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Abstract

We study the synchronization behavior of a class of identical FitzHugh-Nagumo-type oscillators under adaptive coupling. We

describe the oscillators by a circuit model and we provide a sufficient synchronization condition that relies on the shape of the

nonlinear conductance’s $(i,u)$-curve and the connectivity of the adaptive coupling network. The coupling network is allowed

to be time-variant, state-dependent and locally adaptive, where we treat memristive coupling elements as a special case. We

provide a physical interpretation of synchronization in terms of power dissipation and investigate the sharpness of our condition.
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Abstract

We study the synchronization behavior of a class of identical FitzHugh-Nagumo-type oscillators under adaptive
coupling. We describe the oscillators by a circuit model and we provide a sufficient synchronization
condition that relies on the shape of the nonlinear conductance’s (i, u)-curve and the connectivity of
the adaptive coupling network. The coupling network is allowed to be time-variant, state-dependent and
locally adaptive, where we treat memristive coupling elements as a special case. We provide a physical
interpretation of synchronization in terms of power dissipation and investigate the sharpness of our condition.
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1 Introduction

Networks of coupled oscillators, linear and nonlinear,
receive large amounts of interest from researchers across
various disciplines, due to their relevance to for instance
neural networks [1] but also technical applications such
as power systems [2]. In the context of neuromorphic
computing, synchronization plays a key role in designing
novel and power-efficient technologies. Understanding the
cause behind the emergence of synchronous states in
oscillator networks has, for example, aided in designing
these systems in a way that lets them naturally solve
optimization problems [3–6]. Synchronization of oscillatory
neural networks can also be used to solve tasks like image
recognition [7] and gait pattern classification [8]. Hardware
implementations of neural networks are of great interest
[9], as they among other things are more energy efficient
than their digital counterpart. The combination of neural
networks with memristors [10, 11] exhibits remarkable

properties such as fault tolerance [9] and event-triggered
synchronization [12]. The design of such networks is an
active area of research [13–15]. It is hence desirable to
understand synchronization on a level relatively close to
the hardware, for instance in terms of electrical parameters
[16]. For that reason, well-interpretable synchronization
conditions play a major role both in system design as well as
robustness analysis. Numerous synchronization conditions,
both necessary and sufficient, exist from a mathematical
point of view. Necessary conditions have been approached
for systems of linearly coupled oscillators via the Master
stability function method [17], while other approaches
leading to sufficient conditions are for instance based on
contraction theory [18–22], QUAD-conditions [23–25] or
semi-passivity [26–28]. The approaches based on semi-
passivity usually construct suitable Lyapunov functions,
where a standard choice consists of quadratic Lyapunov
functions but also non-smooth candidates have been
considered [29–31]. Most of these conditions do not allow an

1
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immediate physical interpretation and are sometimes hard
to apply to actual physical systems.

The FitzHugh-Nagumo oscillator (FHNO) is a relevant
oscillator for neuromorphic applications because it is
technically realizable [32] and shows biologically plausible
behavior [33]. For instance, phenomena like spike-timing
dependent axon growth can be realized in neuromorphic
circuits with FHNOs [34]. Its key ingredient is the
nonlinear conductance, whose (i, u)-curve differs from that
of the standard FHN-model in practical applications.
Our main goal in this paper is to derive a sufficient
synchronization criterion for identical diffusively coupled
FHNOs that is phrased in terms of conditions on the
coupling network and the (i, u)-curve. We take the more
general perspective and study an electrical circuit with a
general nonlinear conductance so that our condition also
applies to other models such as the van-der-Pol oscillator
[35, 36]. We consider diffusive coupling with time-varying,
state-dependent and locally adaptive coupling strength,
where our main application consists of FHNOs coupled by
ideal memristors.

Similar to [31] we use an approach based on semi-
passivity but we choose a rather standard Lyapunov
function which is a quadratic function of the state variables.
Apart from the generality of how the coupling strength is
allowed to evolve over time, the novelty in our approach
lies in the way we bound its time derivative, which
is reminiscent of the strategy in [25] but without the
need for the individual oscillators’ vector fields to be
Lipschitz or to satisfy a QUAD-condition. We exploit
that the nonlinear conductance is semi-passive in the
following sense: The dissipated power at the conductance
is always positive for large enough magnitudes of applied
voltage and negative differential conductance occurs only
for voltages with magnitude smaller than some possibly
large threshold. We observed that synchronization can
be derived without much problems if the (i, u)-curve is
strictly monotonically increasing and the coupling network
is connected. Furthermore, we observed that (i, u)-curves of
semi-passive conductances can be made strictly monotonic
by adding a linear term. Our sufficient criterion essentially
states that for all times the algebraic connectivity of the
coupling network needs to be larger than the slope of this
linear term for the oscillators to synchronize. The Lyapunov-
function used includes the power dissipated by the coupling
network as a term, so that this power tends to zero if
our sufficient condition is met. Specialized to the standard
unitless FHN-model and static diffusive coupling, it turns
out that our criterion is sharper than that of [31] based
on semi-passivity and coincides with [20, cor. 4.1] and
[29], whose derivation is based on contraction theory and

Lyapunov’s method, respectively. The main result of [20]
aims at a different setting than ours in that it applies
to clustered synchronization of a variety of heterogeneous
oscillators subject to time-varying but not adaptive or state-
dependent diffusive coupling. The result of [29] applies to
static linear coupling but allows for a large class of couplings,
not just diffusive ones. We discuss in section 6.2 the reason
why our bound coincides with that of [20] and [29].

An advantage of our criterion is that it spells out in
terms of the ideal circuit’s parameters, which makes it
easily applicable to electronical models of the FHNO such
as the ones presented in [32]. Its application only requires
knowledge of the nonlinear conductance’s (i, u)-curve and
the coupling network.

In summary, we shed some light on a physically-
interpretable sufficient synchronization condition of
identical diffusively coupled FHNOs that is more specialized
w.r.t. the oscillators but as sharp as the condition in [20]
and has three distinct advantages:

1. It gives practitioners an easy way of ensuring the
occurrence of synchronization in dependence on the
system’s nonlinearity.

2. It has a physical interpretation that is also embedded
into the associated mathematical analysis, namely the
minimization of dissipated power.

3. It also applies to locally adaptive, state-dependent
couplings including memristors or nonlinear couplings

The paper is structured as follows. In section 2 we
introduce the framework of dissipative and semi-passive
systems. In section 3 we recapitulate the FitzHugh-Nagumo
oscillator and describe a generalization of it, discuss
the electrical coupling, and derive a compact unitless
description. In Sec. 4, we derive an explicit sufficient
condition for synchronization. As an application, we spell
out this condition for FHNOs coupled by ideal memristors
and static linear conductances in section 5. We demonstrate
its correctness on an example in Sec. 6, where we also discuss
how our result for static diffusive coupling is related to
the existing literature. Finally, Sec. 7 summarizes the main
contributions of this work and gives an outlook on further
research in this area.

Notation: Throughout the text, vector and matrix
objects are typeset with bold symbols. For instance, we
denote by 0 the zero-vector of a given vector space. Given
the amount of necessary notation, we included a glossary at
the end.
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2 Interconnected Semi-Passive
Systems

Consider the input-affine dynamical system

ż = f(z) +B(z)x , y = h(z) , z(t0) = z0 , (1)

with (Lipschitz) continuous functions f : Rn → Rn, B :
Rn → Rn×k, h : Rn → Rk. We refer to the objects as
the state vector z ∈ Rn, input vector x ∈ Rk, and output
vector y ∈ Rk, where we have dropped the time argument
for the sake of brevity. The input vector x is assumed to be
a continuous and bounded function of time.

Definition 1. (Cr-dissipativity, cp. [27, def. 5]) The system
(1) is called Cr-dissipative (in the sense of Willems
[37]), with so-called supply rate w : Rn × Rk 7→ R,
if it is r times continuously differentiable, denoted as
w ∈ Cr

(
Rn × Rk,R

)
, and there exists a so-called storage

function S ∈ Cr (Rn,R≥0) such that,

S (z(t))− S (z0) ≤
� t

t0

w (z(τ),x(τ)) dτ ,

for all1 x ∈ C0
(
R,Rk

)
∩L∞ (

R,Rk
)
, z0 ∈ Rn and t0 ≤ t <

te, where te is the upper time limit for a solution z of (1)
to exist given the input x and initial conditions z0.

Typically, the storage function is given by the system’s
total energy whose change over time is bounded by the
power supplied to the system. Passive and semi-passive
systems are Cr-dissipative systems with respect to a specific
supply rate.

Definition 2. (Passivity, cp. [27, def. 8]) The system (1)
is called passive, if it is Cr-dissipative with supply rate
w(z,x) = xTy = xTh(z) and its storage function S satisfies
S(0) = 0.

Definition 3. (Semi-passivity, cp. [27, def. 9]) The system
(1) is called semi-passive if it is Cr-dissipative with supply
rate

w(z,x) = xTy −H(z) , (2)

for some function H : Rn 7→ R that satisfies:
There exists ρ0 > 0 and a function ρ : R \ (−ρ0, ρ0) 7→ R≥0

such that for all z ∈ Rn with ∥z∥ ≥ ρ0 one has H(z) ≥

1The set of 0 times continuously differentiable functions C0 denotes just
the set of continuous functions, whereas L∞ denotes the set of bounded
functions.

ρ (∥z∥). If the function ρ can be chosen to be positive then
the system is called strictly semi-passive.

Note that the crucial part in the definition of (strict)
semi-passivity is that H is nonnegative (positive) outside
the ρ0-ball around 0 but that it is allowed to be negative
inside. In the sense of the above definition, a physical system
is passive if its change in energy w.r.t. time is less than
or equal to the power injected, as the scalar product of
input x and output y usually have the unit of power. In
principle, this applies to all physical systems, but in input-
output-modeling it is often convenient to not count the
power supply of active components as input. A semi-passive
system is then roughly a system whose active components
have a finite power supply, so that they can inject power into
the system for a limited range of operating points (above:
inside the ρ0-ball for some ρ0 > 0) but dissipative behavior
dominates elsewhere.

Semi-passivity applies to open systems that can interact
with the environment. We obtain an isolated system by
considering N systems of type (1) interconnected by a
generalized diffusive2 coupling:

żµ = f(zµ) +B(zµ)xµ , (3a)

yµ = h(zµ) , (3b)

xµ = −
N∑

ν=1

aµν(t, z, cµν) [yµ − yν ] , (3c)

ċµν = kµν (yµ,yν , t, cµν) , (3d)

with state-variables zµ, inputs xµ and outputs yµ for

µ = 1, . . . , N , where z =
[
zT
1 , . . . ,z

T
N

]T
denotes the

stacked state vectors. The coupling weights aµν = aνµ ≥
0 are nonnegative and symmetric for all arguments. The
dependence of the coupling aµν on the state vector’s of all
subsystems is a very general case and for most applications
dependence on zµ, zν suffices as most coupling mechanism
are local in nature. Since our synchronization condition’s
proof also works for the more general case, we decided
to work in this setting. We assume that the outputs and
inputs are of the same dimension k so that the difference
yµ − yν makes sense, but at this point we do not assume
this for the dimension of the state spaces, which we denote
by n1, . . . , nN . The coupling weights are allowed to be
functions of time t as well as the systems’ state variables and
can furthermore be locally adaptive in the sense that aµν
depends on a state variable cµν that evolves over time. We

2We call this coupling generalized diffusive because the input is
proportional to the difference of the outputs, although the coupling
strength is adaptive and allowed to depend on the subsystems’ state.
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call this a locally adaptive coupling because the evolution
law of aµν depends only on time, cµν and the outputs yµ

and yν .
We describe the coupled subsystems in terms of a

weighted undirected graph G = (V, E) with |V| = N nodes
V, one for each subsystem, and NE = |E| edges of respective
weights aµν depending on the variables t, z and cµν . For
each unoriented edge {µ, ν} select an orientation, denoted by
(µ, ν) if the edge is oriented from µ to ν or (ν, µ) otherwise.
Let N ∈ ZN×NE be the incidence matrix of the resulting
directed graph G with the elements

nµe =


+1 if e = (µ, ν) for some ν ∈ V
−1 if e = (ν, µ) for some ν ∈ V
0 otherwise.

. (4)

We collect the edge weights in the diagonal matrix D ∈
RNE×NE , i.e., for the edge e = {µ, ν} one has Dee = aµν .
We define the Laplacian matrix as

Γ = NDNT . (5)

It is a standard fact of algebraic graph theory [38] that Γ
can alternatively be defined as

Γµµ =
∑
ν ̸=µ

aµν and Γµν = −aµν , for µ ̸= ν , (6)

which coincides with (5). Throughout this paper we sort the
eigenvalues of Γ in ascending order, i.e.,

0 = λ1{Γ } ≤ λ2{Γ } ≤ · · · ≤ λn{Γ }, (7)

where the first inequality is strict if and only if the coupling
graph is connected. Note that the eigenvalues of Γ are
always real because ΓT = Γ and nonnegative because Γ is
diagonally dominant by (6). For later use, we define the two
(stacked) input and output vectors

x =
[
xT
1 , . . . ,x

T
N

]T
and y =

[
yT
1 , . . . ,y

T
N

]T
,

respectively, which are related according to (3c) by

x = −Ly with L = Γ ⊗ 1k , (8)

where 1k denotes the unit matrix of dimension k. Note that
L is positive semi-definite because Γ is. The µ-th input xµ

is then obtained as

xµ = −eTµLy, where eµ = eµ ⊗ 1k ,

with eµ being the µ-th unit vector in RN and 1k ∈ Rk the
vector of ones.

By the first part of [27, lem. 1], one has that the
interconnection of semi-passive systems by a diffusive
coupling mechanism without additional inputs results in a
system whose trajectories are bounded. Unfortunately, [27,
lem. 1] only applies to systems of type (3) for static coupling.
Proposition 4 below is a generalization of [27, lem. 1] that
also applies to more general diffusive couplings as in (3).
We provide a proof in the appendix and we will use that
the solutions are bounded in the proof of theorem 7, even
though the bound itself is not explicitly required.

Proposition 4. Assume:

1. The systems (3a) are semi-passive for µ = 1, . . . , N with
radially unbounded3 storage functions and such that the
function ρµ bounding Hµ from below (see the dissipation
inequality in def. 3) is a strictly monotonically increasing
and unbounded function.

2. The coupling weights aµν(t, z, cµν) are nonnegative for
all (t, z, c).

3. The vector fields kµν are such that solutions to (3d) exist
for all times regardless of y.

Then solutions to (3) exist for all times t ≥ t0 and are such
that z(t) is bounded.

Assume that the N subsystems in (3) are identical and
therefore of the same dimension nµ = n for all µ = 1, . . . , N .
If the initial values of the subsystems are also identical,
then the solution to the coupled system (3) is that the state
vectors zµ of the subsystems are equal to each other at all
times, i.e., zµ(t) = zν(t) and such that zµ(t) is a solution to
the subsystem (1) with zero-input and an appropriate initial
value. We call such solutions synchronous.

Definition 5. (Synchronization manifold) The (partial)
synchronization manifold to the system (3) with
identical subsystems of dimension n is defined as

S :=
{
z ∈ RnN | zµ = zν , ∀ µ, ν = 1, . . . , N

}
.

Synchronous solutions are automatically contained in
the synchronization manifold. Since we require the state
vectors of all oscillators to be identical, this definition of
synchrony does not include clustered synchronization or
phase-locked solutions with phase differences other than 0.
We call this a partial synchronization manifold, because

3We call a function S : Rn 7→ R radially unbounded if S(z) → ∞
whenever ∥z∥ → ∞.
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only the state variables z synchronize whereas the couplings’
state variables c may not.

3 Diffusively Coupled Oscillators of
FitzHugh-Nagumo type

3.1 FitzHugh-Nagumo Oscillator

R

L uL

iL
CuC

iC

iG(uC)

i

u

interaction
port

j

Fig. 1: Equivalent circuit of a FitzHugh-Nagumo oscillator.

The FitzHugh-Nagumo oscillator (FHNO) is a
technically realizable [32] and biologically plausible neuronal
oscillator [33]. In this section, we briefly recapitulate the
electrical model depicted in Fig. 1 which will be used to
describe the FHNO throughout this paper. We will show
that this model satisfies the definition of a strictly semi-
passive system as we need this property to apply prop. 4
later. The differential equations associated with the circuit
can be deduced from Kirchhoff’s laws and the constitutive
relations of the circuit elements:

Cu̇C = iC = j − iG(uC)− iL + i , uC(t0) = uC,0 , (9a)

Li̇L = uL = uC −RiL , iL(t0) = iL,0 . (9b)

Here, uC and iL are state-space quantities corresponding to
a capacitor voltage and an inductor current, respectively,
while uC,0 and iL,0 denote their initial values at the starting
time t0, respectively. The current i denotes an external
excitation current, while the current j represents a (bias)
supply current. The electrical parameters C, L, R denote a
capacitance, an inductance, and a resistance, respectively.
Lastly, iG : R 7→ R is a nonlinear conductance function,
which has been realized by a tunnel diode in the past [33, 35].
In the following, we work with the cubic nonlinearity

iG(uC) = G0

[
u3
C

3U2
0

− uC

]
, (10)

where the conductance G0 and voltage U0 are normalization
constants. Even though we will stick to the above nonlinear
conductance function in our examples, our results hold for
more general functions. We will refer to this more general
case as an oscillator of FitzHugh-Nagumo-type.

The FHNO can be written as a system of type (1), i.e., an
input affine system with one-dimensional input given by the
current i and one-dimensional output given by the voltage
uC . We introduce the following quantities in order to recast
(9) in terms of unitless variables:

ω0 =
1√
LC

, Z0 =

√
L

C
, I0 = G0U0, (11a)

z1 =
uC

Z0I0
, z2 =

iL
I0

, τ = ω0t, (11b)

ι =
j

I0
, β =

R

Z0
, fG(z1) =

1

I0
iG (Z0I0z1) , (11c)

where G0, U0 are the parameters of (10) which transforms
to

fG(z1) = α

[
α2

3
z31 − z1

]
, α = G0Z0 . (11d)

In terms of the unitless parameters of (11) and in
dependence on τ , (9) can be written as

z′ = f(z) +B(z)x , z(τ0) = z0, with (12a)

z =
[
z1 z2

]T
, x = [i/I0], y = [z1] , and (12b)

f(z) =

[
−fG (z1)− z2 + ι

z1 − βz2

]
, B(z) =

[
1
0

]
, (12c)

where we denote z′ = d
dτ z.

Lemma 6. The system (12) is strictly semi-passive
and admits a radially unbounded storage function for all
functions fG : R 7→ R satisfying

lim
u→±∞

fG (z1) = ±∞ ,

and all ι ∈ R. Here, the function ρ from definition 3 can be
chosen as

ρ(∥z∥) = c0∥z∥ for c0 > 0 .

Proof Take the system’s energy as storage function:

S(z) =
1

2
zTz . (13)

Now, compute its derivative w.r.t. τ :

S′(z) = [∇zS(z)]
Tz′
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= −βz22 − z1 [fG (z1)− ι] + z1 x ,

where ∇z denotes the gradient of a function w.r.t. the vector z.
Since y = [z1], we see that we have obtained an equation similar
to the supply rate of a semi-passive system (2). Thus, define

H(z) = βz22 + z1 [fG (z1)− ι]

and observe

lim
∥z∥→∞

H(z) = ∞ , since (14a)

lim
z1→±∞

z1 [fG (z1)− ι] = ∞ . (14b)

We conclude that H is radially unbounded and positive outside
some ball around the origin and hence, the FHNO (12) is strictly
semi-passive as there must exist a function ρ as in def. 3. In more
detail, (14b) implies that there exist r0, c0 > 0 such that

z1 [fG (z1)− ι] ≥ c0|z1| , ∀ |z1| ≥ r0 .

A similar estimate holds for the residual term, βz22 . Hence, there
exist r1, c1 > 0 such that

H(z) ≥ c1 [|z1|+ |z2|] , for all |z1|+ |z2| ≥ r1 .

Since all norms on Rn are equivalent, there exist c2, r2 > 0 such
that

H(z) ≥ c2∥z∥ , ∀ ∥z∥ ≥ r2 .

□

The physical meaning behind lemma 6 is that the system
(9) is semi-passive as long as the nonlinear conductance’s
behavior is eventually passive in the following sense: For
voltages with magnitude larger than some finite threshold
the conductance always dissipates power; power injection
can only occur for voltage magnitudes below that threshold.
The characterization of the FHNO as a semi-passive system
provided by lemma 6 allows us to apply prop. 4 to networks
of such oscillators coupled by a generalized diffusive coupling
mechanism as in (3).

3.2 Coupled FHN-Oscillators

Now that we have characterized the FHNOs as strictly
semi-passive systems, we discuss the generalized diffusive
coupling network used to connect the oscillators, where we
use the graph-theoretical language developed in section 2.
Every pair of adjacent oscillators is coupled by an adaptive
coupling as depicted in Fig. 2. Hence, to every undirected
edge {µ, ν} ∈ E there is a (positive) conductance Wµν which
we allow to depend on time t, the voltage vµν across the
edge {µ, ν} and an edge variable cµν . We also associate a
locally Lipschitz-continuous function kµν : R × R × R → R
to each edge that describes the time-evolution of cµν :

ċµν = kµν (t, vµν , cµν) . (15)

N1

i1

u1 v12 N2

i2

u2v
13

N3

i3

u3

v 2
3

W12 j12

W
13 W

23

j13 j23

Fig. 2: Example of three coupled FHNOs N1, . . . ,N3 with
the output voltages uµ and input currents iµ. A memristor
symbol is used to indicate the adaptive coupling in (17).
At every coupling we have the interaction current jµν =
Wµν(t, vµν , cµν)vµν .

We call such a time evolution for Wµν locally adaptive
because it is driven by local information, namely the edge
voltage vµν and the edge variable cµν .

We denote by u = [u1, u2, . . . , uN ]T and i =
[i1, i2, . . . , iN ]T the port quantities of the interaction ports
and introduce the vectors v ∈ RNE , j ∈ RNE and c ∈
RNE containing the voltage differences vµν , the interaction
currents jµν , and edge variables cµν respectively. Using
the graph’s incidence matrix N ∈ ZN×NE the Kirchhoff
equations governing the coupling network spell out as
follows:

i = −Nj , v = NTu . (16a)

Collecting the edge weights in a diagonal matrix denoted by
Wd ∈ RNE×NE we can simultaneously state Ohm’s law for
every coupling conductance as:

j = Wdv , with Wd = Wd (t,v, c) . (16b)

Combination of (16b) with (16a) yields the specialized
version of (8):

i = −Wu , with W = W (t,v, c) = NWdN
T . (17)

The current directions are chosen such that a negative
sign emerges in the coupling formula (17). Note that the
conductance needs not be linear despite the appearance of
(17). The dependence of W on the voltage differences v
allows for nonlinear conductances where the shape of (17)
only guarantees that a zero voltage difference results in a
zero current.
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In order to state the coupled version of (12) we define
the vectors of normalized capacitor voltages and normalized
inductor currents and normalized supply currents

ζ1 = [zµ,1]
N
µ=1 , ζ2 = [zµ,2]

N
µ=1 , ι ∈ RN , (18)

as well as a parameter matrix β ∈ RN×N and the unitless
analog to W :

β = β1, Γ (τ,z, c) = Z0W (t,v, c) , (19a)

with t = ω−1
0 τ , v = Z0I0N

Tζ1, where β is from (11) and
1 denotes the unit matrix. Furthermore, we define vector-
valued functions

fG : RN → RN , and k̃ : R× RN × RNE → RNE , (19b)

where the µ-th element of fG is fG evaluated at zµ,1,

while the µν-th element of k̃ is ω−1
0 kµν evaluated at t =

ω−1
0 τ , vµν = Z0I0[zµ,1 − zν,1], and cµν for {µ, ν} ranging

over the edges E of the coupling graph G. Using these
definitions, we obtain the ODE describing the coupled
FHN-type oscillators w.r.t. a generalized diffusive coupling
parametrized by normal time τ :

ζ′
1 = ι− fG (ζ1)− ζ2 − Γζ1 (20a)

ζ′
2 = ζ1 − βζ2 (20b)

c′ = k̃ (τ, ζ1, c) . (20c)

This is an instance of an ODE of type (3) in unitless form.

4 Main Result

We first state a sufficient condition for the synchronization
of N FHNOs described in (12) with a coupling as in (20).
We will prove this result throughout the rest of this section.
In accordance with def. 5, we say that the states z1, . . . ,zN
of N oscillators synchronize if limt→∞ ∥zµ − zν∥ = 0 for all
µ, ν = 1, . . . , N , which excludes clustered synchronization.

Theorem 7. Consider N identical, diffusively coupled
FitzHugh-Nagumo-type oscillators (20). Let G denote the
weighted undirected graph with time-variant and locally
adaptive weights associated to the coupling network and
let Γ (τ,z, c) denote the associated Laplacian matrix of G.
The states z1, . . . ,zN of the oscillators synchronize if the
following conditions hold:

1. the coupling graph G is connected,

2. the normalized nonlinear conductance function fG : R →
R satisfies limz1→±∞ fG (z1) = ±∞ and −dfG

dz1
admits a

global maximum K := maxz1∈R

{
−dfG

dz1

}
;

3. the algebraic connectivity λ2{Γ (τ,z, c)}, i.e., the
smallest nonzero eigenvalue of Γ (τ,z, c), satisfies

λ2{Γ (τ,z, c)} >max{0,K} ∀ (τ,z, c);

4. The coupling’s evolution law k̃ in (20c) is such that
solution to (20c) exist for all τ ≥ τ0 regardless of the
inputs x.

The initial conditions of the system do not matter in
the above theorem. As a consequence the synchronization
manifold is globally asymptotically stable and the individual
oscillators all converge to the same state.

4.1 Preparations

We begin with providing a candidate for a (weak) quadratic
Lyapunov function, to which we show that it is decreasing
along the solutions of (20) under some assumptions on the
coupling graph and the nonlinearity fG. Its decrease along
the solutions of (20) will be key to deduce synchronization,
because its 0-locus coincides with the synchronization
manifold. To this end we denote by 1

⊥
N the subspace of

vectors perpendicular to 1N , and introduce the orthogonal
projection matrix

P = 1N − 1

N
1N1

T
N (21)

to 1
⊥
N . One has P1N = 0 and Pv = v for all v ∈ 1

⊥
N .

Recall that the stacked state vectors are denoted by z =[
zT
1 . . . zT

N

]T
. The following computations will be easier if

one works with the stacked normalized voltages and currents
ζ1 and ζ2 defined in (18) instead. The two are related by a
permutation matrix denoted by

Π ∈ R2N×2N : Πz =

[
ζ1

ζ2

]
. (22)

Lemma 8. Let the graph G describing the coupling network
be connected and assume that the normalized supply currents
ι are identical, i.e., ι = ι1 in (20), where 1 denotes the
vector of ones. Define V : R2N → R as

V (z) =
1

2
zTMz , with M = ΠT

[
P 0
0 P

]
Π . (23)
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Then V (z) = 0 if and only if ζ1 = z̄11 and ζ2 = z̄21
for z̄1, z̄2 ∈ R, i.e., V (z) = 0 ⇔ z ∈ S, where S is the
synchronization manifold to (20) as in definition 5.
Suppose there exists a monotonically increasing function
fm : R → R and a constant Kl ≥ 0 such that,

fG(z1) = fm(z1)−Klz1 for all z1 ∈ R . (24)

In this case, if λ2{Γ (τ,z, c)} ≥ Kl for all (τ,z, c) then
V ′(z) ≤ 0 along the solutions of (20) , where λ2{Γ } refers
to the second-smallest eigenvalue of Γ .

Proof First, P is a positive semi-definite matrix and its defect is
equal to 1. Since M is similar to a block diagonal matrix whose
two blocks are positive multiples of P , the matrix M is positive
semi-definite with defect 2. Thus, V (z) ≥ 0 with equality only
when ζ1 = z̄11 and ζ2 = z̄21 with z̄1, z̄2 ∈ R independent of
each other. Denote

fm : RN → RN , ζ1 7→
[
fm(zµ,1)

]N
µ=1

. (25)

A substitution of z′ by (20), considering that ι = ι1 is in the
kernel of P , that P is symmetric, and that β = β1, provides the
derivative of V (z) w.r.t. τ along a solution z to (20):

V ′(z) = [∇zV (z)]T z′ = ζT1 Pζ′1 + ζT2 Pζ′2

= ζT1 P [−fG (ζ1)− ζ2 + ι− Γζ1]

+ ζT2 P [ζ1 − βζ2]

= −ζT1 PfG (ζ1)− ζT1 PΓζ1 − βζT2 Pζ2 .

(26)

As a preparatory step, we use P 2 = P as well as its symmetry
to compute

ζT1 Pfm (ζ1) = [Pζ1]
T Pfm (ζ1)

=
2

N2

∑
µ<ν

[
zµ,1 − zν,1

] [
fm(zµ,1)− fm(zν,1)

]
.

Since fm is strictly monotonically increasing, each term in the
sum is always nonnegative. We obtain

ζT1 PfG (ζ1) = ζT1 Pfm (ζ1)−Klζ
T
1 Pζ1

≥ −Klζ
T
1 Pζ1 .

This implies that V ′(z) has the upper bound

V ′(z) ≤ −zTΠTFΠz , F =

[
PΓ −KlP 0

0 βP

]
.

Hence, for V ′(z) ≤ 0 we require F to be positive semi-definite.
The positive semi-definiteness of the lower right block of F is
ensured, since β > 0 and P ≥ 0. We therefore find

F ≥ 0 ⇔ PΓ (τ, z, c)−KlP ≥ 0 . (27)

Now, since Γ is a Laplacian matrix of a connected graph its
kernel is one-dimensional and spanned by 1N [38]. Therefore, we
conclude that Γ and P have a common eigenbasis (and hence
commute) as P acts like the identity on 1⊥N and also sends 1N to
0. Thus, the upper left block can be analyzed by the eigenvalues

of Γ , where we recall the chosen order (7) of the eigenvalues, and
we find

[Γ (τ,z, c)−Kl1N ]P ≥ 0 ⇔ λ2{Γ (τ, z, c)} ≥ Kl .

□

The condition (24) on the normalized conductance
function requires some clarification concerning when it
holds. This is the goal of the next lemma.

Lemma 9. Let fG : R → R be a (at least once)
differentiable function such that

lim
z1→±∞

fG(z1) = ±∞ .

Furthermore, let its derivative with respect to z1 be a
function that is bounded from below and set

K := max
z1∈R

{
− d

dz1
fG(z1)

}
.

Then fG satisfies the conditions of lemma 8 with Kl = K+ϵ
for ϵ > 0 arbitrarily small, and is such that (12) is semi-
passive with unbounded storage function.

Proof With Kl = K + ϵ one has that fm : R → R defined as

fm(z1) = fG(z1) +Klz1 ∀ z1 ∈ R

is strictly monotonically increasing because its derivative w.r.t.
z1 is strictly positive. Lemma 6 ensures that (12) is strictly semi-
passive with unbounded storage function. By construction, fm
and fG satisfy (24) so that fG satisfies the conditions of lemma
8. □

4.2 Proof of theorem 7

Now, we will exploit the above results in order to show
that the synchronization manifold is globally asymptotically
stable under the conditions of theorem 7.

The strategy is as follows: We show that the bound on
V ′ obtained in lemma 8 can be spelled out in terms of a
vector ẑ, defined below in (28), that is perpendicular to the
kernel of M from (23). We then show that z ∈ S if and only
if ẑ = 0. We spell out the bound on V ′ in terms of the norm
of ẑ which we use to bound its integral. Afterwards we use
a variation of Barbalat’s lemma (provided in the appendix,
see lemmas 15 and 16) to conclude

lim
t→∞

ẑ(t) = 0 ,

which implies that z ∈ S. In order to apply Barbalat’s
lemma we must show that the solutions are uniformly
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continuous and it is there where we will use semi-passivity
of the coupled system.

Under the conditions of theorem 7, the conditions of
lemma 8 are satisfied according to lemma 9. We had seen
that then

V ′(z) ≤ −ζT
1 [PΓ −KlP ] ζ1 − βζT

2 Pζ2 .

Lemma 8 characterizes the synchronization manifold as the
linear subspace consisting of those z ∈ R2N for which ζ1 =
z̄11 and ζ2 = z̄21. In terms of P and the permutation matrix
Π from (22) one has that

S = ker

{[
P 0
0 P

]
Π

}
.

Since S is a linear subspace of R2N it is always possible to
split up the state vector z into a part zs in S and a part
ẑ orthogonal to it. By the above this split is facilitated by
constant projections:

zs(τ) = Π−1

[
P − 1 0

0 P − 1

]
Πz(τ), (28a)

ẑ(τ) = Π−1

[
P 0
0 P

]
Πz(τ) . (28b)

In terms of ζ1 and ζ2 this looks a bit simpler:[
ζ1,s(τ)
ζ2,s(τ)

]
=

[
P − 1 0

0 P − 1

] [
ζ1(τ)
ζ2(τ)

]
=

[
z̄1(τ)1N

z̄2(τ)1N

]
, (29a)[

ζ̂1(τ)

ζ̂2(τ)

]
=

[
P 0
0 P

] [
ζ1(τ)
ζ2(τ)

]
, (29b)

where

z̄1(τ) =
1

N

N∑
µ=1

zµ,1(τ) and z̄2(τ) =
1

N

N∑
µ=1

zµ,2(τ) (29c)

are the averages of the state variables taken over the
ensemble of N oscillators. One has that z ∈ S if and only if
ẑ = 0 which is equivalent to ζ̂1 = ζ̂2 = 0.

As Γ is the (symmetric) Laplacian matrix to a connected
graph its only eigenvector with eigenvalue 0 is 1N . Even
though Γ may vary over (normal) time, its kernel does not
change but is always spanned by 1N . Hence, ζ1,s(τ) and
ζ2,s(τ) defined above are always contained in the kernel of
Γ . Furthermore, zs and ẑ are given by linear combinations
of the entries of z with constant coefficients as can be seen
from (28). We can now express the bound on V ′ via ẑ
and exploit that ẑ can be decomposed as a function of the

eigenvectors of Γ excluding the eigenvector corresponding
to the eigenvalue zero. Here, we have that

V ′(z) ≤ −ζT
1 [PΓ −KlP ] ζ1 − βζT

2 Pζ2

≤ − [λ2 {Γ } −Kl]
∥∥∥ζ̂1

∥∥∥2 − β
∥∥∥ζ̂2

∥∥∥2 .
Hence, by our theorem’s assumption

λ2{Γ (τ,z, c)} > Kl , Kl = max{0,K} , ∀ (τ,z, c) ,

there exists a constant c0 > 0 such that,

V ′(z) ≤ −c0∥ẑ∥2 ,

and from this, we obtain via integration that

V (z(τ))− V (z0) ≤ −c0

� τ

0

∥ẑ(s)∥2ds . (30)

As V ≥ 0, the integral is bounded from above by c−1
0 V (z0)

and from below by 0 for all τ ∈ R.
According to prop. 4 the solutions of the diffusively

coupled system (20) are bounded and as its right hand side
is continuous we conclude that z′ is bounded. This implies
that z is uniformly continuous (u.c.) and as a consequence,
∥ẑ∥ : R → R, τ 7→ ∥ẑ(τ)∥ is u.c. because ẑ = Pz and linear
maps are u.c. It now follows from lemma 16 that

lim
τ→∞

∥ẑ(τ)∥ → 0 ⇒ lim
τ→∞

z(τ) ∈ S .

We conclude that S is globally asymptotically stable and
therefore proved theorem 7.

5 Application to resistive and
memristive coupling

We would like to consider some applications of theorem 7.
We consider ideal voltage-controlled memristors as coupling
elements, containing a simplification to purely resistive
coupling as a special case. As we consider explicit circuit
elements we will spell out the conditions of theorem
7 in terms of the circuit elements’ parameters. The
memristors we consider are governed by the following ODE
in input-state-output form, where the variables below are
parametrized w.r.t. time t and carry units with the exception
of the memristor’s state c:

ċ = Q−1
0 i, i = W (c)u, c ∈ [0, 1], (31a)

W (c) = W0 + c [W1 −W0] . (31b)
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Here, W (c) is the memductance with lower bound W0 and
upper bound W1 as the state variable c is restricted to the
interval [0, 1]. In the above description, the input u is the
voltage across the device, while the current i is both the
output as well as the quantity driving the evolution of the
memristor’s state. We consider the case where each edge
{µ, ν} ∈ E of the coupling graph G is realized by a memristor
of the above type and such that the constants Q0, W0 and
W1 may depend on the edge {µ, ν}, indicated by replacing
W with Wµν and Q0 with Qµν,0, etc., which we also collect
in a diagonal matrix Qd ∈ RNE×NE . Solutions to (31) exist
for all times regardless of the input u as the memristor’s
state variable is restricted4 to the interval [0, 1]. We collect
the memductances Wµν(cµν) in a diagonal matrix Wd(c) ∈
RNE×NE and define the coupling matrix as in (17) to be

W = W (c) = NWd(c)N
T . (32)

We would like to provide the full set of ODEs for identical
FHNOs coupled by ideal memristors of type (31) in circuit
quantities instead of the normalized ones used in (20).
We denote by uC ∈ RN the vector of capacitor voltages,
iL ∈ RN the vector of inductor currents, j = 1N the vector
of supply currents, and R0 = R1N , C = C1N , L = L1N

diagonal matrices carrying the resistances, capacitances and
inductances respectively that occur in the FHNO circuit
model. The ODE corresponding to (20) is then given by (cp.
(12) and (11) concerning the translation between the two
models)

Cu̇C = j − iG(uC)− iL −W (c)uC , (33a)

Li̇L = uC −R0iL , (33b)

ċ = Q−1
d Wd(c)N

TuC , (33c)

with W (c) as in (31) and (32) and where iG denotes the
vectorized form of iG analogous to fG and fG.

In order to apply theorem 7 one needs to find a lower
bound to λ2{W (c(t))} for all t ≥ t0. One certainly has

λ2{W (c(t))} ≥ λ2,min := min
c∈[0,1]NE

{λ2{W (c)}}. (34)

Since the eigenvalues of Laplacian matrices are monotonic
functions of the edge-weights [38], this minimum can be
computed by setting each edge weight equal to the minimal
memductance Wµν,0 which is assumed at cµν = 0. Thus,

λ2,min = λ2{W (0)} . (35)

4It is possible to realize an equivalent system with c ∈ R, where one
augments the r.h.s. of (31) by θ-functions; then solutions to initial values
c0 ∈ [0, 1] exist for all times. Hence, one could model a system with
restricted state variable with unrestricted state variables as well.

We arrive at the following corollary to theorem 7:

Corollary 10. Consider the N identical FHNOs coupled
diffusively by ideal memristors in (33). Let G denote the
weighted undirected graph with locally adaptive weights
associated to the coupling network and let W (c) denote
the associated Laplacian matrix of G described in (32).
The states of the oscillators synchronize if the following
conditions hold:

1. the coupling graph G is connected,
2. the nonlinear conductance function iG : R → R from (9)

satisfies limu→±∞ iG(u) = ±∞ and −diG
du admits a global

maximum ∆G := maxu∈R
{
−diG

du (u)
}
,

3. the lower bound λ2,min = λ2{W (0)} for the algebraic
connectivity λ2{W (c(t))}, i.e. the smallest nonzero
eigenvalue of W (c(t)), satisfies

λ2,min >max{0,∆G} .

For the special case of static coupling described by a
constant conductance matrix W , one replaces λ2,min with
the algebraic connectivity λ2{W }.

The quantity ∆G in the above corollary can be
interpreted as the maximal negative differential conductance
in the FHNO’s circuit realization. It is striking that the
only parameters in the above sufficient synchronization
condition are ∆G and the minimal possible connectivity
λ2,min while the other parameters of the FHNO play
no role at all. We note that for most applications,
indiscriminate synchronization of neural oscillators with
memristive coupling is undesirable. In this case the
memristors need to be chosen such that the minimal possible
connectivity λ2,min does not exceed ∆G.

For synchronized states no current flows through the
coupling network and therefore synchronization coincides
with minimization of power dissipated by the coupling
network. The projection P used in the Lyapunov function
(23) is in fact the Laplacian matrix to the unweighted
complete graph. For static coupling, one can define an
alternative Lyapunov function to (33) where the electrical
counterpart to Γ is replaced by the coupling matrix W .
Explicitly, one can show that the storage function

S (uC , iL) = uT
CWuC + Z2

0 iTLWiL (36)

is a weak Lyapunov function to (33) leading to the same
result as cor. 10 (for static coupling). The first term is in
fact the power dissipated by the coupling network. This
is another way to observe the implication ”synchronization
implies minimization of dissipated power in the coupling
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network” by having the Lyapunov function dominate the
dissipated power.

If one chooses identical memristors, then λ2,min =
W0 λ2(Γ0), where Γ0 describes the unweighted Laplacian
matrix to the network. The algebraic connectivity λ2(Γ0)
is bounded from above both by the vertex- as well as the
edge-connectivity [39], defined as the minimal number of
vertices (together with the edges connected to them) or
edges respectively that one has to remove to render the
graph disconnected. This is again bounded from above by
the minimal degree of the vertices, i.e., one finds the vertex
with the least neighbors and uses this as a bound. Of
course, this can be much too conservative as it is possible
to construct graphs with edge-connectivity equal to 1 but
such that every neighbor has at least N0 edges (just take
two complete graphs on N0 vertices each and join them by
a single edge); but nonetheless this gives an estimate if one
is unwilling to compute λ2(Γ0) directly.

6 Simulation Results and Discussion

6.1 Simulation Results

In the first part of this section, we describe a practical
guide towards the application of the derived synchronization
condition. We use the ODE in terms of circuit parameters
(33) and the criterion from cor. 10, once for memristive
couplings and once for purely resistive couplings. In order

Circuit parameters

R = 4.7 kΩ j = 0 A G0 = 100 µS

C = 100 nF L = 23.5 H U0 = 0.24 V

W0 = 100.01 µS W1 = 500 µS Q0 = 1 µA/s

Table 1: FitzHugh-Nagumo oscillator parameters.

to compare the sharpness of our synchronization condition
to the one of [20] and its predecessor [31] in section 6.2, we
simulate the same example as the latter, which is depicted
in Fig. 3. Here, every vertex represents a FHNO as depicted
in Fig. 1, whereas every edge represents the memristive and
resistive interconnections from section 5, which are chosen
to be identical. The circuit parameters used within our
simulations are given in Table 1. The nonlinear conductance
function iG is the one given in (10) with U0 and G0 as in
table 1.

In order to apply our synchronization condition, we
must first calculate the negative derivative of iG, which
is bounded from above and has the maximum ∆G =
G0 = 100µS, see Fig. 4. In a practical scenario, one
must measure the (i, u)-curve of the nonlinear conductance,

1

2

3

4

56

7

8

9

Fig. 3: Graph abstraction of the emulated example. Each
vertex represents a FitzHugh-Nagumo oscillator. The edges
represent the memristive interconnections depicted in Fig. 2
with identical coupling elements.
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Fig. 4: The nonlinear conductance function (10) and its
negative derivative w.r.t. u.

calculate the negative derivative numerically, and find its
global maximum. According to cor. 10, the next step is to
verify, whether for all times and memductance states, the
connectivity of the graph is greater than ∆G.

The connectivity of the unweighted graph is given by

λ2{Γ0} = 1 , with Γ0 = diag(A01)−A0 ,

where Γ0 denotes the unweighted graph’s Laplacian and
A0 is the unweighted adjacency matrix. For uniform static
coupling of strength Gc, the weighted graph’s Laplacian
is given by W = GcΓ0 and so λ2{W } = Gc in this
case. For identical memductances as coupling elements with
high-ohmic state W0 one has by (35) that

λ2,min = W (0) = W0λ2 {Γ0} = W0 . (37)

Hence, W satisfies the inequality of corollary 10 if

Gc > ∆G = 100µS, W0 > ∆G = 100µS . (38)
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Fig. 5: Left: The plot shows the synchronization error (39) over time for 100 identical networks with different initializations.
Right: 100 randomly chosen initializations of the system with coupling topology as in Fig. 3, where µ labels the oscillators.

We stress that it is not necessary to pick the
coupling weights uniformly. Any coupling graph W with
λ2{W (0)} > 100µS works here.

We display in Fig. 5 the results of a simulation for
100 copies of the system with memristive coupling for the
case of W0 = 100.01µS just above the boundary of our
condition. The memristors are initialized identically in the
high-ohmic state to give the system the ”slowest” start
possible. The oscillators themselves are initialized randomly
such that iL,0 = 0A and uC,0 is distributed uniformly in
[−400, 400] mV, where 400 mV is the maximal amplitude
of the uncoupled FHNO’s stable limit cycle. The quantity
plotted is

e(t) =
1

emax

N∑
µ=2

[uC,µ(t)− uC,1(t)]
2
, (39)

with emax chosen s.t. maxt e(t) = 1. This serves as a
measure for the synchronization error although it neglects
the second state variable iL but has the advantage that it
is also a measure for the power distributed by the coupling
network. We observe that eventually all FHNOs synchronize
but that the time required can vary. With the chosen
parameters the period of a single oscillator is about 2ms
so that synchronization occurs within at most 10 oscillation
cycles for the chosen range of initial values. We also observe
that the power dissipated by the coupling network is not
monotonically decreasing but exhibits a damped oscillation
in magnitude with a similar period as the FHNO.

We have also tested the distance between our sufficient
synchronization condition from the (unknown) necessary
one by running a series of simulations for different (uniform)
static coupling conductances on the graph depicted in
Fig. 3 with the parameters in Table 1. The results are
displayed in Fig. 6, where the boundary of our condition
Gc = 100µS is placed at the very top of the scale. We

0 1 2 3 4 5
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c
in

S

0

1

e(
t)

Fig. 6: The synchronization error (39) over time for
static coupling and a wide range of conductances. The
y-axis starts at the boundary Gc = 100 µS of the
sufficient condition. Synchronization is achieved for coupling
conductances orders of magnitude lower than required but
with reduced and varying speed.

observe that synchronization is (eventually) achieved for
conductances three orders of magnitude smaller than the
criterion requires. However, we also observe that the time at
which synchronization is achieved increases drastically from
a few oscillation cycles to more than 1000.

While we did not observe a large variance in
synchronization speed in the memristive scenario, we did
so in the static case for situations where the criterion was
not met. We think that this suggests that the gap between
sufficient and necessary conditions for synchronization needs
additional exploration. We also think that our sufficient
condition should be further refined and augmented by
criteria that guarantee a certain synchronization speed,
potentially in dependence of the initial values, as it may be
unacceptable to have a required synchronization time of a
factor more than a 1000 time larger then the system’s time
scale defined by the FHNOs period.
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6.2 Comparison with the literature

To the best of our knowledge there exists no sufficient
synchronization condition for memristively coupled FHNOs
beyond the situation of two memristively coupled oscillators
[40] although the phenomenon has been studied numerically
on numerous occasions for two or more oscillators not
necessarily of FHN-type [41–44]. While there exist sufficient
conditions towards systems coupled by a time-variant
coupling matrix [20, 21], the time-variance there is not
allowed to be depend on the oscillators’ state or additional
state variables which excludes both nonlinear coupling
elements as well as locally adaptive ones. A few types
of diffusive, locally adaptive coupling have been studied
in [23, 45], where the coupling strength is only allowed
to be increasing so that our general form of admissible
coupling and its evolution law also adds to the existing
literature. For purely static, linear coupling the picture is
more complicated, which is why we discuss this topic to more
extent below and summarize our discussion in table 2. Given
the vast amount of literature on the topic we can of course
only include a selection of publications. We begin with
comparing the sharpness of our synchronization condition
for static diffusive coupling to the one presented in [31]
as this is also based on semi-passivity, albeit working with
a non-smooth Lyapunov function. Afterwards we analyze
why our result coincides with the bound obtained from
contraction theory more recently [20, 21]. We also relate
it to QUAD-conditions [25] and conclude with a direct
approach based on Lyapunov’s method [29]. Although [29]
was published almost 30 years ago, it still sets the bar
of the sharpest sufficient condition; it is reached but not
outperformed by most of the other works, including the
specialization of our own result to the static linear case.

The following unitless version of the FitzHugh-Nagumo
model is used in [19]:

ẋ = −
[
x3

3
− x

]
+ I + u , (40a)

ẏ = ε[x+ a− by] , (40b)

where b, ε, a > 0 and I are constants and u denotes
the input. We remark that while our model (12) allows
more general nonlinearities in x than (11d) as well as a
dependence of ẋ on y, it only treats the case a = 0. The
relevant ingredient for our criterion is the nonlinearity

fG(z1) =
1

3
z31 − z1 (41)

in (12). Since the maximum of − d
dz1

fG evaluates to 1 (the
slope of fG is extremal at the origin), we have the condition

λ2{Γ } > 1. The condition presented in [31] spells out as

λ2{Γ } ≥ 1 + ε+
β2
1

3
, (42)

where β1 is the bound on x resulting from the fact
that the trajectories are ultimately bounded. According to
[31] common values (of the parameters relevant for the
criterion) for biologically plausible firing behavior of the
FHN-oscillators are ε ≈ 1

12 and β1 ≈ 2 which would require
the connectivity to fulfill λ2{Γ } > 2.41. But even without
explicit values we observe that our condition is sharper than
(42) which is always strictly greater than 1.

The bound λ2{Γ } > 1 for the above FHN-model
(40) is the sharpest available sufficient condition for
synchronization and has also been obtained in [20, cor. 4.1]
with the methods of contraction theory, in [21, thm. 30] as
part of the generalization of contraction theory to so-called
semi-contracting systems, and in [29] by a direct application
of Lyapunov’s method.

The general sufficient condition of [20] is spelled out in
terms of the log-matrix norm µ2,P and it is also obtained for
more general log-matrix (semi-)norms in [21]. According to
[21] (this is the phrasing of [22, thm. 5.19]) the diffusively
coupled system

ẋµ = f (t,xµ)−
∑
ν

aµν [xµ − xν ] , µ ∈ {1, . . . , N} . (43)

synchronizes if there exist p ∈ [1,∞], positive definite Q ∈
Rn×n and ε > 0 such that for every (t,x) ∈ R≥0 × Rn one
has

µp,Q (Df(t,x)) ≤ λ2 {L} − ε, (44)

where L is the Laplacian matrix to the weighted undirected
graph with adjacency matrix A and µp,Q denotes the
weighted log-matrix-norm. The only one needed explicitly in

the following is µ2,Q(M) = λmax

(
QM+MT

2 Q−1
)
. Now by

the Demidovic-lemma ([46], cp. [22, lem. 3.1]) the Jacobian
Df satisfies µ

2,Q
1
2
(Df(x)) ≤ C for some positive-definite

matrix Q if and only if f satisfies the one-sided Lipschitz
condition

[f(x)− f(y)]
T
Q [x− y] ≤ C ∥x− y∥2

2,Q
1
2

(45)

for all x,y ∈ Rn, where ∥x∥2,Q := ∥Qx∥2. One can
check that the nonlinear function fG satisfies the one-sided
Lipschitz condition

− [fG(x)− fG(y)] [x− y] ≤ Kl [x− y]
2
, (46)
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where Kl is as in (24), i.e., such that fm(z1) = fG(z1) +
Klz1 is strictly monotonic increasing. Due to the choice
of coordinate transformation used to describe the unitless
model, this translates to the following condition on f :

[f(x)− f(y)]
T
[x− y] ≤ Kl ∥x− y∥22 . (47)

Therefore, our condition λ2{Γ } > max{0,K} with K =

maxz1∈R

{
−dfG

dz1
(z1)

}
implies that (44) is satisfied due to the

equivalence of one-sided Lipschitz-conditions and bounds on
log-matrix-norms established by the Demidovic-lemma.

QUAD-conditions, which have been used for instance in
[23–25, 45], are a variation of one-sided Lipschitz-conditions:

Definition 11. Let f : Rn → Rn be a vector field, let ∆
be a diagonal matrix and ω > 0 a real number. One says
that f is QUAD(∆, ω) if it satisfies the inequality

[x− y]T[f(x)− f(y)] ≤ [x− y]T∆[x− y]

− ω[x− y]T[x− y] .

There is an intimate connection between QUAD-
conditions and contraction theory summarized in [25].
Denote by Λ0 = −Γ the negative Laplacian to (43), let f be
QUAD(∆0, ω) for some ω > 0 and introduce the following
matrices:

Λ := Λ0 ⊗ 1n, Π := PN ⊗ 1n, ∆ := 1N ⊗∆0, (48)

where PN is the orthogonal projection to the complement
of 1N . According to [24, thm. 2]) the network of oscillators
(43) synchronizes if the matrix [Π∆+ΠΛ] is negative
semi-definite. The negative semi-definiteness of the matrix
[Π∆+ΠΛ] can be characterized by an inequality between
the maximal eigenvalue of∆0 and the algebraic connectivity
of Γ via a standard argument. To our surprise we could
not find this in the literature so we record a proof for the
reader’s convenience.

Proposition 12. The matrix [Π∆+ΠΛ] is negative semi-
definite if and only if the largest eigenvalue λmax {∆0} of ∆0

and the algebraic connectivity λ2 {Γ } satisfy λmax {∆0} ≤
λ2 {Γ }.

Proof As∆0 is diagonal andΛ0 = −Γ is symmetric both possess
a basis of eigenvectors {v1, . . . ,vN}, {e1, . . . , en} respectively,
where the ei are the unit vectors of Rn. Since Λ = Λ0 ⊗ 1n and
∆ = 1N ⊗∆0 commute a joint basis of eigenvectors of Λ and ∆
is given by

{
vµ ⊗ ej , µ = 1, . . . , N, j = 1, . . . , n

}
. One has

[∆+Λ]
[
vµ ⊗ ej

]
=

[
∆0,jj − λµ {Γ }

] [
vµ ⊗ ej

]
(49)

for all µ = 1, . . . , N and j = 1, . . . , n. Furthermore, as
Γ is a Laplacian matrix, the eigenvectors to the eigenvalues
λ2 {Γ } , . . . , λN {Γ } are orthogonal to the kernel of PN and
therefore PNvµ = vµ for all µ ≥ 2, which leads to

[Π∆+ΠΛ]
[
vµ ⊗ ej

]
={[

∆0,jj − λµ {Γ }
]
vµ ⊗ ej ∀µ ≥ 2

0 for i = 1.

Thus, [Π∆+ΠΛ] is negative semi-definite if and only if ∆0,jj−
λµ {Γ } ≤ 0 for all µ ≥ 2 and all j = 1, . . . , n. Since λ2 {Γ } is
the smallest eigenvalue apart from λ1 {Γ } this is equivalent to

λmax {∆0} ≤ λ2 {Γ } . (50)

□

In order to compare our synchronization condition to
the one of [24, thm. 2] based on QUAD-conditions we need
to derive QUAD-estimates for the FHNO in dependence
of the parameters. We derive the following estimate in the
appendix:

Lemma 13. Consider the FitzHugh-Nagumo oscillator in
the form[

ẋ
ẏ

]
= f

([
x
y

])
=

[
−ax3 + bx− c0y + j

c1x− c2y

]
(51)

with a, b, c0, c1, c2 ≥ 0 and constant current injection j.

Then f is QUAD for ∆, ω such that ∆11 − ω ≥ b+ |c1−c0|
2

and ∆22 − ω ≥ −c2 +
|c1−c0|

2 .

In the case of static diffusive coupling one can now
compare the criteria obtained from QUAD-conditions and
ours. As ω can be chosen arbitrarily small one has that f

is QUAD(∆, ω) for all ∆ such that ∆11 > b + |c1−c0|
2 and

∆22 > −c2 +
|c1−c0|

2 and as all parameters are nonnegative
∆11 ≥ ∆22. By the use of Proposition 12 this results in the
sufficient condition

b+
|c1 − c0|

2
> λ2 (Γ ) . (52)

Our conditionK = maxz1∈R

(
−dfG(z1)

dz1

)
< λ2 (Γ ) spells out

in terms of the above parameters as b < λ2 {Γ } since the
slope of the conductance function is extremal at the origin.
Hence, our condition appears to be sharper in this case,
because it does not depend on the cross terms proportional
to c0, c1 that occur in the above inequalities. However, we
had also seen that a coordinate transformation can ensure
c1 = c0 so that the two in fact coincide if the ODE is set up
appropriately.

Lastly, we would like to present one of the sufficient
synchronization conditions from Wu and Chua [29] dating
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back to 1995. In this work the authors provide a rather
general and powerful framework to study synchronization
of identical oscillators subject to static linear coupling with
particular emphasis on allowing different classes of coupling
matrices. Their results are therefore divided according to
those classes of coupling matrices and we only cite the case
that applies to the system (43):
Assume there exist a positive definite matrix V , a
diagonal matrix T = diag(t1, . . . , tn) and a continuous,
nondecreasing function c : R → R satisfying c(0) = 0 and
c(s) > 0 for all s ̸= 0. If [29, eq. 17] holds, i.e., if

[x− y]
T
V [f(x, t)− f(y, t)− T [x− y]] (53a)

≤ −c (∥x− y∥) (53b)

for all x,y ∈ Rn and t then (43) synchronizes if λ2{L} > ti
for all i (This is [29, thm. 7, cor. 3]). One observes that
(53) is a generalized form of QUAD-condition as it is more
flexible due to the matrix V . Based on the previous example
one sees that this provides a more powerful criterion than
[24, thm. 2] based on QUAD-conditions as one has a more
tractable method to sharpen the bound by variation of V .
One can check that (12) satisfies (53) for

V = 1 and all T = diag(t1, 0) (54)

with t1 ≥ K. Thus, for t1 = K one recovers the condition
λ2{L} > K from thm. 7 for the static case which coincided
with [20, cor. 4.1]. This is again no coincidence, as (53)
and the one-sided Lipschitz-condition (45) are similar and
at least for diagonal matrices lead to equivalent results. To
see this, spell out (53) with, for simplicity, diagonal V = Q:

[x− y]
T
Q [f(x, t)− f(y, t)]

≤ [x− y]
T
QT [x− y]− c (∥x− y∥)

≤ [x− y]
T
QT [x− y]

≤ max
i

{ti} ∥x− y∥2
2,Q

1
2
,

which is a one-sided Lipschitz-condition (45) with C =
tmax = maxi{ti}.
Conversely assume that (45) holds for diagonal, positive
definite Q and C > 0, then

[f(x)− f(y)]
T
Q [x− y] ≤ C ∥x− y∥2

2,Q
1
2

(55)

= C [x− y]
T
Q [x− y] ≤ [x− y]

T
T0Q [x− y] (56)

for T0 = diag(t1, . . . , tn) such that ti ≥ C. Hence, (53) holds
for all T = T0 + ε1 with ε > 0 as −ε∥x − y∥2 provides
a function −c (∥x− y∥) with the required properties. The

sharpest choice consists of ti = C so that tmax = C
which is the relevant part of T towards the synchronization
condition. In conclusion, although (53) and (45) are not fully
equivalent due the higher flexibility in the matrix T they
lead to the same synchronization condition, because only
the maximal eigenvalue of T matters.

It is fascinating that the sharpness of sufficient
synchronization conditions for oscillators coupled by static
linear coupling has not increased over the last 30 years. We
wonder, if this is only due to the similarities of the used
methods, or if there is something deeper to be learned here.

7 Conclusion and Outlook

This work is dedicated to the derivation of a sufficient
synchronization condition for a network of (identical)
diffusively coupled FitzHugh-Nagumo oscillators with time-
variant, state-dependent and locally adaptive coupling,
which among others includes coupling by memristors and/or
nonlinear conductances. We started by briefly reviewing the
necessary theory of dissipative and semi-passive systems and
provided a description of uncoupled and diffusively coupled
FitzHugh-Nagumo-type oscillators by ordinary differential
equations fitting in this framework. Then, we provided
a Lyapunov function candidate V and derived conditions
on the oscillators’ nonlinear conductance relative to the
connectivity of the network for V̇ to be decreasing along
the solutions of the system. Our condition on the nonlinear
conductance function iG is that it admits a modification
by a linear term im(u) = iG(u) + ∆Gu such that im
is strictly monotonically increasing. We then showed that
the oscillators synchronize globally, i.e., from any initial
state, if the connectivity λ2{W } of the network exceeds
the slope ∆G of this modification for all times. To examine
the validity and sharpness of this condition, we conducted
a few numerical experiments. Finally, we showed that
our synchronization condition specialized to linear static
coupling is as sharp as those from the literature [20, 21, 29]
but also easy to use for practitioners who need these
conditions to be given in terms of parameters of the ideal
circuit.

In future research, we would like to sharpen our
synchronization condition and to loosen the condition on
λ2{W } for state-dependent and adaptive coupling. In the
current form the condition does not take into account that
only a minor part of phase space is reached by a trajectory
but the criterion considers the minimum of λ2{W } over
all times and phase space. We would therefore like to spell
out this conditions with respect to the initial values in
the sense that we want to study how the minimum over
a given trajectory evaluates and depends on the initial
value. We also plan to investigate if our approach can
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Coupling type Time variance Clusters General oscillators Main bound

Semi-passivity as in thm. 7 diffusive, nonlinear passive adaptive No No 1 < λ2 {L}
Direct Lyapunov approach general linear static No Yes 1 < λ2 {L}

Contraction Theory diffusive, linear time-variant Yes Yes 1 < λ2 {L}
QUAD-conditions diffusive, linear (adaptive) No Yes 1 < λ2 {L}∗

Table 2: A comparison of the different approaches to synchronization mentioned, which for the static case all compare the
algebraic connectivity λ2{L} to some other parameter that is set to 1 in the column ”main bound”. The parentheses and the
asterisk in the last line indicate that the results of [24, 25] include only a small class of adaptive couplings and that although
the main bound is determined by λ2 {L}, the original exposition does not state this explicitly.

be adapted to the case of heterogeneous oscillators and
clustered synchronization.
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Nomenclature

1n ∈ Rn×n is the unit matrix.
1n ∈ Rn is the vector whose every entry is equal to 1.
zµ: state vector of subsystem µ; zµ,1, . . . , zµ,nµ

: its
components; nµ: dimension of subsystem µ.
N : the number of subsystems.
x and y: input and output vectors of dim. k except for
section 6.2, where they just denote generic vectors.
ω: supply rate, a term which occurs in definitions 1, 2 and 3.
S: storage function, see def. 1.
aµν : coupling strength of the gen. diffusive coupling in (3).
Depends on time t, an edge variable cµν and zµ, zν .
kµν : describes the time evolution of cµν , see (3).
G: The coupling graph with N vertices V and NE edges E .
N ∈ RN×NE : incidence matrix of G to some arbitrary
orientation.
D ∈ RNE×NE : diag. matrix carrying the edge weights of G.
Γ : The Laplacian matrix to G, defined in (5).
z: The vectors z1, . . . , zN stacked by subsystem. x and y
are defined the same way, see sec. 2.
ζ1 and ζ2: stacked vectors of the first, resp. second,
component of the zµ, see (18) and (22).
S denotes the synchronization manifold, see def. 5.
W ∈ RN×N : conductance matrix from the electrical model
in 3.2; related to Wd ∈ RNE×NE , the matrix carrying the
edge conductances via (17) and to Γ via (19a).
uC and iL: variables of the FHNO-circuit model.
j, C, L, R: scalar constants of the model.
iG : R → R: nonlinear conductance function.
z1, z2: variables in the unitless model.
τ = ω0t: Normal time used in the unitless model.
ι, α, β, γ: scalar constants of the unitless model.
fG : R → R: unitless conductance function.
fG: vectorized version of fG, see (19).
λµ {A}: µ-th eigenvalue of A in ascending order.
β = β1: parameter matrix in unitless model (19).
K: constant associated to fG and relevant in thm. 7.

1
⊥
N ⊂ RN : space of vectors orthogonal to 1N

P or PN : orthogonal projection to 1⊥
N

Π ∈ R2N×2N : relates the stacked vector z to ζ1 and ζ2.
V : Lyapunov function, bilinear form w.r.t. M , see (23)
Kl: constant associated to fG in (24)

ẑ, ζ̂1, ζ̂2: nonsynchronous parts of the respective vectors.
ζ1,s, ζ2,s: synchronous part of ζ1, ζ2.

A Appendix

A.1 A preparatory lemma to prop. 4

In order to prove prop. 4 one needs the following lemma:

Lemma 14. Consider N strictly semi-passive systems
of dimensions n1, . . . , nN with storage functions Sµ and
functions Hµ and ρµ as in def. 3. If the ρµ : R → R≥0 are
unbounded from above and strictly monotonically increasing
there exists a nonnegative function ρ : Rntot → R≥0 and a
constant r > 0 such that

H(z) ≥ ρ (z) ∀ ∥z∥ ≥ r , where (57a)

ntot =

N∑
µ=1

nµ , H(z) =

N∑
µ=1

Hµ(zµ) . (57b)

Proof We cannot assume for ∥z∥ arbitrarily large that this also
holds for all ∥zµ∥. Thus, we cannot use all individual bounds
simultaneously but need to consider the worst case, i.e., only one
∥zµ∥ is large enough for Hµ to be bounded from below by ρµ.
Set hµ = infzµ Hµ(zµ) then

H(z) =

N∑
µ=1

Hµ(zµ) ≥ Hν(zν) +

N∑
µ̸=ν

hµ (58)

holds for all ν and all z. Without loss of generality assume that
hµ ≤ 0 as this only provides an even lower bound on H(z). Let
εν > 0 and choose r̃ν > 0 such that

ρν(r̃ν) = εν +
N∑

µ̸=ν

hµ and

ρν(x) ≥ εν +

N∑
µ̸=ν

hµ , ∀x ≥ r̃ν .

This is possible because all ρµ are strictly monotonically
increasing and unbounded. We furthermore are free to choose
r̃ν ≥ rν , where rν > 0 is the constant fulfilling

Hν (zν) ≥ ρν(∥zν∥) , ∀∥zν∥ > rν .

For ν = 1, . . . , N set

ρ̃ν(x) =

{
ρν(x)−

∑
µ ̸=ν hµ , for x > r̃ν

εν , for x ≤ r̃ν
(59)
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and observe that ρ̃ν is positive and monotonically increasing.
One then has for ∥zν∥ > r̃ν that

Hν (zν) ≥ ρν (∥zν∥) = ρ̃ν (∥zν∥)−
∑
µ̸=ν

hµ (60)

and therefore

Hν (z) ≥ Hν (zν) +
∑
µ̸=ν

hµ ≥ ρ̃ν (∥zν∥) , ∀z ∈ Rntot ,

such that ∥zν∥ > r̃ν . Now set

ρ̃ (z) = min
ν

ρ̃ν (∥zν∥) and r̃ =

√√√√ N∑
µ=1

r̃2µ

which implies ρ̃ (z) ≤ ρ̃ν (∥zν∥) by definition.
Now for ∥z∥ > r̃ there exists ν such that ∥zν∥ > r̃ν and hence

H (z) ≥ Hν (zν) +
∑
µ̸=ν

hµ ≥ ρ̃ν (∥zν∥) ≥ ρ̃(z) (61)

for all ∥z∥ > r̃. This shows the lemma with ρ = ρ̃ and r = r̃.
□

A.2 Proof of Proposition 4

We don’t assume the systems to be identical or have equal
dimension, therefore define ntot =

∑N
µ=1 nµ, where nµ is

the state space dimension of the µ-th subsystem. Each
individual subsystem has a storage function Sµ to which
there exists a function Hµ as in def. 3 such that along the
trajectories zµ(t) one has

Ṡµ(zµ) ≤ xT
µyµ −Hµ(zµ) .

By assumption L ≥ 0, so that for

S(z) =

N∑
µ=1

Sµ(zµ) and H(z) =

N∑
µ=1

Hµ(zµ)

one has

Ṡ ≤
N∑

µ=1

xT
µyµ −Hµ(zµ)

= −yTL(t, z, c)y −H(z)

≤ −H(z) ,

along the solutions of (3), which holds for all (t, z, c). This
implies the integral inequality:

S (z(t))− S (z(t0)) ≤ −
� t

t0

H (z(τ)) dτ . (62)

We want to use the above inequality to show that z(t)
is bounded for all t and in order to do so we need to

turn bounds for Hµ by ρµ into a bound for H by a single
nonnegative function ρ outside some ball Br(0) ⊂ Rntot .
Now as all storage functions Sµ are radially unbounded, the
same is true for S and therefore to C > 0 there exists R > 0
such that

{z ∈ Rntot | S(z) ≤ C} ⊂ BR(0), (63)

where BR(0) denotes the ball of radius R in Rntot centered
at 0. We may assume that R ≥ r > 0 with r as in lemma 14.
We wish to ignore what happens inside BR(0) by setting

S̃(z) :=

{
0 if ∥z∥ ≤ R

S (z) otherwise.
, (64a)

ρ̃(z) :=

{
0 if ∥z∥ ≤ R

ρ (z) otherwise.
. (64b)

Then S̃ is also radially unbounded since it is equal to S
outside a compact region. Furthermore, from inequality (62)
one deduces

S̃ (z(t))− S̃ (z(t0)) ≤ −
� t

t0

ρ̃ (z(τ)) dτ (65)

along the solutions of (3). For trajectories outside the ball
BR(0) this follows directly from (62) and for trajectories
inside the ball this is trivially satisfied. For trajectories that
cross the ball’s boundary exactly once at time t1 one can
split the integral as

� t

t0

ρ̃ (z(τ)) dτ =

� t1

t0

ρ̃ (z(s)) dτ +

� t

t1

ρ̃ (z(τ)) dτ ,

to obtain

S̃ (z(t))− S̃ (z(t0)) ≤
� t1

0

ρ̃ (z(τ)) dτ +

� t

t1

ρ̃ (z(τ)) dτ.

This shows that (65) holds for any trajectory of (3) as one
can subdivide the integrals in the above manner for more
than one crossing time as well. Now as ρ̃ is nonnegative this
shows

S̃ (z(t)) ≤ S̃ (z(t0)) , ∀ t ≥ t0 ,

and together with S̃ being radially unbounded this shows
that z(t) is bounded for all t which concludes the proof.
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A.3 Barbalat’s Lemma and Derivatives

Lemma 15. (Barbalat’s lemma [47]) Let f : R → R be
uniformly continuous function such that

lim
t→∞

� t

0

f(τ) dτ

exists and is finite, then

lim
t→∞

f(t) = 0 .

In our setting it is more convenient to use a cousin
of Barbalat’s lemma due to [48] (see also [49] for a nice
collection of different versions of Barbalat’s lemma and
where to find them).

Lemma 16. (Cp. [48]) Let f : R → R be uniformly
continuous and square-integrable, i.e., such that

� +∞

−∞
f2(t) dt < ∞ .

Then one has

lim
t→∞

f(t) = 0.

If f is differentiable, one may replace ”f uniformly
continuous” by ”ḟ being bounded”.

A.4 Proof of the QUAD-estimate in lemma
13

One computes

[
x1 − x2

y1 − y2

]T [
f

([
x1

y1

])
− f

([
x2

y2

])]
=

[x1 − x2]
[
−a

[
x3
1 − x3

2

]
+ b [x1 − x2]− c0 [y1 − y2]

]
+ [y1 − y2] [c1 [x1 − x2]− c2 [y1 − y2]]

= −a [x1 − x2]
[
x3
1 − x3

2

]
+ b [x1 − x2]

2

+ [c1 − c0] [x1 − x2] [y1 − y2]− c2 [y1 − y2]
2

(i)

≤ −a [x1 − x2]
[
x3
1 − x3

2

]
+
[
b+ |c1−c0|

2

]
[x1 − x2]

2

+
[
−c2 +

|c1−c0|
2

]
[y1 − y2]

2

(ii)

≤
[
b+ |c1−c0|

2

]
[x1 − x2]

2
+
[
−c2 +

|c1−c0|
2

]
[y1 − y2]

2

=

[
x1 − x2

y1 − y2

]T [
b+ |c1−c0|

2 0

0 −c2 +
|c1−c0|

2

][
x1 − x2

y1 − y2

]
,

where at (i) it is used that 2ab ≤ a2 + b2 and at (ii) that
[x1 − x2]

[
x3
1 − x3

2

]
≥ 0 for all x1, x2 ∈ R. This shows that

f is QUAD(∆, ω) for all ∆, ω such that

∆11−ω ≥ b+
|c1 − c0|

2
and ∆22−ω ≥ −c2+

|c1 − c0|
2

.
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