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Abstract

Chest radiography is a commonly utilized imaging technique for acquiring Chest X-Ray (CXR) images due to its cost-
effectiveness and its role in diagnosing lung?related disorders. Nevertheless, interpreting CXR images can be challenging,
and the process of separating the lung field from CXR images can be a valuable tool for assessing and diagnosing lung diseases.
While various segmentation methods exist, this study primarily focuses on META’s latest Segment Anything Model (SAM).
SAM is an Artificial Intelligence (AI) model designed to segment objects within an image. This research aims to harness SAM’s
capabilities for segmenting CXR images. Additionally, we explore the potential of another novel model called Grounding DINO.
Grounding DINO is a zero-shot object detection model that utilizes a Swin (Shifted Windows) transformer for extracting image
features and BERT (Bidirectional Encoder Representations from Transformers) for extracting textual information. It is primar-
ily employed to detect objects in an image based on a provided text prompt, creating bounding boxes around the objects when
certain text and box thresholds are met. These bounding boxes are then used as prompts for SAM to generate segmentation
masks. The proposed framework has been assessed on CXRs obtained from patients at Emory Hospital in Atlanta, Georgia,

USA and further evaluated using NIH clinical center’s CXR image dataset.
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Abstract—Chest radiography is a commonly utilized
imaging technique for acquiring Chest X-Ray (CXR) images
due to its cost-effectiveness and its role in diagnosing lung-
related disorders. Nevertheless, interpreting CXR images
can be challenging, and the process of separating the lung
field from CXR images can be a valuable tool for assessing
and diagnosing lung diseases. While various segmentation
methods exist, this study primarily focuses on META’s
latest Segment Anything Model (SAM). SAM is an Artificial
Intelligence (Al) model desighed to segment objects within
an image. This research aims to harness SAM’s capabilities
for segmenting CXR images. Additionally, we explore the
potential of another novel model called Grounding DINO.
Grounding DINO is a zero-shot object detection model
that utilizes a Swin (Shifted Windows) transformer for ex-
tracting image features and BERT (Bidirectional Encoder
Representations from Transformers) for extracting textual
information. It is primarily employed to detect objects in an
image based on a provided text prompt, creating bound-
ing boxes around the objects when certain text and box
thresholds are met. These bounding boxes are then used
as prompts for SAM to generate segmentation masks. The
proposed framework has been assessed on CXRs obtained
from patients at Emory Hospital in Atlanta, Georgia, USA
and further evaluated using NIH clinical center’s CXR image
dataset.

Index Terms— Chest X-rays, Grounding DINO, Object De-
tection, Segment Anything Model, Lung Segmentation.

[. INTRODUCTION

The development of foundational models has allowed for
rapid advancements in medicine such as in medical imaging,
drug discovery, and personalized medicine. While a number of
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machine learning (ML) and Deep Learning (DL) methods have
been contributed for segmentation tasks, a general challenge is
that such models are often trained for specific tasks. Training
a model involves gathering a substantial amount of data and
creating numerous ground-truth masks, leading to increase in
number of annotation for the annotators [1]. An ambitious and
unmet solution is to have an all-in-one, one-for-many models
which can solve segmentation problems with no re-training
or fine-tuning which can be refereed to as zero-shot learning
models. In this direction, the Segment Anything Model (SAM)
was introduced by Meta Research as a novel and state-of-
the art foundational model for segmentation tasks [2] . This
benchmark model was trained on >1 billion masks and >1
million natural images and has broad applicability to various
image segmentation tasks [3]. In this study, we evaluate the
performance of SAM using tailored anatomical text prompts
on Chest X-ray (CXR) images. The objective of this work
is to present the first comprehensive study in the assessment
of SAM’s abilities to perform segmentation on CXR images
using text prompts.

Medical image segmentation plays a crucial role in identi-
fying disorders and delineating structures of interest, making
it a well-established technique [4]. X-ray imaging, specifically
CXR, is a widely used imaging modality because of its simple
procedure to obtain images from patients and in diagnosing
lung-related disorders such as pneumonia, pulmonary edema
and Acute Respiratory Distress Syndrome (ARDS) [5], [6]. In
early stages of Coronavirus Disease 2019 (COVID-2019), the
preliminary step was to obtain a Computed Tomography (CT)
or CXR from the patient to visualize the spread of infection in
the lung nodules [7] . However, due to substantial costs, as well
as the concerns pertaining to potential airborne contamination
and limited resource availability, the adoption of CT scans was
often hindered in clinical settings [8] . Consequently, CXR
emerged as a more commonly observed diagnostic modality.
This preference for CXRs was further motivated by their
advantages, including lower ionizing radiation exposure and
portability [9].

Despite their advantages CXRs face criticism for their low
diagnostic sensitivity, necessitating precise, time-consuming
interpretation by a radiologist for compensation [10]. They
lack the fine details about pulmonary nodules, interstitial
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patterns, and cavitations among others required for precise
anatomical analysis which is crucial in many applications [11].
This has led to the emergence of Computer-Aided Diagnosis
(CAD) in chest radiography, with the goal of improving
diagnostic accuracy [12].

Significant advancements have been made in CAD research
related to lung segmentation. Segmenting infected nodules of
the lung can provide comprehensive information about the
type, location, and characteristic of the disease, which helps
clinicians to better understand the progression of diseases,
aiding in treatment planning [13]. This has led to the de-
velopment of ML and DL based segmentation pipelines that
focus on specific diseases with improved accuracy. However,
as methodologies mature, these ML algorithms need to be
rendered robust to support transition from bench to bedside
[14]. In such cases, foundational models like SAM prove to
be an all-in-one automated solution that can provide accurate
segmentation masks with just a click on the Region of Interest
(Rol) without having to train on domain specific data [15].

In our previous work, we used SAM to perform seg-
mentation on CXR images, and found that SAM performed
considerably well on segmentation tasks in terms of stability
score, when prompted with points or bounding boxes. Stability
score is a metric that calculates the differences in segmentation
output of multiple perturbed images, given an input image.
The different types of segmentation like automatic, prompt-
based, interface-based, and demographic based segmentation
were explored and performed [16]. However, the text-prompt
version of SAM has not been implemented yet and this work
primarily focuses on providing customized anatomical text-
prompts to SAM for segmentation of CXRs. Recent studies
are unclear about the applicability of SAM model to medical
image segmentation [17]. Hence, in this work, we not only
use SAM for the interpretation of CXR images, but also
take advantage of anatomical text-prompts to explore SAM’s
untapped potential in segmentation. Furthermore, text prompts
can guide Al models like SAM to focus on the desired
regions of interest which can result in efficient localization of
objects. Also, using text-based cues can improve the model’s
understanding about the anatomical patterns and structures,
thereby eliminating ambiguities when making segmentation
decisions by providing relevant clinical information.

In this experiment, text prompts were provided to the
Grounding DINO model to identify the object, and the de-
tected bounding boxes were provided as prompts to SAM
which produced the corresponding segmentation masks. The
text prompts pertaining to the two lobes of the lungs were
compared across the corresponding stability scores using his-
togram distribution plots. It was found that crafting a relevant
prompt to the task yielded precise bounding boxes. It was also
found that giving text prompts which were most relevant to
the task at hand yielded precise bounding boxes.

The contribution of this paper is summarized as follows:

e A novel approach has been introduced in which text
prompts are used to perform bounding box detection on
ICU CXR images.

o The developed framework has been integrated into the
SAM system, allowing lung segmentation on CXR im-

ages. The potential benefits of this development could
aid in disease detection, planning of treatments, and other
medical uses are significant.

o Additionally, CXR image binarization process has been
performed, leading to enhanced object detection

e Performance comparison of customized anatomical text
prompts and SAM versions.

Il. RELATED WORKS
A. Image Labelling tasks

Image labelling is regarded as a critical problem in computer
vision. One of the traditional labelling strategies is to combine
a Large Language Model (LLM) with a Language Vision
Model (LVM) so that they complement one another. Yu et al.
[2023] employed ChatGPT as input to an Artificial Intelligence
Generated Context (AIGC) model to produce images. It was
then given to an LVM to generate labels, which Grounding
DINO then turned into visual prompts. SAM was then used
to segment the image based on the prompts provided [18].

B. SAM in medical imaging

SAM has been evaluated on a variety of medical imaging
datasets. For instance, in a study by He et al [2023] SAM
was evaluated on 12 available medical image segmentation
datasets. The Dice overlap between the algorithm-segmented
and ground-truth masks was used to determine accuracy.
Furthermore, SAM was compared to five algorithms developed
for medical image segmentation tasks. SAM’s accuracy was
assessed by segmentation ability score and Dice overlap in U-
Net, image dimension, target region size, image modality, and
contrast. It was found that SAM’s accuracy was least affected
by these factors [2]. In another approach Mazurowski et al
comprehensively tested SAM’s segmentation abilities across
19 medical imaging datasets by simulation with point and
box prompts. SAM’s performance varies depending on the
dataset and task, excelling with clear prompts for well-defined
objects but under-performing with ambiguity. Point prompts
produce less effective outcomes than box prompts, and SAM
performs better in single-point prompts. Although iterative
use of multiple-point prompts marginally improves the per-
formance of SAM, other techniques eventually outperforms
SAM’s point based segmentation [19]. However, despite the
growing number of published papers on SAM’s application
in medical image segmentation, there is a noticeable gap
in literature concerning the utilization of anatomical context
text prompts specifically for segmenting CXR images. This
particular approach, which incorporates anatomical context
information, remains unexplored in relation to SAM’s seg-
mentation tasks.

[1l. METHODOLOGY
A. SAM Architecture

To summarize the architecture of SAM, it involves an image
encoder, a prompt encoder which accepts sparse and dense
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prompts, and a mask decoder. The image encoder component
of SAM is a Masked Auto Encoder (MAE) and is designed to
handle input upto a resolution of 3x1024x1024. The backbone
of SAM is the Vision Transformer (Vit) which comes in three
variants namely Vit-base (Vit-b), Vit-large (Vit-1), and Vit-
huge (Vit-h) [3]. This backbone allows SAM to capture fine-
grain details in the input.

The main difference in these variants is the number of
parameters it was trained on [20]. Vit works by splitting an
input image to a number of fixed-size non-overlapping patches
which are projected linearly. The patches are referred to as
tokens which are assigned to a class label for classification.
Additionally, positional embedding is done to get information
about the location of the patches in the image. These patches
are then fed to a pure transformer which works on self-
attention with which it can capture long-range dependencies
and contextual information from the images [21].

Models like Vit have found their application in medical
image segmentation obtained from Computed Tomography
(CT), MRTI’s etc. [22]. It was found that adding attention
to these networks eliminated irrelevant regions in an image
while highlighting salient features about the task at hand
[23]. Hence, attention mechanism plays a crucial role in
foundational models like SAM. The model was trained using
a combination of focal loss and dice loss as the loss functions.

Complete pipeline of Lung Grounded-SAM with the image and text backbone for extracting image embeddings and text tokens.

For optimization, the AdamW optimizer is employed with 5, =
0.9 and B3 = 0.999. Additionally, a linear learning rate warmup
is applied for 250 iterations, followed by a step-wise learning
rate decay schedule.

Furthermore, SAM is also associated with the zero-shot
learning property which enables it to perform equally well
on images that were not encountered during training. This
eliminates time complexity and the need to re-train the model.
Fine-tuning the model on custom datasets can improve ac-
curacy for the specific task, enabling real-time deployment.
Prompting these models with specific and relevant prompts
can also improve model’s performance.

B. Grounding DINO Architecture

Grounding DINO is a state-of-the-art zero-shot detector
used in object detection. It accepts an (image, text) pair as
input and outputs multiple object boxes. For example, if an
input image has a scissor on a table; it locates the scissor and
table and extracts the word “scissor” and “table” as labels.

It is built upon the DETR (Detection Transformers)-like
model named DINO. This can identify and localize objects
in an image when given a textual description. The model
understands the language and visual content of the image
and can associate the visual elements to a text or message.
The model consists of a Swin transformer for extracting
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Fig. 2. Grounding DINO results when prompted with the anatomical text prompts. Maximum confidence scores and accurate object detection is

associated with the prompts "right lung”, "right lobe”, "left lung”, and "left lobe”.
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Fig. 3. Results of SAM for the corresponding anatomical prompts. It can be clearly seen that the prompts “right lung”, “right lobe”, "left lung”, and ”

Left Lobe” have achieved the best segmentation.

visual information from the images and BERT to extract
textual descriptions. After the vanilla image and vanilla text
features are extracted, it is fed to a feature enhancer block for
cross-modality feature fusion, which utilizes deformable self-
attention to enhance the features. Image-to-text cross-attention
and text-to-image cross-attention are added for feature fusion.
A language-guided query selection module is designed to
select the features relevant to the input text. To merge the
features of the text and image modality, a cross-modality de-
coder was created. Each cross-modality decoder layer feeds the
results of each cross-modality query into a self-attention layer,
an image cross-attention layer to combine image features, a
text cross-attention layer to combine text features, and an Feed
Forward Network (FFN) layer. Since text information must
be injected into queries for improved modal alignment, each
decoder layer contains an additional text cross-attention layer
compared to the DINO decoder layer. The L1 loss and GIOU
loss are used for bounding box regression. To add on, the

model follows GLIP and uses contrastive loss between the
predicted object and language tokens for classification. This
model achieved an Average precision of 63.0 upon fine-tuning
it with the COCO dataset [24].

C. Detection with Grounding DINO

The study was reviewed and approved by the Emory
Institutional Review Board (IRB#STUDY00000302). The
images obtained were resized to 224x224 for reducing
computational complexity. The images were then converted
to grayscale. Then, the image was fed to the Grounding
DINO model for lung field detection. The box and text
threshold were set to 0.25 and 0.25 respectively. To support
multiple detections, irrelevant information from the images
were suppressed by image binarization. This also helps
in delineating the lung lobe structure from the background
noises. Image binarization was done using OTSU thresholding
with a threshold value set to 127 and the maximum value to
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Fig. 5. Histogram plots of scores obtained from various versions of SAM for the anatomical text prompts. Most of the results are clustered on the
right side of the histogram. However, we can observe that Vit-h and Vit-l model has the best distribution. Similar results are seen for the prompts
("right lobe”, "Right Lobe”), ("Right . Lobe ", "RIGHT . LOBE”.) irrespective of letter capitalization. The same is observed for prompts pertaining to

the left lung.

196. The binarization B for a threshold 7" with respect to an
image I is expressed as in (1).

1,
B(zi,yi) = 0

lf I(C(}i, yz) Z T
otherwise

(D

D. Evaluation metrics

IoU is a generally used metric to assess quality of segmen-
tation. IoU is measure of the overlap between the predicted
and ground truth masks by dividing the intersection of the
masks by the union of the masks. In this study, we used a
metric called the Binarized Predicted Intersection over Union
(BPIoU). The main idea was that if the binarization of CXR
images yielded a higher IoU scores, then the segmentation

accuracy was likely to be more, leading to precise segmenta-
tion masks. Conversely, lower stability scores resulted in poor
segmentation masks, failing to produce the desired results.
BPIoU (¢) of an image B(z;,y;) and a ground truth mask
G(z;,y;) is expressed as in (2).

b = |B(wi,yi) N G(xi, i)
|B(wi,yi) UG (i, yi)|

@

IV. RESULTS
A. Direct Object Recognition

Grounding-DINO incorporates language integration into
closed-set detectors across various stages. Grounding DINO
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TABLE |
OBJECT DETECTION RESULTS

Prompt Comment

Detected object

>

“right lung’ Detection is good
since a higher
confidence score
is assigned to the

right lobe.

Detected both the
lobes.

“right lobe”

Detected both the
lobes of the lung.

left lung”

”left lobe” Poor detection.

accepts text prompts and provides a bounding box around the
region of interest with a confidence score. This score ranges
from O to 1. Usually, the object with the highest confidence
score will correspond to the Rol. The box threshold and text
threshold were specified according to the specific tasks. The
results of the object detection when prompting the model
with relevant text prompts are shown in Table 1. The prompt
“right lung” detected the right lobe of the lung with a score of
0.28 and also detected the left lobe with a confidence score of
0.23. However the algorithm works by selecting the bounding
box rectangle with the maximum confidence score which is
indicated in (3) where [bi, bj] € B represent bounding boxes
in B. Furthermore, the prompts “right lobe” and ”left lung”
provided a localized bounding box with the two lobes of
the lung. The prompt “left lobe” gave poor detections which
meant the model was not able to comprehend the prompt.
These four anatomical prompts were experimented first to get
an understanding about Grounding DINO.

(ml,yl) = max{(bl, bg), (bg7 b4)7 ey (bn,bm)} (3)

B. Performance on Binary Images

The performance of Grounding DINO on binary images was
evaluated. The results show the ability of DINO to concentrate
only on the lobes of the lungs, which are the primary regions of
interest, contributes to a large portion of its accuracy in binary
image detections. Furthermore, a text enhancement algorithm
was incorporated to include the text “all” with the textual

TABLE Il
RESULTS OF GROUNDING DINO ON BINARY IMAGES.

Prompt Detection Comments

>

Identified the left
lobe with a con-
fidence score of
0.37.

“right lung’

Correct identifi-
cation of right
lobe.

“right lobe”

“left lung” Correctly identi-
fied. But the un-
bound region is
assigned a con-
fidence score of

0.37.

”left lobe” Has identified the

right lobe.

prompts that was provided to the model. DINO effectively
isolated the lung structures from extraneous features by taking
advantage of the binary representation, resulting in robust
detections.

As observed in Table 2, prompts like “right lobe” accurately
identified the Rol. The model was also provided with word-
level prompts like “right . lung .”, "left . lung .”, resulting in
accurate detections of Rol. However, the right lobe of the lung
was identified with a confidence score of 0.41 when specified
with the prompt left . lung ..

C. Grounding DINO + SAM

The bounding box on the binary images is given as input to
SAM. Only the bounding boxes associated with the maximum
confidence score was selected and provided as an input to
SAM. The resulting segmentation masks obtained from SAM
was laid on the original image. This resulting model is
the Grounded SAM which combines the zero-shot learning
capabilities of both Grounding DINO and SAM. A variety of
prompts related to detecting the left and right lobe of the lungs
were tested and the segmentation results of the right and left
lungs are presented in Figure 3 and Figure 4 respectively.

D. Prompt Ambiguity

Prompts can be ambiguous in the sense that it is unclear
which object in the image is referred to by the prompt. When
objects are nested within each other in an image, that is typical.
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Fig. 6. A comparison of the performance of three different ViT models
for CXR image segmentation on data obtained from Emory and NIH
clinical center. The first three bars in each set correspond to the EMORY
dataset, while the following three bars represent data from the NIH
clinical center. The metrics used was the BPloU. Variations in BPloU
was seen when prompted with the four prompts indicated on the x-axis.
It can be seen that Vit-l followed by Vit-h has achieved better results
compared to the three other models. The mean BPloU score for Vit-|
for the prompts "right lobe,” "right lung,” "left lobe,” and "left lung” on data
obtained from Emory was 0.943044, 0.949624, 0.946081, and 0.946362
respectively. Similarly, the scores obtained for Vit-l on the NIH data was
found to be 0.943044, 0.949624, 0.946081, 0.946362 respectively. The
results show that the pipeline generalizes well and also suggest that Vit-I
can be integrated with Grounding DINO to provide robust segmentation.

In such cases SAM offers multiple outputs to address this issue
and assist in clarifying the prompts. This is a highly essential
and practical element of SAM because, in the interactive
segmentation setting, the user/clinician can be provided with
numerous potential outputs from which they can choose the
one that is closest to the object that they wanted. In our study,
we display some of the results that SAM provided (Figure
5). Ambiguity originates in the DINO detection stage and
subsequently propagates through the subsequent stages of the
pipeline. This pattern of ambiguity propagation holds true for
single and multi-ROI segmentations.

E. Comparison of SAM Versions

The SAM model employs the ViT-b, ViT-l, and ViT-h
variations of the ViT architecture. These variations vary in the
number of layers and hidden units used in the ViT backbone’s
self-attention and feed-forward layers. ViT-b, ViT-1, and ViT-
h, in particular, have 91 million, 208 million, and 636 million
parameters, respectively [25]. Figure 6 shows the histogram
distribution of BPIoU scores for the three models. Based on
these results we can observe that the Vit-h and Vit-1 model has
more number of data points clustered close to 1. The prompt
“right lobe” achieves the highest BPIoU scores between the
range of 0.95-1.0. Similarly for the prompt “left lobe” highest
scores were seen. Vit-b showed good segmentation results with
majority scores in the range 0.8-1.0 but the maximum number
of data points that fall under the range is approximately 40
which is significantly less compared to Vit-1, and Vit-h.

V. DISCUSSION

The findings of the study show that the lung region can be
segmented effectively using SAM by specifying text prompts.
Though SAM supports points, and bounding boxes as inputs,
the ability of SAM to utilize textual information for segment-
ing Rol is undoubtedly a game-changer.

When CXR images were fed to Grounding DINO along
with appropriate prompts, the object detection results ranged
from good to poor. Using right lung” as a prompt led to
successful detections with higher confidence scores. However,
prompts aimed at detecting the left lobe of the lung did not
yield any detections. This can be due to a variety of reasons.
Firstly, it could be attributed to the anatomical and structural
differences in lungs among different patients. Secondly, there
might be an overlap in tissue intensities since lung tissues have
similar opacities.

Additionally, prompts relating to the two categories left
and right lung were experimented and tested. It was found
that prompts “right lung”, and “right lobe” achieved the
maximum BPIoU scores compared to other prompts when
the box threshold and text threshold were set to 0.25 and
0.25 respectively. These prompts were able to detect the Rol
with a confidence score of 0.58 and 0.50 respectively. Similar
results were achieved for the prompts “left lung”, and “left
lobe”. It should be noted that these prompts are sentence
level and lack letter capitalization. Furthermore, the model
was prompted with customized texts that had either the first
letter of each word capitalized or the entire word capitalized
like ”Right Lobe”, ”Left Lobe”, "RIGHT .LOBE .”, and
“"LEFT . LOBE .”. Both word and sentence-level prompts were
included. It was found that all these prompts performed on
the same level and produced similar results. An interesting
observation was that, the prompt "Left Lung” yielded multiple
detections and identified the left lobe of the lung with an
IoU of 0.93 indicating a very good segmentation. As a result,
multiple bounding boxes were obtained and all the bounding
box coordinates were given as prompts to SAM, which in turn
performed multiple detections. IoU scores of 0.86, 0.89 were
achieved for prompts “Right . Lobe .”, and "RIGHT . LOBE
7. Prompts with similar results were eliminated from further
study and only certain prompts were included in performance
analysis of SAM as illustrated in Figure 7 [26].

VI. CONCLUSION

This study delves into CXR image segmentation, that is
widely used for their cost-effectiveness and capacity to di-
agnose lung disorders. In this work, we have concentrated
on investigating SAM, a cutting-edge segmentation model by
META. SAM, an Al model with exceptional object segmenta-
tion capabilities, has proved its potential to revolutionize CXR
image segmentation. Using SAM, we attempted to segment
CXR images by specifying text prompts. Textual prompts
were included by using a zero-shot object detector known
as Grounding DINO. Grounding DINO is primarily used as
an object detection tool based on a given text. In this work,
we took advantage of Grounding DINO’s ability to produce
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bounding boxes around objects, thereby generating segmenta-
tion cues for SAM. The results of the research strongly indi-
cate the potential integration of Grounding DINO into SAM,
with a particular focus on the Vit-1 version, which has shown
improved segmentation. SAM’s capacity to segment objects,
along with the interpretability of Grounding DINO’s bounding
box cues, has shown to be a promising technique. With more
research to address its shortcomings and enhance efficiency in
medical image segmentation, SAM has the potential to become
a revolutionary Al model in clinical diagnosis. We anticipate
a future in which SAM, aided by improvements in Al and
medical imaging, will play a crucial role in redefining lung
disease identification, ultimately enhancing patient care and
healthcare outcomes.
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