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Abstract

For the control of wearable robotics, it is critical to obtain a prediction of the user’s motion intent with high accuracy.
Electromyography (EMG) recordings have often been used as inputs for these devices, however bipolar EMG electrodes are
highly sensitive to their location. Positional shifts of electrodes after training gait prediction models can therefore result in
severe performance degradation.

This study uses high-density EMG electrodes to simulate various bipolar electrode signals from four leg muscles during steady-
state walking. The bipolar signals were ranked based on the consistency of the corresponding EMG envelope’s activity and
timing across gait cycles.

The locations were then compared by evaluating the performance of an offline Temporal Convolutional Network (TCN) that
mapped EMG signals to knee angles. The results showed that electrode locations with consistent EMG envelopes resulted in
greater prediction accuracy compared to hand-aligned placements (p<0.01). However, performance gains through this process
were limited, and did not resolve the position shift issue.

Instead of training a model for a single location, we showed that randomly sampling bipolar combinations across the high-density

EMG grid during training mitigated this effect. Models trained with this method generalised over all positions, and achieved

70% less prediction error than location specific models over the entire area of the grid. Therefore, the use of high-density EMG

grids to build training datasets could enable the development of models robust to spatial variations, and reduce the impact of

muscle-specific electrode placement on accuracy.
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Leveraging high-density EMG to investigate bipolar
electrode placement for gait prediction models

Balint K. Hodossy* , Annika S. Guez* , Shibo Jing , Weiguang Huo ,
Ravi Vaidyanathan , Dario Farina

Abstract—For the control of wearable robotics, it is critical to
obtain a prediction of the user’s motion intent with high accuracy.
Electromyography (EMG) recordings have often been used as
inputs for these devices, however bipolar EMG electrodes are
highly sensitive to their location. Positional shifts of electrodes
after training gait prediction models can therefore result in severe
performance degradation.

This study uses high-density EMG electrodes to simulate
various bipolar electrode signals from four leg muscles during
steady-state walking. The bipolar signals were ranked based on
the consistency of the corresponding EMG envelope’s activity
and timing across gait cycles.

The locations were then compared by evaluating the perfor-
mance of an offline Temporal Convolutional Network (TCN)
that mapped EMG signals to knee angles. The results showed
that electrode locations with consistent EMG envelopes resulted
in greater prediction accuracy compared to hand-aligned place-
ments (p<0.01). However, performance gains through this process
were limited, and did not resolve the position shift issue.

Instead of training a model for a single location, we showed
that randomly sampling bipolar combinations across the high-
density EMG grid during training mitigated this effect. Models
trained with this method generalised over all positions, and
achieved 70% less prediction error than location specific models
over the entire area of the grid. Therefore, the use of high-
density EMG grids to build training datasets could enable the
development of models robust to spatial variations, and reduce
the impact of muscle-specific electrode placement on accuracy.

Index Terms—AI and machine learning, human-robot interac-
tion, sensor networks, signal processing, rehabilitation robotics

I. INTRODUCTION

Exoskeletons and other wearable robotic devices are de-
signed to guide and support users in a variety of contexts,
from rehabilitation settings to movement augmentation. In
most cases, a user-driven human-machine control interface is
necessary to ensure active participation from the user [1,2].
By estimating the active contribution of the subject to the
desired motion, an exoskeleton can provide the required level
of assistance synchronously with the user’s movement - i.e.
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assist-as-needed (AAN) control [3,4]. The performance of the
system therefore depends on the reliability of the signals used
as inputs to the model that estimates the intended motion.

Surface electromyography (sEMG) is a commonly used
sensing modality for motion intent estimation due to inherent
association between muscle signals and movement [5]. sEMG
signals have been used as indicators of voluntary effort [6]
and as inputs for gait prediction models [7,8], which form key
elements in the control schemes of wearable robotics [9].

Despite the extensive use of sEMG in human-machine inter-
facing and clinical practice [10], there is a limited number of
studies that assess the impact of electrode shifts for lower limb
assistive devices [11], especially of those using deep learning
methods. Whilst some studies have investigated the effect of
electrode placement on signal characteristics for lower-limbs
[12], this has not been done across different signal acquisition
and gait conditions, such as wearing an orthosis. Furthermore,
changes in electrode location can cause significant distortions
in the EMG signal features required for pattern recognition
[13], making previously learnt features inapplicable unless the
model is retrained for the current location [8].

Based on the signal’s sensitivity to electrode placement,
there are two main approaches that have the potential to miti-
gate this effect and help the model retain high gait prediction
accuracy:

1) Determine the electrode location on each muscle that
will provide the highest sEMG signal quality;

2) Develop a model that is robust across electrode loca-
tions.

While available standards and tutorials [14,15] provide some
indication on sEMG electrode placement, these are unspecific
and often do not account for the signal variability during
dynamic movements [12,16,17], or the changes introduced by
donning an orthosis with limited degrees of freedom (DoFs).
Furthermore, there is no guarantee that these palpation- and
eyesight-based guidelines provide the location of the optimal
signal for pattern recognition-based control schemes [18].

Previous studies have attempted to mitigate the impact of
electrode shifts by including additional preemptive steps that
recognise and compensate for them. These signal registration
methods characterise the input signals, after which they are
transformed to a predetermined distribution [19], or conversely
apply the appropriate prediction model from an ensemble [20,
21]. Alternatively, models can be trained on a distribution of
locations simultaneously, either recorded experimentally [22]
or simulated through data augmentation [23].
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In this study, we investigated both methods (selection of
electrode location and generalisation of the model by extended
training), and compared their usability in practice. For this
purpose, we used Temporal Convolutional Networks (TCNs)
as an example of a data-driven model suited to regress time-
series data [24]. This network architecture benefits from more
straightforward implementation and much faster training times
than its recurrent counterparts, while maintaining comparable
performance [25]. Previously, TCNs have been successfully
applied to lower limb exoskeleton control with inertial sensor
data [26,27], and recently for bipolar sEMG based control
[28]. Here, single channel bipolar sEMG signals were used to
estimate the knee angle in a one-step-ahead offline prediction
scheme. Muscle signals were sampled from grids placed on
knee and ankle flexor and extensor muscles.

To compare a wide range of bipolar electrode placements,
high-density electromyography (HD-EMG) grids were used
to simultaneously acquire data from a larger surface area of
the skin, which allowed sampling of bipolar signals from
various positions and orientations [29]. This diverse dataset
was then used to produce more reliable convolutional models
for exoskeleton applications under dynamic conditions, and
was also tested when a one DoF passive orthosis was donned.
The orthosis condition was not investigated in an attempt to
model a patient user. Instead, it was used to examine whether
signal artifacts from the DoF restriction or the orthosis’ contact
with grid impact the performance of our models. While the
device used here was passive, noise from these sources is
expected to be similar in an actuated rigid exoskeleton as well.
In addition to our use of location specific models to evaluate
signal quality, we showed that TCNs are capable of learning
features suitable for robust prediction across the area of the
grid. This is achieved by randomly sampling bipolar electrode
location during training. This technique is a promising method
for mitigating the effect of electrode shift on deep learning
models. Our findings highlight the potential of using the spatial
information from HD-EMG data to improve model robustness
for bipolar signal driven control applications.

II. MATERIALS AND METHODS

A. Subjects

5 subjects (3 male, 2 female, mean age = 25 ± 4 years)
were chosen for this study, with no history of neurological
or physiological conditions that could impact their natural
gait. Informed consent was obtained for all subjects. The
experiments for data acquisition were performed in compliance
to ethical documentations approved by the Imperial College
Research Ethics Committee (ICREC reference: 21IC7204).

B. Experimental setup

1) High-density surface electromyography: For all sub-
jects, HD-EMG signals were recorded independently from the
Rectus Femoris (RF), the Biceps Femoris (BF), the Tibialis
Anterior (TA) and the Soleus (SO) using 13 × 5 electrode
grids in monopolar derivation (8-mm inter-electrode spacing;
model number GR08MM1305). When recording, the relevant
grid was connected to a Sessantaquattro acquisition system,

and the ground electrode was placed on the same leg’s lateral
malleolus, using a designated damp ankle strap. All equipment
used for the acquisition of the HD-EMG data came from OT
Bioelettronica, Italy [30].

The positioning of the centres of the electrode grids fol-
lowed the SENIAM placement guides [14]. Throughout the pa-
per, any mention of the ”middle” or ”standard” sampling will
refer to the bipolar placement following SENIAM standards.
The ground electrode was placed on the lateral malleolus for
the lower leg recordings, and a the lateral knee epicondyle for
upper leg recordings.

(a) (b) (c)
Fig. 1. Experimental setup, showing the HD-EMG grid placements (white
rectangles) (a): the RF and TA, (b): the BF and SO, the motion capture marker
positions (white circles). (c): Set-up with the passive orthosis strapped to the
subject’s leg.

A double-sided adhesive foam (model number
FOA08MM1305) was placed on the HD-EMG grid,
and CC1 AC conductive cream was applied to the grid to
ensure satisfactory contact between the electrodes and the
skin. Before electrode placement, the area of skin was shaved
as needed, mildly abraded with abrasive paste, cleansed with
a non-irritating alcoholic solution, and dried.

2) Motion Capture: The knee joint kinematics were
acquired using a Vicon Motion Capture system equipped
with ten 120 Hz Vicon Vero v2.2 cameras placed around
the treadmill, mounted on the ceiling of the recording space.
Trajectory data were labelled and gap-filled in Vicon Nexus.

Rigid body segments were reconstructed using the following
set of markers (see Figure 1):

1) Pelvis: 2 markers placed on the superficial aspects of
the left and right anterior superior iliac spines (ASISs),
and 1 marker on the sacrum.

2) Thigh: 2 markers placed on the femoral epicondyles,
and 1 marker placed on the lateral side of the thigh.

3) Shank: 2 markers placed on the lateral and medial
malleoli, and 1 marker placed on the lateral side of the
shank.

Knee flexion was defined according to [31] using all above-
mentioned segments. The hip joint centre was approximated
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as a fixed position in the pelvis’ coordinate frame, scaled by
the ASIS breadth [32].

When wearing the passive orthosis (see Figure 1), the
lateral thigh and shank markers were replaced onto the
orthotic frame after all other components had been fitted.
Both the medial and lateral epicondyle markers were placed
onto the axis of rotation of the orthosis. The HD-EMG grids
were not moved or replaced when donning the knee brace.

3) System synchronisation: Shared reference pulses sent
from a micro-controller at the start and end of a trial were
recorded by both data acquisition systems. These were then
used in the preprocessing phase to procedurally align the
sEMG and motion capture signals in time based on the timing
of the rising edges of the pulses.

C. Experimental procedure

Each subject was asked to walk on a treadmill at a steady-
state speed of 0.8 m/s, selected to be comfortable for all
subjects. Two 3-minute trials were recorded for each muscle
separately, with rest breaks in-between to ensure muscle
fatigue would not impact the recordings. This led to a total
of 40 recorded steady-state trials (2 trials × 4 muscles × 5
subjects), with approximately 350-400 strides per trial. For the
second half of the experimental session, the user was fitted
with a dual-hinged, single DoF passive knee support brace. A
single 2-minute trial was recorded for each subject and muscle,
leading to a total of 20 trials.

D. Signal preprocessing

Bipolar signals were extracted from the 64 channel HD-
EMG grid by taking the monopolar voltage difference between
an electrode and its neighbouring electrodes within a 3-
electrode radius and a maximum angle from the longitudinal
axis of 45◦ (see Figure 2). This process was repeated for every
electrode, and repeated pairings of electrodes were ignored. A
total of 360 unique bipolar combinations were identified that
would satisfy the requirements for manual sensor placement
contained within the grid.

The motion capture data were up-sampled to the EMG
sampling frequency (2000 Hz) using linear interpolation, and
the data were cropped to extract the steady-state walking
sequence.

The consistency metric analysis was performed based on the
sEMG envelope. To obtain it, the signals were digitally band-
pass filtered (4th order Butterworth, 20-400 Hz), rectified, and
subjected to a 10Hz low-pass filter. Gait cycles (GCs) were
segmented using the peak angles of the knee, and temporally
normalised so that one GC corresponded to 100% of the time
axis.

During pre-processing stages, 2 HD-EMG files were found
corrupted and were excluded from further analyses, reducing
the dataset from 40 available trials to 38. The remaining
data still covered all subjects and muscles investigated due
to repeated trials.

25 26 51 52

1 24 27 50 53

2 23 28 49 54

3 22 29 48 55

4 21 30 47 56

5 20 31 46 57

6 19 32 45 58

7 18 33 44 59

8 17 34 43 60

9 16 35 42 61

10 15 36 41 62

11 14 37 40 63

12 13 38 39 64

25 26 51 52

1 24 27 50 53

2 23 28 49 54

3 22 29 48 55

4 21 30 47 56

5 20 31 46 57

6 19 32 45 58

7 18 33 44 59

8 17 34 43 60

9 16 35 42 61

10 15 36 41 62

11 14 37 40 63

12 13 38 39 64 Region of Interest
Bipolar origin

Fig. 2. The range of neighbouring electrodes considered for each electrode
when determining the bipolar combinations. This schematic shows the com-
binations extracted for two example electrodes. The ”origin” electrode (in
orange) was eligible for pairing with all the electrodes (blue) from its region
of interest (RoI). This resulted in up to 16 possible bipolar combinations for
each electrode.

E. Bipolar sampling selection

Quantifying a single bipolar channel’s quality by training a
location specific model takes several hours. This gives moti-
vation for identifying quick-to-evaluate metrics that indicate
suitability for regression. We selected channels to evaluate
with TCN performance based on metrics of electromyography
(EMG) envelope consistency. While most studies focus on
the location with sEMG maximum amplitude [33,34], this
study investigated the consistency of the signal across steady-
state gait cycles as a measure of quality [12]. Considering
how many myoelectric control models are based on pattern
recognition mechanisms, it was hypothesised that a consistent
signal would lead to more accurate and stable predictions.

The consistency across gait cycles was calculated from the
following three measures of signal’s envelope:

1) Maximum peak amplitude
2) Integrated area
3) The gait phase of the maximum peak’s location
For the first two of these metrics, the inverse of the coeffi-

cient of variation (CoV) was used to quantify the consistency
of muscle patterns across the gait cycle (a lower CoV resulted
in higher consistency), expressed as the standard deviation
(σ) normalised by the cycle’s mean value (µ) and given in
percentage form:

CoV (%) =
σ

µ
× 100 (1)

The location of the maximum sEMG peak per cycle was
expressed using phasor representation calculated by:

Φt =
(
ej2π/T

)t
t ∈ [0, T − 1] ∩ Z (2)

where t is the temporal index of the peak within a gait cycle
of length T . This allows description of normalised progress
in the gait cycle without discontinuity between the start and
end. The average vector was calculated across all cycles and
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the variance metric was calculated using the absolute value of
the angle between the peak location vector and the normalised
average vector. An illustration of the measures used to quantify
consistency is shown on Figure 3.

Fig. 3. Illustration of the envelope measures within a gait cycle that were
used to quantify signal consistency for the RF. Channels are considered
more consistent if these measures don’t change from cycle to cycle. Phasor
representation of the continuous progress along gait cycle is shown above the
curve.

The electrode channels were ordered with ascending varia-
tion of the three metrics to facilitate the selection of those with
the least variation (i.e. the most consistent ones), or conversely
the ones with the highest variability (i.e. least consistent).
Evaluating all three metrics for our entire dataset was took
less than 5 minutes. However, the obtained rankings were
different across all three consistency metrics. To resolve this,
the following two approaches were considered to merge the
extracted rankings and find channels that all three metrics
would agree were highly consistent.

1) The Agreement approach selected the first bipolar elec-
trode combination that occurred in the rankings ordered
by the consistency of the three metrics.

2) The Norm approach calculated the euclidean norm of
the consistency of the metrics, to create its own sorted
list of samplings from which the electrode location was
selected.

To determine which method would be used to select the
most consistent sampling, preliminary tests were conducted
where one TCNs model was trained and evaluated with a 50-
50 train-validation split for 3 subjects, across every muscle
with each sampling method. From the results shown in Figure
4, the Agreement approach was subsequently adopted for all
following evaluations as its chosen sampling led to the highest
model performance.

A common bipolar electrode size (64 mm2) was simulated
virtually by spatially filtering the HD-EMG grid with a 2x2
averaging window before sampling bipolar signals, reducing
the grid size from 13× 5 electrodes to 12× 4. No significant
difference in model output was observed, so remaining experi-
ments were conducted with the HD-EMG signals to allow the
inclusion of samplings with smaller inter-electrode distance
(IED) as well (8 mm).

F. Knee angle prediction model

The TCNs investigated were composed of two convolutional
layers with pooling and dilation layers between them. This was
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Fig. 4. Metric selection for further analysis based on model performance on
reduced data set. Angle prediction error on validation data is compared for
one model trained for each muscle of the first three subjects. The labels for
each plot correspond to the metric used to determine the channel locations
for that group’s TCNs. The ”-Agreement” label specifies the least consistent
electrode location based on the ”Agreement” method.

followed by three dense layers with dropout in-between (see
Figure 5). This architecture is similar to the one in [35].

W W

W/10 W/100
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Convolution +ReLU
Max Pooling
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Input

Output
(1 x 1)

(1 x W)
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Fig. 5. Schematic of the 1-dimensional TCN architecture, mapping the
windowed EMG signal (1×W ) to the user’s knee angle (1×1). W stands
for the width of the input window, either 1000 or 500 samples.

No envelope or other feature extraction was performed
on the muscle signals, and no temporal normalisation was
applied. The sEMG input was normalised using the mean and
standard deviation values from the entire training set of the
given channel. Then, it was split into windows of equal sizes,
partly overlapping at a 40 sample stride. Two window sizes
were investigated, 500 and 1000 samples. The shorter ( 250
ms) window is similar to window lengths from TCNs used
for EMG processing in upper limb contexts [36]. However,
when compared to the upper limb tasks, gait is a more auto-
correlated process. Therefore, a longer window ( 500 ms) was
also explored. The windows were paired with the flexion signal
in a one-step-ahead regression scheme. An early termination
condition was used to stop training after 100 repeats of the
training data, or after performance on validation data has not
improved or has worsened for the most recent 6 repeats.

1) Connection between consistency metrics and model per-
formance: Root Mean Square (RMS) error between the knee
angle predicted by the model and the angle from the motion
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capture was calculated. The error of trained models on vali-
dation data were compared across different spatial sampling
conditions and window sizes (250 ms and 500 ms). A 5-fold
split was performed on each training set for cross-validation
[37], performed for each muscle and subject. The splitting of
the recordings remained consistent across conditions, and no
window was allowed in a fold of cross-validation that had
any overlap with other folds. With 5 subjects, 4 muscles,
and 5 folds, 100 models were trained and evaluated for each
condition on spatial sampling and window size, for a total of
600 models in this comparison. The following bipolar channel
selection methods were compared:

• The subject and muscle specific channel with the best
cross-metric consistency based on the Agreement ap-
proach, as outlined in Subsection II-E.

• The bipolar combination aligned according to the SE-
NIAM placement standard (between electrodes 31 and
33).

• The subject and muscle specific channel with the worst
cross-metric consistency based on the Agreement ap-
proach, as outlined in Subsection II-E.

2) Spatially robust bipolar feature learning: Models trained
on the electrode combination in the middle (electrodes 31 and
33) were evaluated on the signals of all other valid electrode
combinations. Their performance was compared with non-
placement specific models, which regressed signals from any
valid combination in the grid directly. During the training of
these TCNs, the bipolar channel that determines the signal
was sampled uniformly from the set of all valid bipolar
channels for each 500 ms input window. Therefore, even in
this case, only a single channel of EMG input was used at
a time. To achieve consistent performance, the model needs
to extract features that were suitable for generalising over
the area covered by the grid, and can not optimise for any
single placement. As such, this method can be considered
as a technique for implicit regularisation of EMG models.
Lastly, this analysis of model robustness to placement shifts
was repeated while wearing a one DoF knee orthosis, to
simulate the impact an exoskeleton frame may have on the
signal distribution due to restrictions to the range of motion
or motion artefacts [38,39]. A causal band-pass filter of 10-
400 Hz was used, a common strategy to mitigate the impact of
these types of interference [40]. This pre-processing was also
applied for the models without the orthosis in this section, for
a fairer comparison.

Performance was evaluated similarly to the previous section.
For each training condition (training with a single location,
or randomly sample during training) and orthosis condition
(donned or doffed) a TCN is trained for each of the 5 subjects,
4 muscles and 5 folds (100 for each condition).

The discussed methods of bipolar signal sampling from
grids could potentially be used in clinical applications. Robust
features may be learnt from HD-EMG grid data, and then de-
ployed with more convenient to use traditional bipolar sEMG
signal acquisition devices. A preliminary data collection using
a Delsys Trigno electrode system with two of the subjects was
used to trial this approach. TCNs trained with bipolar signals

from the HD-EMG grid were applied to the acquired Delsys
data (see Figure 13).

Deep learning was performed using the Keras framework for
TensorFlow [41], on a single computer with a Intel i7 CPU
and NVIDIA GeForce 2070 GPU, taking less than 30 minutes
to train a model.

III. RESULTS

A. Connection between consistency metrics and model perfor-
mance

TABLE I
MEDIAN VALIDATION RMS ERROR AND STANDARD DEVIATION (σ) FOR

100 MODELS TRAINED ACROSS SUBJECTS AND MUSCLES. VALUES IN
RADIAN.

Channel Selection 0.25 s 0.5 s

High Consistency 0.067± 0.040 0.043± 0.022

Middle 0.084± 0.042 0.045± 0.020

Low Consistency 0.084± 0.059 0.045± 0.028

The samplings chosen based on their score from the con-
sistency metrics led to higher performance of the TCN, with
a significantly lower validation Root Mean Squared Error
(RMSE) compared to the bipolar location based on SENIAM
standards and inconsistent samplings (see Table I which sum-
marises the median and σ statistics). This validates the metrics
as indicators of signal quality, suggesting they could be used
as a preliminary verification method for EMG based models,
whilst also demonstrating the impact of electrode placement
for EMG pattern recognition.

Fig. 6. RMS error of angle predictions from TCNs trained on the combination
with the best consistency score (blue) vs. the middle electrode combination
(orange), for two different input window durations. The kernel density, the
box plot and the raw data are shown for the different conditions.

Figure 6 shows the validation RMS flexion angle prediction
error distributions of models of different electrode locations
and input window sizes. The use of a larger window size
can help mitigate the effect of electrode position (see Figure
6). However, shorter windows tend to be preferred for gait
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prediction, especially when the model is designed for real-
time applications.

The prediction error was comparable to other gait regres-
sors reported in the literature [42]. Due to the non-gaussian
distribution, and to take inter-subject variation into account,
paired non-parametric tests were used to assess differences
and interactions between groups. A Friedman test showed
significant differences in distributions, p < 10−50, which was
mostly due to differences across window sizes.

When repeating the test within the shorter window groups,
differences remained significant (p = 0.0263), therefore fur-
ther inter-group comparisons were made. The hypothesis that
samplings with high consistency scores perform better than
the sampling from the middle was tested with a one-tailed
Wilcoxon signed-rank test. The ’consistent’ sampling has a
lower mean error of the two with p = 0.0002. Similarly,
models using the ’consistent’ sampling had a lower error than
those trained with ’inconsistent’ signals (p = 0.010).

When repeating the Friedman test within the longer window
groups, no significant differences in RMS error was shown
(p = 0.432).

B. Effect of the Orthosis on the sEMG recorded signals

Even though the bipolar locations with high consistency
scores performed better, this optimal placement selected dur-
ing normal walking did not transfer when donning the orthosis,
as the muscle activation patterns showed significant changes in
amplitude and spatial distribution across these two conditions.

Figure 7 illustrates the change in behaviour of the 3 metrics
when comparing the muscle activation patterns across the grid
with and without the orthosis. Whilst some features seem to
have some spatial similarities across conditions, the amount
of muscle activity (shown by the envelope’s integrated area)
and the peak activation amplitude intensify when wearing the
orthosis, and become significant in areas of the muscle that
were initially inactive. In addition, the main activation peak
takes place earlier in the gait cycle around the belly of the
muscle, further distorting the pattern the model was trained
on. This behaviour therefore disproves the hypothesis that
there exists a subject-specific area on each muscle that will
consistently provide reliable muscle activation patterns and
generalise across conditions.

C. Spatially robust regression with location sampling

Table II and Figure 10 evaluate the capability of the TCN
to generalise over the available electrode combinations on the
grid by comparing to a single sampling training. There was a
significant drop in validation RMSE when training the model
with all the possible bipolar combinations contained within
the HD-EMG grid. A Friedman test was used for the four
conditions to evaluate the capacity for the model to generalise,
and the improvements in performance across all conditions
were significant with Wilcoxon signed-rank tests at p < 0.01.
Figure 12 further illustrates the increased robustness of the gait
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Fig. 7. Visualisation of the average cross-cycle values of the sEMG envelopes’
(a) integrated area, (b) maximum peak amplitude, and (c) maximum peak
location in terms of GC percentage (with 0% corresponding to the heel strike)
for a subject’s SO (1) without and (2) with the orthosis. Each of the graphs
show the spatial distribution of the metrics across the HD-EMG grid, and
the values shown correspond to the vertical differential between 2 monopolar
electrodes (therefore showing a 12×5 grid as opposed to the original 13×5
monopolar grid.

prediction model, with a significantly lower σ across different
electrode combinations.

Figure 9 shows the four conditions investigated in Figure
10, with model performance scores separated based on which
muscle they were trained on. The relationships between the
median RMS error from different muscle inputs is unchanged
between conditions, with models using Soleus signals consis-
tently performing best.

TABLE II
MEDIAN VALIDATION RMS ERROR AND σ FOR 100 MODELS TRAINED
ACROSS SUBJECTS AND MUSCLES, WHEN EVALUATED ON ALL VALID

COMBINATIONS.

Training channels No Orthosis Orthosis

Full Grid 0.090± 0.030 0.122± 0.044

Middle Only 0.309± 0.096 0.338± 0.109

The average number of epochs until termination increased
from 30 to 35. Figure 8 illustrates the combination specific per-
formance when not using additional spatial samples compared
when the regularisation is applied, visualised on the grid. This
shows an increased robustness to longitudinal shifts compared
to lateral ones, a pattern observed in all subjects and muscle
groups in these results.

IV. DISCUSSION
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(a) (b)

Fig. 8. R2 performance of models evaluated on every valid electrode combination on a grid, shown for TA in participant 2 (a), and the BF in participant
5 (b). The left grid in each subfigure shows models that were only trained with the middle combination (31-33). The right grid in each subfigure shows
performance if the input electrode combinations are sampled uniformly during training. R2 values are visualised with a lower limit of 0. Transparent lines
are used, as the RoI of each electrode contains overlapping sections (See collinear combinations in Figure 2).
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Fig. 9. Predicted knee angle RMSE of each muscle group across conditions
when trained on the entire grid (Full) versus only the SENIAM bipolar
combination in the centre of the grid (Single). The condition of wearing the
knee orthosis is also shown.

Our chosen consistency metrics were validated as indicators
of signal quality, since electrode locations selected through
them were associated with higher prediction accuracy, when
compared to those hand-aligned based on previous guidelines.
This suggests that consistency metrics could be used as a
high-level analysis of signal quality, especially in models with
short input windows. However, no distinct pattern emerged
to reliably identify better areas on the skin surface for EMG
acquisition from a given muscle. Not only was there no
clear preferred electrode position on the muscle, but even
small electrode shifts caused significant prediction accuracy
degradation. Due to the severe impact of electrode shifts,
and the inevitable placement discrepancies between sessions
from electrode re-application [43], relying on optimal elec-

Fig. 10. Average model performance across all valid bipolar combinations
of the grid. Models were trained either with electrode combinations sampled
uniformly from the grid, or solely with the middle combination (electrodes
31 and 33). The hue determines whether the model was trained and evaluated
with data recorded while wearing a knee orthosis.

trode placement is unrealistic. We must therefore prioritise
the development of spatially robust models to improve gait
prediction for exoskeleton applications. As the signal feature
landscape is heavily affected by interference from the orthosis
(Figure 7), including this condition should be a high priority
for future studies investigating signal acquisition for neuro-
orthoses. Potential causes for this difference may involve the
additional stress, shear and relative movement at the orthosis-
electrode grid interface. Alternate causes may originate from
a change in the muscle activity due to the additional weight
or DoF restriction. Lastly, a phase shift may be caused by the
replacement of the motion capture markers, necessitated by
the orthosis. However, since on Figure 7c the effect is non-
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Fig. 11. Knee flexion predictions with data recorded with Delsys bipolar
electrode, with models trained on signal from the HD-EMG grid. Two subjects
shown, subject 3 with the RF (a) and TA (b), and subject 1 with the BF (c) and
SO (d). ”Full” refers sampling the input channel uniformly from the entire
grid, ”Middle” refers to only training with the middle location. The angle
from motion capture is overlaid.

uniform, this does not appear to be the dominant cause.
The use of spatial correlations in EMG signals can signif-

icantly improve robustness [44], however, the generalisation
of spatially rich HD-EMG data for bipolar applications has
not yet been investigated. Increasing the size of the electrode
detection surface helps reducing model sensitivity to electrode
shifts when perpendicular to the muscle fibres [18]. Hence, it
can be hypothesised that increasing the data acquisition area
from an electrode grid would improve model robustness in a
similar way.

By collecting data from all 360 possible bipolar locations
across the model, we widened the training data distribution
to include more possible scenarios that could be encountered
due to electrode shifts. A wider range of spatial samplings
includes channels where the effect of physiological features,
such as muscle cross-talk and innervation zone (IZ) effects,
manifest to different extents. As such, this could promote
the recognition and reduction of these sources by the model,
leading to more stable predictions. Another possibility is that
modelling multiple orientations encourages the TCN to favour
features that are on a longer time-scale, and are shared across
various channels. This group training approach has been met
with scepticism in the past, as it was previously associated
with longer acquisition and signal processing times [45].
However, these concerns were partly addressed in this study
with the simultaneous collection of bipolar signals through the
grid and the sampling of electrode location during training.
A further limitation of the group training approach is that
the additional training information can potentially crowd the
feature space and decrease model performance for the original
non-shifted location [20]. Whilst it is true that spatial sampling
methods decrease the average maximum performance, this
regularisation method can still be a useful tool in training
models, especially in scenarios where electrode shifts are
inevitable. Within an exoskeleton context, due to its dynamic
application to the lower-limbs, model robustness needs to be
prioritised, and performance degradation can be moderated

by other components in the system such as a higher-level
controller or sensor fusion techniques [9,46]. Furthermore,
using grid recordings to train spatially generalising models
could facilitate muscle selection studies by removing the
impact of specific electrode placement on signal quality, and
allowing for a more general comparison of signal reliability
across muscles (see Figure 9).

Including bipolar samplings from across the grid does
not substantially increase the training time of the predictive
network, making this method convenient during both data
acquisition and processing. Defining a non-uniform sampling
distribution may allow the trade-off of generalisation and
maximum performance to be fine-tuned. The observation that
longitudinal shifts lead to less decline in performance is
congruent with existing work [22]. Movements perpendicular
to muscle fibres correspond to locations influenced by differ-
ent neighbouring muscles, or to areas with different neuro-
physiological characteristics, such as the anterior aspect of
the tibia. Figure 12a exhibits a heteroskedastic distribution
throughout the gait cycle, which further illustrates the non-
linearity of the signal variation across channels. However, our
approach enabled the TCN to be robust to these transforma-
tions and phase shifts, as illustrated in Figure 12b.

(a) (b)
Fig. 12. Standard deviation of the average gait cycle across electrode
combinations for participant 4, Biceps Femoris models. (a) shows the average
prediction of a model trained with just the middle sampling, showing that
the uncertainty is phase dependent. (b) shows the average prediction from a
model trained with combinations across the grid.

Despite many differences, such as electrode size, original
sampling frequency, and the use of electrode gel in the grid,
there is a potential for transferability of information across
acquisition systems. This would enable rapid and spatially
rich data collection from grids utilised for robust bipolar
applications. The shift in the profiles of the Delsys signals
relative to the simulated bipolar signals from HD-EMG, and
the failure of the model transfer in the case of the thigh
muscles would suggest that this regularisation method would
likely have to be combined with domain adaptation techniques
to fine tune predictions to various expected conditions [47].
Furthermore, this method does not necessarily mitigate the
requirement to recalibrate networks due to long-term changes
in the neural interface, or application to different subjects. The
combined application of the different frameworks addressing
these key issues should be investigated [48].

The approach of deploying pre-trained models may not be
as effective in cases where the signal is subjected to external
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(a) (b)

(c) (d)
Fig. 13. Comparison of the average bipolar sEMG signal envelopes across
the HD-EMG grid with the bipolar signals from the Delsys system for (a):
the RF, (b): the BF, (c): the TA, and (d): the SO. The HD-EMG error band
corresponds to the spatial variation of the signal.

disturbances not accounted for during training; wearing an
orthosis, changing speed, electromagnetic interference, elec-
trode re-application, sweating or fatigue [5,49]. To account
for the signal alterations caused by external factors, data
augmentation approaches including non-linear transformations
of the training set are promising. This would require in-depth
analysis of the impact of different environmental factors to
reproduce them into the training distribution, which could be
accelerated by the acquisition of spatially robust features.

Steady-state level ground walking was selected as target mo-
tion as it facilitated the efficient collection of many repetitions
of the same movement. However, the intended movement is
not without variation. A degree of variability is present in
the dependent variable due to small changes in gait patterns
adopted by the participants over the course of a trial. A well
performing model must be able to track these effects. This
is a limitation of the described consistency metrics, as they
don’t distinguish between meaningful, informative variability
and noise. A non-steady-state locomotion setting, including
transitions such as turning or coming to a stop would be suit-
able to explore the intent estimation aspect further. Increasing
the size of the input window led to clear boost in performance
and a decrease in the sensitivity to specific electrode placement
(Figure 6). However, this comes at additional computational
costs both during training and inference, making the optimal
window size vary on the requirements of a given application.
The impact of this parameter on the model’s sensitivity to
intent changes in particular should be examined. Lastly, in
addition to the window size, the influence of other TCN hyper-
parameters on prediction stability should be investigated.

V. CONCLUSION

The investigated consistency metrics were validated as in-
dicators of signal quality, with the selected samples leading to
higher output accuracy from the TCN. This correlation could
be used to identify electrode placements that will perform
better in data-driven models. However co-variate shifts due to
changing conditions and variability in inter-session electrode
re-placement makes optimising for a single, high signal qual-
ity location unreliable. The use of HD-EMG grids for data
acquisition with the aim of bipolar applications enables the
inclusion of valuable spatial information that improves model
robustness to electrode shifts. While there appears to be trans-
ferability between HD-EMG and bipolar sEMG signals, future
works should focus on domain transfer methods to seamlessly
reproduce bipolar signals from HD-EMG grids, and construct
data augmentation strategies based on expected distributional
shifts for all deployment environments. Current work involves
applying these findings to lower-limb exoskeletons in order to
achieve robust AAN control.
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C. Disselhorst-Klug, and G. Hägg, “European recommendations for
surface electromyography,” Roessingh research and development, vol. 8,
no. 2, pp. 13–54, 1999.

[15] R. Merletti and S. Muceli, “Tutorial. surface emg detection in space
and time: Best practices,” Journal of electromyography and kinesiology,
vol. 49, p. 102363, Dec 2019.

[16] A. Rainoldi, G. Melchiorri, and I. Caruso, “A method for positioning
electrodes during surface emg recordings in lower limb muscles,”
Journal of neuroscience methods, vol. 134, no. 1, pp. 37–43, 2004.

[17] I. C. N. Sacco, A. A. Gomes, M. E. Otuzi, D. Pripas, and A. N. Onodera,
“A method for better positioning bipolar electrodes for lower limb
emg recordings during dynamic contractions,” Journal of neuroscience
methods, vol. 180, no. 1, pp. 133–137, 2009.

[18] A. J. Young, L. J. Hargrove, and T. A. Kuiken, “The effects of
electrode size and orientation on the sensitivity of myoelectric pattern
recognition systems to electrode shift,” IEEE transactions on biomedical
engineering, vol. 58, no. 9, pp. 2537–2544, Sep 2011.

[19] X. Zhang, L. Wu, B. Yu, X. Chen, and X. Chen, “Adaptive calibration
of electrode array shifts enables robust myoelectric control,” IEEE
transactions on biomedical engineering, vol. 67, no. 7, pp. 1947–1957,
Jul 2020.

[20] J. He, X. Sheng, X. Zhu, and N. Jiang, “Position identification for robust
myoelectric control against electrode shift,” IEEE transactions on neural
systems and rehabilitation engineering, vol. 28, no. 12, pp. 3121–3128,
Dec 2020.

[21] ——, “A novel framework based on position verification for robust
myoelectric control against sensor shift,” IEEE Sensors Journal, vol. 19,
no. 21, pp. 9859–9868, 2019.

[22] A. J. Young, L. J. Hargrove, and T. A. Kuiken, “Improving myo-
electric pattern recognition robustness to electrode shift by changing
interelectrode distance and electrode configuration,” IEEE transactions
on biomedical engineering, vol. 59, no. 3, pp. 645–652, Mar 2012.

[23] L. Wu, X. Zhang, K. Wang, X. Chen, and X. Chen, “Improved high-
density myoelectric pattern recognition control against electrode shift
using data augmentation and dilated convolutional neural network,”
IEEE transactions on neural systems and rehabilitation engineering,
vol. 28, no. 12, pp. 2637–2646, Dec 2020.

[24] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Tempo-
ral convolutional networks for action segmentation and detection,” in
proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 156–165.

[25] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[26] B. Fang, Q. Zhou, F. Sun, J. Shan, M. Wang, C. Xiang, and Q. Zhang,
“Gait neural network for human-exoskeleton interaction,” Frontiers in
Neurorobotics, vol. 14, 2020.

[27] I. Kang, D. D. Molinaro, S. Duggal, Y. Chen, P. Kunapuli, and A. J.
Young, “Real-time gait phase estimation for robotic hip exoskeleton
control during multimodal locomotion,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 3491–3497, 2021.

[28] J. Liu, C. Wang, B. He, P. Li, and X. Wu, “Metric learning for robust gait
phase recognition for a lower limb exoskeleton robot based on semg,”
IEEE Transactions on Medical Robotics and Bionics, 2022.

[29] H. Huang, P. Zhou, G. Li, and T. A. Kuiken, “An analysis of emg
electrode configuration for targeted muscle reinnervation based neural
machine interface,” IEEE transactions on neural systems and rehabili-
tation engineering, vol. 16, no. 1, pp. 37–45, Feb 2008.

[30] OT Bioelettronica, “Otbiolab user manual v3.4,” https://www.
otbioelettronica.it/files/47/Software/15/OTBioLab-User-Manual-ENG.
pdf, 2022, [Online; accessed 19-Jan-2022].

[31] E. S. Grood and W. J. Suntay, “A joint coordinate system for the
clinical description of three-dimensional motions: application to the
knee,” Journal of biomechanical engineering, vol. 105, no. 2, pp. 136–
144, 1983.

[32] C. L. Vaughan, B. L. Davis, and J. C. O’connor, Dynamics of human
gait. Human Kinetics, 1992, vol. 2.

[33] B. G. Lapatki, R. Oostenveld, J. P. V. Dijk, I. E. Jonas, M. J. Zwarts, and
D. F. Stegeman, “Optimal placement of bipolar surface emg electrodes in
the face based on single motor unit analysis,” Psychophysiology, vol. 47,
no. 2, pp. 299–314, Mar 2010.

[34] A. Burden, “How should we normalize electromyograms obtained from
healthy participants? what we have learned from over 25 years of
research,” Journal of electromyography and kinesiology, vol. 20, no. 6,
pp. 1023–1035, 2010.

[35] M. Zanghieri, S. Benatti, A. Burrello, V. Kartsch, F. Conti, and L. Benini,
“Robust real-time embedded emg recognition framework using temporal
convolutional networks on a multicore iot processor,” IEEE transactions
on biomedical circuits and systems, vol. 14, no. 2, pp. 244–256, 2019.

[36] J. L. Betthauser, J. T. Krall, S. G. Bannowsky, G. Lévay, R. R. Kaliki,
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