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Abstract

Remote sensing has enabled large-scale crop classification to understand agricultural ecosystems and estimate production yields.

Since a few years, machine learning is increasingly used for automated crop classification. However, in most approaches the

novel algorithms are applied to custom datasets containing information of few crop fields covering a small region and this often

leads to models that lack generalization capability. In this work, we propose a multi-modal contrastive self-supervised learning

approach to obtain a pre-trained model for crop-classification without the use of labeled data. Such multi-modal self-supervised

learning exploits the synergies of different data sources to obtain a richer representation of the data. We build our analysis by

adapting the DENETHOR dataset developed for a part of Eastern Germany to our usecase. We use the publicly available

Sentinel2 and commercial Planetscope data. While Sentinel2 has higher spectral resolution, Planetscope has finer spatial

resolution. For an end-user application, only one source is required. In this work, we analyze and compare the performance

of our multi-modal self-supervised model against the uni-modal contrastive self-supervised model using the SCARF algorithm.

In addition, we also compare our multi-modal self-supervised model with a supervised model. We find that our multi-modal

pre-trained model surpasses the uni-modal and supervised models in almost all test cases.

1



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Multi-modal Contrastive Learning for Crop
Classification Using Sentinel2 and Planetscope

Ankit Patnala, Scarlet Stadtler, Martin G. Schultz, Juergen Gall

Abstract—Remote sensing has enabled large-scale crop clas-
sification to understand agricultural ecosystems and estimate
production yields. Since a few years, machine learning is
increasingly used for automated crop classification. However,
in most approaches the novel algorithms are applied to custom
datasets containing information of few crop fields covering a small
region and this often leads to models that lack generalization
capability. In this work, we propose a multi-modal contrastive
self-supervised learning approach to obtain a pre-trained model
for crop-classification without the use of labeled data. Such multi-
modal self-supervised learning exploits the synergies of different
data sources to obtain a richer representation of the data. We
build our analysis by adapting the DENETHOR dataset developed
for a part of Eastern Germany to our usecase. We use the
publicly available Sentinel2 and commercial Planetscope data.
While Sentinel2 has higher spectral resolution, Planetscope has
finer spatial resolution. For an end-user application, only one
source is required. In this work, we analyze and compare the
performance of our multi-modal self-supervised model against
the uni-modal contrastive self-supervised model using the SCARF
algorithm. In addition, we also compare our multi-modal self-
supervised model with a supervised model. We find that our multi-
modal pre-trained model surpasses the uni-modal and supervised
models in almost all test cases.

Index Terms—Optical remote sensing, crop classification,
contrastive learning, multi-modal contrastive learning, time-series,
self-supervised learning

I. INTRODUCTION

Crop classification is a method of identifying the type
of agricultural plants at a particular location. Typically, in
remote sensing, researchers use information from various public
landcover satellite missions such as Sentinel2 [1] and Landsat1

which cover the entire globe at a regular time interval over
many years. Crops exhibit clear temporal signatures due to
phenological traits i.e. the pattern of their growth stages from
seed to sprout through budding, growing and then ripening
[2]. Therefore, crop classification methods rely extensively
on temporal patterns from the large archives of these public
remote sensing satellite missions. The analysis of crops from
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remote sensing data can be used to optimize farming practices,
assess damage, and increase yields.

The availability of public satellite missions facilitates large
scale crop mapping suitable for machine learning. However,
labeling of crops as it is necessary for classical machine
learning approaches is time consuming and requires skilled
human efforts. Most works on vegetation remote sensing
therefore only use a small region consisting of few crop fields
for crop analysis. The conventional machine learning methods
such as random forest generate good results on the same
field but can not be generalized to other fields with different
geographical properties [4] or even when tested on the same
fields at a different time [5].

The need for models that generalize well without using
additional manual annotations and the development of advanced
algorithms in the field of deep learning has motivated the
development of techniques such as self-supervised learning.
Self-supervised learning facilitates pre-training using a large
amount of unlabeled data. The weights of this pre-trained model
are then used as a starting point to solve tasks containing a
few annotated data samples. This technique is called transfer
learning. It is found that the performance of pre-trained models
surpasses the performance of equivalent models where weights
are randomly initialized [6]. Self-supervised learning relies on
pretext tasks, and with recent advancement, the contrastive
learning [7] has shown promising results. For contrastive self-
supervised learning, the pretext task is to align the output from
two different viewpoints of the data simultaneously ensuring the
output from all the other data are pushed away Since the loss
functions such as mean square error (MSE) would lead to trivial
solution as there are no labels, alternative loss functions such
as InfoNCE [8] are used in order to obtain non-trivial weights.
The contrastive learning method relies on augmentation of a
data sample and aims to maximize similarity of the data sample
and its augmented version. However, such augmentation for raw
satellite data is non-trivial [9]. In this work, we thus propose
multi-modal contrastive learning where the augmented version
of the data is obtained from another source [10]. Recently,
datasets like Breizhcrops [11], TimeSen2Crop [12], Eurocrops
[13], DENETHOR [14] etc. have been proposed to facilitate
large scale crop classification. In this work, we specifically
use DENETHOR, which provides surface reflectance from
multiple optical remote sensing sensors such as Sentinel2 [1]
and Planetscope [15]. Thus, DENETHOR is feasible for multi-
modal self-supervised learning. Though two data sources are
used for pre-training, the user does not require both sources
while applying the pre-trained model. We term the model used
for pre-training as backbone model and the model used for
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downstream tasks as base models.
Sentinel2 is an ESA satellite mission. Its multi spectral

instrument (MSI) consists of 12 bands including visible, thermal
and infrared bands ranging from 400 nm to 2190 nm. Sentinel2
has a spatial resolution of 10 m, which means that each
pixel covers an area of 100 m2. Data are publicly available
using either the Copernicus API or Google Earth Engine [16].
Although the cloud masks are available, cloud-free images
are hard to obtain. On the other hand, Planetscope is a
commercial satellite mission. Planetscope comes with higher
pixel resolution when compared to Sentinel2 i.e. 3 m/px.
The instrument takes multiple snapshots of a particular region
and uses the “best scene on top” algorithm2. This algorithm
ensures that we obtain an image least affected from cloud,
haze, and other image variability. A downside of Planetscope
is the lower spectral resolution i.e., only 4 channels (R,G,B
and NIR) are available. In this work, we design a strategy
to develop a multi-modal self-supervised pre-trained model
by complementing the higher spectral resolution of Sentinel2
with the finer spatial resolution of Planetscope. Although two
data sources, i.e., Sentinel2 and Planetscope, are used for
pre-training, the pre-trained model can be applied to only
one source. For evaluation, we use crop classification on
Sentinel2 data as downstream task. Our experiments show
that the proposed multi-modal contrastive self-supervised pre-
training improves the crop classification accuracy.

The main contributions of this paper are:
• We have designed a setup for multi-modal self-supervised

learning with two different optical remote sensing image
sources for crop classification.

• We show that our multi-modal contrastive self-supervised
pre-trained model provides higher accuracy for crop
classification compared to the conventional uni-modal
contrastive learning using random feature corruption as
an augmentation for tabular data.

• We analyze and test our pre-trained models by evaluating
the learned representation using three different types
of networks, namely a convolutional, a recurrent and a
transformer networks.

II. RELATED WORKS

Recently, there has been much work on contrastive self-
supervised learning on remote sensing images. SeCo [17] is
one of them where the authors found that their pre-trained
model outperformed a model pre-trained on Imagenet [?] on
several benchmark datasets. This work focused on contrastive
learning but it did not explore channels beyond RGB and they
considered only single time spatial land cover classification.
Their work used only one source, i.e. Sentinel2, and used stan-
dard transformations to obtain augmented data for contrastive
learning. They used an image size of 224× 224. The authors
of [18] used a multi-modal contrastive learning approach on
remote sensing images. They aligned an optical remote sensing
image (Sentinel2) with a radar image (Sentinel1). To our
knowledge, there is no work that applies contrastive learning
to time series tasks in the field of remote sensing data. In the

2https://developers.Planet.com/docs/data/visual-basemaps/

machine learning community, there are few works on tabular
data. For example, SCARF [19] uses random feature corruption
techniques to obtain an augmented version of a tabular data. The
authors have tested this augmentation on 69 datasets from the
public OPENML-CC18 [20] benchmark data. They compared
their proposed methods to SCARF+autoencoder, autoencoder,
denoising autoencoder [21] and found the performance to
be better than all the alternatives. SAINT [22] is another
contrastive self-supervised learning method developed for
tabular data. They propose a modification in Tabtransformer
[23] to incorporate both categorical and continuous data. With
the help of Cutmix [24] in the raw data space and Mixup [25]
at the embedding space, they produced a representation of an
augmented data. They further use two projections where one
is meant for the contrastive loss and the other is used to obtain
a reconstruction. By optimizing the SimCLR [26] contrastive
loss and MSE as reconstruction loss, they obtain a pre-trained
model. They use intersample attention, i.e. data attends other
data in the batch for both pre-training and fine-tuning. Due
to intersample attention in fine-tuning, they always need few
labelled data samples even for prediction. VIME [27] is also
a self-supervised method developed for tabular data. Unlike
SCARF and SAINT, they do not rely on contrastive learning.
They use feature corruption and maksing to corrupt the data.
They train two pretext tasks in parallel. The feature estimator
aims to reconstruct the original data and the mask estimator
aims to predict whether a feature has been masked.

III. DATASETS

We use the training and validation sets of the DENETHOR
dataset to prepare our own custom data set to perform multi-
modal self-supervised learning experiments.

DENETHOR’s training dataset covers a region of 24× 24
km2 in eastern Germany. This region is located in the state
of Brandenburg. This dataset contains multiple sources of
the same data that includes both Sentinel2 and Planetscope.
The training data covers the entire year 2018. Given the
pixel resolution of 10 m/px for Sentinel2 and 3 m/px
for Planetscope, the dimensions of the measurements are
represented as 2400 × 2400 and 8000 × 8000, respectively.
We have 144 Sentinel2 timestamps of the region for a given
year and we filtered the Planetscope data for the same 144
timestamps of the year. DENETHOR’s validation dataset also
covers a 24×24 km2 region in Brandenburg but from a different
region. The validation dataset covers the entire year 2019 with
144 timestamps for Sentinel2.

The total training data consists of 2534 crop fields and
the validation data consists of 2064 crop fields for 9 crop
types. In both the training and validation regions, there are
locations where no crops are grown. The pixels belonging to
these locations are masked.

We make a 70-21-9 random split of DENETHOR’s training
dataset to obtain the pre-training data and the data for down-
stream task1. A 70-30 random split is done on DENETHOR’s
validation dataset to obtain data for our downstream task2. The
use of two downstream tasks is to evaluate the performance of a
pre-trained model on test data from a different time and region.
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Fig. 1: Description of data alignment for multi-modal self-
supervised learning. The top row and the bottom row show a
spatial region of the same geographical region from Sentinel2
and Planetscope. For each timestamp, pixels are randomly
selected from Sentinel2. The pixel data is aligned to 3×3 pixels
from the same corresponding region for the same timestamp
from Planetscope.

Figure 2 shows a visual description of our splitting strategy.
Subsection III-A describes the creation of the pre-training data
and Subsection III-B gives an overview of the data created for
the two downstream tasks.

A. Data for Pre-training

For pre-training, we need unlabeled data. To obtain this, we
use 70% of the random crop fields obtained from the 70-21-9
split. We do not use the crop labels.

For our pre-training, we iterate through each of the 144
Sentinel2 timestamps and randomly selected 100,000 pixels
from the 70% split. This process yielded 14,400,000 data
samples for our multi-modal self-supervised experiment. Since
one pixel of Sentinel2 covers 100 m2, whereas a pixel of
Planetscope covers 9 m2, we assigned a pixel of Sentinel2 to
3× 3 pixels of Planetscope for alignment as shown in Figure
1.

B. Data for Downstream Tasks

The pre-trained model is tested on two different sets of
Sentinel2 data to evaluate its generalizability. We create two
crop classification downstream tasks using DENETHOR’s
training and validation dataset. The 21% and 9% of the data of
the given 70-21-9 split of the DENETHOR’s training dataset
is used for the crop classification downstream task1. The 21-9
split is done to separate training and validation crop fields
for our downstream task1. For each crop, 5000 pixels are
randomly selected from their training cropfields in order to
create a balanced dataset. For the validation set of downstream
task1, we also created a balanced dataset by randomly selecting
1000 pixels of each crop from the validation cropfields. For
our crop classification downstream task2, we used a 70-30 split
on DENETHOR’s validation set. We implemented a similar
process as before to get a balanced dataset for our 2nd crop

classification downstream task. Figure 2 shows the creation of
the two downstream tasks.

IV. METHODS

A. Multi-modal Self-Supervised Learning

Figure 3 shows the setup of our multi-modal contrastive
learning method. In this approach, the networks are not
shared between the two modalties as the two sources have
different input dimensions. Here, the backbone network is
denoted by Es : R12 → R256 and Ep : R36 → R256 for
data from Sentinel2 and Planetscope, respectively. Similarly,
the projector network is denoted by Ps : R256 → R256 and
Pp : R256 → R256 for Sentinel2 and Planetscope, respectively.
Equation (1) shows a mathematical formulation of the SimCLR
loss function [26] used in our work. For the pre-training, we
adapt the SimCLR loss to our multi-modal setup as shown in
the Equation (1a).

lxis,xip
= −log

riisp∑N
k=1,k ̸=i rikss +

∑N
m=1,m ̸=i rimsp

(1a)

sim(zis, zjp) = (zTiszjp)/(∥zis∥ ∥zjp∥) (1b)

rijsp = exp(sim(zis, zjp)/τ) (1c)

xis represents the ith Sentinel2 data sample and zis repre-
sents the output obtained after passing through the encoder and
projector part of the Sentinel2 network. Similarly, xip represents
the ith Planetscope data sample and zip represents the output
obtained after passing through the encoder and projector part
of the Planetscope network. τ denotes the temperature which
controls the sensitivity of the loss function. In the original
SimCLR equation [26], there is only one network and two
augmented views share the same model. In contrast, in our
multi-modal case there are separate networks for different
views. The term rikss in the denominator of the Equation (1a)
denotes the cosine distance between Sentinel2 data sample to
other Sentinel2 data samples in the batch and similarly rimsp

denotes the cosine distance between the Sentinel2 data sample
and the other Planetscope data samples in the batch. Figure 3
shows how to use the pre-trained Sentinel2 backbone for the
downstream task of crop classification. 144 timestamps of each
pixel are passed through the pre-trained model to obtain an
abstract pixel representation. The time series formed with the
representations of each timestamp is used as an input to the
base models. As the multi-modal pre-training implicitly learns
a mapping from Planetscope to Sentinel2 data, it suffices to
feed only Sentinel2 data into the model for the classification
downstream task. Thus, users can implicitly take advantage of
Planetscope’s finer spatial resolution.

We use the random feature corruption technique from
SCARF [19] as transformation on both sources in our multi-
modal self-supervised learning setup. In random feature cor-
ruption, with a given corruption rate “c”, randomly c % of
the features in the data are replaced by the empirical marginal
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All crop fields
Pretraining
 crop fields

Training
 crop fields

Validation
 crop fields

Downstream Task1

Downstream Task2

Fig. 2: Dataset for the multi-modal self-supervised learning experiment. The top row of the figure shows the splitting we
used on the DENETHOR’s training dataset. The top image shows all crop fields in the training dataset, which we divided into
three parts. The first part is used for pre-training and is represented by blue crop fields. The blue color represents unlabeled
data. The other two parts are training and validation data for our downstream task1. The bottom row shows the validation
dataset for DENETHOR. For our downstream task2, we split the validation data into training and validation for our downstream
task2. The downstream task2 is trained using the pre-trained model obtained from the same pre-training dataset to check its
performance when region and time period are changed.

distribution of the corresponding features. Figure 4 shows a
schematic diagram of the random feature corruption technique.

In our experiments, we use two different backbones for our
multi-modal self-supervised learning, MLP and ResMLP. The
most commonly used network for tabular data is MLP. Inspired
by the skip connection mechanism of ResNets [28], we use
skipped connection MLP and named it as ResMLP.

B. Base Models

In the following part, we will describe the networks used as
base models for the downstream tasks.

1) Bi-directional LSTM: LSTM [29] is an advanced re-
current neural network (RNN) designed to solve tasks related
to language processing or time-series. It is an autoregressive
model. An LSTM layer consists of multiple gated memory cells
each consisting of multiple gates i.e. forget gate, input gate and
output gate. Compared to vanilla RNN, LSTM increases the
ability to capture long-term dependency and mitigates to some
extent the problem of vanishing and exploding gradients. In a bi-
directional LSTM, each LSTM layer receives input from both
directions i.e. from initial timestamp to final timestamp and
vice-versa from final timestamp to initial timestamp. LSTMs
are trained by backpropagation through time.

2) Inception Time: Inception networks have originally been
developed for images. It consists of repeating components
called inception modules. Inception networks are a variant of

CNNs where filters with different kernel sizes are processed
in parallel. In the inceptiontime model [30], such inception
modules are applied to our time series data. It is intended to
capture different temporal scales of patterns.

3) PE Transformer: The position encoded transformer
is the encoder part of the original transformer network [31]
developed for language translation problems. The attention
mechanism used in this network is position invariant, so
sinus and cosinus positional encoding are used. The attention
mechanism helps to solve sequential problems such as
time-series. We apply the network to each timestamp and
perform max pooling over timestamps with an additional MLP
layer.

C. Evaluation of Downstream Task Performance

We used two sets of experiments, supervised and uni-modal
self-supervised experiments to compare our proposed multi-
modal approach. In supervised experiments, the Sentinel2 data
is directly passed to the base networks as there is no pre-
training involved. For uni-modal self-supervised experiments,
we use the random feature corruption technique from SCARF
[19] to obtain an augmented view of the Sentinel2 data as
shown in the Figure 4. This augmented data along with the
original is then used for uni-modal self-supervised contrastive
learning. The same MLP and ResMLP model which is used
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Fig. 3: Schematic setup of our multi-modal self-supervised experiment. a) The top part shows the multi-modal setup where
corresponding pixels shown with red boxes are randomly selected. Then, the Sentinel2 and Planetscope data are passed through
their corresponding backbone and projector network. The outputs are finally aligned by optimizing the contrastive loss with the
objective to attract similar and repel dissimilar pairs. This is shown with two spherical diagrams on the right side where before
training the projection of the data are randomly distributed and with training, the similar pairs got aligned simultaneously
maintaining uniformity in the latent hypersphere space. b) The bottom part shows the training of a downstream task where the
raw data from Sentinel2 is fed through the pre-trained Sentinel2 backbone. The output is then fed to different base models for
conventional supervised learning, which optimizes the standard cross entropy loss for multi-class classification.

as Sentinel2 backbone in the multi-modal setup, is used here.
The cross-entropy loss function is used for all our baseline
experiments.

V. EXPERIMENTS

We divide this section into three parts: supervised
experimentsV-A, uni-modal self-supervised experiments and
multi-modal self-supervised experiments. For all our experi-
ments, we use a 32GB NVIDIA Tesla V100 GPU. For our
supervised and downstream experiments, we adopt all the base
models from the implementation of [11].

A. Supervised Experiments

This is our first experiment setup. In this setup, we fed
the raw reflectance values of Sentinel2 from the training and
validation datasets directly to the networks. For each category
of networks i.e. bi-directional LSTM, inceptiontime, and
transformers, 10 different models were selected with varying
hyperparamters. To obtain 10 different models for each of the
three categories, we used the optuna [32] hyperparameter tuner
on a specific hyperparameter search grid. For bi-directional
LSTM, the hyperparameter space is as follows: dimensions
of hidden layer in the category of [32,64,128,256], number
of layers in the category of [2,3,4,5,6], and learning rate
in continuous value between 10−5 and 10−3. For inception
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Fig. 4: Random feature corruption mechanism in SCARF
[19]. At each time, few features are masked randomly as
shown with black cells in the figure. These masked features
are replaced by features from other samples in the batch as
represented by (x

′

i).The two corrupted features are considered
as a positive pair.

time, the hyperparameter space is as follows: number of
layers in the category of [2,4,8], dimension of hidden layer
in the category of [128,256,512,1024], kernel size in the
category of [40,80,120,136], and learning rate in the continuous
value between 10−5 and 10−3. The hyperparameter space for
transformers is as follows: dimension of model in the category
of [32,64,128], number of attention heads in the category of
[2,4,8] and number of layers in the category of [2,3,4,5,6], and
the learning rate is a continuous value range between 10−5

and 10−3. For all the supervised experiments, we trained the
network for 20 epochs. We used the initial learning rate of
10−3 with the linear scheduler.

B. Uni-modal Self-Supervised Experiments

This is our second set of experiments. With these experiment
sets, we intended to compare our proposed multi-modal self-
supervised models with the one which already have seen pre-
training data and gained additional information. We used uni-
modal contrastive learning i.e., only using Sentinel2 during
pre-training. Lack of transformation processes such as cropping,
color jittering makes it difficult to obtain augmented data for
raw reflectance value of a Sentinel2 at a location. Therefore,
we used the random feature corruption technique of [19] to be
able to perform contrastive learning for tabular data with one
mode. In our uni-modal self-supervised experiment setup, we
pre-trained the model on pre-training data. We ran it for 100
epochs. We used a SimCLR loss function with a temperature
of 0.07. The learning rate is set to 10−3 . Such a contrastive
loss needs a higher batch size to generalize well, so we took
a batch size of 2048. We tested on different random feature
corruption rates i.e. 20% and 60%.

C. Multi-Modal Self-Supervised Experiments

This is our proposed experimental setup. In contrast to the
uni-modal self-supervised setup, we used different backbone

networks for Sentinel2 and Planetscope. We ran this pre-training
for 100 epochs. Similar to uni-modal self-supervised experiment
setup, the initial learning was set to 10−3 with a temperature
parameter of the SimCLR loss set to 0.07. In addition, we
randomly applied SCARF algorithm on each source. In this
case, we tried our experiments with corruption rate 0 (no
corruption)), 20 and, 60.

VI. RESULTS

We used the evaluation protocol from [19] i.e. the use of
win-matrix plot and the box plot to compare different models
for both datasets. In the win-matrix plot, the value in the cell
shows the ratio of experiments mentioned in the row outperform
the one in the column as formulated in Equation (2); with i
and j are competing methods, and N is the total number of
experiments.

Wij =

∑N
i=1 I(val acci > val accj)

N
(2)

We presented results for all the three base models separately.
The results for ResMLP as a backbone are shown in this section
and for MLP, please refer to appendix.

Figure 5 shows the win-matrix and relative gain box plot for
ResMLP pre-trained models on downstream task1. We found
our multi-modal self-supervised model’s performance to be
better than uni-modal self-supervised and supervised models.
We found that the random feature corruption technique, which
shows improved performance on openml tabular data [20]
for uni-modal contrastive learning pre-trained model, does
not show promising results in the case of time-series crop
classification data. The experiment comparisons are done with
similar hyperparameters, i.e. same random feature corruption
coefficient (20 & 60), so for each baseline type, we have 20
experiments (two variants of scarf for 10 variants of each base
model type). As there is no pre-trained model involved in
the supervised baseline model, so we used the same score
for both instances. On comparing the self-supervised ResMLP
model with the supervised setup for training data, the ratio
of the number of wins was 17/20, 19/20, and 20/20 for
LSTM, inception, and transformer respectively. With more
wins, we have shown that multi-modal self-supervised learning
gains knowledge about the crop lands. When compared to
uni-modal self-supervised ResMLP model, the multi-modal
self-supervised’s win-ratio is ∼ 20/20 for all the three base
models.

In the case of supervised models, the classification accuracies
for LSTM, inception and transformer are 66.7% ± 2.53%,
25.84% ± 4.65%, and 71.39% ± 4.54% respectively. The
corresponding box plot shows the range of relative gain over
the supervised setup. For LSTM, the range of relative gain
over the supervised experiment is between -4.58% and 3.87%
for uni-modal self-supervised versus -2.34% and 9.14% for
multi-modal self-supervised. In the case of inception the range
is between -14.8% and -5.2% for uni-modal self-supervised
versus 3.18% and 13.90% for multi-modal self-supervised.
For transformers, the range is between -5.57% and 11.76%
for uni-modal self-supervised versus 0.66% and 17.04% for
multi-modal self-supervised.
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Fig. 5: Win-matrix and box plot for ResMLP backbone model on downstream task1. a, b & c shows the win-matrix for
LSTM, inception and transformer respectively. d, e & f corresponds to box plot showing relative gain for both uni-modal and
multi-modal self-supervised over the supervised experiments for LSTM, inception and transformer respectively.
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Fig. 6: Win-matrix and box plot for ResMLP backbone model on downstream task2. a, b & c shows the win-matrix for
lstm, inception and transformer respectively. d, e & f corresponds to the box plot showing the relative gain for both uni-modal
and multi-modal self-supervised over the supervised experiments for LSTM, inception and transformer respectively.
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TABLE I: Table showing the accuracy of the supervised
setup and relative gain of uni-modal and multi-modal self-
supervised experiment for different downstream tasks.

Supervised Accuracy
(mean ±std)

Relative gain
for uni-modal
(max/min)

Relative gain
for multi-modal
(max/min)

Downstream Task1 LSTM 66.70% ±2.53% -4.58% / 3.87% -2.34% / 9.14%
InceptionTime 25.84% ±4.65% -14.8% / -5.2% 3.18% / 13.90%
Transformers 71.39% ±4.54% -5.57% / 11.76% 0.66% / 17.04%

Downstream Task2 LSTM 59.31% ±5.75% -10.27% / 4.43% 0.46% / 13.72%
InceptionTime 20.43% ±3.98% -9.75% / -1.01% -1.39% / 4.7%
Transformers 80.83% ±2.69% -11.56% / 0.62% -6.76% / 5.82%

Figure 6 shows the results and interpretation for both
pre-trained models when tested on downstream task2.
The purpose of this dataset was to check how the model
behaves when tested on a data of different year and at
different geographical region. We found that the uni-modal
self-supervised model’s performance were poor for ResMLP
pre-trained models for all the three baseline models. Similar to
the case of downstream task1, the multi-modal self-supervised
model outperformed the uni-model self-supervised model
for all the competing experiment setups. When comparing
the multi-modal self-supervised MLP model with the base
model the win ratio were 20/20, 17/20 & 10/20 for LSTM,
inception, and transformer model and with self-supervised
model, the win-ratio were 17/20, 20/20 and 19/20. In the
case of supervised models, the classification accuracies for
LSTM, inception and transformer are 59.31% ± 5.75%,
20.43% ± 3.98% and 80.83% ± 2.69% respectively. From
the box plots in Figure 6, we found the range of relative
gain over the supervised experiment in the case of LSTM
to be lying between -10.27% and 4.43% for uni-modal
self-supervised and for multi-modal self-supervised it is
between 0.46% and 13.72%. In the case of inception the range
is between -9.75% and -1.01% for uni-modal self-supervised
versus -1.39% and 4.7% for multi-modal self-supervised. For
transformers, the range lies between -11.56% and 0.62%
for uni-modal self-supervised and between -6.76% and
5.82% for multi-modal self-supervised. Table I shows the
supervised accuracy and relative gain for both uni-modal and
multi-modal self-supervised learning on both downstream tasks.

To see similar plots for MLP, please refer to IX-A. In
addition, we also found the performance of multi-modal
self-supervised model without any random feature corruption
technique also produced promising results, but had slightly
lower performance when compared to the multi-modal trained
with random feature corruption.

VII. CONCLUSION

In this work, we compare uni-modal self-supervised learning
using only Sentinel2 data against multi-modal contrastive
learning using Sentinel2 and Planetscope as multi-modal source.
We tested our approach on three different base models for
crop classification, i.e., bi-directional LSTM, inceptiontime and
position encoded transformers. We used MLP and ResMLP as
the backbone model for pre-training. Based on our results, we
conclude that when contrastive learning was applied only on

Sentinel2 using a random feature corruption technique, it was
unable to learn an expressive representation for crop classifica-
tion. On the other hand, when we used multi-modal contrastive
self-supervised learning with Sentinel2 and Planetscope, we
found a relative gain in performance for the bi-directional
LSTM and inceptiontime models, while the gains were smaller
for the transformer model on data from a different region and
time period. Given the improvement in most test cases, we
can conclude that multi-modal contrastive learning helps in
learning an expressive representation for crop classification.
The added advantage of multi-modal contrastive learning is
that the end-user does not have to rely on the commercial
Planetscope data for an application and can still benefit from
the fine spatial resolution of Planetscope data.

REFERENCES

[1] M. Drusch, U. Del Bello, S. Carlier, O. Colin, V. Fernandez,
F. Gascon, B. Hoersch, C. Isola, P. Laberinti, P. Martimort, A. Meygret,
F. Spoto, O. Sy, F. Marchese, and P. Bargellini, “Sentinel-2: Esa’s
optical high-resolution mission for gmes operational services,” Remote
Sensing of Environment, vol. 120, pp. 25–36, 2012, the Sentinel
Missions - New Opportunities for Science. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0034425712000636

[2] U. Meier, H. Bleiholder, L. Buhr, C. Feller, H. Hack, M. Heß,
P. Lancashire, U. Schnock, R. Stauß, T. Boom, E. Weber, and P. Zwerger,
“The bbch system to coding the phenological growth stages of plants-
history and publications,” Journal für Kulturpflanzen, vol. 61, pp. 41–52,
01 2009.
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A. Results on MLP
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Fig. 7: Win-matrix and box plot for MLP backbone model on downstream task 1. a, b & c shows the win-matrix for
LSTM, transformer and inception respectively. d, e & f corresponds to the box plot showing the relative gain for both uni-modal
and multi-modal self-supervised over the supervised experiments for LSTM, transformer and inception respectively.
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Fig. 8: Win-matrix and box plot for MLP backbone model on downstream task 2. a, b & c shows the win-matrix for
LSTM, transformer and inception respectively. d, e & f corresponds to the box plot showing the relative gain for both uni-modal
and multi-modal self-supervised over the supervised experiments for LSTM, transformer and inception respectively.


