
P
os
te
d
on

31
A
u
g
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.2
40
45
95
4
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

SatNet: A Low-Cost, Neural-Network based Algorithm Utilizing

Publicly Available Data for Disease Hotspot Detection

Parkirat Sandhu 1

1academies of loudoun

October 31, 2023

Abstract

The rapid spread of infectious diseases poses a significant global health challenge, requiring timely and accurate detection for

effective intervention. Traditional disease detection services, such as the Centers for Disease Control and Prevention (CDC)

and the World Health Organization (WHO), play a crucial role in monitoring and responding to outbreaks. However, these

services are largely inaccessible to people around the world due to their high costs and resource-intensive processes because

they often rely on expensive sources of data. Fortunately, satellite images are a great alternative source of data as modern

satellites can provide detailed images which clearly display a region’s financial status and pollution levels: two key metrics

in potential disease outbreaks. Therefore, this study aimed on developing a more affordable algorithm (SatNet) that utilizes

publicly available satellite imagery to perform disease hotspot detection. The algorithm works by retrieving zoomed-in satellite

images of the city inputted by the user and feeding these images into a novel, hybrid recursive convolutional neural network.

This model, designed to classify regions within the images as low income, high-income, or industrial areas, was trained and tested

on a custom data set consisting of 7,448 images and was able to achieve a 94.872 training accuracy and 84.183 testing accuracy.

The output of this model is then used to create a detailed heatmap for the city which clearly indicates the specific regions in

most danger of disease outbreaks. Overall, the affordability and accessibility of SatNet will allow governments/organizations

around the world to provide their people with the healthcare they need and significantly reduce the spread of diseases in an

increasingly interconnected world.
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Abstract—The rapid spread of infectious diseases poses a
significant global health challenge, requiring timely and accurate
detection for effective intervention. Traditional disease detection
services, such as the Centers for Disease Control and Prevention
(CDC) and the World Health Organization (WHO), play a
crucial role in monitoring and responding to outbreaks. However,
these services are largely inaccessible to people around the
world due to their high costs and resource-intensive processes
because they often rely on expensive sources of data. Fortunately,
satellite images are a great alternative source of data as modern
satellites can provide detailed images which clearly display a
region’s financial status and pollution levels: two key metrics
in potential disease outbreaks. Therefore, this study aimed on
developing a more affordable algorithm (SatNet) that utilizes
publicly available satellite imagery to perform disease hotspot
detection. The algorithm works by retrieving zoomed-in satellite
images of the city inputted by the user and feeding these images
into a novel, hybrid recursive convolutional neural network. This
model, designed to classify regions within the images as low-
income, high-income, or industrial areas, was trained and tested
on a custom data set consisting of 7,448 images and was able to
achieve a 94.872 training accuracy and 84.183 testing accuracy.
The output of this model is then used to create a detailed
heatmap for the city which clearly indicates the specific regions
in most danger of disease outbreaks. Overall, the affordability
and accessibility of SatNet will allow governments/organizations
around the world to provide their people with the healthcare
they need and significantly reduce the spread of diseases in an
increasingly interconnected world.

A. Inspiration
Infectious diseases are illnesses caused by bacteria, fungi,

or viruses which enter a living body and multiply to create
an infection that triggers a response of the immune system
[1]. The severity of these diseases can vary greatly with some
causing mild discomfort in the form of light fevers or body
aches while others can be life-threatening with effects such
as compromised immune systems or damage to vital organs
[1]. However, what truly makes these illnesses so dangerous
is their ability to spread rapidly through the air, bodily fluids,
human-to-human contact, or even animal-to-human contact.
Thus, infectious diseases have long plagued humanity, causing
widespread devastation and posing significant challenges to
public health systems worldwide [2]. Just recently, the emer-
gence and rapid global spread of the novel coronavirus disease

2019 (COVID-19) has further highlighted the severe conse-
quences of infectious diseases on modern society. During its 3-
year, 3 months, and 5-day spell as a global pandemic, COVID-
19 would infect over 760 million people worldwide and would
be responsible for over 690 thousand deaths [3]. Furthermore,
the increasingly interconnected global economy would suffer
greatly as the pandemic would disrupt global supply chains
leading to rapid inflation (as high as 8.73 percent according to
the world bank) and high unemployment rates throughout the
world [3]. These consequences have led many experts to argue
for preventative measures and proactive action to reduce the
spread of future infectious diseases [4]. As such, many have
highlighted the need for more effective disease monitoring
systems that can accurately predict the spread of illnesses
within regions to ensure that proper action is taken [4]. This
is further supported by recent findings which show that the
recently implemented smart-phone based contact tracing was
significant in reducing the spread of COVID-19 throughout
the countries that utilized this technology [13]. Still, there are
far more accurate and effective methods of limiting the spread
of diseases. One such method is Disease Hotspot detection
which is a process whose goal is to detect or predict specific
regions within countries, states, or cities which are most likely
to have the highest concentration or number of cases [14].
By identifying these locations, government agencies or private
organizations can allocate resources to these areas and stop
the outbreak from spreading further. Currently, many countries
across the world have developed health programs such as the
Centers for Disease Control and Prevention (CDC) and the
World Health Organization (WHO) to develop disease hotspot
detection systems, yet the operational costs of these programs
make them inaccessible for a large percentage of the world’s
population.

B. Economic Dilemma

The American Center for Disease Control and Prevention
(CDC), which is responsible for monitoring and preventing the
spread of infectious diseases, had a budget of 10.675 billion
dollars for the 2023 fiscal year [5]. With a population size of
approximately 335 million, America will spend roughly 31.87
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dollars per person on disease control in 2023 [5]. The total
budget of 10.675 billion dollars is about 0.2 percent of the 4.8
trillion dollar revenue the U.S. government is projected to earn
in 2023 [7]. On the other hand, if a developing country such as
Pakistan was to spend the same 31.87 dollars per person for its
population of roughly 234 million on disease control, the total
budget would have to be 7.457 billion dollars. This would
amount to approximately 19.83 percent of their 376 billion
dollars projected government GDP for 2023 [6]. Case in point,
many countries around the world, like Pakistan, simply can
not afford traditional government-funded programs for disease
control. This is largely because most programs, like the CDC,
tend to use hospitalization records and government-funded
national censuses to build disease hotspot detection services
[8]. It is custom for doctors and medical professionals in the
United States to record a patient’s date of visit, illness, and
treatment in sophisticated computer programs that supply this
data to central federal databases [8]. However, most countries
around the world do not possess the resources to provide
computers within hospitals/clinics, afford collection software,
or even create a federal medical database [9]. Therefore, the
lack of traditional medical data limits these countries’ health
programs from being able to create any algorithms or tools
that can protect their populations against disease outbreaks.

C. Satellite Imagery

Due to the high costs of traditional sources of data (as
mentioned in section 1.2), the goal of this study was to
identify and utilize alternatives for disease hotspot detection.
The alternative source of data needed to be easily accessible,
affordable, and equally as effective as hospitalization records
or nationwide censuses. Our search led us across multiple
sources of data such as pollution records, weather data, and
population density information, but ultimately, satellite images
were chosen. Modern satellite technology has allowed corpo-
rations and governments around the world to be able to image
large parts of the planet using high-definition cameras. These
images provide a level of detail that makes them a capable
replacement for traditional numerical data used by the CDC
and WHO. This is demonstrated in the diagram below:

Fig. 1. Suburb of Harrisburg, PA USA

Fig. 2. Slum in Rio De Janeiro, Brazil

Individual buildings, streets, and geographical features are
clearly visible which provides a great insight into the financial
and living conditions of the people in that area. Additionally,
there exists a plethora of websites that grant users access to
their satellite imagery database through APIs at low costs.
Therefore, satellite images are easy to acquire, affordable, and
can be used effectively with image classification models in
order to develop disease hotspot detection software. As a result
of all these factors, it was clear that satellite images were the
ideal alternative source of data.

I. METHOD

A. Overview

The overarching purpose of this study was to create software
that would accurately and affordably provide disease hot-
spot prediction for any city worldwide. Furthermore, it was
intended for this software to be easy to use so that anyone
around the world, regardless of their medical expertise, could
effectively use this tool. Thus, much of the initial research
period was spent on designing an software architecture that
would fulfill these requirements. After Seventeen iterations the
final design was established (shown in the figure below):

Fig. 3. Diagram of the proposed software’s overall architecture.

The software starts by allowing a user to input the name of
the city for which they wish to see disease hotspot detection
analysis. Following this, the data for the city is gathered
which includes zoomed-in satellite images that cover a 25-
square-mile area of the city and its demographic/economic



information. The aforementioned regions captured in the satel-
lite images are then classified based on financial, pollution,
and quality-of-living factors while the demographic/economic
data is used to produce an overall disease risk index for
the city. Finally, a detailed visual is created which clearly
indicates the regions within the city that are in most danger
of a disease outbreak (identified using the satellite images
and image classification model) while the overall risk index
quantifies the level of risk the city in total faces compared
to other cities in the world. Further details about all of the
elements within the software’s architecture diagram will be
discussed in the following subsections.

B. User Input and Data Acquisition

The first thing the user is greeted by when opening the
software is a prompt that allows them to type in the name
of the city for which they would like to perform disease
hotspot detection analysis. After the city name is acquired,
the program then works on gathering the necessary data. For
this, third-party databases would have to be accessed through
special programs known as APIs (Application Programming
Interfaces). APIs allow programs on a device to access foreign
computers/databases to find and retrieve data available within
them. The software developed for this study utilized APIs in
two instances with the first being to collect satellite images of
the city. For this task, the Google Maps API was used since it
provides high-quality images, is low-cost (28,500 API calls for
200 dollars), and is easy to use because of its extensive docu-
mentation (available here). One of the downsides of the Google
Maps API is that it does not accept city names within its call
requests, rather it relies upon the geographic coordinate system
to provide satellite images for desired locations. Therefore, the
exact coordinates of a city are required to acquire its satellite
images: a task accomplished by GeoCode. This is a Python
library that takes in the name of the city, searches up the name
on Google Search, then retrieves the coordinates of a central
location within the city from the search result. However, this
raised another issue. With just one pair of coordinates, only
one Google Maps API call could be made resulting in the
satellite image having to be very zoomed-out to cover the 25
square miles target zone.

Fig. 4. Satellite Image capturing 25 square mile area of Rio De Janeiro.

With the image being this zoomed-out, the individual fea-
tures (buildings, roads, and terrain) are impossible to identify
and distinguish. In turn, it would be impossible for an image
classification model to be able to accurately classify the
different regions within the image due to the lack of clarity. So,
the solution to this problem was to gather multiple individual
zoomed-in images of the various regions. Specifically, 400
images are collected, each capturing a 0.25-mile by 0.25-mile
section of the city, which when arrayed together in a grid
pattern create the intended 5-mile by 5-mile satellite image of
the city. This is shown in the diagram below:

Fig. 5. Satellite Images City Grid Diagram

This solution, however, presented a problem of its own:
each one of the 400 images would require its own set of
coordinates for the Google Maps API calls. These coordinates
could not be gathered using GeoCode since GeoCode only
returned one pair of coordinates per city (the coordinates
of a central location within the city). Thus each of the 400
pairs of coordinates (longitude and latitude) would have to
be calculated individually. Calculating the latitude for each of
the coordinates was rather easy as according to the United
States Geographical Survey, 1 degree of latitudinal shift is
approximately 69 miles. Thus, a 0.25-mile shift would equate
to 0.00362 degrees. Meanwhile, due to the spherical shape
of Earth, a longitudinal shift is not directly proportional to
a change in miles. Rather, this relationship is dependent on
the latitude at which the coordinate exists. For instance, a
1-degree change in longitude at a latitude of 30 degrees
would equate to roughly 519 miles while the same change in
longitude at a latitude of 60 degrees would equate to roughly
300 miles. In order to calculate the new longitudes, a special
formula, developed by topographers at the Red Rock Canyon
Conservation, was used which goes as follows:
δlongitude = 1

cos(latitude× π
180 )×69 × 0.155

Using these methods, the latitudes and longitudes of each of
the 400 coordinate pairs are calculated in relation to the central
coordinates obtained from GeoCode to form the 5-mile by 5-
mile satellite image of the city. Following this, the Google
Maps API is called with these new coordinate pairs to obtain

https://developers.google.com/maps/documentation/directions


and store the satellite images for use in the image classification
model.

The second instance of an API within this software was
to collect demographic/economic data from the World Bank
Database. This API was used to gather 12 key metrics for
the city’s home nation: GDP per capita (2023), net national
income per capita (2023), morality from unsafe water (2022),
Death by communicable diseases (2022), percent of the pop-
ulation with clean drinking water (2022), percent of the
population that smokes (2022), percent of population with
basic sanitation (2022), percent of population living under the
global poverty line (2022), percent of population malnourished
(2022), percent of population suffering food insecurity (2022),
number of homicides per 1000 people (2022). Alongside this
data, the results of the image classification model were used to
generate the city’s overall disease risk index (process explained
in section 2.10).

C. Dataset

One of the greatest challenges during this study was finding
a training data set for the image classification model. This is
because this model was intended to take in the 400 satellite
images of a city and then classify the areas within those
individual images as either high-density low-income (slum),
high-income mixed-density (rich), or heavy industrial (indus-
try) regions. These classifications indicate the financial status,
living conditions, and pollution levels of a specific area and
provide the user with the necessary information to determine
where disease outbreaks are most likely to occur. However,
research involving the classification of this exact type has
either not been done before or is not publicly available.
In fact, there exists little in the space of utilizing urban
satellite imagery for disease detection in general. Hence, it
was impossible to find an adequate data set that could be used
to train the image classification model. So, rather than trying
to find a dataset, the effort was shifted to developing a novel
dataset that could be used to train the image classification
model. For this, 2 digital assistants were hired from Upwork
who have had prior experience in data scraping, collection,
and classification for research purposes. These assistants were
tasked with providing a total of 22,500 coordinates: 7,500
from each of the 3 continental regions involved in this study
(South America, Africa, and Southeast Asia) with this 7,500
comprising 2,500 slum areas, 2,500 rich areas, and 2,500
industrial areas from cities across the continent. All of the
data was stored within a Google Sheets document (available
here: Google Drive Link ) with the first column containing the
coordinates of the location, and the second column containing
the classification of said coordinate (slum, rich, or industrial).
Utilizing this approach to acquiring training data allowed for
the dataset to be properly procured to this model and ensured
that an adequate amount of data was available for the training.

D. Data Pre-Processing

For training purposes, 70 percent of the dataset (15,750
coordinates) was used as the training set while the remaining

30 percent (6,750 coordinates) was used as the testing set.
This was accomplished by using the test-train-split method
available in the Scikit-learn library. Once the data was split,
the satellite images corresponding to all of the coordinates
within the dataset were collected through 22,500 individual
Google Maps API calls. These images, stored as .PNG files,
are represented by a 640x640x3 array since the resolution of
satellite images gathered using the Google Maps API was
640x640 with each individual pixel containing an array of
3 independent RGB values ranging from 0 to 255. Because
of this, these images can be standardized by dividing all of
the RGB values for each image by 255, thus allowing the
image classification model to fit to the data during training
easily. Following standardization, the images were uploaded
to a Google Drive folder in order to be used within Google
Colab for training purposes. However, since both the training
and testing datasets were quite large, it was impractical to
load up all the images within the Google Colab workspace
due to memory constrictions. Therefore, an image generation
class, named make-datagen, was created which stores image
file names and classification and only loads up images when a
new batch is required. The loaded-up images, for both training
and testing sets, are then stored within a Pandas dataset,
each consisting of 2 columns: the first one containing the
640x640x3 representing the image and the second containing
the classification corresponding to the image. At the comple-
tion of this step, the entire Pandas dataset, which contains 1
batch, is inputted into the model either for training or testing
purposes.

E. Image Classification Model

For the purposes of this study, a novel hybrid convolution
neural network (CNN) was developed for classifying the
regions within satellite images as high-density low-income
(slum), high-income mixed-density (rich), or heavy indus-
trial (industry) regions. This model combined a ResNet50V2
(ResNet), InceptionV3 (InceptionNet), and MobileNetV3 (Mo-
bileNet), each of them pre-trained on the ImageNet dataset, to
create a highly accurate image classification model. On their
own, each one of these models is very powerful with all of
them scoring within the top 10 percent of highest accuracy on
the ImageNet dataset amongst other CNNs. However, due to
the complicated yet varied street patterns and building designs
in each satellite image, a superior model was needed that could
accurately identify these patterns and classify the images. Thus
the 3 aforementioned models were used in conjunction in
order to combine their advantages and allow for more accurate
image classification. In order to accomplish this concatenation
of three models, the following model architecture was used:

https://drive.google.com/drive/folders/11jo38j0m1K9IV2IoXkm1Zd9WuF3FwXNX?usp=sharing


Fig. 6. Image Classification Model Architecture

The model starts off with an individual input layer that
accepts arrays of size 640x640x3, the same dimensions as the
arrays which represent an image. This input array then feeds
into the first layers of the ResNet and the Inception, each of
whose tops (input layers) have already been removed during
their initialization. Around a quarter of the way through both
models, outputs from certain layers were collected, resized,
and concatenated to serve as input values for the MobileNet
model. Specifically, the outputs of the ”mixed1” layer in the
InceptionNet and the ”conv3-block1-out” layer in the ResNet
were taken. Then, since the dimensions of the output from both
layers were different (”mixed1”: 77x77x218, ”conv3-block1-
out”: 80x80x512), the output from the ”mixed1” layer was
sent through a 2D padding layer which added 3 rows and 3
columns of zeros to its array. Following this, the data from
both layers were concatenated together to create an output
of size 80x80x800. This was then connected to 2 more 1x1
2D convolutional layers which output arrays of dimensions
80x80x1024 and 80x80x3 respectively. Finally, the latter of
the aforementioned convolutional layer was connected to the
MobileNet model. Additionally, connections from the middle
of both the ResNet and InceptionNet were created to serve
as residual layers for the overall model. The outputs from
the ”conv4-block3-out” layer in the ResNet and the ”mixed5”
layer in the InceptionNet were passed through two 2x2 2D
convolutional layers, 1 flattening layer, and 2 dense layers with
the latter outputting a 1x64 sized array. These outputs were
to be concatenated with the outputs of the 3 models (ResNet,
InceptionNet, and MobileNet), but since each model’s output
size was different, they had to be reshaped through a series
of layers. The outputs of each of the models were passed
through multiple dense layers until an output size of 1x64
was achieved for all of them. At this point, the output from
the 2 residual layers, ResNet, InceptionNet, and MobileNet
were concatenated together to create a 1x320-sized array.
This was then passed through 4 more dense layers with the
last one (final output layer) consisting of 3 neurons and a
sigmoid activation function. Overall, this model combines 3
powerful pre-existing models in a residual architecture for

optimal image classification performance.

F. ResNet50V2

ResNet50, a convolutional neural network (CNN) archi-
tecture, has garnered notable success by achieving a top-
1 accuracy of 0.749 and a top-5 accuracy of 0.921 on the
ImageNet database [15]. Its effectiveness stems from its uti-
lization of a residual architecture in which the output from
blocks of convolutional layers is passed into the following
blocks. This innovative approach effectively addresses the
issue of vanishing gradients, an issue that leads to early layers
within the network not properly being trained due to dimin-
ishing gradients. By mitigating this problem, ResNet enables
the training of deeper networks with more accurate results.
ResNet50, specifically, consists of 50 total layers with 1 input
layer, 48 convolutional/pooling/BatchNormilization/activation
layers, and 1 output layer. The ResNet50 architecture is shown
in the figure below:

Fig. 7. Diagram of ResNet50V2 architecture [11]

G. InceptionV3

InceptionV3 is a powerful deep convolution neural network
that achieved a top-1 accuracy of 0.779 and a top-5 accuracy
of 0.937 on the ImageNet dataset [15]. Its effectiveness stems
from its use of large blocks of convolutional layers with
differing kernel sizes which allows the network to train on
a multitude of filter sizes without manual changes. Conse-
quently, the network is able to determine which filter size is
optimal for the dataset during training and is able to adjust
its weights in order to achieve the highest degree of accuracy.
The InceptionV3 architecture is shown in the figure below:

Fig. 8. Diagram of InceptionV3 architecture [12]



H. MobileNetV2

MobileNetV2 is a deep convolutional neural network that
achieved a top-1 accuracy of 0.747 and a top-5 accuracy of
0.908 [15]. While these accuracies are not the highest when
compared to the other networks mentioned above, the specialty
of MobileNetV2 is its efficiency and small foot footprint. The
MobileNetV2 also utilizes a residual architecture, just like
the ResNet, but it uses significantly fewer layers and resid-
ual blocks than its counterparts. For example, the ResNet50
contains over 23 million trainable parameters, InceptionV2
contains 56 million trainable parameters, and MobileNetV2
only contains 3.4 million parameters. It is able to achieve
this efficiency by rapidly downsizing input images and then
using the smaller dimensions with small filtered convolutional
layers to reduce the number of parameters in the model. The
MobileNetV2 architecture is shown below:

Fig. 9. Diagram of MobileNetV2 architecture [10]

I. Heat Map Generation

The resulting output from passing a satellite image through
the image classification model is a 1x3 array containing
probability values. These values are received from the sigmoid
activation function in the final layer of the model and each
value indicates the likelihood (in decimal values) that a satel-
lite image is either a high-density low-income (slum), high-
income mixed-density (rich), or heavy industrial (industry)
region. While these arrays of probability values provide great
insight, they are difficult to interpret which leads to a need
for a simple yet comprehensive visual to better organize the
information. For this, a Python library called MatPlotLib was
used: a tool used for developing complex visuals, 3D models,
and graphs. In the case of this study, MatPlotLib was used
to create a detailed heatmap that clearly indicates the regions
within the city with the highest chance of a disease outbreak.
This is done by first passing all of the satellite images related
to a city through the image classification model and storing
their output arrays into a 2D master array. After this, each of

the 3 values within the individual output arrays is multiplied by
255, resulting in a RGB array. Since the individual arrays were
stored in a 2D array, their location within the array corresponds
to their images’ location within the city. Thus the master array
is directly fed into the matplotlib function, which accepts 2D
arrays as a parameter, in order to create the heatmap (shown
below).

Fig. 10. Heatmap of City Disease Hotspot Detection

This heatmap consists of multiple squares, each of which
represents the output from its corresponding satellite image
being passed through the image classification model. The color
of each square is determined by the output array after it
is multiplied by 255 as it serves as a RGB value. A more
reddish-colored square indicates a close resemblance to a
slum, a greenish square indicates a wealthier district, and a
bluish square indicates heavy industry. When all squares of the
heatmap are put together it mirrors the large overall satellite
image of the city. Therefore, when put side-by-side, the overall
satellite image of the city and its heatmap allows a user to
easily identify specific regions within a city that are most likely
to experience a disease outbreak.

J. Disease Risk Index

As important as it is to identify specific disease hotspots
within cities, it is also crucial to provide a numerical indi-
cator of a city’s overall susceptibility to diseases. For this,
a disease risk index was generated and displayed above
the heatmap visual. This index is calculated by using the
demographic/economic data from the world bank database as
well as the number of satellite images identified as slum,
wealthy, and industrial regions by the image classification
model. To process this data, a basic, 5-layer regression deep
neural network with an input layer that accepts 1x15 sized
arrays, 3 dense layers (16, 32, and 8 nodes respectively),
and 1 output layer (no activation function). The model was
trained on a custom dataset that labeled assigned the highest
possible index (1.000) to the 10 cities with the most recent
major disease outbreaks as recorded by the CDC. Each city
on this list was passed through the overall software to collect
its demographic/economic metrics and generate its heatmap
which provided the necessary data to train the model. At this
point, the Disease Risk Index generator was incorporated into



the overall software as the final step which occurs just before
the visual is shown to the user. All the data is collected from
the image classification model and the World Bank Database
to create an index as shown in the figure below:

Fig. 11. Disease Risk Index for City of Las Paz, Bolivia

II. RESULTS

A. Accuracy

Due to the nature of this study, it is very difficult to
quantify the accuracy of the SatNet tool. This is because
the whole purpose of this software was to create software
that allows users to easily identify disease hotspots within
cities. For this task, the image classification model was used to
classify the regions in satellite images based on their financial
and demographic metrics. However, there exists little to no
data which catalogs the economic and population metrics of
specific coordinate locations within cities. Moreover, the little
economic and population data that does exist is private and
very difficult to access. Thus it is impossible to provide an
exact statistic regarding the accuracy of the software in its
real-world application. However, the results from the training
and testing datasets due provide a quantitative value. In terms
of the satellite image classification model, the network was
able to achieve a 95.56 percent training accuracy and a
testing accuracy of 87.42 percent on the dataset mentioned in
section 2.3. In comparison, 3 popular models (ResNet50V2,
InceptionV3, and Vgg16) were trained on the same dataset to
serve as controls and their results are shown below.

TABLE I
TRAINING AND TESTING ACCURACIES VALUES OF DIFFERENT MODELS

ON THE DATASET CREATED FOR THIS STUDY

Model Training Accuracy Testing Accuracy
SatNet Model 94.97% 84.18%
ResNet50V2 88.29% 81.44%
InceptionV3 86.81% 72.49%

VGG16 62.29% 54.19%

It can be seen that the image classification model designed
for this study outperforms other popular CNN architectures
when applied to this dataset. On the other hand, the model
created for the disease risk index generation did not show

the same promise. Due to the limited data within the dataset,
the model was overtrained as it was able to achieve a 100
percent training accuracy in less than 10 epochs. This is a
clear indication that the model was overtrained onto the data
as attaining a 100 percent training accuracy should not be
possible.

B. Project Cost

One of the primary goals of this study was to ensure that
any solution/software developed for disease hotspot detection
was low-cost. In all, this study was able to accomplish this
goal as the overall cost of the project was 680 dollars.
This was split into 2 main expenses: 480 dollars paid to
the digital assistants that helped create the dataset and 200
dollars for 4 months of Google Colab Pro membership. In
comparison, the software developed in this study costs only
0.0000063700234192 percent of the CDC’s 10.675 billion
dollars proposed budget for the 2023 fiscal year. However, due
to the dependency on certain third-party APIs and software,
there is a small fee each time a user requests an analysis on
a particular city. Specifically, the Google Maps API charges
440 dollars for 250,000 call requests, and as each city requires
400 total satellite images, the charge per city comes out to
roughly 70 cents. This means that the cost of developing the
software and performing city disease hotspot analysis 1000
different times for 1 year would cost just 9182 dollars: far
lower than the annual budget of most government agencies.
Therefore, this software was successfully able to achieve its
goal of affordability as the relatively low development and use
prices will ensure that anyone could utilize this tool.

III. CONCLUSION

A. Impact

With the world becoming increasingly interconnected, the
threat of communicable diseases and their potential conse-
quences has quickly become one of humanity’s greatest ob-
stacles. Just recently, the COVID-19 pandemic wreaked havoc
across the planet as millions lost their lives and the global
economy was greatly disrupted. Even today, over 3 years from
the start of the pandemic, its effects can still be felt to a great
degree with rising inflation, unemployment, and homelessness
rates ravaging countries worldwide. Unfortunately, future pan-
demics will only cause more devastation as the growth of
intercontinental travel and international trade greatly increases
global connectivity and interdependence. All of this is only
amplified by the fact that many regions of the world will
continue to lack adequate early disease detection and disease
hotspot detection due to the high price of traditional solutions.
While the software developed during this study will not en-
tirely eradicate the threat of infectious diseases, it could play a
crucial role in significantly reducing the danger humanity faces
from future outbreaks. By providing an affordable disease
hotspot detection tool, countries and non-profit organizations
worldwide can now begin to protect their people, many of
whom were previously vulnerable. Furthermore, this software
will allow for proactive action and will ensure that critical



medical resources, such as medications, vaccines, personal
protective equipment, etc., are sent to regions that need them
the most. Ultimately, the satellite images retrieval algorithm,
image classification model, disease risk index generator, and
detailed heatmap developed in this study provide a foundation
for future researchers to greatly improve upon. Considering
its effectiveness, despite the budgetary and time constraints of
this study, it is likely that with greater resources, improved
datasets, and increased manpower, SatNet can be significantly
improved and become far better at protecting humanity.

B. Flaws

Throughout this study, a few compromises were made,
due to budgetary or time-related factors, which should be
addressed in any future research regarding this topic. One
example of this is the platform used to attain satellite images.
Because Google Maps was designed as a navigational tool,
its images are not updated very often as the long duration
for construction/development allows Google to retain outdated
maps. This is especially prevalent within major cities which
hardly see much short-term development due to the lack of
available space. As a result, there are many locations across
the planet for which the most recent images that Google Maps
has are from 2017. This is a major issue when trying to
provide up-to-date disease hotspot analysis as development
in slums, pollution, landfills, etc. can not be accounted for
due to the outdated satellite imagery. Fortunately, there do
exist platforms that provide daily, worldwide satellite images
but they were not used in this study due to their complicated
documentation and lack of compatibility with Python-based
programs. In addition to this, the Google Maps API was far
more affordable, especially for large amounts of call requests.
Another area of improvement in this study was the data used
for training/testing the image classification model. Although
the solution of relying on experienced digital assistants for data
collection was innovative and effective, there is undoubtedly
a level of uncertainty regarding the validity of this data. Even
though the dataset was thoroughly combed to ensure it met
the standards, the fact that it was not developed by a reputable
researcher or institute brings its reliability into question. This
could be mitigated by trying to contact researchers or insti-
tutions that may have private data which could be used for
this project or could validate the dataset created during this
study. However, both of these are time-intensive processes that
could take months or years to reap results during which time
thousands of people could suffer from the spread of infectious
diseases. The final major area of improvement for this study
would be the inefficiency of the image classification model.
On average, the model takes 7 minutes to classify all 400
images required for the analysis of each city. A major reason
behind this is the large image size as each has a 640x640
resolution; this equates to 409,600 individual pixels with each
having 3 RGB values. Thus the sheer number of parameters
that the model must input and process significantly increases
classification times. However, because bigger satellite images
are able to capture larger parts of the city, it is impossible to

reduce their resolutions since a smaller area of the city would
be analyzed. This can be countered by reducing the zoom
of each image as a more zoomed-out image could capture
the same location with a smaller image, but this leads to
the problem of images losing details that are critical for the
classification process. Ultimately, the best way to get around
this problem would require a combination of solutions. This
includes creating a more efficient image classification model
(3rd party models from Google’s Deep Mind or Meta AI) and
finding the perfect zoom amount that retains the necessary
details in smaller image sizes. Aside from the aforementioned,
there are many smaller areas of improvement that should be
addressed in future studies to create more efficient, accurate,
and effective disease hotspot detection software.

C. Future Plans

The upcoming additions to this software all revolve around
1 goal: accessibility. In its current state, this software is not
accessible to anyone outside the members of this study, and
thus governments, organizations, or even regular people are
not able to utilize it. Therefore, the ultimate objective is to
make improvements and upgrades which allow anyone around
the world to use this software for disease hotspot detection.
For this, the current plan is to create a website, hosted on
Amazon Web services, which will allow anyone in the world
to utilize the software. Essentially, users will be able to access
the website through the internet, type in the name of the city
for which they wish to perform disease hotspot analysis, and
receive the heatmap/disease risk index after the software is
executed on a foreign server. However, this approach creates
2 major problems. The first is in regard to the aforementioned
issue of lengthy analysis time. It takes, on average, just over
10 minutes between the time the user inputs the name of a city
and the generation of its heatmap. This type of long wait time
is unacceptable for websites and would prove to be a deterrent
as many users would not wish to wait for such long periods of
time for analysis. Furthermore, the sheer computing power that
SatNet (available here) requires to perform its analysis makes
it extremely expensive to host on 3rd party servers (such as
AWS) as many charge based on the intensity of the program.
Even if a few hundred people were to request an analysis
per second, the significant computing power required to ful-
fill these requests would lead to high operational expenses
(roughly 307 dollars per second). This completely defeats the
purpose of this study as increased operation expenses would
force users to pay much more per analysis, making it far
more inaccessible for the average person. These issues could
be remedied by using a more efficient image classification
model (mentioned in section 4.2) and using improved data
retrieval methods, such as asynchronous APIs. However, each
solution presents its own unique downsides which must be
further studied for optimization. Thus, despite the fact that a
general plan for the future development of SatNet does exist,
there are many details that still must be figured out and issues
that must be addressed.

https://github.com/ParkiratS/OfficialSatNet
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