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Abstract

THIS WORK HAS BEEN SUBMITTED TO THE MACHINE LEARNING: SCIENCE AND TECHNOLOGY FOR POSSIBLE
PUBLICATION. COPYRIGHT MAY BE TRANSFERRED WITHOUT NOTICE, AFTER WHICH THIS VERSION MAY
NO LONGER BE ACCESSIBLE.

The choroid, positioned behind the retina, nourishes the retina by supplying oxygen and nutrients. Choroidal structural changes

are associated with severe vision-threatening conditions including age-related macular degeneration (AMD) and central serous

chorioretinopathy (CSCR). Optical Coherence Tomography (OCT) imaging enables the visualization of choroidal changes, and

clinicians rely on quantifying choroidal biomarkers through segmentation of the choroid layer in OCT scans for precise diagnosis

and disease management. Accordingly, various attempts are made at automated choroid layer segmentation, however, their

practicality is constrained by the limited and biased nature of training data. Privacy regulations hinder data aggregation, and

supervised machine learning requires substantial annotated data. To tackle this, we propose an innovative image synthesis

approach using generative adversarial networks (GANs). It involves a three-step process: generation of choroid-labeled B-

scans using a standard GAN architecture, the transformation of these scans to unlabeled B-scans via Pix2Pix-GAN, and the

training of a Pix2Pix-GAN choroid segmentation model using the synthesized data. To demonstrate the generalizability and

efficacy, we evaluated the proposed choroid segmentation algorithm on the real B-scans from two different OCT imaging devices:

enhanced depth imaging (EDI) and swept-source (SS) OCT, yielding Dice coefficient values of84.84% and 85.15%, respectively,

buttressing its effective-ness. Further, qualitative performance analysis, including manual grading, confirms that the synthesized

choroid-labeled images are distinct from real images, thus ensuring data privacy. The proposed methodology marks an initial

step towards developing a comprehensive choroid layer quantification tool using synthetic images, and its adaptability makes it

versatile for various medical image segmentation challenges.Â
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Abstract— The choroid, positioned behind the retina,
nourishes the retina by supplying oxygen and nutrients.
Choroidal structural changes are associated with severe
vision-threatening conditions including age-related macu-
lar degeneration (AMD) and central serous chorioretinopa-
thy (CSCR). Optical Coherence Tomography (OCT) imaging
enables the visualization of choroidal changes, and clin-
icians rely on quantifying choroidal biomarkers through
segmentation of the choroid layer in OCT scans for precise
diagnosis and disease management. Accordingly, various
attempts are made at automated choroid layer segmen-
tation, however, their practicality is constrained by the
limited and biased nature of training data. Privacy regu-
lations hinder data aggregation, and supervised machine
learning requires substantial annotated data. To tackle this,
we propose an innovative image synthesis approach using
generative adversarial networks (GANs). It involves a three-
step process: generation of choroid-labeled B-scans using
a standard GAN architecture, the transformation of these
scans to unlabeled B-scans via Pix2Pix-GAN, and the train-
ing of a Pix2Pix-GAN choroid segmentation model using
the synthesized data. To demonstrate the generalizability
and efficacy, we evaluated the proposed choroid segmen-
tation algorithm on the real B-scans from two different
OCT imaging devices: enhanced depth imaging (EDI) and
swept-source (SS) OCT, yielding Dice coefficient values of
84.84% and 85.15%, respectively, buttressing its effective-
ness. Further, qualitative performance analysis, including
manual grading, confirms that the synthesized choroid-
labeled images are distinct from real images, thus ensur-
ing data privacy. The proposed methodology marks an
initial step towards developing a comprehensive choroid
layer quantification tool using synthetic images, and its
adaptability makes it versatile for various medical image
segmentation challenges.

I. INTRODUCTION

The choroid, positioned between the sclera and the retina
of the eye, is a vascular tissue layer performing vital functions
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Fig. 1. Sample OCT B-scan depicting various posterior segment layers
(left) and choroid layer boundaries (right). Notation: RPE – Retinal
pigment epithelium, CIB – Choroid inner boundary, and COB – Choroid
outer boundary.

of nourishing the retina with oxygen, and nutrients. Choroidal
structural changes can be indicative of various eye diseases
and conditions [1]. Timely identification of these changes
through screening can allow for early diagnosis and treatment.
This is particularly crucial in conditions such as choroidal
neovascularization, choroidal melanoma, age-related macular
degeneration (AMD), and central serous chorioretinopathy
(CSCR), where prompt intervention can help prevent vision
loss and preserve visual function [2], [3]. In the current
clinical practice, optical coherence tomography (OCT) cross-
sectional images (B-scans), which captures distinct layers of
the posterior eye segment, assumes a pivotal role in the
assessment of choroidal structural alterations (see Fig. 1). For
quantitative disease screening and management, it is impera-
tive to perform choroid layer segmentation using OCT images.
However, detecting the boundaries of the choroid layer pose
a significant challenge. Especially the choroid outer boundary
(COB) commonly known as choroid sclera interface (CSI),
is difficult to detect due to the absence of a strong intensity
gradient in OCT images (see Fig. 1) [4].

Over the last decade, various image processing methods
including gradient-based techniques, statistical models, and
machine learning approaches have been explored for choroid
segmentation in OCT images [5]–[18]. Despite the promising
results shown by certain methods, such as those based on
encoder-decoder architectures like UNet, their generalizability
is often hindered by the limited and biased nature of the
available training data, such as foveal B-scans from healthy
individuals. As a result, segmentation models trained on such
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Fig. 2. Data Preparation: Generating choroid labeled image pairs for
training GAN model using ground truth segmentation from ResUNet
model [19]. Note that the B-scan depicted corresponds to a CSCR
subject.

data may not be suitable for analyzing scans obtained from the
non-foveal regions of retina and the individuals with different
pathologies or conditions. Therefore, there is a pressing need
to train the segmentation models with sufficient variability in
training data. However, obtaining a diverse and comprehensive
dataset that captures the structural complexity of the choroid
layer across different ages, diseases, and disease-severity levels
is challenging. Further, inherent data imbalance within health-
care organizations complicate the acquisition of heterogeneous
and generalizable training data. Although collating data from
multiple sources could address this issue, it is often infeasible
due to privacy regulations protecting patient information.

Against this backdrop, we propose an image-synthesis based
approach for choroid segmentation that eliminates the reliance
on real data. In particular, we generate synthetic B-scans with
choroid boundary delineation and corresponding raw B-scans
to train a choroid segmentation model. A reliable synthetic
data generation scheme not only facilitates the creation of
diverse and balanced datasets, but also enables the data sharing
while preserving patient privacy. In particular, by synthesizing
the data, privacy concerns associated with sharing real patient
information are eliminated. This enables collaboration and the
pooling of data from different sources, resulting in a more
diverse and representative dataset for training segmentation
models. Thus, our approach addresses the challenge of lim-
ited data availability while still preserving patient privacy.
Finally, we plan to evaluate the segmentation model trained
on synthesized images using real OCT B-scans to validate its
generalizability to real-world data.

GAN-based networks have proven to be effective in ad-
dressing various challenges in natural and medical image
applications, including image denoising, image quality en-
hancement, synthetic data augmentation for segmentation and
classification tasks [20]–[23]. In the context of retinal image
analysis, GANs have gained significant attention, particularly
in the field of OCT image analysis [24], [25]. Specifically,
GANs have been applied to remove artifacts caused by mo-
tion, speckle noise, or scanner imperfections, enhancing the
interpretability and reliability of OCT images [24], [26], [27].
GANs have also been utilized for OCT image super-resolution,
enhancing image details and resolution through different ar-
chitectures such as deep convolutional GANs (DCGANs),
conditional GANs and Wasserstein GANs (WGANs) [24],
[28]. Moreover, GANs have also shown promise in OCT
image segmentation tasks, leveraging their generative and
discriminative capabilities to accurately delineate structures of
interest, such as retinal layers and pathological regions [24].

However, the specific application of GAN-based methods

for synthesizing the choroid layer or segmenting the choroid
layer has not been previously reported. The complexity of the
choroid, characterized by its intricate vascular network and di-
verse tissue composition, presents unique challenges for GAN-
based synthesis approaches. To this end, we propose a novel
approach that involves generating choroid boundary-labeled
images. Such a scheme not only captures the detailed structure
of the choroid layer and its boundaries, but also eliminates
the need for manual labeling of the choroid boundaries. Using
such synthetic choroid boundary-labeled images, we aim to
facilitate the development of subsequent choroid boundary
detection algorithm for accurate segmentation of the choroid
layer in real OCT images. In summary, the proposed method
for choroid segmentation consists of three steps. Firstly, we
generate choroid boundary-labeled images, which provide the
necessary delineation of the choroid layer for accurate seg-
mentation. Secondly, we synthesize raw OCT B-scans using
these boundary-labeled images as input. This involves training
a Pix2Pix GAN to generate realistic OCT B-scans that capture
the specific characteristics of the choroid layer. Lastly, we
train a segmentation model using the synthesized raw OCT
B-scans and their corresponding segmented B-scans pairs,
employing Pix2Pix GAN. This segmentation model learns to
accurately identify and delineate the choroid layer in the real
OCT images.

To assess the efficacy of the proposed methodology, we
conducted a proof-of-concept study to demonstrate both fea-
sibility and generalizability across different OCT devices.
Specifically, we utilized images obtained from two different
OCT imaging devices: enhanced depth imaging (EDI) OCT
and swept-source OCT B-scans. When evaluated qualitatively,
a grader can differentiate between real and synthetic images
with an accuracy exceeding 96%, underscoring the capability
of maintaining data privacy. Finally, we objectively validated
the accuracy of the choroid segmentation model obtained using
synthetic images. To this end, we employed multiple healthy
and diseased OCT datasets acquired from the respective OCT
devices used in our study. The segmentation accuracy was
measured using the Dice coefficient (DC), which compares the
algorithmic choroid layer segmentation with the ground-truth
segmentations provided by experts. The mean Dice coefficient
for segmentation accuracy on real images was observed to be
85.15% and 84.84% on SS-OCT and EDI OCT, respectively.
This indicates that the segmentation model performed well in
accurately identifying and delineating the choroid layer in real
OCT images. These results provide evidence for the robustness
and effectiveness of our approach in synthesizing high-quality
images and achieving accurate choroid segmentation.

The main contributions of the proposed work can be sum-
marized as follows:

1) Proposed a privacy-protected and generalizable method
for choroid segmentation using OCT B-scans via GAN-
based image synthesis.

2) Synthesized ground truth images with accurately de-
lineated choroid boundaries, enabling the development
of accurate choroid layer segmentation models, while
eliminating the need for manual annotation.

3) Demonstrated the feasibility and generalizability of the
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Fig. 3. Schematic of the proposed methodology.

method on healthy and diseased OCTs from two dif-
ferent imaging modalities (EDI-OCT and SS-OCT B-
scans).

4) Evaluated the method qualitatively through subjective
grading and quantitatively using the Dice coefficient,
achieving high scores for synthesis quality and segmen-
tation accuracy.

The rest of the paper is organized as follows. Section II
elaborates on the proposed methodology. Experiments and
results are presented in section III and finally, in section IV,
the paper is concluded with a discussion and future extensions.

II. MATERIAL AND METHODS

We first provide the details of the datasets used in this
work and then proceed to describe the proposed OCT image
synthesis based choroid layer segmentation method and the
evaluation strategy.

A. Dataset
This is a retrospective study performed following the ethical

standards of the 1964 Helsinki Declaration with the approval

of institutional review board (IRB) of the University of Pitts-
burgh Medical Center. Informed consent was obtained from
the subjects involved. The datasets used in this work encom-
pass a variety of OCT images obtained from two different
sources: EDI-OCT (Spectralis, Heidelberg Engineering Inc.)
and SS-OCT (Plex Elite 9000, Carl Zeiss) imaging devices.
These datasets consist of scans acquired from diverse cohorts,
including both healthy individuals and patients diagnosed
with various ocular conditions such as age-related macular
degeneration (AMD) and central serous chorioretinopathy
(CSCR). The Spectralis EDI-OCT device was used to generate
volume scans consisting of 97 B-scans each having a 9mm
lateral and 2mm depth resolution and the corresponding pixel
resolution is 768×472. On the other hand, the SS-OCT device
produces volumetric scans consisting of 1024 B-scans each
having a 12mm lateral and 3mm depth resolution, and the
corresponding pixel resolution is 1024×1536.

B. Data preparation

To facilitate the training of GAN models for various
tasks involving OCT images, we utilized our previously
trained residual encoder-decoder (ResUNet) model to generate
choroid masks [29]. Only scans with accurate choroid segmen-
tation, as assessed by an expert grader, were included in the
analysis. In particular, 1000 EDI-OCT B-scans from 70 vol-
umes of healthy and AMD subjects as well as 1750 SS-OCT
B-scans from 90 volumes of heathy, AMD and CSCR subjects
are graded as good segmentations. Subsequently, the inner
(CIB) and outer (COB) boundaries of the choroid, determined
based on the choroidal masks, were overlaid onto the B-scans
using red (CIB) and blue (COB) color markings. Figure 2 il-
lustrates the choroid mask obtained using the ResUNet model,
along with the B-scan displaying choroid boundaries marked
in red (CIB) and blue (COB). We utilized OCT B-scans
and their corresponding choroid boundary-labeled image pairs
(CIB-red and COB-blue) as the ground truth. For training the
deep learning models, noting the computational complexity,
we considered randomly chosen small subsets of 100 EDI-
OCT B-scans as well as 100 SS-OCT B-scans. Further, for
testing, we considered another 500 EDI and 500 SS-OCT B-
scans from the same set of volume scans.

C. Proposed Solution

The proposed privacy preserving choroid segmentation
method consists of three steps as depicted in Figure 3 and
described in detail in the following.

1) Step-1: Generate synthetic choroid-labeled B-scans: We
adopted a standard GAN architecture to train the model
to synthesize the choroid-labeled B-scans. Specifically, the
generator network (G) takes random noise vector z as input
and produces the synthetic choroid-labeled B-scan (xs) as
output, represented as G(z) = xs. The discriminator network
D aims to distinguish between the synthetic B-scans xs ∈ Xs

generated by G and real B-scans xr ∈ Xr from a dataset
of real choroid labeled B-scans. The GAN training involves
iteratively updating the generator and discriminator to improve
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Fig. 4. Depiction of real and synthesized (GAN generated) choroid
labeled B-scans.

the quality of generated B-scans, represented by the following
min-max objective function:

min
G

max
D

[E(log(D(xr))) + E(log(1−D(G(z))))] (1)

where E denotes the expectation over the real and synthetic
data distributions. In particular, the generator architecture is a
traditional feed-forward convolutional neural network (CNN)
with the latent vector fully connected to 8×8×128 dimen-
sional vector, subsequently upsampled to 256×256 dimension
using 5 convolutional layers with a kernel size of 4×4 using
128 kernels and leakyReLU (α = 0.2) activation. The final
layer is a convolutional layer with three kernels of size
2×2 and tanh activation. The discriminator is also a CNN
network with 5 convolution layers with 128 kernels of size
3×3 in each layer, with a leakyReLU (α = 0.2) activation
followed by a fully connected layer to output. For both EDI-
OCT and SS-OCT modalities, we trained the GAN model
for 100 epochs and generated synthetic images from both
EDI-OCT and SS-OCT models (see Fig. 4). Although the
synthesized images appear similar to the OCT B-scans, not all
the synthesized images resemble the good quality real OCT B-
scans and possess multiple artifacts, as illustrated in Figure 5.
Accordingly, only the good synthesized images segregated by
the expert are chosen for further steps.

2) Step-2: Train a Pix2Pix-GAN model to map the choroid-
labeled B-scans to unlabeled B-scans: Note that our end goal
is to perform choroid layer segmentation based on synthetic
images. To this end, to train a deep learning segmentation
model, we require synthesized B-scans as well as correspond-
ing ground-truth choroid layer segmentations. In step-1, we
synthesized choroid-labeled B-scans that serve as ground-truth
images. However, we do not yet have the corresponding raw
B-scans i.e, scans without choroid markings. In view of this,
we now proceed to obtain raw B-scans from choroid-labeled
B-scans. Specifically, we adopted Pix2Pix-GAN architecture, a
type of conditional GAN that learns a mapping between input

Fig. 5. Spuriously synthesized choroid labeled B-Scans.

Fig. 6. Representative synthesized choroid-labeled and Pix2Pix-GAN
generated unlabeled B-scan pair used for subjective grading.

and output images [30]. Pix2Pix demonstrated a great ability to
translate natural images to corresponding target images. Here,
we plan to leverage Pix2Pix-GAN’s image translation ability
to translate choroid-labeled images to corresponding raw B-
scans. In this context, for training the Pix2Pix-GAN model, we
employed real pairs of choroid-labeled B-scans (input) and
corresponding unlabeled B-scans (output) (see Figure 3) as
those pairs from synthetic data are unavailable.

Let F denote the pix2pix model, which learns the mapping
between the synthetic choroid labelled B-scans xl to the
corresponding unlabelled B-scans xu. The model F can be
represented as F (xl) = x̂u, where x̂u denotes the generated
unlabelled B-scans. The pix2pix model training involves min-
imizing the following objective function:

Lpix2pix = E(||F (xl)− xu||1) (2)

where ||.||1 represents the l1 norm, and E denotes the
expectation over the synthetic choroid-labeled B-scans xl and
corresponding unlabeled B-scans xu. The model learns to
generate plausible unlabelled B-scans from the input labeled
B-scans. During the training process, the Pix2Pix model learns
to capture the relationship between the choroid-labeled data
and the unlabeled B-scans. This mapping enables the model
to generate accurate synthetic choroid-labeled and choroid-
unlabeled B-scan pairs. We employed a residual encoder-
decoder (ResUNet) network in the generator network and a
PatchGAN in the discriminator network. The image size at
the input layer of Pix2Pix model is 256×256 pixels, and we
trained the model for 100 epochs.

3) Step-3: Develop a choroid segmentation model using syn-
thetic labeled and unlabeled B-scan pairs: Now we proceed
to train a model for choroid layer segmentation based on the
synthetic B-scan and the corresponding choroid-labeled image
pairs that were obtained in Step-2. To this end, we propose to
adopt the same Pix2Pix-GAN architecture described earlier in
Step-2 but to perform a reverse mapping i.e., to map synthetic
raw B-scans to corresponding choroid-labeled B-scans. Indeed,
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Fig. 7. Pix2Pix-GAN output for removing choroid boundary marking on
the ground truth choroid labelled data, synthesized choroid labelled data
and the original B-scan without choroid labels.

this is a novel approach for choroid layer segmentation and is
reported to have achieved high accuracy of 97% on EDI-OCT
B-scans [31]. In particular, let M denote the Pix2Pix model,
which learns the mapping between the synthetic unlabelled
B-scans xsu and its corresponding choroid-labeled B-scan
xsl. The Pix2Pix model can be represented as M(xsu) =
x̂sl, where x̂sl represents the generated labeled B-scan with
choroid segmentations. Note that the input image size is
256×256 pixels and the number of epochs trained is 100.
By leveraging the synthetic labeled and unlabelled pairs, the
choroid segmentation model can learn to accurately segment
the choroid region in real, unseen B-scans.
Aggregate boundaries of 10 models: We observed that, in
some of the test images, the segmentation output of the
model after the 100th epoch may have some discontinuities or
spurious markings. Further, we observed the same in the output
of the intermediate but the discontinuities or the noisy regions
may be localized differently (see Figure 8). To mitigate this,
we generated boundaries using the models from 10 different
iterations, we then extracted the boundary by considering
a pixel as the boundary even if one of the models marks
that pixel as the boundary. From the aggregated boundary
marking we considered the topmost pixel of every A-scan
as CIB and bottommost pixel as the COB point. We then
perform spline interpolation to extrapolate any discontinuities,
and finally the boundaries are smoothed with RLOESS (robust
locally estimated scatterplot smoothing) regression [32] with
a window size of 0.1. Figure 8 depicts the aggregation of
the boundaries generated by individual models and subsequent
boundary smoothing.

D. Evaluation Strategy
The performance evaluation strategy for each step of the

proposed methodology is described in the following:
1) Step-1: To evaluate the quality of the generated choroid-

labeled images, we performed subjective grading by an expert.

TABLE I
CONFUSION MATRIX OBTAINED FROM SUBJECTIVE GRADING TO

DISTINGUISH REAL AND SYNTHESIZED OCT B-SCANS. NOTATION: GT
– GROUND-TRUTH.

EDI-OCT Expert Annotation SS-OCT Expert Annotation
Original Synthesized Original Synthesized

GT Original 48 2 GT Original 48 2
Synthesized 4 46 Synthesized 0 50

Fig. 8. Pix2Pix multi-instance aggregate segmentation: Graphical
depiction of obtaining average segmentation based on 10 intermediate
Pix2Pix models.

Specifically, we curated a set of 50 real choroid-labeled B-
scans and 50 synthesized choroid-labeled B-scans, randomly
mixed together. Subsequently, the expert was asked to review
each scan individually and assign a grade indicating whether
they perceived the scan as real or synthesized. This evaluation
allowed us to gauge the degree to which the generated scans
resemble the real OCT B-scans. The aforementioned grading
process was carried out separately for two distinct datasets:
EDI-OCT and SS-OCT, each comprising 100 scans.

2) Step-2: To evaluate the accuracy of translating choroid-
labeled B-scan to raw B-scan, we employed two separate
approaches for real and synthetic B-scans. For real B-scans,
we test the model on the 50 real unseen choroid-labeled B-
scans and compare the resultant unlabeled B-scans vis-à-vis
respective original B-scans which are available for real OCT
data. To this end, we obtained the mean absolute difference
(MAD) of pixel intensities of both real and synthesized raw
images. Next, for synthesized images, we adopted subjec-
tive grading approach as they do not have ground-truth. In
particular, 50 EDI-OCT and 50-SS-OCT choroid-labeled and
the corresponding unlabeled B-scan obtained from step-2 are
graded by an expert grader. The grader looks at the image pair
(see Figure 6 and scores, on a scale of 0 to 100, how accurately
the colored choroid boundaries are replaced by actual scan
information.

3) Step-3: The evaluate the choroid layer segmentation
accuracy, we adopted Dice coefficient (DC) which measures
the overlap between segmentations obtained from two different
methods. In particular, DC between ground-truth segmentation
CGT and corresponding Pix2Pix-GAN based segmentation
CPix2Pix is given by

DC =
2Area(CGT ∩ CPix2Pix)

Area(CGT ) +Area(CPix2Pix)
. (3)

Here, CGT and CPix2Pix correspond to the region between
the detected CIB and COB. To this end, we obtained binary
masks of the choroid layer between the boundaries CIB and
COB for GT and Pix2Pix choroid segmentations. A DC value
of ’1’ indicates the algorithmic segmentation is at par with
ground truth segmentation and a value close to 1 (or 100%)
is desirable.
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Fig. 9. Pix2Pix-GAN output for choroid Segmentation on real EDI-OCT
B-scans. Note that segmentation is performed using the model trained
only on synthetic OCT B-scans.

E. Implementation Details

The models are trained on a workstation equipped with an
Intel i9 processor, 64 GB of RAM, an NVIDIA RTX A4000
GPU, and running the Windows 10 Pro operating system.
Programming was carried out within the Spyder IDE using
a Python 3.6 environment coupled with TensorFlow version
2.10.0. Training, involving 100 B-scans for 100 epochs, was
completed in around 24 hours. Additionally, generating images
through GAN-based synthesis typically demanded around 0.2
seconds per image.

III. RESULTS

The outcomes of performance analysis for each step are
described in the following.

1) Step-1: We trained a separate GAN for EDI-OCT and
SS-OCT data, and synthesized 2000 B-scans for each modal-
ity. We curated 500 high-quality images from each category,
employing the process outlined in Section II. Representative
images from this chosen set are presented in Fig. 4.

Subsequently, we assessed the quality of synthesis using
subjective grading. Recall that grading process involved dis-
tinguishing real and synthetic OCTs from randomly presented
50 real and 50 synthesized choroid-labeled B-scans from both
the EDI-OCT and SS-OCT datasets. Table I provides the con-
fusion matrix based on the subjective grading scores. Notably,
the observer achieved an accuracy of 94% for EDI-OCT and
98% for SS-OCT images. In particular, a mere 2 real EDI-
OCT and 2 real SS-OCT images were incorrectly identified
as synthesized. Conversely, 4 synthesized EDI-OCT images
were erroneously categorized as real, while no synthesized
SS-OCT images were marked as real choroid-labeled scans.
Interestingly, model has not yet reached a stage of potentially
confusing the grader, indicating that the generated images do
not replicate the information of the real images. Consequently,
there is substantial promise in leveraging these generated
images to uphold patient privacy.

Fig. 10. Pix2Pix-GAN output for choroid Segmentation on real SS-OCT
B-scans. Note that segmentation is performed using the model trained
only on synthetic OCT B-scans.

2) Step-2: To evaluate Pix2Pix model for generating unla-
beled scans from the real choroid-labeled scans, we computed
the Mean Absolute Deviation (MAD) values by comparing
pixel intensities between the synthesized unlabeled scans and
the corresponding ground truth unlabelled real OCTs. We
achieved a MAD of 1.39 for EDI-OCT and 0.22 for SS-
OCT. These results indicate the efficacy of the Pix2Pix-GAN
synthesis. Further, to assess the synthesis of unlabeled scans
from synthesized choroid-labeled scans, we employed subjec-
tive grading approach describe in Section II-D. Specifically,
after evaluating 50 pairs of synthesized EDI-OCT images, an
average grading score of 85.61% was observed. Similarly, for
50 pairs of SS-OCT images, the average grading score was
recorded at 90.10%. These outcomes collectively emphasize
the robustness of generating synthetic unlabeled images, af-
firming their quality and authenticity.

3) Step-3: Finally, we evaluated the performance of the
Pix2Pix-GAN choroid segmentation model, which was trained
using synthesized image pairs and tested on real images.
This evaluation encompassed both the initial training dataset
consisting of 100 EDI-OCT and SS-OCT B-scans from Step-
1, as well as additional unseen data. For the initial dataset,
we compared the GT segmentation with the Pix2Pix-GAN
segmentations and obtained a Dice Coefficient (DC) values of
84.84% for EDI-OCT and 85.15% for SS-OCT. These results
demonstrate the efficacy of the segmentation process for real
OCT B-scans. Furthermore, we extended our assessment to
an additional dataset containing 500 EDI-OCT and 500 SS-
OCT B-scans not previously encountered, and achieved a DC
value of 73.45% for EDI-OCT and 79.40% for SS-OCT. These
findings underscore the generalizability and robustness of the
proposed approach across diverse data.

IV. DISCUSSION

In this study, we proposed an image synthesis technique
based on GANs to enhance the segmentation of the choroid
layer in OCT images while safeguarding patient privacy. Our
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Fig. 11. Pix2Pix-GAN output for choroid Segmentation on real EDI-OCT
and SS-OCT B-scans, unseen during any phase of training. Note that
segmentation is performed using the model trained only on synthetic
OCT B-scans.

approach comprised three main steps, Step-1: the generation
of choroid-labeled OCT B-scans through a standard GAN net-
work; Step-2: the acquisition of corresponding unlabeled OCT
B-scans using Pix2Pix-GAN; and Step-3: the training of a
Pix2Pix choroid segmentation model solely using synthesized
data. By creating synthesized choroid-labeled B-scans in step-
1, we not only eliminated the demanding and laborious task
of manually annotating the choroid layer but also generated
realistic choroid representations, ultimately contributing to the
development of highly accurate choroid segmentation models.

To demonstrate the generalizability of the proposed ap-
proach, we developed two separate synthesis models for
EDI-OCT and SS-OCT B-scan data modalities. Performance
evaluation is carried out, based on subjective and objective
metrics, to assess multiple aspects including (i) closeness of
synthetic B-scans vis-à-vis real B-scans, and (ii) accuracy of
choroid-layer segmentation model. In particular, our subjective
grading scores of distinguishing real-synthesized OCT B-
scans resulted in an accuracy of 94% and 98%, respectively,
for EDI-OCT and SS-OCT B-scans substantiated that the
synthesized scans do not directly copy the information from
real B-scans and thereby ensuring the protection of patient-
specific information. Further, favorable Dice coefficient values
of 73.45% and 79.40%, respectively, for segmenting EDI-
OCT and SS-OCT real B-scans, indicate the efficacy of the
segmentation model developed using only synthetic images.
While the overall segmentation performance is commend-
able, we acknowledge that there exist instances where the
boundaries are detected with some sporadic inconsistencies
as depicted in Fig. 12. Note that, even in these cases, the
model’s segmentation remains accurate for significant portions
of the boundary. We aim to leverage the information from
neighboring scans to correct the sporadic boundaries and
enhance the robustness of the segmentation model.

This work establishes proof of concept of the proposed
methodology on a limited dataset. In the future, we plan to
incorporate a more diverse and larger set of OCT images, In

Fig. 12. Some of the spuriously segmented EDI-OCT and SS-OCT B-
scans resulted from respective segmentation models developed using
only synthesized B-scans.

particular, we plan to include a greater variety of anatomical
variations and pathological conditions to enhance the general-
izability and robustness of the image synthesis model which
in turn may improve the segmentation accuracy. We also plan
to automate the selection of good quality synthesized choroid-
labeled scans part in Step-1 of the methodology.

We observed that the overall quality of synthesized B-
scans is poor when compared to that of original B-scans
which may have also played a part in the high subjective
grading scores accurately distinguishing real and synthesized
images. However, ideally, the quality of the synthesized B-
scans should be comparable to that of the original scans.
To this end, we plan to perform more experiments to make
synthesis specific to OCT-imaging. We also plan to extend
our work to segment other disease features such as hard
exudates and retinal cysts using other imaging modalities
including color fundus (CF) photography. Indeed, the proposed
methodology is generalizable and can be easily adapted to even
non-ophthalmic images such as magnetic resonance imaging
(MRI) or computed tomography (CT) scans.
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