
structured or unstructured. Structured speech entails clear,
organized, and specific instructions, with clear intent but with
limited use of vocabulary. While unstructured speech refers to
more spontaneous and informal language, which encompasses
a larger vocabulary; however, the intent can sometimes be

hard to decipher. To understand the significance of speech,
it is crucial to compare various other communication modes.
Strazdas et al. [16] conducted a Wizard-of-Oz study with 36
participants to analyze how the users would interact with a
robot using unstructured speech and gestures. The authors
teleoperated the robot behind the scenes whenever a user
gives either a speech or gesture command to perform a task,
e.g., pick and place an object. The subjects were given the
option of interacting via speech, gesture, or a combination of
both; 97.2% of the participants used speech at least once to
command the robot. This percentage highlights the importance
of speech in human-robot interaction.

Recent advancements in Large Language Models (LLMs)
have paved the way for robots capable of understanding and
processing both structured and unstructured text [8], [22].
In the current literature, there are many robotics systems
proposed that use structured speech as their communication
mode. Chen et al. [17] proposed a human-robot collaboration
in an industrial setting where the users can command the
robot using structured speech and gestures. However, the
vocabulary used is very limited such as “start”, “stop”,
“go home”, etc. Another speech-based robot interaction
framework was proposed by Giorgi et al. [18]. The authors
presented a novel approach for acquiring high-level task-
learning capabilities in robots, illustrated by the task of
“making tea”. However, structured language is utilized to
facilitate communication between the robot and humans.
When given a speech command by the user, such as
“make me a tea”, it was represented as an array of low-
level actions, thus enabling the robot to execute complex
tasks sequentially by combining individual actions, e.g.,
”mug grasp lift table drop,” ”bottle grab lift mug pour,”
and ”teabag grab pickup mug throw” for the task of
making tea. Each low-level action, such as grab, etc, is
preprogrammed. Instead of representing a task as an array
of low-level actions, Shao et al. [23] introduced a novel
framework designed to enable a robot‘s execution of diverse
object manipulation tasks, illustrated by an example “Put a
cup in front of the bowl”. The proposed framework used
Bidirectional Encoder Representations from Transformers
(BERT) [24], an LLM in conjunction with a CNN-based
deep neural network called ResNet [25] to generate robot
trajectories. The framework is fed with both an instruction
text and an image depicting the initial scene. In response,
the model generates a robot motion trajectory to successfully
accomplish the given task. However, it should be noted
that Shao et al.’s framework was constrained by the use of
pre-defined language templates sourced from the Something-
Something dataset [26].

A more advanced mode of interacting with robots is by
using unstructured text inputs, either using a mobile app
or a website. While it is different from users employing
unstructured speech for interaction, they share a common
characteristic in terms of communicating intent through un-
structured means. One such example is the SayCan robot,
developed by Ahn et al. [19], which used an LLM to receive
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Fig. 2: Overview of the proposed system for unstructured and structured human-robot communication. Both modes of
communication consist of all the blocks, with the exception of the block ”BERT & GPT-Neo”, which is only part of the
unstructured communication.

high-level tasks from users. SayCan developed a kitchen robot
that can fetch objects such as Coca-Cola. This robot received
high-level tasks in a text form from the user through a GUI,
such as “I spilled a coke; can you bring me something to
clean it up?”. The Pathways Language Model (PaLM) [22],
an LLM developed by Google, was used to train and generate
a series of instructions that would break down the high-level
task into low-level tasks so that the robot can perform, such
as 1) Find Sponge, 2) Pick up Sponge, 3) Bring it to the user,
4) Done. The users can use both structured and unstructured
text data to interact with the robot. However, despite the
robot‘s capabilities, user preference data on the type of text
communication, such as structured or unstructured, is currently
lacking. In another study conducted by Ye et al. [20], the
authors used a popular LLM called ChatGPT and fine-tuned
it. RoboGPT was deployed in an industrial assembly process
inside a Virtual Reality (VR) simulation. The users were able
to command the robot using their unstructured speech. Their
speech was converted to text and then fed into RoboGPT.
Based on RoboGPT‘s intent inference, RoboGPT controlled
the robot to perform the task. Data was collected from 15
participants on how they perceived the system. The authors
concluded that the integration of ChatGPT in robots has shown
a notable increase in trust during human-robot collaborative
interactions. These findings are of interest; however, additional
research is needed to validate them in real-world human-robot
collaborative scenarios.

Therefore, the question that emerges pertains to the type
of speech communication preferred by users, structured or
unstructured, while interacting with the robot in realistic sce-

narios. There is a lack of research exploring the use of speech
as a communication mode and investigating the differences
between structured and unstructured speech in the context
of human-robot interaction. This paper studies the preferred
speech method of interaction between humans and robots and
specifically how humans perceive robots based on trust and
ease of use in relation to the structured or unstructured type
of speech interaction while considering the effect the robot
errors.

III. EXPERIMENTAL METHODOLOGY

A. Overview of the Robotic System

The primary objective of this study is to examine an indi-
vidual‘s inclination towards either structured or unstructured
speech in human-robot interactions within a natural setting.
With this in mind, a kitchen setting is created in the lab. The
individual sits behind a table and instructs the robot using
speech to fetch items for them, and then the robot has to
perform that task, just as an ideal cooking helper (sous chef)
robot would be expected to perform in real life.

Hardware Setup: The robot used for the interaction is named
the “SousChef Robot” and, in short, “SousChef”. It is named
as such because it can interact with the users as a sous chef via
normal speech using Artificial Intelligence models. SousChef
is a mobile manipulator that can fetch ingredients related to
cooking, such as pasta, tomato sauce, green beans, butter, etc.
SousChef comprises two robotic platforms integrated together:
the 7-Degrees of Freedom Franka Emika Panda robotic manip-
ulator (Panda) and the Clearpath Ridgeback mobile base robot
(Ridgeback). Panda is equipped with seven joints with torque



sensors at each joint and a payload capacity of 3 kg. Panda
is mounted on the Ridgeback, which is an omnidirectional
Mecanum wheel system capable of carrying payloads of up
to 100 kg. SousChef is equipped with two cameras, Intel Re-
alsense D455 (D455) and Intel Realsense D405 (D405). D455,
placed on top of the Ridgeback, is used for the navigation of
the Ridgeback, while D405, placed on top of the end-effector
of Panda, is used to recognize objects in the environment.
The Robot Operating System (ROS) framework is employed
to orchestrate robot motion, facilitating synchronized operation
among multiple robots and cameras.

System Overview: Figure 2 shows an overview of the
SousChef’s system architecture. The users can interact with
the SousChef to fetch objects in two modes, structured or
unstructured speech. The SousChef system depicts the holistic
view of human-robot interaction using speech in both modes
and consists of the following four modules: Speech 2 Repre-
sentation, Environmental Perception, Representation 2 Action,
and Robot Feedback.

Speech to Representation (S2R) Module: The S2R module
initially employs Google Cloud Speech-to-Text, which con-
verts the spoken words into sentences. In the structured mode,
the user is required to speak with the following structured
sentence: “Give me the [object name]”, where [object name]
is an object in the environment. The module identifies a
command as valid if it adheres to the defined structure or as
invalid if the command deviates from the defined structure. In
unstructured interactions, in which users have the freedom to
instruct the robot in their own words, natural language under-
standing models are employed. To achieve this, Bidirectional
Encoder Representation from Transformers (BERT) [27] is
first used to categorize textual content into two distinct classes;
valid commands related to cooking, encompassing activities
such as object fetching, and invalid commands aligned with
a general discourse on topics other than cooking. The valid
commands are subsequently processed by Generative Pre-
trained Transformer (GPT) Neo [28], which transforms the
sentence into a properly structured command. BERT and GPT
Neo are retrained on our ”Collaborative Cooking Dataset” [9],
which contains speech and corresponding text data of how
users would interact with the robot, asking the robot to fetch
objects, place objects from one location to the other, setting
timers, etc. The valid commands from both the unstructured
and structured interactions are sent to the Representation To
Action module, and the invalid commands are forwarded to
the Robot Feedback module.

Environmental Perception Module: For mobile manipula-
tion of the objects in the scene, QR codes [29] are deployed
that include information about object ID and location. Ridge-
back uses QR codes on the cabinets, as shown in Figure 1,
for navigation and localization, while the QR codes next to
the objects are used by Panda for object recognition. It is
necessary to note that the focus of this research is not on
advancing robotic vision; therefore, QR codes are selected as
a well-established and accurate approach to object recognition
[30].

Representation to Action (R2A) Module: The R2A Module
receives the valid commands and the information about the
objects within the scene as inputs and subsequently generates
the robot control commands for both the Ridgeback and the
Panda. SousChef is a fetch robot, and it can fetch the items
present in the environment. If the user requests an object that
is present in the scene, R2A generates the robotic commands
that enable the robot to move to the required location, pick the
required object, move it near the user, and place it on the user’s
table (see Figure 1). Additionally, R2A can recognize similarly
named objects present in the environment. For example, users
usually ask for bell pepper as pepper. At that time, the module
finds the nearest possible item in the environment by using
the Jaro-Winkler similarity [31]. If the user requests an object
that is not present in the scene, then the action is considered
unavailable, and the robot feedback module is notified.

Robot Feedback Module: The robot feedback module
is responsible for communicating with the user regarding
potential issues that arise during the interaction. For example,
if the user requests an object that is not present (therefore, the
action is not available), the robot responds by saying, “The
item is not present” by using Google Cloud Text-To-Speech.
If the user provides an invalid command (based on the output
of the S2R module) by asking for a task that the robot is
not programmed to do, the robot responds by saying, “It’s a
tough task. Can you ask me for something that I can do?”.
Although the system is designed to minimize the errors to
the maximum possible extent, errors do occur during human-
robot interaction or during the execution phase, where the
robot fetches items for the user. The robot feedback module
recognizes the following failures; (1) Grip & Slide error -
It happens when Panda fails to grip the object properly, and
instead, it keeps pushing the object from the side, so the object
keeps sliding, (2) Grip & Miss error - This error happens when
Panda misses gripping the object and does not touch the object
at all, (3) Grip & Drop Error - This error results when Panda
grabs the object but drops it after gripping, and (4) Grip &
Drag Error - This error occurs when Panda grabs the object but
does not lift the object to a proper height, and as a result, the
object drags on the counter. If one of these errors is detected
while performing an action commanded by the user, SousChef
returns to its home pose. The researchers then reposition the
object to its original position, and the action is restarted.

B. Experiment Scenario

The purpose of the research is to study how individuals
interact with robots at home to run their Activities of Daily
Living (ADL). As we are interested in developing an accessi-
ble system for both body-abled and people with limited lower-
body mobility, the user sits on a chair beyond a table with
minimal movement, as shown in Figure 1. This research is
primarily focused on preparing meals at home, such as cooking
pasta. The table represents the cooking area where the user
has access to the stove and water, and some utensils, such
as pots and pans. Items provided on the counter, out of the
user’s reach, are bell peppers, butter, carrots, cheese, chili,



corn, garlic, green beans, mushrooms, pasta, and tomato sauce.
Since the focus of the study is to identify the preferred method
of individuals interacting with the robot, the study is split
into two separate tasks. In one task, the individual commands
the robot via structured speech, whereas in the other task,
the individual commands the robot using unstructured speech,
naturally, without memorizing the sentences of how to interact
with the robot.

C. Experiment Protocol

In order to investigate the user’s speech interaction prefer-
ences with a robot, the experimental protocol is designed to
systematically evaluate the user’s perception of the SousChef
robot system. System Usability Scale (SUS) [32] and Human-
Robot Collaboration Questionnaire (HRCQ) surveys are used
to evaluate the user’s perception. The SUS survey is a widely-
used survey designed to assess the perceived usability and
user-friendliness of a product or system. The HRCQ, shown
in Table I, is a custom questionnaire inspired by [33], [34],
designed to get insights into various HRI aspects of the system.

Recruiting: Thirty adult participants, on a voluntary basis,
were recruited from faculty, students, visitors, and staff from
the School of Engineering at Santa Clara University. Of the
30 participants, 8 (26.6% of participants) were female, and 22
were male. This ratio between females and males is similar
to the ratio at the School of Engineering at Santa Clara
University. The advertisement of the study was conducted via
e-mail. Participants who showed interest in the study booked
an appointment. A letter of the consent form was emailed
to the participant before their acceptance to participate in the
study, which indicated the duration of the study, one hour, and
how the participant’s information would be kept confidential.
The study has been approved by Santa Clara University’s IRB
with protocol number 23-02-1902.

Order of tasks on the day of the study: The SousChef robot
system is located at Santa Clara University in the Human-
Robot Interaction and Innovation (HMI2) lab. Approximately
20 minutes prior to the participant’s arrival, the system is
initiated to bring it up and running. The system, as shown
in Figure 1, consists of a table that the subject sits behind,
away from the robot and the ingredients. The SousChef’s
Ridgeback is at the starting default position (home position).
Following IRB protocol number 23-02-1902, to create a safe
environment for the user in the lab, the speed of the robot is
reduced to a maximum of 0.05 meters per second. Upon the
subject’s arrival, they are asked to sign a consent form and are
optionally provided with a demographic survey. A researcher
then explains the upcoming data collection process, and the
participant is instructed to sit on a chair during the entire study.

To minimize bias between the two modes of communi-
cation, structured and unstructured, we followed a counter-
balanced approach, i.e., the order of the tasks (structured vs
unstructured) is switched for subsequent subjects. For instance,
if a participant started first with the structured task and then
did the unstructured task, then the next participant will start

TABLE I: The Likert Scale Statements for the Human-Robot
Collaboration Questionnaire.

Likert Scale Based Statements

Perceived Usefulness I accomplished the given tasks rapidly.
I accomplished the given tasks
successfully.

Perceived Safety and Trust
The robot’s actions were predictable.
I felt safe using the robot.
I trusted the robot’s suggestions.

Perceived Ease of Use
I found the robot easy to use.
The robot learned how to assist me.
The robot met my expectations.

Perceived Interaction
I had to learn more about robots in
order to be able to interact with the
system.
I felt my voice volume was normal.
I had to speak slowly to interact with
the robot.

Ethical Considerations
It is acceptable for the robot to have
much information about the user.
I am concerned about my privacy
when using the robot.
I should have full control of when and
how the robot will assist me.

with the unstructured task and complete the study with the
structured task.

After the briefing, the study started. A microphone is placed
on the table next to the subject that can be turned on while
giving the command and turned off while not in use. Upon
receiving a command via the microphone, the SousChef will
fetch the item and place it on the table next to the user. This
process is repeated until the participant feels that the cooking
has been completed. The participant then completes the SUS
and HRCQ survey. After the first task is completed, the process
will be repeated for the second task. After the second task
is completed and the participant completes another SUS and
HRCQ survey, the visit is concluded.

While conducting the study, one of the researchers con-
stantly follows the robot to ensure the subject’s safety by
holding an emergency button. The other researcher monitors
the data collection and intervenes in case of robot failures.

Reporting the results: Data analysis is based on SUS and
HRCQ surveys. HRCQ covers the human-robot interaction-
based metrics such as Perceived Usefulness, Perceived Safety
and Trust, Perceived Ease of Use, Perceived Interaction, and
Ethical Considerations on a Likert scale from 1-5 (where
”1” represents strongly disagree and ”5” represents strongly
agree), as shown in Table I. After the Likert Scale statements,
the following optional open questions are asked: (1) “What
additional functionalities should the robot have?”, (2) “What
did you like about the robotic system?” (3) “What frustrated
you about the robotic system?” and (4) “ Please provide any
additional comments/feedback for the robotic system”.

All the collected data has undergone anonymization proce-
dures to ensure the preservation of the privacy of the partici-
pants. The dataset is accessible through our project’s official
website, as described in Section I. The data includes a demo
video, SUS questionnaires, HRCQ surveys, and demographic
information and code for the SousChef robot strategically



provided to stimulate interest in Human-Robot Interaction
(HRI) studies. The dataset is then used for our hypotheses
analysis, as shown in the next Section.

IV. STATISTICAL ANALYSIS AND RESULTS

Within this Section, a comprehensive statistical analysis is
conducted to examine the hypotheses outlined in Section I-A.

Hypothesis 1: To ascertain the preference for unstructured
robot interaction through spoken language over structured
robot interaction among participants, the t-Test [35] is em-
ployed. Prior to conducting hypothesis analysis using a t-test,
it is imperative to ensure that the metric under consideration,
which compares structured and unstructured modes, adheres
to a normal distribution. The chosen metric for evaluation
is the System Usability Scale (SUS) score, as it provides a
comprehensive insight into user perceptions.

The Shapiro-Wilk test [36] is employed as a means to
ascertain whether the collected SUS scores are drawn from a
normal distribution. If the p-value resulting from the Shapiro-
Wilk test surpasses the significance threshold of 0.05, it
establishes statistically substantial evidence indicating that the
distribution of the data aligns with a normal distribution. For
the SUS scores for the structured task, the computed p-value is
0.9832, while for the unstructured task, the p-value is 0.1481.
The p-value for both structured and unstructured SUS scores
exceeds 0.05, indicating that both sets are likely drawn from
a normal distribution. This conclusion is further substantiated
by the visual depiction of the SUS scores through violin plots,
where the characteristic bell curve shape associated with a
normal distribution is evident, as illustrated in Figure 3. It can
be seen by Figure 3 that the 50th percentile of the unstructured
tasks is much higher than the 50th percentile of the structured
tasks.

The paired t-test is a statistical method and is used to com-
pare the means of two related groups, such as before-and-after
measurements or matched pairs. It assesses whether there is a
significant difference between the means while accounting for
the inherent correlation or pairing between the observations.
By calculating the t-statistic based on the differences between
paired observations and their standard deviation, the paired
t-test helps determine whether the observed differences are
likely due to chance or if they reflect a true underlying change.

In pursuit of the hypothesis’s objectives, the subsequent Null
and Alternative hypotheses are formulated as follows:

• Null Hypothesis (H0): There exists an absence of statisti-
cally significant evidence indicating the user’s preference
for unstructured modes of communication over structured
alternatives. There is no difference between underlying
distributions of structured and unstructured SUS scores.

• Alternative Hypothesis (Ha): Compelling statistical ev-
idence indicates that users exhibit a preference for un-
structured modes of communication over structured ones.
The unstructured SUS scores tend to be greater than the
structured SUS scores.

In substantiating the null hypothesis, the SUS scores for
both unstructured and structured communication modes are

computed, followed by the application of the paired t-test.
It is noteworthy that the mean SUS score for unstructured
communication mode was determined to be 79.83 ± 13.86,
while the mean SUS score for structured communication mode
was calculated at 73.16 ± 13.64. The resulting p-value, calcu-
lated as 0.0016, was found to be less than the predetermined
significance level of 0.05, thus leading to the confirmation of
the alternate hypothesis. Furthermore, observed SUS averages
serve to provide additional support for the hypothesis in
question.

Hypothesis 2: In order to examine whether individual’s
perceptions of robots are adversely influenced by encounters
with robot failures, particularly instances where the robot
struggled to comprehend the user’s intentions or faced chal-
lenges in the successful retrieval and delivery of items during
interactions, the Kendall’s Tau Correlation method was em-
ployed [37]. This methodology assesses the extent of ranking
similarity and is utilized to determine statistically significant
correlations between the occurrence of robot error rates and
SUS scores, as well as specific questions from the HRCQ
surveys detailed in Section III-C. The robot error rate can be
defined as the total number of robot errors divided by the total
number of user commands.

To test whether there is a correlation between encounters
with robot failures and an individual’s perception of the
robot using the Kendall-Tau method, the subsequent Null and
Alternative hypotheses are formulated as follows:

• Null Hypothesis (H0): There is no statistically significant
correlation between encounters with robot error rate and
individuals’ perceptions of robots, as measured by SUS
scores or specific HRCQ questions.

• Alternative Hypothesis (Ha): There is a statistically sig-
nificant correlation between encounters with robot error
rate and individuals’ perceptions of robots, as measured
by SUS scores or specific HRCQ questions.

To understand how individuals perceive robot errors, Table
II summarizes the correlation between SUS and robot error
rate considering all the possible scenarios: All structured and
unstructured tasks (All Tasks (S+U)), structured only tasks (S
Task), unstructured Only Tasks (U Task), all first tasks which
could be either structure or unstructured (Task-1 (S or U)),
second tasks which could be either structure or unstructured
(Task-2 (S or U)), first tasks that are only structured (Task-
1 = S Task), first tasks that are only unstructured (Task-1 =
U Task), second tasks that are only structured ((Task-2 = S
Task)), and second tasks that are only unstructured (Task-2
= U Task). According to Schober et al., [38], correlation is
considered statistically significant and moderate if and only
if the correlation is greater than or equal to 0.26 and the p-
value is less than 0.05. As shown in Table II, there are no
correlations between SUS and robot error rate. To expand the
relationship between user feedback and robot errors, metrics
from the HRCQ have been compared extensively to the robot
error rate.

As shown in Table II, it is found that there is a negative
correlation between “I felt safe using the robot” during the



Fig. 3: Violin plots for SUS and HRCQ survey results for both structured and unstructured tasks. Data from the structured
task is visualized in blue on the left half, while the data from the unstructured task is depicted in orange on the right.
Dotted lines indicating the 25th, 50th, and 75th percentiles facilitate understanding of score distribution. It is important to
note that the inherent kernel density estimation in violin plots may create an illusion of scores surpassing their maximum
and minimum limits, despite no actual scores exceeding their threshold.

structured interaction and robot errors. In order to gain further
insights into the underlying reasons for this observed correla-
tion, an investigation was conducted to explore the potential
influence of system complexity. Therefore, the expected value
of “I had to learn more about robots in order to be able to
interact with the system” for the structured and unstructured

modes is calculated, which is 2.1 ± 1.3, and 2.13 ± 1.25, re-
spectively. This means that even though the subject’s expected
value on how complex the system is for both structured and
unstructured is very close, the subject does not feel safe during
the structured tasks when the robot makes errors.

Moreover, in Table II, it is shown that there is a negative



correlation between “I am concerned about my privacy when
using the robot” and the robot error rate during unstructured
tasks and when the second task is unstructured. Some of the
participants who started with structured tasks, then followed
by unstructured tasks, engaged in testing the system or even
trying to make it fail. For example, one of the participants
asked the robot: “hey robot, I need corn because my sister
wants me to cook pasta with tomato sauce”. The robot was
able to detect the intent and fetched corn. Subsequently, the
participant asked the robot: “I don’t like eating carrots let’s
have some green beans”. The robot was able to understand
the intent and fetched green beans. Then the subject asked the
robot: “chili is not healthy, but let’s have some”. However, the
robot was not able to understand the intent. The participant
repeated the request even though the robot was not able to
understand the intent, which increased the number of robot
errors. In short, some of the participants who completed the
unstructured task as their second task felt more comfortable
with challenging SousChef.

At last, a negative correlation is found between “It is
acceptable for the robot to have much information about the
user” and robot errors during the structured tasks. As the robot
increasingly made mistakes, the participants became hesitant
to share their information with it. It is consistent with the
perceived trust in the system “I felt safe using the robot” as
shown in Table II. For the rest of the metrics, no significant
correlation was found.

From the above-discussed correlations, the hypothesis can-
not be unanimously concluded that robot errors adversely
affect the overall perception or usability of the system by the
user. They might affect some aspects of the perception, but it is
on a case-by-case basis; for example, it may vary based on the
communication mode of the subject, whether it is structured
or unstructured.

Hypothesis 3: To explore the potential impact of past
encounters with robot failures during interactions on an indi-
vidual’s inclination towards a preferred method of instructing
the robot, be it structured or unstructured, the Kendall-Tau cor-
relation is used. The Null & Alternate hypothesis and criterion
for the statistically significant correlation of the Kendall-Tau
method are elucidated in the Hypothesis 2 rationale of the
current Section.

Upon analysis, as shown in Table III, it was determined
that no statistically significant correlation exists between par-
ticipant’s experiences in the initial task (Task 1) and their
responses in the subsequent task (Task 2) assessing method
preference.

Indeed, a lack of correlation was observed between encoun-
tered error rate during Task-1 (caused by speech to subject’s
intent and robot failures) and any of the other questions
in HRCQ as outlined in Table III during Task-2, thereby
lending support to Hypothesis 3. This absence of correlation
underscores that an individual’s initial method of instruction
did not exert a discernible influence on their subsequent
preferences in the Task-2 instructional context.

Additionally, Table III shows a negative correlation between

the total robot error rate from both tasks and how the subject
perceived the predictability of robot actions after completing
both tasks regardless of their order. This strongly indicates the
unbiasedness of the subjects, as the robot error rate in Task-1
appears to have had no impact on the user feedback metrics for
Task-2. However, it was only the combined errors occurring
in both Task-1 and Task-2 that influenced the predictability
score measured after Task-2.

V. DISCUSSION

As indicated in the results presented in Section IV, it was
evident that subjects exhibited a preference for engaging in
unstructured, natural spoken language as their primary mode
of speech interaction. A noteworthy finding emerged in the
manner in which subjects perceived and responded to errors
made by the robot. Among the 72 correlations scrutinized in
Hypothesis 2, only 4 exhibited any significant correlation.

This particular behavior had been previously identified by
[39], a phenomenon commonly referred to as the ”Pratfall
Effect” [40]. In accordance with the Pratfall Effect, individuals
who are deemed to exhibit a high degree of competence tend to
be viewed as more affable when they commit an ordinary error,
as opposed to those who lack a similar perception of compe-
tence. This phenomenon underscores the nuanced dynamics
between perceived competence and the social assessment of
likability. Furthermore, Hypothesis 3 did not deviate from
this pattern, as errors originating from previous tasks failed
to influence how subjects assessed the robot’s usability. This
observation aligns with the Pratfall Effect.

Important insights are also given by the open questions
as the participants had several suggestions to expand the
SousChef capabilities. For example, enabling the robot to fetch
multiple objects, or adding additional robot actions (such as
opening cabinets), would be beneficial. Some participants were
interested in having a more conversational robot, and one
participant suggested that it would be good if the robot could
understand human emotions. Additionally, several participants
would prefer a faster speed for the mobile base.

Moreover, the violin plots in Figure 3 reveal several intrigu-
ing insights that can be derived from the data. Specifically, an
intriguing pattern emerges with respect to the 75th percentile
values within the context of the structured communication
mode as opposed to the unstructured mode. In Figure 3-
1, the 75th percentile of the unstructured is higher than
the structured, which adds credibility to Hypothesis 1, that
individuals favored the unstructured way of interaction. In
Figure 3-2 for the statement ”I accomplished the given tasks
rapidly for structured Vs. unstructured”, both structured and
unstructured modes have similar behavior up to the 50th

percentile. However, toward the 75th percentile, the subject
favored structured methods. One possible reason would be
the easiness of commanding the robot since they could just
follow the script. For the statement “The robot actions were
predictable” (as shown in Figure 3-4), although before the
25th percentile, people perceived the actions of the robot as
less predictable in the unstructured compared to the structured,



TABLE II: Hypothesis 2 - Correlation between metric 1 and metric 2. The cells in green show statistically significant
correlations.

Metrics Kendall-Tau Correlation S= Structured Task, U= Unstructured Task
Metric 1 (User
Feedback)

Metric 2
(Robot
Error
Rate)

All Tasks
(S+U)

S Task U Task Task-1 (S
or U)

Task-2 (S
or U)

Task 1 =
S Task

Task 1 =
U Task

Task 2 =
S Task

Task 2 =
U Task

SUS Score Robot
Error Rate

-0.01 (p-
value:
0.8726)

-0.01 (p-
value:
0.9426)

0.01 (p-
value:
0.9424)

0.11 (p-
value:
0.4087)

-0.16 (p-
value:
0.2483)

0.01 (p-
value:
0.9602)

0.24 (p-
value:
0.2280)

0.01 (p-
value:
0.9599)

-0.26 (p-
value:
0.2029)

Robot Actions Were
Predictable

Robot
Error Rate

-0.11 (p-
value:
0.2610)

-0.20 (p-
value:
0.1802)

-0.01 (p-
value:
0.9545)

-0.03 (p-
value:
0.8640)

-0.24 (p-
value:
0.1073)

-0.20 (p-
value:
0.3448)

0.30 (p-
value:
0.1737)

-0.15 (p-
value:
0.4818)

-0.28 (p-
value:
0.1930)

I Felt Safe Using The
Robot

Robot
Error Rate

-0.17 (p-
value:
0.1275)

-0.34 (p-
value:
0.0322)

0.01 (p-
value:
0.9411)

-0.09 (p-
value:
0.5497)

-0.29 (p-
value:
0.0627)

-0.33 (p-
value:
0.1491)

0.32 (p-
value:
0.1708)

-0.37 (p-
value:
0.1018)

-0.21 (p-
value:
0.3557)

I Found Robot Easy
To Use

Robot
Error Rate

-0.18 (p-
value:
0.0889)

-0.27 (p-
value:
0.0763)

-0.09 (p-
value:
0.5513)

-0.13 (p-
value:
0.4179)

-0.27 (p-
value:
0.0730)

-0.19 (p-
value:
0.3840)

0.03 (p-
value:
0.8953)

-0.39 (p-
value:
0.0822)

-0.16 (p-
value:
0.4692)

The Robot Met My
Expectations

Robot
Error Rate

-0.09 (p-
value:
0.3707)

-0.13 (p-
value:
0.3743)

-0.05 (p-
value:
0.7448)

0.00 (p-
value:
1.0000)

-0.22 (p-
value:
0.1450)

-0.02 (p-
value:
0.9142)

0.05 (p-
value:
0.8288)

-0.21 (p-
value:
0.3322)

-0.19 (p-
value:
0.3928)

I Am Concerned
About My Privacy
When Using The
Robot

Robot
Error Rate

-0.04 (p-
value:
0.6856)

0.15 (p-
value:
0.2859)

-0.33 (p-
value:
0.0233)

-0.06 (p-
value:
0.7021)

-0.01 (p-
value:
0.9550)

-0.03 (p-
value:
0.8723)

-0.20 (p-
value:
0.3574)

0.31 (p-
value:
0.1383)

-0.57 (p-
value:
0.0084)

It is Acceptable For
The Robot To Have
Much Information
About The User

Robot
Error Rate

-0.03 (p-
value:
0.7321)

-0.30 (p-
value:
0.0355)

0.22 (p-
value:
0.1344)

-0.03 (p-
value:
0.8373)

-0.04 (p-
value:
0.7598)

-0.26 (p-
value:
0.2159)

0.33 (p-
value:
0.1263)

-0.30 (p-
value:
0.1653)

0.24 (p-
value:
0.2617)

I Should Have Full
Control Of When and
How The Robot Will
Assist Me

Robot
Error Rate

0.11 (p-
value:
0.2778)

0.13 (p-
value:
0.3930)

0.08 (p-
value:
0.5809)

0.19 (p-
value:
0.1917)

-0.01 (p-
value:
0.9695)

-0.08 (p-
value:
0.7000)

0.29 (p-
value:
0.1845)

0.26 (p-
value:
0.2197)

-0.37 (p-
value:
0.0874)

TABLE III: Hypothesis 3: Correlation between Metric (User
Feedback) and Robot error rates Task-1 Robot Error Rate,
Task-2 Robot Error Rate, Sum of Robot Error rates (Task-1
Error Rate + Task-2 Error Rate)

Metric (User
Feedback)

Task-1 Robot
Error Rate

Task-2 Robot
Error Rate

Sum of Robot
Error rates

SUS Score in
Task-2

0.09 (p-value:
0.5160)

-0.16 (p-value:
0.2483)

-0.0 (p-value:
0.9713)

The robot actions
were predictable in
Task-2

-0.16 (p-value:
0.2802)

-0.24 (p-value:
0.1073)

-0.31 (p-value:
0.0297)

I found the robot
easy to use in
Task-2

-0.01 (p-value:
0.9513)

-0.27 (p-value:
0.0730)

-0.14 (p-value:
0.3394)

The robot met my
expectations in
Task-2

-0.13 (p-value:
0.3988)

-0.22 (p-value:
0.1450)

-0.26 (p-value:
0.0752)

I felt safe using the
robot in Task-2

0.02 (p-value:
0.8737)

-0.29 (p-value:
0.0627)

-0.15 (p-value:
0.3300)

I am concerned
about my privacy
when using the
robot in Task-2

0.06 (p-value:
0.6793)

-0.01 (p-value:
0.9550)

0.02 (p-value:
0.8956)

It is acceptable for
the robot to have
much information
about the user in
Task-2

-0.03 (p-value:
0.8335)

-0.04 (p-value:
0.7598)

-0.11 (p-value:
0.4457)

I should have full
control of when
and how the robot
will assist me in
Task-2

0.14 (p-value:
0.3495)

-0.01 (p-value:
0.9695)

0.11 (p-value:
0.4575)

both have the same growth up to the 75th percentile. In Figure
3-8, both modes showed that it is not necessary to learn more
about the robot because there is a crest at a low score of around
1 (Statement: I had to learn more about robots in order to be
able to interact with the system). However, the unstructured
one had a lower 75th percentile, which means that the subject
found the unstructured method required less learning. The rest

of the violin plots show a similar behavior between structured
and unstructured.

In summation, the analysis of violin plots provides a com-
prehensive perspective on the dynamics between structured
and unstructured modes of communication in the context of
human-robot interaction. The discernible variations in 75th

percentile scores across distinct response categories underscore
the nuanced impact of communication paradigms on user
perceptions, task execution, and privacy considerations. These
insights contribute to a deeper understanding of the interplay
between communication modalities and their consequential
implications within the realm of HRI research.

VI. CONCLUSION AND FUTURE WORK

In this paper, a comparison between structured and unstruc-
tured modes of speech communication between a human and a
robot is conducted. We collected data from 30 participants dur-
ing a collaborative cooking task, and SUS and HRCQ survey
data were collected during the interaction. This paper found
statistically significant evidence that participants preferred the
unstructured mode of communication in comparison to the
structured one. Additionally, it was proven that there is no
significant correlation between the robot error rate and the
perceived usability of the robot. Furthermore, the robot error
rate in the previous task (Task 1) or the current task (Task 2)
has no impact on how the subject perceived robot usability
after completing Task 2, which aligns with Pratfall’s Effect.
Furthermore, the data gathered from the experiments has
illuminated significant correlations. These correlations have
provided insights into various aspects of human-robot inter-



action, including safety and privacy concerns. These aspects
are thoroughly explored in Sections V and IV.

As our research progresses, we will prioritize the investi-
gation of potential gender-related disparities in the perception
and interpretation of robot errors. Furthermore, we intend to
expand our efforts by developing a more conversational robot
that possesses a deeper understanding of human communica-
tion. This direction holds crucial importance for our future
endeavors.
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