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Abstract

Drowsiness is the leading cause of many fatal accidents and a substantial financial burden for the economy. Efforts have been

made to develop techniques to prevent major accidents while remaining practical for everyday use. The most successful approach

discovered thus far involves utilizing physiological techniques that rely on EEG signals. Despite their promising performance,

the signal collection process has made them unsuitable for practical implementations. However, the emergence of low-cost

commercial EEG headsets has enabled tackling this issue. Our study aimed to assess the effectiveness of machine learning

models in identifying drowsiness stages using minimal EEG channels. The study was conducted with fifty sleep-deprived

participants driving in a simulator. Based on the Observer Rated Drowsiness method, we divided the stages of drowsiness

into three categories: alert, drowsy, and sleepy. Various features were extracted from the EEG signals in time, frequency,

and time-frequency domains. Three models were trained in each domain using k-nearest neighbors and ensemble bagged tree

classifiers. A majority vote among the three models determined data labels, trained using different combinations of channel data

features. Three training strategies were utilized: 1) single channel, 2) temporal channels, frontal channels, left-side channels,

and right-side channels separately, and 3) all channels. The results of 10-fold cross-validation showed that the frequency

features of temporal channels had the highest accuracy. The best results for nearest neighbors were 97.1% (alert-sleepy), 96.6%

(drowsy-sleepy), and 96.7% (alert-drowsy). The highest accuracy of ensemble bagged trees was 100% for all three models.
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Abstract- Drowsiness is the leading cause of many fatal accidents 
and a sub-stantial financial burden for the economy. Efforts have 
been made to develop techniques to prevent major accidents while 
remaining practical for everyday use. The most successful approach 
discovered thus far in-volves utilizing physiological techniques that rely 
on EEG signals. Despite their promising performance, the signal 
collection process has made them unsuitable for practical 
implementations. However, the emergence of low-cost commercial EEG 
headsets has enabled tackling this issue. Our study aimed to assess the 
effectiveness of machine learning models in identi-fying drowsiness 
stages using minimal EEG channels. The study was conducted with 
fifty sleep-deprived participants driving in a simulator. Based on the 
Observer Rated Drowsiness method, we divided the stages of drowsiness 
into three categories: alert, drowsy, and sleepy. Various features were 
extracted from the EEG signals in time, frequency, and time-
frequency domains. Three models were trained in each domain us-ing 
k-nearest neighbors and ensemble bagged tree classifiers. A majority 
vote among the three models determined data labels, trained using dif-
ferent combinations of channel data features. Three training strategies 
were utilized: 1) single channel, 2) temporal channels, frontal channels, 
left-side channels, and right-side channels separately, and 3) all channels. 
The results of 10-fold cross-validation showed that the frequency features 
of temporal channels had the highest accuracy. The best results for k-
nearest neighbors were 97.1% (alert-sleepy), 96.6% (drowsy-sleepy), and 
96.7% (alert-drowsy). The highest accuracy of ensemble bagged trees was 
100% for all three models.

Index Terms: Biomechatronic systems, electroencephalogram (EEG), driving 
simulator, driver alertness, machine learning.
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1 Introduction

Every year, nearly 1.3 million people lose their lives in road accidents worldwide, 
and about 50 million are injured. Such accidents cause serious public health 
issues and substantial yearly financial losses [1, 2]. About 100,000 accidents 
occur due to driver drowsiness, resulting in more than 1500 deaths and 70,000 
injuries [1]. A driver is more likely to become drowsy when driving for extended 
periods in monotonous environments such as highways [3]. Drowsiness decreases 
the driver’s reaction time and attention. As a result, they lose their ability to 
recognize risky situations and control the vehicle accordingly [4, 5].

The primary reasons for driver drowsiness are insufficient sleep and poor 
physical condition [6]. Sleep deprivation can be due to work overload resulting 
in prolonged waking time using caffeine or other stimulants. The human brain 
considers some hours of the day as sleeping time, mainly from 2:00 to 6:00 in the 
morning. Drivers are more likely to become drowsy during such hours. Obe-
sity, physical weakness, or emotional stress can also cause drowsiness. Hence, 
drowsiness detection techniques have gained significant attention recently [6].

Driver drowsiness detection techniques are divided into four main categories:
(1) physiological methods, (2) vehicle-based methods, (3) behavioral methods, 
and (4) subjective measures [7, 8].

Vehicle-based techniques employ features such as steering wheel angle and 
steering wheel velocity obtained by sensors embedded in the car [7, 8]. Despite 
their non-intrusive nature and easy recording process, vehicle-based measures 
suffer from the following drawbacks: (1) they rely on external factors such as 
road markings, lighting, and weather conditions; (2) they are relatively expen-
sive and yield comparatively false-positive detection rates, making them inef-
fective in actual driving conditions [8].

Behavioral techniques involve analyzing the driver’s behavior, including 
yawn-ing, closing the eyes, blinking, and head position [7]. While behavioral 
detection methods are non-intrusive, their accuracy decreases drastically in 
conditions such as low light and driving with eyeglasses. Furthermore, the 
symptoms of sleepiness can vary significantly from person to person. As a 
result, methods that rely on detecting these symptoms may not be accurate 
enough for detecting driver drowsiness in all individuals [8].

Subjective techniques gather data from the driver in a simulated environment 
to detect the level of sleepiness [8]. These measures are impractical and directly 
relate to the individual’s assessment of their tiredness, making them unsuitable 
to use in actual driving conditions [9].

Physiological techniques are based on features extracted from the drivers’ 
bio-signals, such as electroencephalogram (EEG), electrocardiogram (ECG), 
electromyogram (EMG), and electrooculogram (EOG) [7]. These techniques 
allow the detection of driver drowsiness at an early stage. Despite resulting
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in high accuracies, physiological measures are generally intrusive. Thus, us-
ing them in actual driving conditions is challenging [8]. Therefore, small and
lightweight physiologically based devices that are less intrusive are a solution to
tackle this issue [8, 9]. Recent studies show that commercial EEG headbands
have the potential to record the changes in the brain signal caused by drowsiness
[10, 11, 4].

In this work, we aim to train models to detect the stages of drowsiness
using minimal EEG channels in real-time using commercial EEG headsets from
sleep-deprived participants while driving in a simulator.

This paper is organized as follows. Section II surveys related work, and Sec-
tion III explains the study design, the experimental setup, and signal processing
steps. In Section IV, evaluation results and further discussions are proposed,
followed by the conclusions in Section V.

2 Related Work

In this section, we investigate the previous studies on driver drowsiness detec-
tion systems using wireless EEG headbands. We discuss the results obtained
with self-made EEG devices as well as studies involving commercial headsets,
including Muse, Emotiv Epoch, Neurosky, and Open BCI headsets.

2.1 Self-made EEG Devices

Arnin et al. developed a wireless three-channel headband using EEG and EOG
signals. Three subjects were asked to drive in a car racing game and immedi-
ately press a button when feeling drowsy for manual identification to compare
with the device’s auto-detection algorithm. They reported an accuracy of 81%
[12]. Chae designed a four-channel EEG recording device and a signal processing
algorithm on a PC. The three subjects were requested to drive in an open-source
driving-simulation program. The results indicated that their method was feasi-
ble [13].
Lin et al. presented a 17-probe EEG-based system (Mindo) to monitor the
drivers’ vigilance status and link driving performance fluctuation with changes
in brain activities. A case study with 15 subjects in an immersive virtual driving
environment demonstrated the reliability of their proposed system [14]. Hsieh et
al. proposed a 2-electrode brain signal system. Their simulation results demon-
strated that the developed system was feasible [15]. Li et al. presented a system
with an SVM-based posterior probabilistic model and a smartwatch-based wear-
able EEG device. Twenty subjects participated in a driving simulation exper-
iment resulting in an accuracy of 91.25% (alert), 83.78% (early-warning), and
91.92% (full-warning) [16]. Li and Chung designed a BMI system. Seventeen
subjects participated in a driving simulation experiment resulting in a 93.67%
five-level overall accuracy, a 96.15% two-level (alert-slightly drowsy) accuracy,
and maximum 16 to 23 min wakefulness maintenance [17].
Lin et al. developed a four-channel BCI system to investigate drivers cognitive
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state changes in a VR-based driving task with five subjects. The practical test-
ing demonstrated the feasibility of the proposed system in real-time process-
ing, automatic analysis, and online warning feedback in real-world operation
and living environments [18]. Lin et al. presented an EEG-based system that
included a wireless physiological signal-acquisition module and an embedded
signal-processing module. The average positive predictive value and sensitivity
were 76.9% and 88.7%, respectively, obtained from ten subjects in a VR-based
driving experiment [19]. Li-Wei Ko et al. proposed a single-channel EEG device
to detect driver’s fatigue levels on mobile devices that resulted in 90% fatigue
detection obtained from 15 subjects driving in a VR driving simulator [20]. Ha
and Yoo presented an EEG near-infrared spectroscopy (NIRS) ear-module SoC,
obtaining over 60% accuracy from a single subject without a driving simulator
[21]. Kartsch et al. developed a wearable system capable of detecting drowsi-
ness with an accuracy of 85% using seven subjects without a driving simulator
[22]. Tsai et al. constructed a six-channel EEG-based system that obtained an
accuracy of 79.1% for alertness and 90.91% for drowsiness with wavelet features
[23]. Zhang et al. presented a vehicle active safety model using eight EEG sen-
sors and an accuracy of up to 93% from ten drivers in a simulated environment
[24].

2.2 Muse

Almogbel et al. achieved the highest accuracy of 95.3% from a single subject
in a simulated driving task [40]. Mehreen et al.’s result was 92% from 50 sub-
jects without using a simulated environment [41]. Gilbert and Lewis used Muse
on 25 subjects in a simulated driving task. Their results with spectral band
power features indicated that self-reported measures were consistent with EEG
changes [42].
Foong et al. assessed the correlation of EEG log band power against reaction
time in 31 subjects during a driving simulation experiment. They found out
that log delta band power has a significant positive correlation, log theta and
alpha band powers had a significant negative correlation [43]. Foong et al. pro-
posed an iterative negative-unlabeled (NU) learning algorithm for cross-subject
detection of passive fatigue from labeled and unlabeled alert-driving EEG data
of 29 subjects. They reported an average accuracy of 93.77% ±8.15% [44].
Rohit et al.’s experiment on 23 subjects driving in an in-lab driving simulator
reported an accuracy of 81% per subject level and 74% in cross-subject valida-
tion. Using a temporal aggregation strategy, they improved the cross-subject
validation accuracy to 87% [45].

2.3 Emotiv Epoc

Thuy et al. reported an accuracy of 70% from a single subject during a racing
game [25]. Pasariu et al. achieved the highest accuracy of 84.5% from ten
subjects while driving in a simulator [26]. Poorna et al. employed an Emotiv
Epoc device on 18 subjects in a virtual driving environment. K-nearest neighbor
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(KNN) and artificial neural network (ANN) reported an accuracy of 80% and
85%, and sensitivity of 33.35% and 58.21%, respectively [27].

2.4 Neurosky MindWave

Patel et al. evaluated the single-electrode Neurosky MindWave performance
using a driving simulator on 7 subjects. The results indicated no statistically
significant differences between epochs of each class [28]. Salimuddin et al. ob-
tained 90% true and 10% false detection rates [29]. Giovanni et al. developed
a DrowTion application implemented with Mindwave headset to minimize false
alarms and give multiple alarms. They achieved 68.11% accuracy [30]. Lim et
al.’s results indicated that their algorithm has a detection rate of 31% per sec-
ond, a negligible false alarm rate of 0.5%, and a minimum latency of 2 seconds
[31].
Lin et al. developed a real-time drowsiness warning system which consists of an
embedded system, RF system, and NeuroSky. The proposed system validated
the promising ability of the headset integrated with the embedded system [32].
Purnamasari et al. proposed a drowsiness detection system named Drowsiver
with an accuracy of 95.24% [33]. Ogino and Mitsukuraused achieved an ac-
curacy of 72.7% from 29 subjects without testing in a driving simulator [34].
Abdel-Rahman et al.’s system reached an average accuracy of 97.6% from 60
subjects while driving [35].

2.5 Open BCI

Arif et al. used a passive BCI with a 16-channel OpenBCI Ultracortex during a
simulated driving experiment on five participants. Average classification accu-
racies were 95.8% for KNN and 93.8% for SVM [36]. Mohamed et al. evaluated
driver’s vigilance level reporting average accuracy of 96.7% and 85.0% for train-
ing and testing, respectively, from twenty datasets [37]. Arif et al. developed
a passive BCI scheme using a 16-channel OpenBCI Ultracortex with 85.6% ac-
curacy [38]. Zhu et al. developed a method using an eight-channel Open BCI
head cap on 12 subjects during driving tasks. They reached a 95.59% accuracy
[39].

3 Materials and Methods

A drowsiness detection test is generally designed to collect data on alertness and
various stages of drowsiness. For this purpose, collecting the data at a time and
in a situation that fully represents the mentioned situations is necessary. This
study proposes a drowsiness detection method using commercial EEG headsets
and a driving simulator while collecting drivers’ brain signals. The test protocols
were designed to make the driver more likely to become drowsy. After analyzing
the EEG signals, we applied machine learning methods to distinguish states of
alertness and drowsiness.
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3.1 Study Design

3.1.1 Test Schedule

The tests were scheduled from 13:00 to 17:00, as this was when fatigue and
sleepiness were most likely to affect the participants in this study. All the
data collection and monitoring tools were calibrated before starting the tests.
The participants first drove the simulator for 15 minutes to acclimate to it
and reduce the physiological and psychological effects of using it for the first
time. The duration of the experiment varied depending on each participant’s
performance. The experiment ended if any of the following conditions were met:
(1) 75 minutes had passed since the start of the test, (2) the driver lost control
of the vehicle for any reason, (3) three cycles of transitioning from alert to sleepy
state were achieved, (4) the driver became restless or requested to stop the test
for other reasons.

3.1.2 Environment

Drivers’ drowsiness can be influenced by the environmental conditions they are
exposed to. For example, an environment that is too hot or too cold can have
a detrimental effect on their alertness and comfort. Similarly, an environment
that is too quiet can make them more sleepy and less attentive. The tests were
performed in a room with a balanced temperature (25◦ C) and relative humidity
(30%). The ambient noises were minimized as much as possible, and the sound
of the simulated car was adjusted to a level that would not interfere with the
sleep onset of the drivers but would still simulate realistic driving conditions.
The room was also darkened to increase the likelihood of drowsiness.

3.1.3 Test Participants

To be eligible for participation, volunteers should have met the following inclu-
sion criteria: (1) Age: Based on the literature [6], individuals aged 21 to 57 who
drive may be more susceptible to feeling drowsy. However, for those whose job
involves driving, this age range may extend from the beginning of their employ-
ment to their retirement. In this study, the target age range for the examinees
was considered from 20 to 50 years. (2) Driving Experience: It was required to
have a valid driver’s license and a minimum of two years of driving experience
to participate in this study. The study excluded individuals who met any of the
following criteria:

• Body Mass Index (BMI): People with a BMI over 40 were not included in
the study.

• Sleep disorders or motion sickness: Participants with mental illnesses,
significant head injuries, neurological disorders, or severe sleep disorders
were also excluded from the study.

The participants were initially asked to complete three questionnaires: (1) a
general information form requesting details such as age, height, weight, driving
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experience, and medical history, (2) the Pittsburgh Sleep Quality Index (PSQI)
to assess sleep quality, (3) the Epworth Sleepiness Scale (ESS) to evaluate the
likelihood of dozing off in different situations. The participants were encouraged
to reduce their sleep duration by only half of their regular night’s sleep before
the experiment. In order to prioritize their safety, the participants were advised
to utilize a ride-hailing service, and their transportation expenses were covered
for the test day. They were also asked to refrain from drinking coffee or other
caffeinated substances on the test day. They were also given a heavy meal before
the test to induce drowsiness.

3.1.4 Labeling

The study employed an Observer Rating of Drowsiness (ORD) method to as-
sess drowsiness and label the recorded signals. The drowsiness state of each
individual was determined by analyzing video recordings of their face and neck
throughout the experiment. Three observers evaluated the driver’s facial expres-
sions and behaviors in the video, such as eye-lid closure rate, staring, yawning,
stretching, and head dropping. The observers were assigned a drowsiness level
rating from 1 (not drowsy) to 5 (extremely drowsy) every 30 seconds using the
ORD checklist shown in Table. 1. The final label was determined based on a
voting process among the three observers. For clarity, we will use the following
terms in this paper: ”alert” for drowsiness levels 1 and 2, ”drowsy” for level 3,
and ”sleepy” for levels 4 and 5.

3.2 Experimental Setup

The experimental setup was designed to induce drowsiness in the participants.
The components of the setup are listed below.

3.2.1 Driving Simulator

We used a fixed driving simulator (Nasir driving simulator) to simulate the
motion of an actual vehicle [47]. Three large LCD screens were positioned in
front of the windshield, covering most of the driver’s field of vision (Fig. 1).
These screens provided virtual front and side mirrors to simulate a realistic
road view. The selected simulated road was known for its high fatality rate in
accidents due to its lack of visual attractions. Participants were instructed to
drive in the automatic gearbox mode, keep their speed between 70-80 km/h,
and move on the right side of the road to minimize distractions that could
interfere with the drowsiness process. The simulator generated a preprocessed
log containing various sensor data sampled at 30 Hz.

3.2.2 EEG Headsets

We employed two commercial headsets, Muse 2 and Muse S (InteraXon Inc.,
Toronto, ON, Canada), for recording the brain signals (Fig. 2). These EEG
headsets are versatile, accessible tools for neuroscience research and personal

7



Table 1: The ORD checklist, including the descriptions of progressive drowsiness
levels.

Not Drowsy: A driver who is not drowsy while driving
will exhibit behaviors such that the appearance of alertness
will be present. For example, normal facial tone, normal
fast eye blinks, and short ordinary glances may be observed.
Occasional body movements and gestures may occur.
Slightly Drowsy: A driver who is slightly drowsy while
driving may not look as sharp or alert as a driver who is not
drowsy. Glances may be a little longer and eye blinks may
not be as fast. Nevertheless, the driver is still sufficiently
alert to be able to drive.
Moderately Drowsy: As a driver becomes moderately
drowsy, various behaviors may be exhibited. These behav-
iors, called mannerisms, may include rubbing the face or
eyes, scratching, facial contortions, and moving restlessly in
the seat, among others. These actions can be thought of as
countermeasures to drowsiness. They occur during the in-
termediate stages of drowsiness. Not all individuals exhibit
mannerisms during intermediate stages. Some individuals
appear more subdued, they may have slower closures, their
facial tone may decrease, they may have a glassy-eyed ap-
pearance, and they may stare at a fixed position.
Very Drowsy: As a driver becomes very drowsy, eyelid
closures of 2 to 3 seconds or longer usually occur. This is
often accompanied by a rolling upward or sideways move-
ment of the eyes themselves. The individual may also ap-
pear not to be focusing the eyes properly or may exhibit a
cross-eyed (lack of proper vergence) look. Facial tone will
probably have decreased. Very drowsy drivers may also ex-
hibit a lack of apparent activity, and there may be large
isolated (or punctuating) movements, such as providing a
large correction to steering or reorienting the head from a
leaning or tilted position.
Extremely Drowsy: Drivers who are extremely drowsy
are falling asleep and usually exhibit prolonged eyelid clo-
sures (4 seconds or more) and similar prolonged periods of
lack of activity. There may be large punctuated movements
as they transition in and out of intervals of dozing.
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use, offering a non-invasive and affordable way to measure brain activity, al-
ready used in sleep, meditation, and mental health studies [46]. Both headsets
had Bluetooth connectivity and could be used with multiple platforms (PCs or
smartphones). Both devices had similar specifications, featuring four dry elec-
trodes (AF7, AF8, TP9, and TP10) positioned according to the 10-20 system.
In the 10-20 system, electrodes AF7 and AF8 are located above the eyes, while
electrodes TP9 and TP10 are near the ears. The headsets were designed to fit
around the head, with the electrodes embedded in the fabric headband close
to the eyes and ears. The middle electrode served as the reference electrode,
similar to FpZ in the 10-20 system. Along with EEG electrodes, both devices
were equipped with gyroscopes, accelerometers, and PPG sensors, providing
four data types. The sampling frequency rate for the data collection was 256
Hz.

Muse electrodes were placed based on the 10-20 system, where AF7 and AF8
electrodes are positioned above the eyes, and TP9 and TP10 electrodes are near
the ears. The reference electrode, FpZ, is placed in the middle of the forehead.

3.2.3 Camera

A camera was used during the experiments to record the participant’s face for
assessing drowsiness and labeling the data. The camera was situated on the
left side of the steering wheel, capturing the driver’s face and neck without
obstructing their view of the screen (Fig. 1).

3.3 Signal Processing

Machine learning methods were carried out to distinguish the three stages of
drowsiness. The preprocessing of the EEG signals included (1) filtering with low
and high-pass FIR filters with 0.1 and 40 Hz cut-off frequencies, (2) epoching
into 30-second sections consistent with the ORD labeling intervals, (3) denoising
using the threshold range of each channel (mean ±3std) and removing epochs
containing more than 30% outliers, and (4) splitting the data into three parts
of alert, drowsy, and sleepy based on the ORD labels. Epochs with ORD labels
1-2 were considered alert, epochs with label 3 were drowsy, and the rest (labels
4-5) were categorized as sleepy.

Features were selected based on the literature [48]. Shannon entropy, log
energy entropy, absolute power, relative power, skewness, and kurtosis were the
six features extracted from EEG bands (delta: 0.1-4 Hz, theta: 4-8 Hz, alpha:
8-13 Hz, beta: 13-30 Hz, and gamma: 30-40 Hz) of each epoch. Hence, 30
features were extracted from each channel of the epoch.

We used wavelet entropy (WE), which is calculated with the expression for
Shannon’s entropy based on the coefficients of the wavelet decomposition of the
given time series [48]. Shannon entropy is calculated according to

−
∑
i

P (xi) ln(xi) (1)
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where P (xi) is the probability distribution of the data.
Log energy entropy is similar to wavelet entropy, but only uses the summa-

tion of logarithms of the probabilities [48].
Absolute power is calculated as

lim
N→∞

1

2N + 1

N∑
n=−N

|x[n]|2 (2)

where N is the length of the signal (number of data points) and | x[n] | its
magnitude.

Relative power is the ratio of the power of a specific frequency range to
absolute power. Here, frequency ranges were the EEG bands [48].

Skewness is a measure of the asymmetry of the data around its mean. If
negative, the data spreads out more to the left of the mean, and if positive, the
data spreads out more to the right. Skewness is defined as

E(x− µ)3

σ3
(3)

where x represents the data points, µ is the mean of x, σ is the standard deviation
of x, and E(.) represents the expected value [48].

Kurtosis is a measure of how much a distribution is prone to outliers. The
kurtosis of the normal distribution is 3. If the distribution has a kurtosis greater
than 3, it is more outlier-prone than the normal distribution. If its kurtosis is
less than 3, it is less outlier-prone than the normal distribution. Kurtosis is
defined as

E(x− µ)4

σ4
(4)

where x represents the data points, µ is the mean of x, σ is the standard deviation
of x, and E(.) represents the expected value [48].

Three models were trained to classify stages of alert, drowsy, and sleepy
based on effective features. A final classification was determined using a voting
model that involved all three classifiers.

4 Results and Discussion

4.1 Participants

We recorded the EEG signals of fifty participants using Muse 2 (12 female and
13 male) and Muse S (10 female and 15 male) headsets, who drove in a simulated
environment. The participants had an average sleep duration of 4.5 hours the
night before. The experiment was fully explained to the participants, who gave
their written consent before participation.
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4.2 Signal Processing

4.2.1 Preprocessing

After filtering and epoching the raw EEG signals, the threshold range for the
denoising process (mean ±3std of each channel data) was calculated to deter-
mine the outlier data points. The threshold range of channels TP9 and TP10
was ± 135, channel AF7 ± 153, and channel AF8 ± 159. The epochs containing
more than 30% outliers were considered noisy and therefore cast aside. Then
the data was labeled into three parts: alert, drowsy, and sleepy, based on the
predetermined criteria.

4.2.2 Feature Extraction

Features were extracted in three domains: time, frequency, and time-frequency
(Wavelet transform). In the time domain, features were extracted from the time
series of the epoch’s five frequency bands. The frequency domain was similar
to the time domain, but the epochs were converted to the frequency domain by
a fast Fourier transform, and then the features were calculated for each band.
In the time-frequency domain, epochs were resampled to 240 Hz so that the
wavelet coefficients would have the same frequency as the EEG bands. Here,
features were extracted from the coefficients.

4.2.3 Feature Selection

The marginal significance level between the two stages was used to determine
features indicating a meaningful separation. The p-values were obtained from
the data features, once for drowsy and alert data, once for alert and sleepy data,
and once for drowsy and sleepy data. A p-value less than 0.05 was considered
to be statistically significant.

4.2.4 Classification

During this phase, separate machine learning models were trained for each pair
of data classes (alert and drowsy, alert and sleepy, and drowsy and sleepy), with
the features of each domain being considered separately. Three models were
trained for each domain for each combination of channel features. The aim
was to determine the domain with the highest accuracy while minimizing the
number of channels used. The combinations were as follows: Single channel data
features, temporal channels data features, frontal channels data features, left-
side channels data features, right-side channels data features, and all channels
data features.

Two classifiers were used for training the models: weighted k-nearest neigh-
bors (KNN) and ensemble bagged trees. In the case of KNN, the value of k
was set to 10. The class labels were then determined using the majority vote
principle, considering the distance weightings.
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Table 2: The frequency domain accuracies with KNN

Channel Alert-Sleepy Drowsy-Sleepy Alert-Drowsy
AF7 69.4% 70.4% 69.4%
AF8 69.7% 72.1% 69%
TP9 73.3% 73% 69.4%
TP10 74.8% 72.9% 66.9%

AF7-AF8 73.9% 73.9% 72%
TP9-TP10 97.1% 96.6% 96.7%
AF7-TP9 78.9% 73.9% 72.8%
AF8-TP10 78.4% 75.7% 72.4%

All Channels 80.4% 76.9% 74.8%

4.2.5 Validation

The k-fold cross-validation method was used to estimate the models’ perfor-
mance. This method splits the data into k sections (folds). The accuracy of the
models is calculated in k rounds. In each round, one fold is considered the test
data, and the model is trained with the rest. The mean of the k folds’ accuracies
is the models’ final accuracy. In this paper, k was set to 10.

4.3 Evaluation

In each domain, the classification was carried out three times between each of
the two categories using the combinations above.

4.3.1 Frequency Domain

Tables 2 and 3 indicate the results of frequency domain classification with the
KNN and bagged trees classifiers, respectively.

Table 2, showcases the best result of each frequency domain classification
with KNN classifier obtained via the combination of channel TP9 and TP10
features. For alert-sleepy classification, the best result is 97.1%, with 95.1%
sensitivity (alert) and 98.7% specificity (sleepy). The maximum accuracy ob-
tained in drowsy-sleepy is 96.6%, with 89.6% sensitivity (drowsy) and 99.9%
specificity (sleepy). The best result in alert-drowsy classification is 96.7%, with
91.2% sensitivity (alert) and 99.5% specificity (drowsy).

Table 3 indicates that the best result of each classification in the frequency
domain with bagged trees classifier is 100% via the combination of channel TP9
& TP10 features.

4.3.2 Time Domain

Tables 4 and 5 indicate the results of time domain classification with KNN and
bagged trees classifiers, respectively.
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Table 3: The frequency domain accuracies with bagged trees

Channel Alert-Sleepy Drowsy-Sleepy Alert-Drowsy
AF7 70.5% 72.4% 70.6%
AF8 71.9% 73.4% 69.3%
TP9 74.3% 74.7% 69.3%
TP10 75.4% 73.2% 67.4%

AF7-AF8 75% 74.8% 71.7%
TP9-TP10 100% 100% 100%
AF7-TP9 78.4% 75.4% 73.3%
AF8-TP10 78.4% 75.6% 71.8%

All Channels 81.2% 77.4% 75.3%

Table 4: The time domain accuracies with KNN

Channel Alert-Sleepy Drowsy-Sleepy Alert-Drowsy
AF7 69.5% 71% 69.2%
AF8 70% 72.3% 69%
TP9 72% 72.5% 68.6%
TP10 70.5% 72.1% 69.7%

AF7-AF8 71.6% 73.8% 70.6%
TP9-TP10 77.9% 78.3% 76.4%
AF7-TP9 75.2% 74.4% 73.3%
AF8-TP10 75.9% 74.4% 71.2%

All Channels 78.8% 75.7% 74.3%
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Table 5: The time domain accuracies with bagged trees

Channel Alert-Sleepy Drowsy-Sleepy Alert-Drowsy
AF7 70.9% 73.2% 69.9%
AF8 70.9% 73.2% 68.8%
TP9 75.1% 74.6% 69.5%
TP10 75% 74.2% 68.8%

AF7-AF8 76% 75.1% 72.1%
TP9-TP10 84.6% 87.7% 82.9%
AF7-TP9 78.3% 75.9% 73.5%
AF8-TP10 78.9% 75.4% 73.2%

All Channels 80.5% 76.3% 75%

As showcased in Table 4, the best result of classification in the time domain
with KNN classifier for alert-sleepy classification was obtained via the combina-
tion of all channel features (78.8% accuracy, with 80.2% sensitivity (alert) and
77.2% specificity (sleepy)). In the drowsy-sleepy classification, the maximum ac-
curacy obtained is 78.3%, with 98.2% sensitivity (drowsy) and 34% specificity
(sleepy) using the combination of TP9-TP10 channel features. In alert-drowsy
classification, the best result is 76.4%, with 39.3% sensitivity (alert) and 95.9%
specificity (drowsy), which is also obtained with the combination of TP9-TP10
channel features.

As indicated in Table 5, the best classification result in the time domain
with the bagged trees classifier was obtained via the combination of TP9-TP10
channel features. For alert-sleepy classification, the best result is 84.6%, with
87.8% sensitivity (alert) and 80.8% specificity (sleepy)). In the drowsy-sleepy
classification, the maximum accuracy obtained is 87.7%, with 68.8% sensitivity
(drowsy) and 96.2% specificity (sleepy). In alert-drowsy classification, the best
result is 82.9%, with 77.2% sensitivity (alert) and 95.4% specificity (drowsy).

4.3.3 Time-Frequency Domain

Tables 6 and 7 indicate the results of the time-frequency domain classification
with KNN and bagged trees classifiers, respectively.

As showcased in Table 6, the best result of alert-sleepy classification in the
time-frequency domain with KNN classifier was obtained via the combination of
all channel features (74.7% accuracy, with 74.1% sensitivity (alert) and 75.3%
specificity (sleepy). The maximum accuracy obtained in drowsy-sleepy classi-
fication is 77.8%, with 95% sensitivity (drowsy) and 39.3% specificity (sleepy)
using TP9-TP10 channel features. In alert-drowsy classification, the best result
is 74.9%, with 65.38% sensitivity (alert) and 79.87% specificity (drowsy), also
using TP9-TP10 channel features.

As indicated in Table 7, the best result of each classification in the time-
frequency domain with the bagged trees classifier was obtained via the combina-
tion of TP9-TP10 channel features. For alert-sleepy classification, the maximum
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Table 6: The time-frequency domain accuracies with KNN

Channel Alert-Sleepy Drowsy-Sleepy Alert-Drowsy
AF7 65.2% 70.2% 68.5%
AF8 66.5% 70.5% 67.5%
TP9 66.8% 69.9% 67.4%
TP10 69.4% 70.1% 69%

AF7-AF8 71.8% 73.2% 70.4%
TP9-TP10 74% 77.8% 74.9%
AF7-TP9 72.9% 74.3% 69.8%
AF8-TP10 73.4% 74% 70.8%

All Channels 74.7% 75.1% 72.4%

Table 7: The time-frequency domain accuracies with bagged trees

Channel Alert-Sleepy Drowsy-Sleepy Alert-Drowsy
AF7 68% 70.1% 68%
AF8 67.8% 70.7% 67%
TP9 67.4% 69.7% 69.2%
TP10 68.7% 71.3% 69.2%

AF7-AF8 74.1% 73.1% 69.3%
TP9-TP10 80.9% 87% 86%
AF7-TP9 73.2% 73% 71.1%
AF8-TP10 73.8% 74% 70.2%

All Channels 75.2% 74.5% 71.8%
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accuracy is 80.9%, with 81.9% sensitivity (alert) and 79.6% specificity (sleepy).
In drowsy-sleepy classification, the best result is 87%, with 66.8% sensitivity
(drowsy) and 96% specificity (sleepy). In alert-drowsy classification, the best
result is 86%, with 68.8% sensitivity (alert) and 95% specificity (drowsy).

Hence, the highest accuracy was 100% for all three models obtained using
frequency features of TP9-TP10 channels with a bagged tree classifier.

5 Conclusion

Detecting drowsiness is crucial in preventing accidents. Although EEG signals
are the most accurate method, their complicated signal collection prevents mass
production. However, recent advancements in low-cost wireless EEG headbands
show promise. In this study, off-the-shelf headbands were tested on fifty sleep-
deprived drivers. Machine learning was then used to distinguish between alert,
drowsy, and sleepy states. Features were extracted from the signals in time, fre-
quency, and time-frequency domains. K-nearest neighbors and ensemble bagged
tree classifiers were used to distinguish the three classes. Three different strate-
gies were used to train the models, and the majority vote was used to indicate the
data’s label for each strategy. Results showed that frequency features provided
the highest accuracy. The temporal region channels were the most effective in
detecting drowsiness levels among the channels. Both classifiers performed well,
with the ensemble bagged tree providing better results. The best results with
frequency features of temporal channels for K-nearest neighbors were 97.1%
(alert-sleepy), 96.6% (drowsy-sleepy), and 96.7% (alert-drowsy). The highest
accuracy of ensemble bagged trees was 100% for all three models. These find-
ings suggest that wireless EEG headbands can effectively detect drowsiness.
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Figure 1: a) Nasir driving simulator; The driver could control the simulator
with a steering wheel and pedals and see a virtual road on a big screen on the
dashboard. b) The simulator consisted of a video camera to record the face of
the driver.

22



Figure 2: The commercial headsets used in this study; (a) Muse 2; (b) Muse S
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